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Abstract
Given a directed graph G and a pair of nodes s and t , an s-t bridge of G is an
edge whose removal breaks all s-t paths of G (and thus appears in all s-t paths).
Computing all s-t bridges of G is a basic graph problem, solvable in linear time.
In this paper, we consider a natural generalisation of this problem, with the notion
of “safety” from bioinformatics. We say that a walk W is safe with respect to a set
W of s-t walks, if W is a subwalk of all walks in W . We start by considering the
maximal safe walks when W consists of: all s-t paths, all s-t trails, or all s-t walks
of G. We show that the solutions for the first two problems immediately follow from
finding all s-t bridges after incorporating simple characterisations. However, solving
the third problem requires non-trivial techniques for incorporating its characterisation.
In particular, we show that there exists a compact representation computable in linear
time, that allows outputting all maximal safe walks in time linear in their length. Our
solutions also directly extend to multigraphs, except for the second problem, which
requires amore involved approach.We further generalise these problems, by assuming
that safety is defined only with respect to a subset of visible edges. Here we prove
a dichotomy between the s-t paths and s-t trails cases, and the s-t walks case: the
former two are NP-hard, while the latter is solvable with the same complexity as
when all edges are visible. We also show that the same complexity results hold for the
analogous generalisations of s-t articulation points (nodes appearing in all s-t paths).
We thus obtain the best possible results for natural “safety”-generalisations of these
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two fundamental graph problems. Moreover, our algorithms are simple and do not
employ any complex data structures, making them ideal for use in practice.

Keywords Directed graph · Connectivity problem · Graph algorithm · Strong
bridge · Strong articulation point · Safety · Genome assembly

1 Introduction

Connectivity and reachability are fundamental graph-theoretical problems studied
extensively in the literature [9,12,16,22]. A key notion underlying such algorithms
is that of edges (or nodes) critical for connectivity or reachability. The most basic vari-
ant of these is a bridge (or articulation point), which is defined as follows. A bridge of
an undirected graph, also referred to as a cut edge, is an edge whose removal increases
the number of connected components. Similarly, a strong bridge in a (directed) graph
is an edge whose removal increases the number of strongly connected components of
the graph. (Strong) articulation points are defined in an analogousmanner by replacing
the edge with a node.

Special applications consider the notion of bridge to be parameterised by the nodes
that become disconnected upon its removal [18,24]. Given a node s, we say that an
edge is an s bridge (also referred to as edge dominators from source s [18]) if there
exists a node t that is no longer reachable from s when the edge is removed. Moreover,
given both nodes s and t , an s-t bridge is an edge whose removal makes t no longer
reachable from s.

From this point onward we assume a fixed (directed) graph G without multiedges
but possibly with loops, with n nodes and m edges, and two given nodes s and t of G.
Since s-t bridges are exactly the edges (i.e., the paths of length one) appearing in all
s-t paths, it is natural to generalise this notion by considering the paths (i.e., of length
two or more) appearing in all s-t paths. An equivalent way of defining this problem
is through the notion of safety [25,26]. Given a set of walks W , we say that a walk
(or any sequence of nodes or edges) W is safe with respect toW if W is a subwalk of
all walks in W . Our problem is obtained by taking W to be the set of all s-t paths.1

We will also consider other natural generalisations forW , e.g. all s-t trails and all s-t
walks, as we will discuss in Sect. 1.1.

Safety is motivated by real-world problems whose computational formulation
admits multiple solutions. For this reason, we will also refer to the set W as the
candidate set. By looking at the parts common to all solutions—the safe parts—one
canmakemore informed guesses onwhat can be correctly reported from the data. This
approach is more feasible than e.g., the common approach of simply enumerating all
solutions. The motivation for our work comes from the genome assembly problem in
bioinformatics, which we review in Sect. 1.2.

Safety has several precursors, the closest being persistence: an individual node
or edge is called persistent if it appears in all solutions to a problem on the given

1 We will focus on maximal safe walks, namely those that cannot be extended left or right without losing
safety.
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Fig. 1 Safe walks under different models for s-t-safety. The figure shows a sequence of s-t bridges as bold
arrows and their bridge components as blue regions. Thick blue, red and green lines show the answers to
theMaxSafe stPaths, stTrails and stWalks problems, respectively. Trail breakers and walk breakers
have been highlighted in red and green, respectively (Color figure online)

graph. Persistent nodes and edges have been studied for maximum independent sets
[17], maximum bipartite matchings [10], assignments and transportations [8]. Other
previous notions include d-transversals [11] (sets of nodes or edges intersecting every
solution to the problem in at least d elements), d-blockers [27] (sets of nodes or edges
whose removal deteriorates the optimum solution to the problem by at least d), or
most vital nodes or edges [2].

For undirected graphs, the classical algorithm by Tarjan [23] computes all bridges
and articulation points in linear time. However, for directed graphs only recently
Italiano et al. [18] presented an algorithm to compute all strong bridges and strong
articulation points in linear time. They also showed that classical algorithms [15,
24] compute s bridges in linear time. The s articulation points (or dominators) are
extensively studied resulting in several linear-time algorithms [1,3,4]. The s-t bridges
were studied as minimum s-t cuts in network flow graphs, where an s-t bridge is a cut
of unit size. These cuts can be discovered iteratively in the residual graph of the classic
Ford Fulkerson algorithm [13] after pushing unit flow into the network. Contracting
the first cut to s, the next s-t bridge can be discovered, and so on. Since only unit-sized
flows are of interest, the algorithm completes in linear time. Recently, this algorithm
was simplified for unit-sized cuts (s-t bridges) by Cairo et al. [5].

1.1 Problems Studied

Apart from the candidate set made up of all s-t paths (mentioned in the previous
section), we will also consider two basic generalisations of it: the set of all s-t trails
(i.e., walks from s to t which can repeat nodes, but not edges), and the set of all s-t
walks (i.e., walks from s to t , which can repeat both nodes and edges). We denote
the problems of computing the maximal safe walks (in terms of alternating sequences
of nodes and edges) for each of these problems as MaxSafe followed by stPaths,
stTrails, and stWalks, respectively.

