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Abstract Existing explanation methods for black-box supervised learning models gener-
ally work by building local models that explain the models behaviour for a particular data
item. It is possible to make global explanations, but the explanations may have low fidelity
for complex models. Most of the prior work on explainable models has been focused on
classification problems, with less attention on regression.

We propose a new manifold visualization method, SLISEMAP, that at the same time
finds local explanations for all of the data items and builds a two-dimensional visualization
of model space such that the data items explained by the same model are projected nearby.
We provide an open source implementation of our methods, implemented by using GPU-
optimized PyTorch library. SLISEMAP works both on classification and regression models.

We compare SLISEMAP to most popular dimensionality reduction methods and some lo-
cal explanation methods. We provide mathematical derivation of our problem and show that
SLISEMAP provides fast and stable visualizations that can be used to explain and understand
black box regression and classification models.

Keywords Manifold visualization · explainable AI

1 Introduction

In the past 20 years one of the major developments in the area of unsupervised learning is
the development of manifold visualization methods. The trend that started from ISOMAP
in 2000 (Tenenbaum et al., 2000) has resulted to hundreds of methods to be developed,
popular examples of which include methods such as t-SNE (van der Maaten and Hinton,
2008) and UMAP (McInnes et al., 2018a). The manifold visualization methods have proven
to be invaluable tool in exploring and understanding complex data sets, for example such
that occur in genetics (Kobak and Berens, 2019; Diaz-Papkovich et al., 2021).

Another recent development is explainable artificial intelligence (XAI), where the ob-
jective is to understand and explore black box supervised learning algorithms, see Guidotti
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2 Anton Björklund et al.

Fig. 1 SLISEMAP visualization of the MNIST dataset.

et al. (2019) for a recent survey. However, most of the work in XAI has been related to clas-
sification, there are fewer examples on regression problems. The explanation methods can
be roughly divided into global methods and local methods.

Global methods try to explain the global behaviour of classifiers by constructing a global
understandable surrogate model that approximates the complex classifier. The drawback of
the global approach is that for complex enough classifiers there is no simple surrogate model
that would replicate the classifier with a reasonable fidelity.

An alternative approach is not even try global explanations, but only try to make a simple
model that explains how a particular data point is classified. These methods are called local:
their advantage is that it is often possible to give high-fidelity interpretable local explana-
tions, but obvious disadvantage being that an explanation that is good for one data point may
be useless for most of the other data points.

In this paper, we will combine the above two developments, namely the manifold visu-
alizations and local explanations to obtain global explanations and manifold visualizations
of the model spaces of arbitrary black box supervised learning algorithms.

Our idea is straightforward: we want to find an embedding of data points into (typically)
two-dimensional plane such that the supervised learning model of the data points that are
nearby in the embedding are explained by the same interpretable model. The embedding of
the data points, and the local models associated with each point in the embedding, form a
global explanation of the supervised learning model as a combination of the local models.
At the same time, our method produces a visualization of the data where the data points that
are being classified (or regressed) with the same rules are shown nearby.

As an example, Figure 1 (left) shows visualization of a model that classifies 2 vs. 3
in the classic MNIST data set. The images are projected into two-dimensional plane such
that the classifier for images projected nearby can to a good fidelity be approximated by the
same white-box linear model. The local white-box models are shown in Figure 1 (right).
For example the classifier separates the 2s and 3s at the bottom right corner mainly by the
”peak” in the middle of number 3. The SLISEMAP visualization has been scaled so that the
points at distance . 1 away in the embedding belong to the same soft neighbourhood and
their classification is explained by similar white-box model.
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The contributions of this paper are the following: (i) We define a criterion for an embed-
ding that shows local explanations and give efficient algorithm to find such embeddings. (ii)
We show experimentally that our method is scalable and results into informative and use-
ful visualizations and global white box models that can be used to explain and understand
the supervised learning model. (iii) We compare our contribution to manifold visualization
methods and comparable local explanation methods.

2 Related work

In this section we briefly review the explainable AI and dimensionality reduction methods.

2.1 Explainable AI

The interpretation of machine learning models can be generally divided into exploration of
global aspects, i.e. the entire model (Baehrens et al., 2010; Henelius et al., 2014, 2017; Adler
et al., 2018; Datta et al., 2016), or inspection of local attributes (Ribeiro et al., 2016, 2018;
Fong and Vedaldi, 2017; Lundberg and Lee, 2017; Guidotti et al., 2018); please see Guidotti
et al. (2019) for a recent survey and references. On a global level, the scope of interpretation
is on understanding how the model has produced the predictions where as why is usually
beyond human comprehension due to model complexity. On this level we can examine, e.g.,
which features affect the predictions most (Fisher et al., 2019) and what interactions there
are between features (Goldstein et al., 2014; Henelius et al., 2014, 2017).

