Contents lists available at ScienceDirect

Global Ecology and Conservation

journal homepage: http://www.elsevier.com/locate/gecco

Original Research Article

Habitat loss and deterioration explain the disappearance of populations of threatened vascular plants, bryophytes and lichens in a hemiboreal landscape

Juha Pykälä

Biodiversity Centre, Finnish Environment Institute, Latokartanonkaari 11, 00790, Helsinki, Finland

ARTICLE INFO

Article history: Received 26 November 2018 Received in revised form 2 April 2019 Accepted 2 April 2019

Keywords: Biodiversity Conservation biology Extinction Fragmentation Habitat quality

ABSTRACT

Why populations of threatened species disappear is among the key questions in conservation biology. However, very few local and regional studies have attempted to quantify the importance of the various causes. In this investigation, the status of the populations of threatened vascular plants, bryophytes and lichens found between the years 1860–1979 in a national biodiversity hot spot in SW Finland was studied during the years 1990-2008. Of the populations, 82% had disappeared and 18% were re-discovered. The disappearance rate of populations differed between habitats: exceeding 80% in most habitat types whilst being lowest on rock outcrops (58%). Complete destruction of all locally suitable habitats was the main reason for the disappearance of the populations (73%) concerned. Habitat deterioration (including partial habitat loss) was identified as the reason for the disappearance for 22% of the populations. Only for 5% of the populations could it not be revealed whether habitat quality had changed or not, but deterioration of habitat quality or habitat loss is possible even in these cases. For none of the disappeared populations was no change in habitat quality verified. In most cases, habitat loss and deterioration were caused by agriculture or forestry. These results support the conclusion that vascular plant, bryophyte and lichen populations in the boreal landscape have disappeared directly because their habitats have disappeared, declined in size or deteriorated due to forestry, agriculture, construction, mining and pollution. More subtle changes in habitat quality, fragmentation, problems related to small population size per se and other reasons may have contributed to only a few disappearances of local populations. The disappearance rate was similar between the study groups, but the relative importance of reasons for disappearance was different. The results emphasize the importance of habitat protection for threatened vascular plants, bryophytes and lichens.

© 2019 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Studies have shown rapid loss of global biodiversity over the past few centuries, indicating that a sixth mass extinction is under way and accelerating (Pimm et al. 1995, 2014, May, 2010; Ceballos et al., 2015). The process of identifying species at risk of extinction (species 'red-listing') is a crucial measure to determine the reasons behind mass extinction and to define species in need of special protection and management (Rodrigues et al., 2006; Zamin et al., 2010). It is well-established that

https://doi.org/10.1016/j.gecco.2019.e00610

E-mail address: juha.pykala@ymparisto.fi.

^{2351-9894/© 2019} The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4. 0/).

threatened species disappear mainly because their habitats disappear totally (habitat loss) or habitat quality is negatively changed (habitat deterioration) (Wilcove et al., 1998; Pimm and Raven, 2000; Kerr and Deguise, 2004). In most cases, habitat loss and deterioration are caused by agriculture, forestry, urbanisation, and other building activities (Kerr and Cihlar, 2004; Goettsch et al., 2015; Rejmánek, 2018). Overexploitation by hunting, fishing and gathering plants also ranks among the main causes of threat (Goettsch et al., 2015; Maxwell et al., 2016). Chemical factors (particularly sulphur and nitrogen deposition) have also caused the decline of many species (Hallingbäck, 1992; Van Herk et al., 2003; Stevens et al., 2004). The importance of invasive non-native species (alien species) as an extinction factor is continuously increasing (Clavero and García-Berthou, 2005; Bellard et al., 2016). Human disturbance via recreation is also among the important threats to threatened plants (Burgman et al., 2007; McCune et al., 2013).