In Fig. 1, we present examples for these problems. Neither of the coloured cycles
can be used by an s-t path, therefore thewhole thick bluetgm line is safe in stPaths. In
stTrails, nodes can be reused and hence the red cycle (defined later as trail breaker),
makes only the thick red lines as safe. In stWalks, s-t bridges can be reused as well
and hence the green cycle (defined later as walk breaker), makes only the thick green
lines as safe.
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Fig. 2 Safety in the X -stWalks model where X is the black part of the graph. In both stWalks and
X -stWalks the possible solution walks are (s, a, b, c, t) and (s, a, b′, c, t), highlighted in blue and dark
blue. Their X -subsequences are both (s, a, |, c, t) which is therefore safe in the X -stWalks model. The
invisible region is marked with a red | in the solution string (Color figure online)

An alternative way to look at these problems is to define safety in terms of only
nodes, instead of walks.We define the node sequence of awalkW as the sequence (i.e.,
string) corresponding to V obtained by reading the nodes ofW in order. A sequence of
nodes is safe if it is a substring of the node sequence of every walk in the candidate set.
We denote the corresponding safety problems asMaxSafe followed by V -stPaths,
V -stTrails, and V -stWalks, respectively. We alternatively refer to them as the V -
visible problems, whereas the natural case is referred to as G-visible. The solutions to
these V -visible problems can be obtained by simply leaving out the edges of maximal
safewalks ofG-visible problems. Butwhen extending tomultigraphs, the node-centric
trails problem becomesmore involved, since it allows the repetition of a node sequence
in a trail if and only if the node sequence is connected by multiedges (see Sect. 7).

Another dimension for generalising the above models is to assume also a visible
subset X ⊆ V ∪ E of nodes and edges and to define safety while looking only at
the sequence of visible nodes and edges. We denote these problems as MaxSafe
followed by X -stPaths, X -stTrails, and X -stWalks, respectively (or X -visible
problems). For example, we say that a sequence of nodes and edges in X is safe for
the X -stWalks problem if it is a substring of the X -subsequence (subsequence of
elements in X ) of each s-t walk. We also allow to mark the hidden parts in an X -
subsequence with the special symbol | for easier processing in practice (see Fig. 2 for
an example).

1.2 Bioinformatics Motivation

In this section we motivate our results from a bioinformatics perspective, and the rest
of this paper can be read independently from this section.

A notable example of a real-world problem admitting multiple solutions is the
genome assembly problem from Bioinformatics: one is given a set S of short genomic
fragments (or reads) and one needs to reconstruct the genome from which these were
sequenced (see e.g. [19] formore details). A common approach is to build a graph from
the reads, called the genome graph. For example, the edge-centric de Bruijn graph of
order k for the set S of genomic sequences has a node for each distinct substring of
length k appearing in some string of S. It further has an edge between two nodes a
and b labeled with sequences (a1, . . . , ak) and (b1, . . . , bk), respectively, whenever
ai+1 = bi for all i from 1 to k − 1 and (a1, . . . , ak, bk) is a substring of some string
in S. Each walk in the de Bruijn graph spells a sequence by concatenating the full
sequence of its first node with only the last character of all following nodes. Practical
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(a)

(b)

(c)

Fig. 3 A genome string, and the edge-centric de Bruijn graph G of order k = 3 built directly from the
genome string, plus the additional edge (CAC, ACA). We call this additional edge erroneous, because its
spelling CACA is not a substring of the genome. We take s = AAA and t = CCC

assemblers do not assemble full genomes, but instead efficiently output only shorter
strings that are guaranteed to appear in the genome. Namely, they output the spellings
of those walks that are common to all genome assembly solutions, where a solution
is a certain type of walk of the graph. See Fig. 3 for an example of these notions.

A natural notion of a genome assembly solution is that of a circular walk in the
genome graph covering every edge or node at least once [25,26]. Finding all maxi-
mal safe walks for the edge-centric solution set can be solved optimally: an optimal
quadratic-time algorithm was given in [6], and an optimal output-sensitive algo-
rithm was given in [7]. In this paper we drop both the circularity and the covering
requirements from this solution set. This yields more basic graph problems with more
fundamental solution sets that can potentially be computedmore efficiently in practice.
In addition, we introduce a novel generalisation of the problems that makes a subset
of nodes and edges invisible in the solution set. This models scenarios where we want
to ignore some uncertain or complex parts of the graph, but still report if the walks
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(a)

(b)

(c)

Fig. 4 Example of the applications of the subset visibility model. Red parts of the graphs are invisible and
black parts of the graphs are in X . The maximal safe walks in the stWalks model are drawn in green for
comparison (they are as in Fig. 3c) and the maximal safe sequences in the X -stWalksmodel are drawn in
red. Thin red lines mark invisible parts of the graph that are replaced with a special character | in the safe
sequences. For example the rightmost safe sequence in Fig. 4b is (CCG,|,CTC, TCC,CCC) and spells
the string CCG |CTCCC (Color figure online)

flanking this region always appear consecutive in all possible solutions. Moreover,
keeping them in the graph still allows them to impact the safety of other walks.

In Fig. 4 we illustrate these positive aspects of the subset visibility model on the
same example from Fig. 3. Recall that the edge (CAC, ACA) is erroneous. Figure 4a
shows that if this error can be identified (e.g. in practical scenarios by keeping track
of the abundance of each node or edge, that is in how many reads each node and edge
is contained), then longer safe walks can be obtained in the subset visibility model,
because we can connect the regions flanking this error.

Another type of graph structure breaking up safe walks are bubbles. These can
be defined, for example, as a pair of short paths between two nodes of roughly equal
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Table 1 Computational complexity of the problems studied in this paper for multigraphs. By len(S) we
denote the total length of the solution S in terms of number of edges (not required when the compact
representation suffices). The complexity marked with (*) becomes O(m + n) for simple graphs (without
multiedges), while the others remain the same

Visibility MaxSafe stPaths MaxSafe stTrails MaxSafe stWalks

G O(m + n) O(m + n) O(m + n + len(S))

V O(m + n) O(m + n + len(S))* O(m + n + len(S))

X NP-hard NP-hard O(m + n + len(S))

length (there existmore advanced definitions such as e.g. superbubbles [21]). In Fig. 4b
we mark a bubble of the graph as invisible and again show that longer safe walks
can be obtained by connecting the two regions flanking the bubble. In fact, bubbles
are common structures in de Bruijn graphs. In this example, the bubble arises from a
string having two occurrences inside the genome, that differ by one character. Another
common source of bubbles are sequencing errors. Furthermore, diploid genomes such
as human contain a maternal and a paternal copy of the chromosomes, which are
sequenced together. A position where the two copies differ analogously leads to a
bubble.

In Fig. 4 we consider the case when during the graph construction stage an edge
was falsely classified as error. If one were to simply delete it, this could lead to safe
walks that may not be part of the original genome (and thus incorrect). However, if
instead it is marked as invisible, this has no effect on correctness, and in fact it leads
to longer safe walks.