On the other hand, it is possible to examine and understand how and why the model pro-
duce predictions locally since these can be approximated with interpretable simple models.
Instead of focusing on single use cases, we are interested in locally interpretable methods
that can be used for any type of model (model-agnostic) and do not require any model mod-
ifications (post-hoc). One of the first such methods was LIME (Ribeiro et al., 2016), which
generates the interpretations for user-defined areas of interest by perturbing the data and
training a weighted model based on predictions. Another similar method is SHAP (Lundberg
and Lee, 2017), which utilises weights based on Shapley value estimation (Shapley, 1951).
Both of these methods generate the local explanations based on perturbed data and this pro-
cess is non-trivial (Guidotti et al., 2018; Laugel et al., 2018; Molnar, 2019). A third method
called SLISE (Björklund et al., 2019), utilises only existing data, and finds the largest set of
data items that can be approximated (up to a given accuracy) by a sparse linear model, by
ignoring outliers; the work presented here can be seen as a global extension of SLISE.

2.2 Dimensionality reduction

Another way of assessing high-dimensional data is to reduce the number of covariates by,
e.g., removing indefinite features or combining multiple features into single elements and
thus make the data more interpretable. There are advantages of utilising dimensional reduc-
tion as it removes correlated features in the data and allows for easier visualization, e.g.,
in two dimensions, but combined features can also become less interpretable and some in-
formation will be inevitably lost. The simplest dimensional reduction techniques are unsu-
pervised methods operating on the whole dataset by keeping the most dominant features
with, e.g., backward elimination and forward selection, or by finding a combination of
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new features. These methods include principal component analysis (PCA) and other linear
methods (Cunningham and Ghahramani, 2015). Other approaches include truncated singu-
lar value decomposition (SVD) (Belkin and Niyogi, 2003), locally linear embedding and
modified version (LLE, MLLE) (Roweis and Saul, 2000; Zhang and Wang, 2006), spec-
tral embedding (Belkin and Niyogi, 2003) and multidimensional scaling (MDS) (Kruskal,
1964), global-distance preserving MDS (Mead, 1992), ISOMAP (Tenenbaum et al., 2000),
t-SNE (van der Maaten and Hinton, 2008), and UMAP (McInnes et al., 2018a). Lately, some
supervised methods have also become available, based on t-SNE (Kang et al., 2021; Hajder-
anj et al., 2019) and included in the UMAP implementation (McInnes et al., 2018b). So far,
to our knowledge, there has not been a method that would directly combine explainable AI
and dimensionality reduction.

3 Definitions and algorithms

3.1 Definitions and problems

The dataset consists of n pairs of points (x1,y1), . . . ,(xn,yn), where xi ∈X are the covari-
ates and yi ∈Y are responses. X and Y are the domains of the covariates xi and responses
yi, respectively. In this paper, and in our software implementation, we restrict ourselves to
real spaces, X = Rm and Y = Rp, but the derivations in this subsection are general.

The goal is to find a local white-box model gi : X → Y for every data point (xi,yi).
More specifically, we write ỹi j = gi(x j). Again, while the derivation is general, in this paper
we focus on cases where the white-box algorithm, g, is either a linear projection (for regres-
sion problems) or multinomial logistic regression (for classification problems), as defined in
Section 3.3.

If we have access to a trained black-box supervised learning algorithm f : X →Y , then
we can also consider using its estimates ŷi = f (xi) instead of yi. This would mean that the
local models gi are local approximations of the black-box model. These approximations can
then also be used to explain the predictions of the black-box model (Björklund et al., 2019).

Additionally, we want to find a lower-dimensional embedding Zi, where Z ∈ Rn×d , for
every data point (xi,yi), such that neighbouring data points in the embedding space have
similar local models gi. For the sake of visualisation, Zi is typically 2-dimensional (d = 2).

Denote by Di j the Euclidean distance between the points Zi and Zi in the embedding,
where

Di j =
(
∑

d
k=1

(
Zik−Z jk

)2
)1/2

. (1)

We define the soft neighbourhood by using a softmax function as follows:

Wi j =
e−Di j

∑
n
k=1 e−Dik

. (2)

We further define a loss function l : Y ×Y → R≥0 for the white-box models. Here we use
the shorthand notation Li j = l(ỹi j,y j) = l(gi(x j),y j). In this work, we use quadratic losses
(for regression) and Hellinger distances between multinomial distributions (for classifica-
tion), which we define later in Section 3.3.

