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Algal blooms increasingly threaten lake and reservoir water

quality at the global scale, caused by ongoing climate change

and nutrient loading. To anticipate these algal blooms, models

to project future algal blooms worldwide are required. Here we

present the state-of-the-art in algal projection modelling and

explore the requirements of an ideal algal projection model.

Based on this, we identify current challenges and

opportunities for such model development. Since most

building blocks are present, we foresee that algal projection

models for any lake on earth can be developed in the near

future. Finally, we think that algal bloom projection models at a

global scale will provide a valuable contribution to global

policymaking, in particular with respect to SDG 6 (clean water

and sanitation).
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Introduction
Lakes and reservoirs provide essential ecosystem services

such as water for drinking and irrigation [1], food supply

for many people around the world [2–4] and sites for

recreation and tourism [3]. Severe algal blooms threaten

these ecosystems for example by producing toxins, odors

and by causing oxygen depletion [5]. Worldwide, the

occurrence and severity of algal blooms are expected to

increase in response to ongoing human-driven nutrient

loading and climate change [6–8].

Algal blooms are triggered by excess nutrient loads of

particularly phosphorus and nitrogen from the catchment

[9] and further promoted by relative high water tempera-

tures [10]. In the natural pristine state, excess nutrients

loads from the catchment were rather an exception than a

rule, since nutrient availability was limited by slow pro-

cesses such as weathering of rocks [6]. At present, global

anthropogenic nutrient sources double natural sources

caused by human activities such as phosphorus mining,

industrial nitrogen fixation and fossil fuel combustion

[6,11]. Similarly, human activities contribute to global

warming which is expected to further aggravate the growth

of algal blooms in lakes [7]. To which degree algal blooms

respond to excess nutrient loadings and climate change

differs among individual lakes. First, this response depends

on hydraulic residence time and nutri ent loads to the lake

which is determined by the location of a lake within a

hydrological network. Additionally, lake-specific
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2 Global water quality
geomorphological and ecosystem characteristics, such as

lake depth, size, light climate and water temperature,

determine the sensitivity of a given lake’s algal bloom

dynamics to nutrient loading and climate change [10,12].

For more details on the effect of different kind of geomor-

phological and ecosystem characteristics on algal blooms

formation please refer to supplementary material 1.

Anticipating how algal blooms will respond to future

nutrient loading and climate change can help to prioritize

regions for attention and mitigation, evaluate alternative

mitigation strategies, and adapt to future ecological

changes [13,14�]. Mathematical models can be used to

project future global developments based on socio-eco-

nomic scenarios, as found in, for example, climate

research [15] and global nutrient assessments [16]. Such

projections have put the potential impacts of global

changes at the top of political, societal and economic

agendas and helped to formulate the UN Sustainable

Development Goals (SDG) [17]. With respect to SDG 6

(clean water and sanitation), projections are especially

important to anticipate threats of algal blooms to clean

water provision by lakes. The idea to develop models to

project future algal blooms is widely supported by initia-

tives such as ISIMIP (https://www.isimip.org), GLEON

(http://gleon.org/) and IPBES (https://www.ipbes.net/).

Here, we provide a roadmap for the development of models

to simulate global scale scenarios for algal blooms in fresh-

water lakes and reservoirs, hereafter referred to as algal

projection models. We define algal blooms as locations with

a high phytoplankton biomass, including algal scums,

reaching a critical level (e.g. chlorophyll-a, dry weight) at

which they are expected to threaten ecosystem services

(see Poikanen et al. [18] for critical chlorophyll-a levels).

First, we present the state-of-the-art in algal projection

modelling for lakes and reservoirs. Next, we explore the

requirements of an ideal algal projection model. Based on

these requirements we discuss the challenges and oppor-

tunities for future algal projection model development. We

conclude that the time is ripe to develop algal projection

models for global assessments of lake water quality, which

are urgently needed to meet SDG 6.

State-of-the-art in algal projection modelling
Algal projection modelling for freshwater lakes and reser-

voirs started with the seminal work of Vollenweider, Rast

and Lee [19,20]. Using a simple regression model based on

hydraulic residence time and nutrient load data, chloro-

phyll-a concentrations for multiple lakes were estimated.

By then, Rast et al. [19] noticed: “Despite tens of millions of
dollars spent on water quality management, adequate load and
response data are available for less than a dozen water bodies”.
Despite Rast’s critical note, nowadays, nutrient load data to

model lake water quality are still scarce, especially in

developing regions [21]. This data scarcity is, to a large

extent, caused by the costs and complexity of monitoring
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nutrient loads.Today, this data scarcity canbe addressed by

using nutrient load models to estimate nutrient loads to

lakes based on different land uses in the lake’s catchment

[16,22�]. Similarly, data on water temperature at different

depths, residence times and local light climate are scarce.