1.3 Results and Overview of Our Approach

In this paper we characterise the complexity of all nineMaxSafe problems for graphs
(possibly having loops), and later extend our results to multigraphs. We adapt our
characterisations to optimal algorithms using the simple algorithm for computing all
s-t bridges [5] at its core, where MaxSafe stWalks requires additional techniques.

All our results are also directly extendable to multigraphs, except for the V -visible
stTrails which requires a more involved approach. See Table 1 for a summary of
these results. The V -visible problems are an interesting special case of the X -visible
problems, as they are solvable in linear time even though they restrict visibility. This is
a useful observation, as genome assembly problems are often modelled with a node-
centric graph [25,26]. In practice, the X -visible models are most likely to yield best
results, as they have the best ability to extract long safe walks from a perturbed graph
(recall Fig. 4). Moreover, in practice it might be hard to derive single-visit constraints
for nodes or edges as in the paths and trails models. This makes X -stWalks likely
the most practical variant. But to keep all options open and to allow for an incremental
description of our results, we give a complete picture of the theoretical landscape and
solve (or prove NP-hard) also the other problem variants.

We solve all the linearly solvable MaxSafe problems with a similar algorithmic
approach. Observe that a non-empty walk is uniquely defined by a sequence of edges.
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Therefore, we can simplify the G-visible and the V -visible problems to separately
computing the maximal safe edge sequences (analogue to node sequences) and the
maximal safe empty walks (i.e. that consist of a single node). To obtain the solutions
of the G-visible problems, it then suffices to complete the edge sequences with their
corresponding nodes. And to obtain the solutions of the V -visible problems, observe
that a sequence of nodes is safe if and only if it spells out the nodes of a safe walk.
Therefore we take the solution of the correspondingG-visible problem and remove the
edges. This separation has the advantage that for the more complex graph structures
that govern the safety of non-empty walks we only need to consider edges, and adding
back the nodes in the end is trivial.Moreover, ifwe are only interested in safe sequences
of edges, we simply skip adding the nodes. Using a simple graph transformation, the
MaxSafe X -stWalks can also be solved by considering only edges.

Observe that for a sequence of edges to be safe in our models, each edge needs to be
safe on its own. Therefore, a safe sequence can only contain visible s-t bridges, which
we compute as the first step. This bridge sequence acts as the core of our solution, in
the way that we can always describe the solution as a set of substrings of the bridge
sequence, such that each s-t bridge is part of at least one maximal safe sequence.
The bridge sequence (and similarly the articulation sequence) can be computed with
the classical min-cut algorithm [13]. This algorithm was recently simplified for s-t
bridges (or s-t articulation points) by Cairo et al. [5].

The second step of our algorithms is to compute certain breaking structures (as
shown in Fig. 1) that determine which substrings of the bridge sequence are maximal
safe. For stPaths and stTrails and their V -visible counterparts, the breaking struc-
tures do not cause solutions to overlap. Since the length of the bridge sequence is in
O(n) and the breaking structures that define non-overlapping solutions are simple, we
obtain the following result.

Theorem 1 Given a graphG := (V , E)with n nodes,m edges and s, t ∈ V , there exist
algorithms to computeMaxSafe G-visible (or V -visible) stPaths and stTrails in
O(m + n) time.

When extending to stWalks, we get more complex breaking structures that both
overlap themselves and cause the solutions to overlap. This poses two problems. First,
there can be up to O(n2) of these breaking structures (see Fig. 8), and second, the total
length of the solution can be up to O(n2) (see Fig. 9). To handle the high amount of
breaking structures, we show that they can be reduced to a dominating set of size O(n),
which can be computed in O(m + n) time without computing all breaking structures
first. To handle the solution length, we make use of the bridge sequence B.

We show that there are at most O(|B|) maximal safe sequences, which allows us
to design a compact representation for the whole solution which can be unpacked in
output-sensitive linear time (time linear in output size). This representation consists
of the bridge sequence and the start and end indices of each maximal safe sequence.
Its total size is O(|B|), and since each bridge is safe it never exceeds the total length
of the solution. We show that this data structure can be computed in O(m + n) time.

In X -stWalks, we can also compute the respective breaking structures in linear
time, and represent the solution as a set of subsequences of the sequence of visible
bridges. In contrast to X -visible stPaths and stTrails, there are no restrictions on
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visits to nodes or edges, so the question if a breaking structure is actually breaking
can be decided independent of the global topology. This again results in an O(m + n)

algorithm.

Theorem 2 Given a graph G := (V , E) with n nodes, m edges and s, t ∈ V , the
corresponding bridge sequence B and a subset X ⊆ V ∪ E, there exist algorithms to
compute a compact representation of the solution S of MaxSafe X-visible stWalks
of size O(|B|) in O(m+n) time, which can report the complete solution in O(len(S))

time.

Notice that Theorem 2 also works when considering subset visibility for stWalks.
In contrast to this, when considering subset visibility for stPaths and stTrails, the
respective safety problems are NP-hard. We prove that by reducing from the Detour
problem of finding a u-v path passing through a third given node w (see Problem 1)
which is known to be NP-hard. The reduction is possible since the problems forbid
edge repetitions and with subset visibility we can focus on the nodes of the Detour
instance. This reduction is not possible for stWalks since it allows to repeat nodes
and edges arbitrarily.

Theorem 3 The MaxSafe X-visible stPaths and stTrails problems are NP-hard,
even when deciding the safety of a sequence of just two elements of X and restricting
X to contain only nodes or only edges.

Organisation of the Paper. We describe the results in an incremental manner, gradu-
ally building upon the previous solution to solve harder problems. In Sect. 2 we define
our notation and describe some preliminary results including the s-t bridge algorithm.
In Sect. 3we describe how the s-t bridge algorithm can be expanded to solveMaxSafe
stPaths andMaxSafe stTrails. In Sect. 4we characteriseMaxSafe stWalks and
in Sect. 5 we introduce an algorithm that can be used on top of the s-t bridge algorithm
to solveMaxSafe stWalks. As stated above, solving these problems also solves all
V -visible problems. In Sect. 6 we describe how that algorithm can be expanded to
solve MaxSafe X -stWalks. In Sect. 7 we describe how to extend our results to
multigraphs. In Sect. 8 we review our results.