Recall that we want that all points in the (soft) neighbourhood of point Zi to be mod-
elled well by the local white-box model gi. Mathematically, this is can be formalized as
minimizing the following weighted loss:

Li = ∑
n
j=1 Wi jLi j, (3)
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where each local model gi has its own set of weights Wi, of which Wii is the largest (due
to Dii = 0). This is what makes the models local. We obtain our final loss function by sum-
ming over all losses given by Equation (3). We summarize everything in the main problem
definition:

Problem 1 SLISEMAP Given dataset (x1,y1), . . . ,(xn,yn), white-box function g, loss func-
tion l, and constants λz > 0 and λlasso ≥ 0, find the parameters for g1, . . . ,gn and embedding
Z ∈ Rn×d that minimize the loss given by

L =
n

∑
i=1

m

∑
j=1

Wi jLi j +λz

n

∑
i=1

d

∑
k=1

Z2
ik +λlasso

N

∑
i=1

P

∑
p=1

∣∣Bip
∣∣ (4)

where Li j = l(gi(x j),y j) and Wi j = e−Di j/∑
n
k=1 e−Dik , with Di j = (∑d

k=1 (Zik−Z jk)
2)1/2.

We have added a regularization term proportional to λz, in order to limit the range of val-
ues in the embedding Z; otherwise, there would be a trivial solution where all data points are
infinitely far away from each other in the embedding. The regularization term is quadratic,
which means that the embedding is invariant under rotation, i.e., we can freely rotate the
embedding.

The λz parameter essentially regularizes the size of the neighbourhood. If λz is small the
neighbourhoods are small as well. At the limit of λz = 0 the points are infinitely far away
from each other in the embedding Z and the neighbourhood of a point consists only of the
point itself. On the other hand, if λz is large then the neighbourhoods are also large. At the
limit λz → ∞ all of the points will be compressed to the origin in the embedding Z and,
hence, all points will be estimated by the same local model.

We have additionally added for numerical stability a small Lasso regularization term,
which we set to λlasso = 10−4 for the remainder of the paper.

3.2 Adding new data points to an existing solution

Often, it is useful to add new data points to an existing embedding, without recomputing the
whole embedding. Here we define an auxiliary problems to this end.

Assume that we have a new data point denoted by (xn+1,yn+1). Define parameters for a
new local model gn+1 and a new embedding matrix by Z′ ∈ R(n+1)×d , such that the first n
rows are the solution to Problem 1. We formulate the problem of adding a new point to an
existing SLISEMAP solution as follows:

Problem 2 SLISEMAP-NEW Given the definitions above and a new data point (xn+1,yn+1),
find the parameters for gn+1 and Z′n+1 ∈Rd such that the loss of Equation (4) is minimized,
when n is incremented by one, gn+1 is added to the set of local models, and Z is replaced by
Z′.

Solving of the Problem 2 is much easier than solving the full Problem 1, because in
Problem 2 only the parameters for the new point need to be found, as opposed to the param-
eters for the n points in the full Problem 1. As a drawback, solving the full problem should
result in slightly smaller loss. However, the difference should vanish asymptotically at the
limit of large n. We study this difference experimentally in Section 4.
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3.3 Slisemap for regression and classification

While the definitions in Section 3.1 were general, in this paper we focus on regression
and classification problems where the covariates are given by m-dimensional real vectors,
or X = Rm. We denote the data matrix by X ∈ Rn×m, where the rows correspond to the
covariates or Xi·= xi. If necessary, we include to the data matrix a column of ones to account
for the intercept terms.

Regression In regression problems, we use linear regression as the white box model. More
specifically, we assume that the dependent variables are real numbers or Y =R. The white-
box regression model is given by a linear function

gR(x,b) = xT b, (5)

where b ∈ Rm, and the loss is quadratic,

lR(ỹ,y) = (ỹ−y)2 , (6)

where ỹ = gR(x,b).
The linear regression model gR is being parametrised by the vector b ∈Rm. If we gather

the parameter vectors from all the local models in Problem 1 into one matrix B∈Rn×m, then
the parameters being optimised in Problem 1 are B and Z.

Classification In classification problems we assume that the black-box classifier outputs
class-probabilities for p classes. We use multinomial logistic regression as the white box
model. The dependent variables are multinomial probabilities in p-dimensional simplex or
Y = {y ∈ Rp

≥0 | ∑
p
i=1 yi = 1}. Multinomial logistic regression can be parametrized by b ∈

R(p−1)m. The white box classification model is that of the multinomial logistic regression
(Hastie et al., 2009),

ỹi = gC(x,b)i =


exp(xT b((i−1)m+1):(im))

1+∑
p−1
j=1 exp(xT b(( j−1)m+1):( jm))

if i < p

1
1+∑

p−1
j=1 exp(xT b(( j−1)m+1):( jm))

if i = p
, (7)

where we have used ba:b to denote a (b− a+ 1)-dimensional vector (ba,ba+1, . . . ,bb)
T .