This data scarcity can be covered by improved simulations

by models such as GLM [23,24] and FLAKE [25]. In

contrast, data on key ecological variables for lakes (e.g.

lake morphology, phosphorus, nitrogen, and chlorophyll-a

concentrations) have become increasingly available at high

temporal and spatial scales caused by technological innova-

tions. These innovations constitute, for example, high

frequency devices to quantify for example nutrient con-

centrations, algal biomass and pH [26�], eDNA techniques

to identify organisms present in the lake [27], and remote

sensing techniques to measure lake morphology [28��] and

various water quality parameters (for a full overview see

Gholizadeh et al. [29]). Increased data availability allowed

for modelling, and validation thereof, of an increased

number of lakes than has previously been possible

(Table 1).

Each model listed in Table 1 has advantages and limita-

tions. The majority of these models are statistical and in

most cases based on regression techniques (e.g. GLO-

BIO-aquatic in combination with Håkanson [30] and the

model by Kosten et al. [31]). As an advantage, statistical

approaches are generally simple and may point to causal

relationships [32]. However, statistical techniques do not

necessarily reveal an understanding of the true underly-

ing biological processes [33]. For example, a statistical

model between fish biomass and dissolved nutrients in

the water may show high correlations, however, it fails to

acknowledge that fish do not feed directly on dissolved

nutrients. A further drawback is that often linear regres-

sion is applied in statistical models, which is not capable

of capturing sudden threshold shifts or other non-linear

relationships. As an example, the growth of an organism

may linearly increase with temperature. However, at

some point a temperature threshold is reached, leading

to a sudden drop in growth rate, which is not covered by

the linear regression. Applying a hierarchical ‘hurdle’

model [34] in which regression analysis is based on a

data set that is split into two parts, solves the threshold

issue to a certain degree. Another approach is the gener-

alised additive model (GAM) [35] where the relationship

between the response and the explanatory variables is

allowed to be a smooth function instead of linear. None-

theless, all statistical approaches are based on data from

past conditions which are not necessarily the same in the

future [33]. Therefore, care should be taken when statis-

tical models are applied beyond the calibration domain.

Consequently, using statistical models for projections of

algal blooms is generally not recommended.

Conversely, process-based models like VEMALA v3,

PCLake, Delft3D-WAQ/ECO, NiRReLa (Nitrogen
www.sciencedirect.com
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Table 1

A list of models simulating water quality variables in freshwater lakes and reservoirs and that are used to simulate at least 100 lakes on Earth. These models have at least output on in-

lake nutrients or a state variable for phytoplankton: chlorophyll-a, biovolume or biomass

Name of model Application

area

Water type # of lakes or

reservoirs

Minimum lake

size (km2)

Output variablea Model type Data on nutrient

load to lake or

reservoir

Advantages (+) and limitations (�) of the

model

(OECD)-

Vollenweider-

Rast-Lee and

Jones model

[19,20]b

USA, Europe,

Asia

Lakes and

reservoirs

�200 Unknown Chl-a Statistical model Measured + Widely used for many lakes

+ simple model to calculate chlorophyll-a

+ Requires little input data

� Only applied using measured input data

� Cannot be used outside the calibration

domain

NiRReLa [37] World Lakes and

reservoirs

243893 >0.1 N retention Process-based

model

Large lakes:

modelled [62]

Small lakes:

estimated

+ Simulates a high number of lakes around

the world

+ Accounts for smaller lakes and reservoirs

� Is not able to provide output on algal

blooms

� In-lake processes are based on simplified

equations

Delft3D-WAQ/ECO

(BLOOM) [41] and

case-specific

reports

World Lakes and

reservoirs

>100 >0.01 Algal biomass,

Chl-a, P, N, SS,

zooplankton,

shellfish

Process-based

model

Case-dependent

(Measured or

modelled)

+ The model accounts for detailed in-lake

processes

+ Output may have high spatial detail

� Run-time is relatively long

� Requires relatively much input data

NA [35] UK Lakes 134 >0.01 Cyanobacterial

biomass

Statistical model Not used + simple model to calculate cyanobacterial

biomass

+ Uses a smooth function instead of a linear

regression

+ Requires little input data

� Calculations not based on drivers of

change climate change and nutrient load)