2 Notation and Preliminaries

As defined above, we assume a fixed graph G := (V , E), where V is a set of n nodes
and E a set of m edges. Furthermore, we assume two nodes s, t ∈ V are given. A
graph is directed and may include loops, but not multiedges. A graph with multiedges
is a multigraph. Given a set of nodes and edges X ⊆ V ∪ E , or a single node or edge
X , then G[X ] denotes its induced subgraph and G − X is the result of removing all
edges and nodes from X (together with their incident edges). If X contains only edges,
we may also write G \ X .

Given an edge e = (u, v), head(e) = v denotes its head and tail(e) = u denotes
its tail. Given a sequence, a subsequence is obtained by removing arbitrary elements,
while a substring is obtained by removing a prefix and a suffix (both possibly empty).
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(a) (b)

Fig. 5 Bridge and articulation sequences with their components along s-t path. Recall that Ci is the new
part of G reachable from s in G \ bi (or G − ai ) in comparison to G \ bi−1 (or G − ai−1)

A sequence W := (v1, e1, v2, . . . , v|W |, e|W |, v|W |+1) of nodes vi and edges ei is
a v1-v|W |+1 walk (or simply walk) if vi = tail(ei ) and vi+1 = head(ei ) for all
i ∈ {1, . . . , |W |}. Its subsequence of only elements from a set X is called its X -
subsequence; if X = V it is called its node sequence, and if X = E it is called its edge
sequence. A walk W is a v1-v|W |+1 trail (or simply trail) if it repeats no edge, and it
is a v1-v|W |+1 path (or simply path) if it additionally repeats no node, except that v1
may equal v|W |+1, in which case it is a cycle. A walkW is empty if it contains nothing
or a single node and non-empty otherwise. A walk W contains a sequence of edges
(or nodes), if that sequence is a substring of its edge sequence (or node sequence).

The node expansion of a node v is an operation that transforms G into a graph G ′
by adding a node v′ and an edge ev from v to v′ and moving all out-edges from v to
v′. We call ev the internal edge of v.

Let B = {b1, b2, ..., b|B|} be the set of s-t bridges ofG. By definition, for all bi ∈ B
there exists no path from s to t inG \bi (see Fig. 5a), and all s-t bridges in B appear on
every s-t path in G. Further, the s-t bridges in B demonstrate the following interesting
property.

Lemma 1 The s-t bridges in B are visited in the same order by every s-t path in G.

Proof It is sufficient to prove that for any bi ∈ B, all b j ∈ B (where j �= i) can be
categorised into those which are always visited before bi and those that are always
visited after bi irrespective of the s-t path chosen in G. Consider the graph G \ bi ,
observe that every such b j is either reachable from s, or can reach t . It cannot fall in
both categories as it would result in an s-t path in G \ bi , which violates bi being an
s-t bridge. Further, it has to be in at least one category by considering any s-t path
of G, where bi appears either between s and b j or between b j and t . Hence, those
reachable from s in G \ bi are always visited before bi , and those able to reach t in
G \ bi are always visited after bi , irrespective of the s-t path chosen in G. ��

Thus, abusing the notation, we define B to be the bridge sequence containing the s-t
bridges ordered by their visit time on any s-t path. Such a bridge sequence B implies
an increasing part of the graph being reachable from s inG \bi , as i increases.We thus
divide the graph reachable from s into bridge components C = {C1,C2, ...,C|B|+1},
where Ci (for i ≤ |B|) denotes the part of the graph that is reachable from s in G \ bi
but was not reachable inG \bi−1 (if any). Additionally, for notational convenience we
assumeC|B|+1 to be the part of the graph reachable from s inG, but not inG \b|B| (see
Fig. 5a). Since bridge components are separated by s-t bridges, every s-t path enters
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Ci at a unique node (head(bi−1) or s for C1) referred to as its entrance. Similarly, it
leaves Ci at a unique node (tail(bi ) or t for C|B|+1) referred to as its exit.

Similarly, the s-t articulation points are defined as the set of nodes A ⊆ V , such
that removal of any s-t articulation point in A disconnects all s-t paths in G. Thus,
A = {a1, a2, ..., a|A|} is a set of nodes such that ∀ai ∈ A there exists no path from s to
t in G − ai . The s-t articulation points in A also follow a fixed order in every s-t path
(like s-t bridges), so A can be treated as a sequence and it defines the corresponding
components C (see Fig. 5b). Note that the entrance and exit of an articulation compo-
nent Ci are the preceding and succeeding s-t articulation points (if any), else s and t
respectively.

The s-t bridges and articulation points along with their component associations can
be computed in linear time, using either flows as described above, or the referenced
simplification.

Theorem 4 ([5,13]) Given a graph G := (V , E) with n nodes, m edges and s, t ∈ V ,
there exists an algorithm to compute all s-t bridges and s-t articulation points, along
with their component associations, in O(m + n) time.

3 Safety for stPaths and stTrails

The s-t bridge algorithm (Theorem 4) is the main building block for proving The-
orem 1. Recall that we simplified the corresponding problems to only finding the
maximal safe edge sequences. The solution to MaxSafe stPaths directly follows
from the s-t bridge algorithm.

Observe that for two s-t bridges to form a safe sequence, they need to be adjacent.
In the stPathsmodel, this is also sufficient, because visiting any other edge from the
intermediate node would repeat the node to reach the latter edge (see the thick blue
line in Fig. 1). Therefore, we get the following characterisation.

Theorem 5 (Safety for stPaths) A substring of the bridge sequence is safe under the
stPaths model, if and only if each consecutive pair of edges is adjacent.

Proof (⇒) Let L be a substring of the bridge sequence that is safe under the stPaths
model. Then L is a subpath of an arbitrary s-t path.

(⇐) Let L := (e1, . . . , e|L|) be a substring of the bridge sequence such that each
consecutive pair of edges is adjacent. LetW be an s-t path andWE its E-subsequence.
We prove that L is a substring of WE by induction. For the base case, note that WE

contains e1 since L is made of strong s-t bridges. For the inductive step, assume that
WE contains (e1, . . . , ei ) as substring. Since L is a substring of the bridge sequence,
W contains ei+1 after ei . And sincehead(ei ) = tail(ei+1) andW is a path, it contains
ei+1 immediately after ei . ��

Since each s-t path is an s-t trail, adjacency is still necessary for safety of stTrails,
but not sufficient. In Fig. 1, the s-t trail that uses the red cycle breaks the safe stPaths
(thick blue line). Thus, such a red cycle or the non-adjacency of s-t bridges makes a
trail breaker.
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(a) (b)

Fig. 6 Examples for trail breakers (red). The bold edges are s-t bridges and the blue regions mark bridge
components. Note that in (a), the trail breaker could also be a loop (Color figure online)

Definition 1 (Trail Breaker) A trail breaker for two consecutive s-t bridges bi and
bi+1 is a non-empty path from head(bi ) to tail(bi+1) that does not contain bi or
bi+1.