When using gC as the white-box model in Problem 1 we can express the parameters for all
the local models using a matrix B ∈ Rn×(p−1)m.

For the loss function any distance measure between multinomial probabilities, such as
Kullback-Leibler (KL) divergence, would do. Here we however choose the numerically
more stable squared Hellinger distance (Ali and Silvey, 1966; Liese and Vajda, 2006),

lC(ỹ,y) =
1
2

p

∑
i=1

(√
ỹi−
√

yi

)2
= 1−

p

∑
i=1

√
ỹiyi. (8)

The squared Hellinger distance is symmetric and bounded in interval [0,1], unlike the KL
which is not symmetric nor upper bounded. The squared Hellinger distance has convenient
information-theoretic properties, for example, it is proportional to a tight lower bound for
the KL divergence.

Notice that when there are only two classes (p = 2) the multinomial logistic regression
reduces to the standard logistic regression.
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Alternative formulation for binary classification In case the targets are given by a black box
model, we can also use an alternative formulation for binary classification (p = 2) that was
used in Björklund et al. (2019). Here we simply transform the probability ŷ1 with a logit
function, ŷ′1 = log(ŷ1/(1− ŷ1)), from the interval [0,1] to the interval [−∞,∞], and then run
the SLISEMAP for regression with quadratic loss, as above. The alternative formulation has
advantage that it may converge in some cases where the multinomial logistic regression does
not. Using a logit transformation followed by a linear model matches the behaviour of, e.g.,
SHAP (Lundberg and Lee, 2017) and SLISE (Björklund et al., 2019).

3.4 Algorithm

Pseudocode for SLISEMAP is given in Algorithm 1. As the initial values for the embedding Z
we use the principal component projection of the data (PCA). The parameters for the local
models B are initialised by sampling from a normal distribution with zero mean and unit
variance. Then we optimise the values by minimising the loss in Equation (4).

1 Function Slisemap(X, y, λz)
2 B∼ N(0,1)
3 Z← PCA(X)
4 B,Z← argminB,ZL (X,y,B,Z,λz)

5 while not converged do
6 B,Z← Escape(X,y,B,Z)
7 B,Z← argminB,ZL (X,y,B,Z,λz)

Result: B, Z

8 Function Escape(X, y, B, Z)
9 W← Softmax(−D,1)

10 for i← 1 to n do
11 k← argmink ∑

n
j=1 Wk jL ji

12 B′i,Z′i← Bk,Zk

Result: B′, Z′

13 Function Slisemap-new(Xnew, ynew, Xold, yold, Bold, Zold, λz)
14 Bnew,Znew← Escape(Xnew,ynew,Bold,Zold)

15 Bnew,Znew← argminBnew ,Znew L ([ Xold
Xnew

], [ yold
ynew

], [ Bold
Bnew

], [ Zold
Znew

],λz)

Result: Bnew, Znew

Algorithm 1: The SLISEMAP algorithm, where L ,W,L are given in Equation (4). The
algorithm uses a heuristic to escape local optima in search of better solutions, and iterates
until the loss stops improving.

Since the problem is non-convex, we are likely to only find a local optimum. Thus, we
use an heuristic approach to escape local optima. In Section 4.7 we empirically evaluate the
value of the escape heuristic by comparing results with and without it. The heuristic consists
of moving each item (embedding and local model) to the soft neighbourhood, given by W
in Equation (2), that have the most suitable local models. This is repeated until no further
improvement is found.

The pseudocode for Problem 2 (adding new data points to a SLISEMAP solution) is also
given in Algorithm 1. Here we use the same escape heuristic to find a suitable neighbourhood
as a starting point and then optimise the embedding and local model for the new data item(s).
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For the implementation we use PyTorch (Paszke et al., 2019), which enables us to op-
tionally take advantage of GPU-acceleration. The optimisation of B and Z is performed
using the L-BFGS (Nocedal, 1980) optimizer of PyTorch. As explained earlier, in this paper
we assume that the data is real valued and use the white box models and losses of Section
3.3 to study regression and classification problems. We solve Problem 2 with PyTorch and
L-BFGS as well.

The source code, published under an open source MIT license, as well as the code
needed to replicate all of the experiments in this paper is available via GitHub.1

3.5 Computational complexity

Evaluation of the loss function of Equation (4) requires at least O(n2m) iterations for linear
regression and O(n2mp) for multinomial logistic regression. This is because for every local
model O(n) the prediction and loss O(mp) has to be calculated for every data item O(n).
The calculation of the soft neighbourhoods requires O(n2d) (from calculating the Euclidean
distances), but d < mp in most circumstances.