� Is only used for lakes in the UK

� Cannot be used outside the calibration

domain

NA [63] Germany Lakes 102 NA Cyanobacterial

biovolume

Statistical model Not used + simple model to calculate cyanobacterial

biovolume

+ Requires little input data

� Calculations not based on drivers of

change (climate change and nutrient load)

� Is only used for lakes in Germany

� Cannot be used outside the calibration

domain

NA [31] World Lakes and

reservoirs

143 >0.006 Chl-a, algal

biovolume

Statistical model Not used + Has a global coverage

+ simple model to calculate cyanobacterial

biovolume

+ Requires little input data

� Calculations not based on drivers of

change (climate change and nutrient load)

� Cannot be used outside the calibration

domain
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Table 1 (Continued )

Name of model Application

area

Water type # of lakes or

reservoirs

Minimum lake

size (km2)

Output variablea Model type Data on nutrient

load to lake or

reservoir

Advantages (+) and limitations (�) of the

model

NA [64] North-

America

Lakes and

reservoirs

1148 >0.04 Chl-a,

cyanobacterial

biomass

Statistical model Not used + simple model to calculate cyanobacterial

biovolume and chlorophyll-a

+ Requires little input data

� Calculations not based on drivers of

change (climate change and nutrient load)

� Is only used for lakes in North-America

� Cannot be used outside the calibration

domain

SiRReLa [36,38] World Lakes and

reservoirs

243893 >0.1 Si retention Process-based

model

Large lakes:

modelled with

IMAGE-GNM [65]

Small lakes:

estimated

+ Simulates a high number of lakes around

the world

+ Accounts for smaller lakes and reservoirs

� Is not able to provide output on algal

blooms

� in-lake processes are based on simplified

equations

PCLake [39,44,66] World Lakes and

reservoirs

>125 >0.01 N, P, SS,

phytoplankton,

zooplankton, fish

Process-based

model

Measured + Process-based model that is broadly

applicable

+ The model accounts for detailed in-lake

processes

� Model is not linked to other models that

are able to estimate the drivers of change

(climate change and nutrient load)

� Model requires more input data than

statistical models

Hierarchical

“hurdle” model

[34]

USA Lakes and

reservoirs

1127 >0.001 Microcystin

concentrations

Statistical model Not used + Simple model to calculate microcystin

concentrations

+ Splits data in two parts, thereby solving

the threshold issue to a certain degree

+ Requires little input data

� Calculations not based on drivers of

change (climate change and nutrient load)

� Cannot be used outside the calibration

domain

GLOBIO-aquatic in

combination with

Håkanson [30,67]

World Lakes and

reservoirs

3607 >50 Chl-a, MSA Statistical model Modelled with

IMAGE-GNM [65]

+ The drivers of change (climate change

and nutrient load) are simulated

+ Relatively simple model to calculate

chlorophyll-a

� Is only used for larger lakes and reservoirs

� Cannot be used outside the calibration

domain

VEMALA v.3 [40,42] Finland Lakes 58000 >0.01 N, P, SS, TOC and

phytoplankton

Process-based

model

Modelled using a

build-in process-

based model [42]

+ Simulates a high number of lakes

+ Themodel accounts for in-lake processes

� Needs much input data

� Is limited to the Finnish watersheds

a Explanations of abbreviations: Chl-a: chlorophyll-a, N: Nitrogen, P: Phosphorus, Si: Silicates, SS: suspended solids, TOC: Total Organic Carbon, MSA: Mean Species Abundance.
b A number of variants or extensions of the Vollenweider statistical model exists, which are not included in this table.
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Retention in Reservoirs and Lakes) and SiRReLa (Sili-

cate Retention in Reservoirs and Lakes) have the advan-

tage that they include a theoretical understanding of

relevant ecological processes. On the other hand, pro-

cess-based models are more complex than statistical

approaches and need calibration using empirical data.

NiRReLa and SiRReLa are simple process-based models

used for nutrient retention simulations of a large number

of lakes worldwide [36–38]. However, neither models

have been used to estimate algal blooms, in contrast to

VEMALA v3, PCLake and Delft3D-WAQ/ECO [39–41].

VEMALA v3 is used to model phytoplankton concentra-

tions under simulated nutrient loading, however, it is

currently only applied to Finnish watersheds [42].