Any path P which is a trail breaker for a sequence (bi , bi+1) lies completely within
the bridge component Ci+1. Otherwise, P would also contain either bi or bi+1, which
is not allowed. Note also that P is a cycle if head(bi ) = tail(bi+1). See Fig. 6a for
an illustration of a circular trail breaker and Fig. 6b for a non-circular one. We get the
following characterisation.

Theorem 6 (Safety for stTrails) A substring of the bridge sequence is safe under
the stTrails model, if and only if it has no trail breaker.

Proof (⇒) Let L be a substring of the bridge sequence that is safe under the stTrails
model. Assume for a contradiction that L contains a trail breaker P from head(ei ) to
tail(ei+1) for some i ∈ {1, . . . , |L| − 1}. As such, P is completely inside a bridge
component C (the one with exit tail(ei+1)). It holds that any s-t trail W (which
contains L as substring, because L is safe) does not contain any edge from C . As a
result, we can insert P in W between head(ei ) and tail(ei+1) to obtain an s-t trail
W ′ that does not contain L as a substring. This contradicts the safety of L .

(⇐) Let L := (e1, . . . , e|L|) be a substring of the bridge sequence that has no trail
breaker. Let W be an s-t trail and let WE be the E-subsequence of W . We prove that
L is a substring of WE by induction. Note that WE contains e1, by assumption. For
the inductive step, suppose that WE contains (e1, . . . , ei ) as substring. Since L is a
substring of the bridge sequence, WE contains ei+1 after ei . And since L has no trail
breaker, each non-empty head(ei )-tail(ei+1) path P contains ei or ei+1. But ei is
already used by W on the way to head(ei ), and ei+1 needs to be used to reach t from
tail(ei+1). So no such P can be a subwalk ofW , and thus ei is immediately followed
by ei+1 in WE . ��

Using these characterisations, the s-t bridge algorithm can be directly used to
solve the problems. After computing the s-t bridges and bridge components, the
bridge sequence is split between non-adjacent pairs of consecutive s-t bridges, solving
MaxSafe stPaths. For MaxSafe stTrails, the residual pairs of consecutive s-t
bridges are checked for a trail breaker by checking if there is an incoming edge to
tail(bi ) from a node in Ci . Thus, both problems can be solved in O(m + n) time,
proving Theorem 1.
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Fig. 7 An example for a walk breaker, highlighted in green. The bold edges are s-t bridges and the blue
regions mark bridge components. In this example L := (e1 = bi , . . . , e|L| = bi+3) and ei , ei+1 can be
chosen as any consecutive pair of edges in L (Color figure online)

4 Safety for stWalks

Unlike the previous problems, solving MaxSafe stWalks requires another algo-
rithmic building block. Again, since each s-t trail is an s-t walk, the absence of trail
breakers is necessary for safety for stWalks, but not sufficient. In Fig. 1, an s-t walk
using the green cycle breaks the thick red line that is safe in stTrails. Thus, such a
green cycle or a trail breaker makes a walk breaker.

Definition 2 (Walk Breaker) A walk breaker for a substring L := (e1, . . . , e|L|) of
the bridge sequence is a non-empty path from head(ei ) to tail(ei+1) that does not
contain the first or last edge from L . Its bridge sequence is L .

Walk breakers can stay within a single bridge component (like trail breakers, recall
Fig. 6), but can also include multiple bridge components (see Fig. 7).
Characterisation for stWalks. Since a walk breaker P contains neither the first nor
the last edge of its corresponding substring L of the bridge sequence, it contains no
prefix or suffix of L . Therefore, if P is inserted into an s-t walk that contains L ,
then the result contains a prefix and a suffix of L that together spell L , but that are
interrupted by a subwalk that neither completes a prefix or suffix nor contains L itself.
Thus, P contradicts the safety of L . On the other hand, if it is possible to construct an
s-t walk W that does not contain L , then W contains a last occurrence of e1, the first
s-t bridge of L . After this last occurrence of e1, W contains a non-empty subwalk W ′
between a pair of consecutive s-t bridges ei , ei+1 from L that does not contain e1 or
ei+1, and hence neither e|L|. Therefore, W ′ is a walk breaker for L . Resulting, we get
the following characterisation.

Theorem 7 (Safety for stWalks) A substring of the bridge sequence is safe under
the stWalks model, if and only if it has no walk breaker.

Proof (⇒) Let L be a substring of the bridge sequence that is safe under the stWalks
model. If there is a walk breaker for L , then from an s-t walk W an s-t walk W ′ can
be constructed by inserting the walk breaker into every occurrence of L . But then, L
is not a substring of W ′.

(⇐) Let L := (e1, . . . , e|L|) be a substring of the bridge sequence that has no walk
breaker. LetW be an s-t walk and letWE be its E-subsequence. Since L is a substring
of the bridge sequence,WE contains a substringW ′

E that starts from the last occurrence
of e1 and ends in the first occurrence of e|L| after that, and L is a subsequence of W ′

E .
We prove that L is a prefix of W ′

E by induction. By definition, W ′
E starts with e1. For

the inductive step, suppose that (e1, . . . , ei ) is a prefix of W ′
E . By definition of W ′,
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Fig. 8 A graph with �(n2) walk breakers. The bold edges are s-t bridges and the blue regions mark bridge
components (Color figure online)

none of its head(ei )-tail(ei+1)-subwalks contain e1 or e|L|. Therefore, since L does
not have any walk breaker, ei+1 immediately follows ei in W ′

E . ��

5 ComputingWalk Breakers Efficiently

Since walk breakers can span over multiple bridge components, their structure is more
complex than that of trail breakers. But aswith trail breakers, the only edges of thewalk
breaker that are relevant are the s-t bridges.Moreover, since walk breakers cannot skip
s-t bridges they always correspond to a substring of the bridge sequence, where walk
breakers with same substrings are equivalent. We refer to this substring as the bridge
sequence of the walk breaker, and call its first edge the start and its last edge the end
of the walk breaker. If a walk breaker that connects bi to bi+1, i ∈ {1, . . . , |B| − 1}
contains no s-t bridge (i.e. it is equivalent to a trail breaker), then we call bi+1 its start
and bi its end. We call the amount of s-t bridges in the bridge sequence of a walk
breaker its bridge length.