Nevertheless, there is high variation in the importance of various factors causing the disappearance of threatened species and their populations between geographical regions and taxonomic groups (Wilcove et al., 1998), as well as between habitat types (Juslén et al., 2016). In densely populated areas, agriculture and urbanisation have been the main causes of disappearance (Lavergne et al., 2005; Stehlik et al., 2007; Van Calster et al., 2008; Rejmánek, 2018). Northern Europe is sparsely populated in comparison to central and southern Europe. Thus, the area of arable land and disappearance of populations of threatened species due to conversion of habitats to arable land or eutrophication resulting from agriculture has not been so predominant in northern Europe. Forestry is generally considered to be a more important cause for threat status than agriculture (Thor, 1998; Rassi et al., 2010).

Numerous studies have also emphasised indirect causes of the disappearance of populations of threatened species: e.g. habitat fragmentation and isolation (Young et al., 1996; Lienert, 2004) and stochastic effects following it (Matthies et al. 2004), edge effects (Moen and Jonsson, 2003), and change in trophic interactions (Feeley and Terborgh, 2008). Habitat fragmentation may cause genetic erosion, inbreeding depression and Allee effects on reproductive success, and increase the susceptibility of populations to natural and human-made catastrophes as well as environmental stochasticity (Lande, 1993; Oostermeijer et al., 2003). Habitat fragmentation is considered to be detrimental to the maintenance of biodiversity (Krauss et al., 2010; Haddad et al., 2015; Hanski, 2015). The extinction risk of species is influenced by a myriad of factors (Ovaskainen and Meerson, 2010).

One of the key questions for conservation biology is what causes populations to disappear (Ceballos et al., 2018). Sessile organisms such as vascular plants and cryptogams (bryophytes and lichens) are particularly well suited to the study of this question because they tend to maintain continuous populations on the same local site for many years, as long as the habitat remains suitable.

However, local and regional studies of the matter using historical distribution data of plant or cryptogam species are uncommon. These studies are usually single-species studies or multi-species regional studies concerning plant species, not plant populations (e.g. Chocholoušková and Pyšek, 2003, Van der Veken et al., 2004; Walker and Preston, 2006, Stehlik et al., 2007, Van Calster et al., 2008). Surprisingly few studies have attempted to present empirical data on the relative importance of various factors causing the disappearance of populations of threatened plant or cryptogam species on local, regional or national scales (Bisang and Urmi, 1994; Hooftman et al., 2016). This is a major shortcoming. Comparisons of population disappearances between threatened vascular plants, bryophytes and lichens seem to be totally lacking.

In this respect, the persistence of the populations of threatened vascular plants, bryophytes and lichens found before 1980 (1860–1979) was studied in the municipality of Lohja which is among the biodiversity hot spots in Finland (Pykälä, 2007). Due to the relatively high number of historical records of threatened species, Lohja is a suitable study area for a case study in why populations of threatened species have disappeared. The main questions were: what are the disappearance rates of populations of threatened species? Do they differ between species groups? Do they differ between habitats? What are the reasons for disappearances of populations? Are disappearances mainly caused by habitat loss and deterioration, or by other reasons?

2. Material and methods

The study area, Lohja municipality is situated in inland SW Finland on the border of the hemiboreal and southern boreal vegetation zones. The land area is 278.5 km². Most of the land area is forest (61.5% of the total land area) and arable land (19%) (Tomppo et al., 1998). For a more detailed description of the study area, see Pykälä (2004). The number of old records of threatened vascular plants, bryophytes and lichens (Rassi et al., 2010) is among the highest in Finland in the study area, because Lohja has long been known for occurrences of many nationally rare species. This is particularly because of the occurrence of calcareous soils and the high topographic variability compared to most municipalities in southern Finland. Karjalohja, Nummi-Pusula and Sammatti municipalities, which were recently incorporated into Lohja, have been excluded from the study area.