However, this is an iterative algorithm, where Equation (4) has to be evaluated multiple
times. While it is difficult to provide strict running time limits for iterative optimization
algorithm such as L-BFGS—we study this experimentally in Section 4—it is obvious that
the algorithm may not scale well for very large (n) datasets.

Usually it however suffices to sub-sample min(n,n0) data points, where n0 is a suitably
chosen constant, optimize for the loss function (Problem 1), and then add points to the ex-
isting solution (Section 3.2). By this procedure the asymptotic complexity of SLISEMAP is
linear with respect to the number of data points n. Especially for visualization purposes it
often makes no sense to compute exact projection for a huge number of data points: visual-
ization cannot show more data points than there are pixels and usually having a extremely
accurate solution to the full optimization problem instead of approximate solution brings
little additional benefit. Instead, finding a quick solution for a sub-sampled data and adding
necessary number of data points to the embedding works well in practice, as shown in the
experiments of Section 4.

4 Experiments

In the experiments of this section, we always embed data into two dimensions (d = 2) and
normalize data attributes (columns of the data matrix X) to zero mean and unit variance
as well as add an intercept term (column of ones) to the data matrix X before running
SLISEMAP or any other algorithm on the data. Furthermore, unless otherwise mentioned
we subsample the large datasets to 1000 data items.

Most datasets have been used in two scenarios, first for normal regression or classifica-
tion using the definitions from Section 3.3, and second in an XAI inspired scenario where
the targets are predictions from black box models, using the alternative formulation from
Section 3.3 in case of classification. An overview of the datasets and black box models can
be seen in Table 1.

As explained earlier, we use PyTorch version 1.8.1 (Paszke et al., 2019). The runtime ex-
periments have been run on a server having Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz

1 The Github repository will be published when the paper is accepted.
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Table 1 An overview of the datasets and black box models used in the experiments.

Dataset Size Task Black box model

RSYNTH n×m Regression -
Air Quality 7355×11 Regression Random Forest
Boston 506×13 Regression SVM
Spam 4601×57 Classification Random Forest
Higgs 98 049×28 Classification Gradient Boosting
Covertype 581 011×54 Classification Logit Boost
MNIST 70 000×784 Classification Convolutional Neural Network

processors with 4 cores and 16GB RAM memory allocated, and a NVIDIA Tesla P100 GPU
with 16GB memory. The scripts to run the experiments are available via Github2.

4.1 Datasets

Below we describe the datasets used in the experiments. A quick summary can be seen in
Table 1.

Synthetic data We create synthetic regression data (RSYNTH) as follows: given parameters
data set size n (number of data items) and m (number data attributes), as well as k (number of
clusters) and s standard deviation of the clusters. We first sample from normal distribution
with zero mean and unit variance a vector β j ∈ Rm and cluster centroids c j ∈ Rm from
normal distribution with zero mean and standard deviation of s, where j ∈ [k] = {1, . . . ,k}.
We then create data point i ∈ [n] by first sampling the cluster index ji ∈ [k] in random and
then generating a data vector xi by sampling from a normal distribution with mean of c ji and
unit variance. The dependent variable is then given by yi = xT

i β ji + εi, where εi is Gaussian
noise with zero mean and standard deviation of 0.1. Unless otherwise mentioned we use
k = 3 and s = 0.25 for all the experiments in this paper.

Air Quality data, cleaned and filtered as in Oikarinen et al. (2021), contains 7355 hourly
instances of 12 different air quality measurements, one of which is used as a dependent
variable and the others as covariates.

Boston housing dataset was collected by the U.S Census Service from the Boston Standard
Metropolitan Statistical Area in 1970. The size of the dataset is 506 items with 14 attributes,
including median value of owner-occupied homes that is used as the dependent variable.
The dataset was obtained from openML.

Spam (Cranor and LaMacchia, 1998) is a UCI dataset containing both spam, i.e., unsolicited
commercial email, as well as professional and personal, non-spam emails. There are 4601
instances with 57 attributes in the dataset, including a classifier denoting whether the email
was spam or not.

2 The Github repository will be published when the paper is accepted.
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Higgs (Baldi et al., 2014) is a UCI dataset containing 11 million simulated collision events
for benchmarking classification algorithms. The dependent variable is whether a collision
is producing Higgs bosons or not. There are altogether 28 attributes, the first 21 featuring
kinematic properties measured by the particle detectors, and the last seven are functions of
the first 21—high-level features derived by physicists to help discriminate between the two
classes.

Covertype is a UCI dataset with over half a million instances, used to classify forest cover
type (seven different types, but we only use the first two) from 54 attributes. The areas rep-
resent natural forests with minimal human-caused disturbances, located on four wilderness
areas in the Roosevelt National Forest of northern Colorado.