Minimal Walk Breakers. Given s and t , in the worst case, a graph may contain up
to �(n2) different walk breakers; see Fig. 8 for an example. In this graph, there are
|B|− i −1 walk breakers of bridge length i , for each i ∈ {1, . . . , |B|−2}. However, if
the bridge sequence of a walk breaker is a substring of the bridge sequence of another
walk breaker, every walk proven unsafe by the latter is also proven unsafe by the
former, i.e., the former dominates the latter. Hence, computing all walk breakers is
wasteful andwe only focus on inclusion-minimalwalk breakers, referred to asminimal
walk breakers which are only dominated by themselves.

With this notion of domination, it suffices to compute the set of minimal walk
breakers in the graph to exclude all the unsafe walks. Note that at most one minimal
walk breaker starts and ends at each s-t bridge, otherwise one would dominate the
other. Therefore, there are at most O(|B|) different minimal walk breakers for a bridge
sequence B.

We now describe how to compute the minimal walk breakers (and hence the safe
walks) in linear time.

Algorithm. Using s-t bridges and trail breakers (walk breakers of zero bridge length)
computed earlier, we now compute the minimal walk breakers of non-zero bridge
length in two stages. First, we compute the O(|B|) walk breakers that are minimal
with respect to their starts. Then we remove the dominated walk breakers to get the
globally minimal walk breakers.
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Algorithm 1: Minimal Walk Breakers
Input: Graph G := (V , E), with s-t bridge sequence B and its components in C.
Output: Set of walk breakers of non-zero bridge length that are minimal from their starts.

/* Stage one */
1 forall the i ∈ {2, . . . , |B|} do // initialise walk breakers
2 if there exists a trail breaker from bi−1 to bi then end[i] ← i − 1 else end[i] ← |B|

// signifies empty starting from i

3 forall the i ∈ {2, . . . , |B| − 1} do Mark nodes in Ci reverse reachable from tail(bi )

4 forall the j ∈ {2, . . . , |B| − 1} do
5 forall the u ∈ C j+1 do // circular walk breakers ending with tail(b j )
6 forall the (u, v) ∈ E : v ∈ Ci , 2 ≤ i ≤ j do
7 if v is marked then
8 end[i] ← min{end[i], j}

/* Stage two */
9 min ← |B| // minimum end seen so far

10 forall the i ∈ {2, . . . , |B|} in reverse do
11 if end[i] < min then // ignore dominated walk breakers
12 Add (i, end[i]) to Sol
13 min ← min{min, end[i]} // walk breaker is new leftmost end

14 Return Sol

In the first stage, we start by performing backwards traversals from t and the tail
of each s-t bridge that stay within the bridge component they started in. This way, we
mark each node that is reverse reachable from the exit of its bridge component. Now,
all the walk breakers minimal from their start correspond to backward edges e of the
following form: an edge e fromC j toCi (i < j) where head(e) is marked. Intuitively,
a minimal walk breaker contains a single backward edge, because if it has multiple
backward edges its minimality would be disproven by one of its backwards edges.
Moreover, head(e) needs to be marked to ensure that it reaches the bridge sequence
to actually connect two s-t bridges (formally proved later).

Hence, we iterate over all such backward edges to compute the dominating walk
breaker starting fromeach s-t bridge. In the second stage,we traverse thewalk breakers
in reverse order of their starts and remove those that do not end before their successor
(in forward order), and hence are dominated by the successor.

All stages of Algorithm 1 run in linear time, and hencewe get the following theorem
(see Algorithm 1 for the pseudocode).

Theorem 8 Given a graph G := (V , E) with n nodes, m edges and s, t ∈ V , the set
of minimal walk breakers for stWalks can be computed in O(m + n) time.

Correctness. We now formally prove the following essential property of minimal
walk breakers described above, which establishes the correctness of our algorithm.

Lemma 2 A minimal walk breaker of non-zero bridge length with bridge sequence
starting at bi and ending at b j (i ≤ j ), satisfies the following conditions
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Fig. 9 A graph with maximal safe sequences for stWalks of total length �(n2) (|B| is even)

(a) There exists a backward edge e from C j+1 to Ci .
(b) The exit of Ci is reachable from head(e) (i.e. marked).

Proof We first prove that the minimal walk breaker contains a single backward edge
by contradiction. Assume it contains multiple backward edges e1, ..., ek in order. Now
consider a walk breaker using only the backward edge e1, clearly its bridge sequence
is a substring of the bridge sequence of the original walk breaker and hence dominates
it.

Now, to complete the walk breaker we require tail(e) to be reachable from
head(b j ) and tail(bi ) to be reachable from head(e). Since e originates from C j+1
with its entrance head(b j ) we can reach tail(e). The latter case is ensured by the
algorithm by marking only those nodes in Ci which can reach tail(bi ). Finally, if the
edge e ends in Ci , it cannot start in a different bridge component Ck . If k < i then the
walk breaker would contain an s-t bridge before bi ; symmetrically also k � j holds.
If k ∈ {i + 1, . . . , j}, then there exists a walk breaker that starts in head(bi ) and ends
in tail(bk−1), which contradicts the minimality of the walk breaker, ensuring that e
starts in C j . ��

In contrast to the previous problems, solutions toMaxSafe stWalksmight over-
lap. This allows the solutions’ total length to be quadratic in the number of nodes
(see Fig. 9). Therefore, instead of reporting the solution directly, the algorithm creates
a compact representation from which the complete solution can be reported in time
linear to its total length.

This representation consists of the bridge sequence, and the starts and ends of each
maximal safe walk in the bridge sequence.

Now, each such maximal safe sequence begins with the start of previous walk
breaker (or the first s-t bridge) and ends with the end of current walk breaker (or the
last s-t bridge) (formally proved later). Note that the definition of the start and end
for walk breakers of zero bridge length (trail breakers) perfectly fits this structure of
the solution. Hence, the indices of the solution for the compact representation can be
computed by simply iterating over all minimal walk breakers, requiring O(|B|) time.

Resulting, theminimalwalk breakers and the compact representation of the solution
of size O(|B|) can be computed in O(m + n) time, which can be expanded to get the
complete solution in time linear in the size of the solution. From this, the correctness
of Theorem 2 follows for X = V ∪ E , X = V and X = E . Below we prove a property
of safe walks central to the correctness of our description.
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Lemma 3 Given the ordered set of minimal walk breakers P = {P1, P2, ..., Pk} in the
stWalks, a maximal safe sequence begins with b1 and ends with b|B| if P = ∅, and
otherwise either:

(a) starts with b1 and ends with the end of P1, or
(b) ends with b|B| and starts with the start of Pk, or
(c) starts with the start of Pi and ends with the end of Pi+1 for some i ∈ {1, . . . , k−1}.