Delft3D-WAQ/ECO has been applied to many places

around the world, typically using spatial simulations that

are highly detailed, which applications are suitable for

simulations of individual lakes but are less suitable for

large runs that include many lakes on earth [41]. PCLake

has been applied to many cases around the world as well

[43–45] but is limited to shallow lakes. A stratifying

version of PCLake has recently been developed [46]

but this model has not yet been applied to existing lakes.

Both the statistical and process-based modelling

approaches listed in Table 1 still exclude the majority

of lakes on Earth. There are over 117 million lakes larger

than 0.0002 km2 on earth [47��]. NiRReLa and SiRReLa

simulate 0.2% of these lakes, which is the most com-

pared to the other models listed in Table 1. This gap in

model application to lakes could lead to underestimation

as well as overestimation by models because the missing

lakes could be responsible for a large share of processes,

including nutrient retention and algal bloom formation.

For example, underestimation would occur for total

worldwide nutrient retention when small lakes are dis-

carded since nitrogen removal in all small lakes

(<50 km2) together is double of that in all large lakes

[37]. In contrast, exclusion of small lakes would lead to

overestimation of global turbidity, since small lakes

appear to have a higher chance to be in a vegetated

clear water state [12].

Requirements of ideal algal projection models
for global scale scenarios
In order to project algal blooms worldwide over coming

decades, one must, at a minimum, represent the major

drivers of algal blooms: nutrient loading and climate change

(environmental component) [10]. Moreover, a lake’s position

within the hydrological network (network component) and

lake-specific characteristics (lake ecosystem component)
should be considered since they affect the sensitivity of

individual lakes to nutrient loading and climate change (see

introduction) [12]. Therefore, we consider an ideal algal

projection model as a model that at least consist of three

components: firstly environmental, secondly network and

thirdly lake ecosystem component (Figure 1 and Table 2).
www.sciencedirect.com 
As noted in the previous section, statistical models perform

poor beyond their calibration domain which is less of an

issue for process-based models. Therefore, we recommend

using process-based models to project algal blooms under

changing climate and nutrient loading.

Environmental component

The environmental component quantifies the various

natural and anthropogenic nutrient sources to the net-

work component (Figure 1 and Table 2). First, natural

nutrient sources stem from biogeochemical processes

including conversion (e.g. denitrification), mineralization

(e.g. organic matter decomposition), fixation (e.g. N2-

fixation) and release (e.g. weathering) [48]. Second,

anthropogenic nutrient sources stem from human activi-

ties such as industrial production of goods, fertilizer use

and energy generation by fossil fuel combustion [48,49].

These anthropogenic activities are affected by develop-

ments in socio-economic factors such as population den-

sity, economy, policies, technology, lifestyle and

resources [49]. The effect of future climate and socio-

economic developments on natural and anthropogenic

nutrient sources should be simulated using scenarios such

as the Representative Concentration Pathways (RCPs)

for climate objectives [50], and the Shared Socioeconomic

Pathways (SSPs) for socio-economic development [51].

Network component

The network component quantifies transport of both water

and nutrients into lakes. Therefore, this component con-

nects lakes and reservoirs with the environmental compo-

nent through a hydrological network consisting of small and

large rivers and streams, groundwater and the atmosphere

(Figure 1 and Table 2). First, the transport of water into

lakes follows from water balances based on global climate

data. The amount of water to lakes should be estimated

because it, together with lake volume, determines hydrau-

lic residence times of lakes. A long residence time in lakes

allows biogeochemical processes to dominate lake ecosys-

tem dynamics, while short residence times result in effi-

cient flushing of solutes and suspended materials including

algae [44,52]. Second, nutrient loads to lakes should be

simulated based on quantified nutrient release from the

environmental component. The calculation of nutrient

loads to lakes is important as they support lake primary

producers, including algae, which in-turn support all other

lake organisms.Phosphorus and nitrogen are generally seen

as the most important nutrients for algal growth [53],

though silicates are important for diatom growth [36].

Additionally, carbon regulates the pH and is a substrate

for microbial life [54]. Therefore, we consider phosphorus

and nitrogen essential, and silicates and carbon supplemen-

tary to include in the ideal algal projection model.