MNIST (Deng, 2012) is the classic machine learning dataset of handwritten digits from 0
to 9. Each digit is represented by a 28x28 greyscale image (784 pixels with integer pixel
values between 0 and 255). The images are mostly black and white and grey levels are due
to anti-aliasing techniques in the normalization algorithm. Due to large number of pixels, we
subsample to 4000 data items and create a binary classification task by limiting the available
digits to 2 and 3.

4.2 Metrics

To be able to compare different SLISEMAP solutions we want to be able to objectively mea-
sure the performance. To accomplish that we consider the following metrics.

Loss The most obvious thing to measure is the loss we are trying to minimise, see Equa-
tion (4). However, the loss will change based on parameters such as λz and the size of the
dataset, which makes it less useful for comparison.

Cluster Purity For the synthetic dataset we know the ground truth, which means that we can
compare the original clusters to the embedding found by SLISEMAP. If we denote the true
cluster id:s as c1, . . . ,cn we can measure how well low-dimensional embeddings reconstruct
the true clusters:

1
n ∑

n
i=1 |k-NN(i)∩{ j | ci = c j}|/k, (9)

where k-NN(i) is the set of k nearest neighbours (of item i) in the embedding space, using
Euclidean distance of Equation (1), and j ∈ 1, . . . ,n. A larger value (closer to one) indicates
that the dimensionality reduction has found the true clusters.

Fidelity The fidelity of a local model (Guidotti et al., 2018) measures how well it can predict
the correct outcome, using the losses defined in Section 3.3 we get:

1
n ∑

n
i=1 l(gi(xi),yi). (10)

We are not only interested in how the local models perform on the corresponding data items,
but also how well they work for the neighbours in the embedding space, using, e.g., the k
nearest neighbours:

1
n ∑

n
i=1

1
k ∑ j ∈k-NN(i) l(gi(x j),y j). (11)

A smaller value indicates better fidelity.
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Table 2 The default value for λz for the different datasets.

Dataset Default λz XAI λz

RSYNTH 0.1 -
Air Quality 0.005 0.001
Boston 0.1 0.001
Covertype - 0.005
Spam 0.005 0.05
Higgs 0.01 0.01

Coverage We also want local models that generalise to other data points. Otherwise it would
be trivial to find solutions. The coverage (Guidotti et al., 2018) of a local model can be
measured by counting the number of data items that have a loss less than a threshold l0:

1
n ∑

n
i=1

1
n ∑

n
j=1(l(gi(x j),y j)< l0). (12)

This obviously requires us to select the loss threshold l0. Unless otherwise mentioned, in
this paper we choose the threshold to be the 0.3 quantile of the losses of a global model
(without the distance based weights). Furthermore, we want this behaviour to be reflected in
the low-dimensional embedding. For that we limit the coverage testing to only the k nearest
neighbours:

1
n ∑

n
i=1

1
k ∑ j ∈k-NN(i)(l(gi(x j),y j)< l0). (13)

A larger coverage value (closer to one) is better.

4.3 Parameter selection

SLISEMAP has one parameter that needs to be selected, λz, that is used to avoid trivial so-
lutions, where the data items are infinitely far apart in the embedding and the local models
overfit on the singular neighbourhoods. λz is also used to adjust the density of the embed-
ding. The optimal value varies from dataset to dataset and can also be a bit subjective; how
clustered do you want the embedding to be? To guide the selection of the value for λz we
use the fidelity and coverage metrics from above.

The fidelity results for different values of λz can be seen in Figure 2. Here we see that
for some values of λz the fidelity actually improves when the neighbourhood grows, which
means that the local models do not match the corresponding data items. This is a sign that
λz is probably too large.

The coverage results can be seen in Figure 3. We see that for some values of λz the
coverage immediately drops as the neighbourhood grows. This is a sign that the value of λz
is probably too small.

Based on these results we can choose the default values for λz for the different datasets.
The default values can be seen in Table 2. We use these values for the rest of the experiments
in this paper.

4.4 Visualizations of the data sets

While fidelity and coverage can be used to diagnose problematic choices of the value of λz,
there is still room for some subjectivity that is best explored by plotting the low-dimensional
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Fig. 2 Local model fidelity on the neighbourhood, with different values for λz. Smaller is better, especially
with small neighbourhoods.
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the clusters in the embedding have distinct local models.

embeddings for different λz values. Figure 4 shows how λz affects the embedding. At small
values of λz we get a relatively sparse solution with many small clusters. However, basing
the local models primarily on just a few data items (the ones in the same cluster) might lead
to poor generalisation. In the other end of the spectrum, large values of λz puts all data items
are put into the same cluster. This means that they all have almost the same local model, in
which case just fitting a global model (with uniform weights) would work just as well (and
be much faster). Additionally, based on this plot we would choose λz = 0.1 or λz = 0.3,
which is supported by the results above in Section 4.3.