Proof The case where P = ∅ is trivial. Otherwise, let L be a maximal safe sequence.
If L starts with an s-t bridge other than b1 that is not the start of a minimal walk
breaker, then it can be extended to the left without becoming unsafe, contradicting its
maximality. By symmetry, L cannot end with an s-t bridge other than b|B| that is not
the end of a minimal walk breaker. Therefore, the start and end s-t bridges considered
in (a) –(c) are sufficient. It remains to prove that the pairings are correct.

(a) If L starts with b1, then it needs to end no later than the end of P1, since otherwise
it would be proven unsafe by P1. It can end no earlier, since no walk breaker ends
before P1.

(b) If L ends with b|B|, then by symmetry with (a) it starts with Pk .
(c) If L starts with the start of Pi for some i ∈ {1, . . . , k − 1}, then it cannot end after

the end of Pi+1, since otherwise it would be proven unsafe by Pi+1. Furthermore,
if it ends in the end of Pi+1, then it is neither proven unsafe by Pi nor by Pi+1.
And, since P is ordered, it is also not proven unsafe by another walk breaker. As
such, L ends with the end of Pi+1.

��

6 Subset Visibility

In this section, we discuss X -visible variants of our problems.We prove thatMaxSafe
X -stPaths and MaxSafe X -stTrails are in fact NP-hard (Theorem 3). We then
show how to solve MaxSafe X -stWalks as an extension of MaxSafe stWalks.

NP-hardness. We prove MaxSafe X -stPaths and MaxSafe X -stTrails to be
NP-hard by reduction from the following problem, proven NP-complete in [14, The-
orem 2].

Problem 1 (Detour) Given a graph G and pairwise distinct nodes u, v, w of G,
decide if there is a u-v path in G that contains w.

Observe thatwith the following reduction, a certificate for the unsafety of a sequence
is also a certificate for a detour. Therefore, asDetour is in NP, our NP-hard problems
are in co-NP. Formally, we describe it as follows.

Theorem 3 The MaxSafe X-visible stPaths and stTrails problems are NP-hard,
even when deciding the safety of a sequence of just two elements of X and restricting
X to contain only nodes or only edges.
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Proof Let G, u, v, w be an instance of Detour. In order to address the stTrails
problem in the same way as the stPaths problem, we transform G into the graph G ′
by expanding each node. For a node x we denote its internal edge as ex .

For the rest of the proof we set s = head(eu) and t = tail(ev). Every node of G ′
has either exactly one incoming edge or exactly one outgoing edge (i.e., some internal
edge ex ). As such, any s-t walk visiting a node twice also visits some edge twice (i.e.,
some internal edge ex incident to this repeated node of G ′). Thus, all s-t trails of G ′
are s-t paths.

When we restrict X ⊆ E , we set X = {eu, ew, ev}. We have that (eu, ev) is safe
under the X -visible s-t paths model in G ′ if and only if G, u, v, w is a no-instance for
Detour. Since all s-t trails of G ′ are s-t paths, the same holds also for the s-t trails
model.

When we restrict X ⊆ V , we set X = {s, tail(ew), t}, and analogously have that
(s, t) is safe under the S-visible s-t paths model in G ′, or under the s-t trails model in
G ′, respectively, if and only if G, u, v, w is a no-instance for Detour. ��

When considering walks, both nodes and edges can be used without limits, and
therefore the reduction from Detour does not work. Instead, our algorithm for
MaxSafe stWalks can be extended to solve MaxSafe X -stWalks.
Characterisation for X -stWalks.

In MaxSafe X -stWalks an additional subset X ⊆ V ∪ E of visible nodes and
edges is given. By expansion of each visible node v and making its internal edge
visible instead of v, we reduce the problem to X ⊆ E . Similar to previous problems,
the solutions toMaxSafe X -stWalks are then substrings of the X -bridge sequence,
which is the X -subsequence of the bridge sequence.

Such a substring is safe if it contains no X -walk breaker, which is a walk breaker
with an X -edge. With these definitions we get the following characterisation.

Theorem 9 (Safety for X-stWalks) A substring of the X-bridge sequence is safe
under the X-stWalks model, if and only if it has no X-walk breaker.

Proof (⇒) Let L be a substring of the X -bridge sequence that is safe under the X -
stWalks model where X ⊆ E . If L has an X -walk breaker, then from an s-t walk
W an s-t walk W ′ can be constructed by inserting that X -walk breaker into every
occurrence of L in the X -subsequence of W . But then L is not a substring of the
X -subsequence of W ′.

(⇐) Let L := (e1, . . . , e|L|) be a substring of the X -bridge sequence that has no
X -walk breaker. Let W be an s-t walk and let WX be its X -subsequence. Since L is
a substring of the X -bridge sequence, WX contains a substring W ′

X that starts from
the last occurrence of e1 and ends in the first occurrence of e|L| after that, and L is a
subsequence of W ′

X . We prove that L is a prefix of W ′
X by induction. By definition,

W ′
X starts with e1. For the inductive step, suppose that e1, . . . , ei is a prefix of W ′

X .
By definition of W ′, none of its head(ei )-tail(ei+1)-subwalks contain e1 or e|L|.
Therefore, since L does not have any X -walk breaker, no ei -ei+1-subwalk of W ′
contains an X -edge. Thus ei is immediately followed by ei+1 in W ′

X . ��
From this we can derive an algorithm similar to that forMaxSafe stWalks. After

computing the bridge sequence and components, we remove those s-t bridges that
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Fig. 10 Example for creating a trail breaker by adding a multiedge. Originally, the dashed edge cannot be
used as a trail breaker without repeating the edge e. On adding the parallel edge e′, the red cycle becomes a
trail breaker repeatingai andai+1 without repeating an edge. The blue regionsmark articulation components
and each node is an s-t articulation point

are not in X and merge the corresponding bridge components. Then X -walk breakers
of non-zero bridge length can be computed as before, since their s-t bridge is their
X -edge. X -walk breakers of bridge length zero can be found by computing the reverse
reachability from t as in Algorithm 1, and then iterating over each X -edge of a bridge
component and checking whether its head is marked. When a consecutive pair of s-t
bridges is not separated by an X -walk breaker of length zero, but is separated by a (G-
)walk breaker of length zero, then we add a marker symbol between them in each safe
sequence they are part of (see Fig. 2). The rest of the algorithm remains unchanged.
This algorithm runs in the same time constraints as that for MaxSafe stWalks.