Lake ecosystem component

The lake ecosystem component simulates the response of

algal blooms to climate change and nutrient load (Figure 1
Current Opinion in Environmental Sustainability 2019, 36:1–10
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Figure 1
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Three essential components of the ideal algal projection model: (a) an environmental component accounting for major anthropogenic and natural pressures, (b)

a network component connecting the lakes within the network, and (c) a generic lake ecosystem component with lake-specific characteristics. Essential

elements of the environmental component are 1) nutrient emissions from the natural sources, 2) nutrient sources from human activities, 3) climate conditions

and 4) nutrient release to the network component. Elements of the network component are 5) nutrient type (e.g. nitrogen, phosphorus, silica or carbon), 6)

hydrological network and 7) amount of water and nutrients transported by the network. Elements of the lake ecosystem component are: 8) local climate

conditions, 9) water depth 10) surface area, 11) sediment type and 12) inputs of water and nutrients to lakes and reservoirs.
and Table 2). For this, the major processes in aquatic

ecosystems determining algal blooms in lakes, such as

algal growth, grazing, competition and stratification,

should be included. Because of slow nutrient uptake

and release processes by sediments, and the possibility

of alternative stable states, a response of algae to a change

in nutrient load can take many years to occur, or might

even be hampered from occurring at all [55]. Accounting

for this legacy-effect of lakes would be ideal to prevent

deviations of model results from field data. Using these

major processes in aquatic ecosystems, including the

legacy-effect, the lake ecosystem component translates

lake-specific characteristics to lake-specific algal bloom

responses [24]. Lake-specific characteristics are for exam-

ple local climate conditions, lake depth, lake surface area,

sediment type and input of water and nutrients. Water

and nutrient inputs are quantified by the network com-

ponent, whereas the other lake characteristics can be

obtained from high-frequency monitoring [26�], global
Current Opinion in Environmental Sustainability 2019, 36:1–10 
maps, global databases, satellite images [28��,29], or, if

necessary, estimated using geomorphometric scaling rela-

tionships as done by Messager et al. [28��].

Coupling of the three components

The ideal algal projection model connects the environ-

mental component via the network component to the lake

ecosystem component. Furthermore, lakes influence each

other through the hydrological network by, for example,

nutrient retention in lakes upstream that lowers nutrient

concentrations in lakes downstream [37]. Therefore, also

such influences of the lake ecosystem component on the

network component should be included (Table 2).

Challenges and opportunities in algal bloom
projection model development
To the best of our knowledge, there are currently no algal

projection models that meet the requirements for such

model as described in the previous section (Figure 1 and
www.sciencedirect.com
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Table 2

Requirements of the ideal algal projection model that includes three components: environmental component, network component and

lake ecosystem component. Text in bold show required links to other components, text in italic show potential links to other components

Component Requirements Input Output

Environmental

component

-Simulation of natural nutrient sources

-Simulation of anthropogenic nutrient sources

-Uses scenarios to simulate the effect of future

climate and socio-economic developments

-Climate scenarios

-Socio-economic scenarios

Quantification of the various

nutrient sources to the network

component

Network component -Includes a hydrological network including

rivers and streams, groundwater and the

atmosphere

-Quantification of water inflow to lakes is based

on global climate data

-Quantification of nutrient input to lakes is

based on quantified nutrient release from the

environmental component

-Global climate data

-Hydrological network

-Nutrient release from the

environment to the network

(– nutrient retention by lakes in

the lake ecosystem component)

Quantifies transport of both

water and nutrients into lake

ecosystem component

Lake ecosystem

component

-Quantifies algal blooms based on water and

nutrient load from the network component

and lake-specific characteristics (e.g. depth,

area, sediment type and local climate)

-Includes major processes in aquatic

ecosystems determining algal blooms (e.g.

growth, grazing, competition, stratification)

-Includes the legacy-effect

-Lake-specific water input and

nutrient load from the network

component

-Lake-specific characteristics

Simulates the response of algal

blooms to climate change and

nutrient load
Table 2). Many lake ecosystem models listed in Table 1

have not been linked to any kind of network component.

Additionally, most models in Table 1 are either much

simpler than the ideal algal projection model described in

Table 2 or are far more limited in their application

domain. Below we describe four major challenges and

opportunities that will be faced when developing algal

projection models.

(1) The ideal model should be complex enough to be

credible, yet simple enough to be applied at the global

scale. The whole suite of statistical models seems

unsuitable to perform this task since they are too simple

and have the risk to perform poorly beyond the calibra-

tion domain. Process-based models are not limited to

their calibration domain and therefore more promising.

In addition, process-based models are more complex

then statistical models and include a theoretical under-

standing of relevant ecological processes. However,

since processed-based models are simplifications of

nature, it will still be a challenge to include all major

processes in aquatic ecosystems determining algal

blooms including the lakes’ legacy-effect.