With SLISEMAP we do not only get an embedding, but also local models for the data
items. Data items that are nearby in the embedding-space should have similar local models.
We can check this by clustering the local models independently of the embeddings and
check if these clusters corresponds to the structure in the embedding. Furthermore, models
far apart in the embedding should look different due to the different local weights.
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Fig. 6 Adding new data items to a SLISEMAP solution, to see how large the initial set has to be. For most of
these datasets just a couple of hundred initial data items are required. Lower is better.

In Figure 5 we cluster the coefficients of the local models using k-means clustering (on
the Boston dataset). Here we see that the clusters in the local models clearly match clusters
in the embedding. We also see some differences in the local models (here we only show the
cluster centroids): Some local models heavily penalise locations far from the city centre, and
some even use a high property tax as an indicator of high value.

A plot of the MNIST data is shown in Figure 1 in the introduction, where we can see
that some local models focus heavily on bottom curve of 3:s, while others utilise the (lower)
diagonal line of 2:s.

4.5 Subset sampling

With large datasets the quadratic scaling of SLISEMAP, see Section 3.5, can become prob-
lematic. A solution is to run SLISEMAP on a subset of the data, and then post-hoc add the
unseen data items, whenever necessary, see Section 3.2. With larger subsets we expect better
results, but with diminishing return after the dataset is sufficiently covered.

To investigate how much data is needed we randomly select 2000 data items from the
large datasets, of which we let 1000 be left unseen and train SLISEMAP solutions on increas-
ing fractions of the remaining 1000 data items. Then we individually add the unseen data
items, using Slisemap-new from Algorithm 1, and calculate the loss for only the unseen
data items.

The results can be seen in Figure 6. We see that for most of these datasets just a couple
of hundred data items are needed for the results to converge. Since the new items are indi-
vidually optimised their loss might not match the loss of the existing items, but here we see
them get fairly close.

4.6 Runtime and scalability

We tested the time to run SLISEMAP on RSYNTH with different sizes for both CPU and GPU
variants of the algorithm. The results can be seen in Figure 7. The GPU implementation has
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Fig. 7 Runtimes for different dataset sizes (using the RSYNTH dataset). GPU-acceleration (cuda) brings some
overhead but offers better parallelisation on large datasets.

some overhead, making it slower for small datasets (less than 400× 10), but significantly
faster for large datasets (note the logarithmic scale).

4.7 Comparison to dimensionality reduction methods

To compare against other dimensionality reduction methods we use the following methods
from the Scikit-learn package (Pedregosa et al., 2011): PCA, Spectral Embedding (Belkin
and Niyogi, 2003), LLE (Roweis and Saul, 2000), MLLE (Zhang and Wang, 2006), MDS
(Kruskal, 1964), ISOMAP (Tenenbaum et al., 2000), and t-SNE (van der Maaten, 2014).
Additionally we use UMAP (McInnes et al., 2018a) and the supervised variant from the
umap-learn package (McInnes et al., 2018b).

With the synthetic, RSYNTH, dataset we know the true clusters, so we can use cluster
purity (Section 4.2) to measure how well the dimensionality reduction methods reconstruct
the true clusters. The result can be seen in Table 3. SLISEMAP has the best cluster purity. All
the other methods are barely better than random. However, SLISEMAP is slower than most
methods, especially on large datasets, due to not using any kind of subsampling and trying
to fit local models at the same time.

To demonstrate that the simultaneous local model and embedding search is necessary,
we take the embeddings from the different dimensionality reduction methods and fit local
models post-hoc (essentially running SLISEMAP with a fixed Z given by the dimensionality
reduction methods). To evaluate the results we use fidelity and coverage, see Section 4.2.
The results can be seen in Figure 8 and Figure 9. As expected, SLISEMAP is better than the
other methods.

Included in these results is also a version of SLISEMAP where we do not use the heuristic
for escaping local optima. We see that for some datasets the escape is really needed to reach
optimal performance, and that it is never worse. However, as can be seen in Table 3, it is a
bit slower.

4.8 Comparison to explanations

As eluded to in the introduction, if we have access to a black box model we can use
SLISEMAP to find local and interpretable approximations of that black box model. The idea
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Table 3 Comparing how well the dimensionality reduction methods reconstruct the ground truth clusters in
the RSYNTH dataset. The higher the cluster purity the better the reconstruction. The running times are without
GPU-acceleration.