7 Extension toMultigraphs

Most of the results in this paper can be applied to graphswithmultiedgeswithoutmuch
change. The s-t bridge algorithm naturally extends to multiedges. Since including
multiedges is a generalisation, the NP-hardness results remain valid. Even for the G-
visible problems and the X -stWalks problem no change is required. In V -stPaths
and V -stWalks, where the multiplicity of edges is not relevant, the parallel edges
can simply be merged. Only in V -stTrails extending to multigraphs (denoted by
V -stMTrails) is non-trivial, as merging parallel edges changes the set of candidate
solutions. See for example Fig. 10, where adding a multiedge in a safe sequence of
nodes creates a breaking structure.

To describe how to solve MaxSafe V -stMTrails, we now assume that G ′ :=
(V , E) is a multigraph, G is G ′ with all parallel edges merged and s, t ∈ V are given
as before. First of all, observe that for a sequence of nodes to be safe in V -stMTrails,
it needs to be a substring of the articulation sequence. Furthermore, we have a trivial
necessary condition for safety, which is similar to the adjacency condition in the G-
visible cases. A sequence of two nodes can only be safe if there is no path with more
than one edge that connects the first to the second. This is equivalent to requiring
that the two nodes are connected by an s-t bridge in G. From here on, we consider a
sequence of nodes L that fulfills both of these conditions, where the second is fulfilled
by each consecutive pair of nodes.

Let P be the path spelled by L , such that the edges of P are a substring of the
bridge sequence. Such a P is safe in stPaths in G, and hence we can state that: for
L to be safe also in V -stMTrails in G ′, it needs to spell out a path in G that is safe
in stPaths. But we can make even more detailed relations to the G-visible cases.
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For that, we denote the set of s-t trails in G as T , the set of s-t trails in G ′ as T ′,
and the set of s-t walks in G as W . We furthermore denote with V (T ), V (T ′) and
V (W) the sets of node sequences associated with these sets of walks, respectively.
That is, V (T ′) is the candidate set of V -stMTrails in G ′ and V (T ) and V (W) are
the candidate sets of V -stTrails and V -stWalks in G. Observe that we have the
following relations:

V (T ) ⊆ V (T ′) ⊆ V (W) (1)

Therefore, if L is safe for V (T ′), each element of V (T ′) contains L , and therefore
each element of V (T ) contains L as well, which makes L safe for V (T ). The same
argument makes L safe for V (T ′) if it is safe for V (W). With these relations, we can
detail our statement from above by stating that:

(a) For L to be safe in V -stMTrails in G ′, it needs to be safe in V -stTrails in G
(because of the first inclusion in (1)). This is equivalent to L spelling out a path in
G that is safe in stTrails.

(b) If L is safe in V -stWalks in G (which is equivalent to L spelling out a path in
G that is safe in stWalks), then L is safe in V -stMTrails in G ′ (because of the
second inclusion in (1)).

So, to compute the solutions of MaxSafe V -stMTrails that are not single nodes,
we can start from the bridge sequence in G and proceed similarly to the G-visible
cases. From statement (a), we know that trail breakers in G are breaking, while no
other structure than a walk breaker in G can be breaking because of statement (b).
Therefore, the question that remains is: what walk breakers in G of non-zero bridge
length are actually breaking? To answer this question, observe that a walk breaker in
G that contains an edge that is an s-t bridge in G ′ cannot be used by an s-t trail in G ′
without repeating that edge. All other walk breakers can be defined as follows.

Definition 3 Let G ′ be a multigraph and G be the graph obtained by merging the
parallel edges of G ′. We say that Q is a trail multi-breaker in G ′ if Q is a walk breaker
in G that contains no s-t bridge of G ′.

We can prove that these are exactly the breaking structures in V -stMTrails. Con-
sider a trail multi-breaker Q that is a walk breaker of non-zero bridge length for P .
Let P ′ be the set of all parallel edges of P in G ′ (in addition to the edges of P). Let R′
be an s-t path in G ′. It holds that Q and R′ can only share edges in P ′, since otherwise
Q would not be a walk breaker for P . And since Q contains no edge that is an s-t
bridge in G ′, all shared edges are not s-t bridges. Therefore, since merging all parallel
edges in P ′ produces the edges of P , which are s-t bridges, all edges that Q and R′
can share have a parallel edge. Replacing the shared edges with the parallel edges in
R′ produces an s-t path in G ′ in which Q can be inserted. Therefore, Q can be used
by an s-t trail in G ′. Resulting, we get the following theorem.

Theorem 10 A substring of the articulation sequence is safe under the V -stMTrails
model if and only if it has no trail multi-breaker.
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Hence,MaxSafe V -stMTrails can be solved by computing walk breakers in G,
and filtering to keep only those whose bridge sequence contains no edge that is an s-t
bridge in G ′. The solution can then be reported as for MaxSafe stWalks, and the
whole algorithm runs in the same time constraints asMaxSafe stWalks.

8 Conclusions

On the theoretical side, we considered a natural generalisation of s-t bridges, with
the notion of safety. We considered the standard solution sets of s-t paths, trails and
walks, and natural extensions thereof. We fully characterised the complexity of all
problems, obtaining a clear trichotomy between linearly solvable problems, problems
that allow to compute a compact representation of the solution in linear time, and
NP-hard problems.

On the practical side, our problems have potential applications in the genome assem-
bly problem. Moreover in contrast to circular models considered so far with respect
to the safety paradigm [6,7,20,25], our computational formulations can be applied to
non-circular genomes, such as those of eukaryotes. Additionally, they can be applied
to scenarios where more than one genome string (i.e. more chromosomes) has to be
assembled from a single genome graph, such as when sequencing and assembling
a human genome. Furthermore, since some parts of the graph may correspond to
errors from the genome sequencing process, not all edges should be covered (i.e.,
explained) by the genome assembly solution, which motivates removing the edge-
covering assumption.Moreover, uncertain or complexparts of the graph canbehandled
by the subset visibility models, which can lead to longer safe sequences skipping over
invisible parts (recall Subsect. 1.2). Finally, all algorithms given here aremuch simpler
than the ones of [6,7] (especially when using the simplified s-t bridge algorithm [5]),
and thus potentially more suitable for practical applications.
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