(2) Uncertainties propagate through the modelling

framework, from the environmental component

through the network component to the lake ecosys-

tem component. The quality of algal bloom projec-

tions, therefore, depends on the output of other

components. There are several technical opportu-

nities available to deal with this issue, including

ensemble modelling, sensitivity analysis, and valida-

tion of both the input and output data [56�]. First,

ensemble modelling is a common technique to com-

municate uncertainty in weather forecasts and
www.sciencedirect.com 
requires simulations from multiple models [14�,56�].
Second, sensitivity analysis helps to understand the

impact of uncertainty originating from the network

component to the output of the lake ecosystem

component [39,57]. Third, validation based on his-

torical data builds confidence in the output (for exam-

ple Kong et al. [45]).

(3) There is a mismatch in spatial scales. Most nutrient

flow models are grid-based and have a spatial resolution

not finer than 0.5 degrees (�50 km) [16], whereas the

vast majority of lakesaresmaller than 50 km [28��].The

NiRReLa model found a workaroundfor this issue [37].

By assuming that the spatial distribution of the smallest

lakes scales with the distribution of the larger lakes, the

NiRReLa model includes lakes down to 0.1 km2 in

size.Otheroptionsareusing ‘representative lakes’ asan

average of all lakes in a grid cell (ISIMIP2b, https://

www.isimip.org/protocol/) or using a delineation

approach to account for different spatial scales [58].

Ideally, however, the network component would be

described in detail, such as has been done for

VEMALA v3 [42]. Recent hydrological simulations

at a resolution of 1 km2 at a global scale are promising

in this respect [59��].
(4) Validation data on key ecological variables for fresh-

water lakes (e.g. chlorophyll-a, nitrogen and phospho-

rus) on a global scale are still mostly originating from

Europe and America (Figure 2). Data from other parts

of the world are partly locked within institutions or

simply not there [56�]. Multi-lake observations by

remote sensing could fill this spatial data gap since

this technique is less restricted by the location on

earth [29]. Fortunately, data on general lake charac-

teristics, such as lake surface area and lake depth,
Current Opinion in Environmental Sustainability 2019, 36:1–10
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Global distribution of lakes for which water quality data on key ecological variables for freshwater lakes (e.g. chlorophyll-a, nitrogen and

phosphorus) is available per dataset.
recently reached global coverage; using geomorpho-

metric scaling relationships, a new, freely available

global dataset was obtained containing 1.43 million

individual lakes larger than 0.1 km2 [28��].

Although there are currently no models available to

simulate global scale scenarios for algal blooms in fresh-

water lakes and reservoirs, the building blocks are there.

First, multiple models exist that connect an environmen-

tal and a network component (see for a list Kroeze et al.
[16]). Additionally, ample models are available to simu-

late the lake ecosystem component (see for a list Table 1).

Moreover, models combining the three components

(environmental, network and lake ecosystem component)

have been developed and used at the national scale (e.g.

VEMALA v3 [40,42]). First steps to upscale such models

towards a global scale have already been taken by the

models NiRReLa and SiRReLa for nutrient cycling

[36,37] and a next step is to include simulations of algae.

Since the development of the building blocks for this last

step are progressing [46], we think that an algal projection

model can be developed in the near future. This devel-

opment will be supported further by an increased data

accessibility [56�,60�], increased computational power,

and advanced modelling techniques [24,56�,61]. Consid-

ering these developments, we envision that calculations

from first-cut attempts will already provide insights to

anticipate future algal blooms and, not to mention, to spur

improvements on this first-cut attempt.
Current Opinion in Environmental Sustainability 2019, 36:1–10 
Conclusion
To reach the UN Sustainable Development Goals (here

particularly focussing on SDG 6), there is an urgent need for

global models capable of simulating algal blooms under

scenarios for future climate change and nutrient loading.

However, no such model currently exists. Here we have

provided a roadmap for developing algal bloom projection

models, arguing that it should include the following cou-

pled components: environmental component, network

component and lake ecosystem component. In the near

future, we foresee that the development of such models is

feasible because most challenges have been solved and the

building blocks are there. We envision that algal projection

models will increasingly gain interest and provide a valu-

able contribution to global policymaking, in particular, with

respect to SDG 6 (clean water and sanitation).
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Simulation of bioavailable phosphorus and nitrogen loading in
an agricultural river basin in Finland using VEMALA v.3. J
Hydrol 2017, 549:363-373.

41. Los FJ: Eco-hydrodynamic modelling of primary production in
coastal waters and lakes using BLOOM. Ios Press; 2009.

42. Huttunen I, Huttunen M, Piirainen V, Korppoo M, Lepistö A,
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