Dataset Method Cluster Purity Time (s)

RSYNTH 200×10 Slisemap 0.844±0.129 7.560±2.642
Slisemap (no escape) 0.432±0.053 1.501±0.518
PCA 0.377±0.025 0.053±0.004
Spectral Embedding 0.379±0.025 0.052±0.003
LLE 0.351±0.013 0.069±0.006
MLLE 0.367±0.012 0.111±0.005
MDS 0.372±0.020 1.543±0.034
Non-Metric MDS 0.344±0.009 0.138±0.003
Isomap 0.373±0.029 0.134±0.012
t-SNE 0.371±0.018 2.715±0.064
UMAP 0.379±0.028 7.356±0.128
Supervised UMAP 0.362±0.016 2.964±0.038

RSYNTH 1000×50 Slisemap 0.954±0.012 60.563±17.228
Slisemap (no escape) 0.456±0.036 14.665±4.728
PCA 0.586±0.036 0.316±0.046
Spectral Embedding 0.618±0.025 0.456±0.052
LLE 0.417±0.034 0.531±0.032
MLLE 0.409±0.032 0.754±0.047
MDS 0.432±0.023 31.105±5.883
Non-Metric MDS 0.335±0.001 3.610±0.713
Isomap 0.498±0.039 2.088±0.281
t-SNE 0.415±0.049 13.122±2.976
UMAP 0.526±0.027 9.373±0.599
Supervised UMAP 0.527±0.027 5.271±0.313
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Fig. 8 Fidelity on the neighbourhood, when using different embedding methods before finding the local
models. Smaller is better.
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Fig. 9 Coverage of the neighbourhood, when using different embedding methods before finding the local
models. Larger is better.

Table 4 Comparing the local models given by SLISEMAP and SLISE, with a global model as a reference.
The error tolerance for SLISE and the coverage is selected such that the global model has a coverage of 0.3.
Smaller fidelity and larger coverage is better.

Dataset Method Fidelity Coverage Time (s)

RSYNTH 400×20 SLISEMAP 0.015±0.002 0.447±0.011 28.684±40.276
SLISE 0.000±0.000 0.498±0.013 130.942± 6.815
Global 11.629±1.396 0.300±0.000 0.019± 0.005

BOSTON 400×13 SLISEMAP 1.356±0.140 0.325±0.019 72.221±28.095
SLISE 0.000±0.000 0.446±0.019 140.076± 5.893
Global 22.625±1.334 0.300±0.000 0.044± 0.005

AIR QUALITY 1000×11 SLISEMAP 0.044±0.002 0.311±0.009 133.621±41.316
SLISE 0.000±0.000 0.353±0.007 3632.525±79.921
Global 0.172±0.017 0.300±0.000 0.255± 0.073

of using local approximations to explain the predictions of a black box model is discussed
in, e.g., Ribeiro et al. (2016); Lundberg and Lee (2017); Björklund et al. (2019). The differ-
ence to these methods is that SLISEMAP tries to find local approximations for all data items
at once, not one at a time, and connect them via a low-dimensional embedding.

Of the local, model-agnostic, approximating explanations methods SLISEMAP is most
closely related to SLISE Björklund et al. (2019), hence the name. Thus we want to compare
the local approximations of SLISE with those of SLISEMAP. As a reference we also consider
a global model. SLISE requires that we specify an error tolerance that we choose to be the
0.3 quantile of the losses of the global model. The results can be seen in Table 4, where each
dataset has been run ten times with different seeds and subsamples.



18 Anton Björklund et al.

By definition SLISE has perfect fidelity, Equation (10), for the data item corresponding
to the local model, with SLISEMAP is not far behind. The global model is obviously not local
and, thus, have the worst fidelity. One of the things that SLISE is specifically optimising for is
the subset size, so it obviously outperforms in the coverage, Equation (12). But, SLISEMAP

also performs better than the global model (being fixed at 0.3). However, the drawback of
SLISE is that the whole procedure has to be rerun for each data item, which is slow, while
SLISEMAP finds them all at once, which significantly faster. SLISEMAP also finds an low-
dimensional embedding, which can make it easier to visualise and compare different data
items and supervised learning models.

5 Discussion and conclusions

In this paper we present SLISEMAP, a novel manifold embedding method. SLISEMAP em-
beds data items into a lower-dimensional space such that the nearby data items are modelled
by the same white-box model. Therefore, in addition to reducing the dimensionality of the
data, the SLISEMAP creates a global interpretable model that can be used to explore and
explain black box classification and regression models.

We showed that the state-of-the-art manifold dimensionality measures, unsurprisingly,
cannot be used to explain classifiers or regression models. On the other hand, the state-of-
the-art tools to explain black box models are mostly focused on classifiers and they typically
provide only local explanations.

An interesting future work would be to explore how the SLISEMAP visualizations can be
used to help build better models and to visualize or adjust model parameters. For example,
if SLISEMAP visualization could show that some data items are systematically classified
wrongly, which could then be used to improve the underlying supervised learning model
with the user feedback.
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