The old records of threatened vascular plants, bryophytes and lichens were collected checking the major Finnish herbaria (H, TUR, OULU), literature and unpublished manuscripts, as well as from interviews of professional and amateur botanists, bryologists and lichenologists known to have visited the study area. Altogether 315 populations were found. When only the most accurate record type for a population is counted, 199 records are based on herbarium specimens, 42 on botanists' interviews, 7 on publications, 55 on unpublished field notes, and 12 on unpublished manuscripts (the latter two types are deposited in the Finnish Museum of Natural History). Altogether 68% of the vascular plant populations, 100% of the bryophyte populations and 93% of the lichen populations are backed up by herbarium specimens. If the old record was considered as

potentially unreliable (few records by amateurs), it was excluded from the analysis, but the populations were searched for (without success) in the field.

The old records were located using maps and ecological data on the herbarium labels or publications. Old herbarium records and other records vary in their spatial accuracy. They mostly included the name of the village or the nearest estate. The ecological data of old records usually included only the habitat type.

A total of 83 nationally threatened species (extinct, critically endangered, endangered and vulnerable) of vascular plants, bryophytes and lichens were found in the study area before 1980. *Galium verum* (VU) was excluded from the study, because it is rather common in the study area. *Jasione montana* (VU) was excluded because of difficulties in locating old finds, combined with a rather high number of existing populations (approx. 30) in the study area, i.e. causing severe uncertainty as to whether present and previous populations are the same or not. *Lecania koerberiana* (CR) and *Pleuridium subulatum* (VU) (one population each) were excluded, due to the inaccuracy of the old record combined with rather low detectability of the species.

All other populations (n = 315) of threatened vascular plants (n = 217), bryophytes (n = 55) and lichens (n = 43) found before 1980 (1860–1979) were included in the study. Records with only the name of the municipality were excluded (with one exception), because more exact data was available for all but one species, i.e. it was not possible to know whether such records were from the same or from a different locality than the more exact records.

Despite the inaccuracy of the old records, it was possible to pinpoint the original location of 48% of the records to within an area of <1 km² (n = 152), a further 49% to within an area of 1-3 km² (n = 154), and 3% to within an area of 3-10 km² (n = 8). One population (*Carex heleonastes*) could not be located geographically. The species grows on rich fens and it was carefully searched from all rich fens in the study area.

The habitat requirements of the studied species were compiled from the literature, after which all populations were intensively searched from these spatially identified areas. The habitats identified as non-suitable were also studied, but only once. The delimited areas were carefully studied by ground-based surveys covering the whole delimited areas. However, built areas were searched only if they were evaluated to have any potentially suitable habitat based on species ecology and maps. If a potentially suitable habitat was found or there was some uncertainty whether the entire habitat was completely destroyed, the search was performed three to five times per delimited potentially suitable area during various years. This repeated searching of potential remaining habitats reduced the probability of false absences that would lead to a conclusion of extinction when actually the populations still survived.

All potentially suitable habitats for the studied threatened species were checked within the identified areas during the years 1990–2008 during a floristic inventory of Lohja municipality. For vascular plants the search was usually done during the flowering season of the species (at least twice during the flowering season). For species visible when not flowering, an additional search may also have been done at another time in late spring, summer or early autumn. For bryophytes and lichens the search was done between March and October if the land was not covered by snow. Altogether 363 days of field work (8–10 h per day) were used for searching the populations.

Most of the study species are habitat specialists with strict habitat requirements. Potentially suitable habitats for such species are easily identified in the field and they are rare. Few species are more difficult in this respect, and in some cases most of the delimited area was evaluated as potentially suitable (although with suboptimal habitat quality) and was studied three to five times.

If no suitable habitat was found (i.e. no grassland for grassland species, no mire for mire species, no old forest for old forest species, etc.) within the delimited area, the habitat was considered totally destroyed. Grassland species were also searched from all edge habitats such as field margins and road verges within the delimited area. If data of the old record did not allow to determine in which particular habitat type the original record was located, the quality of all potential habitat types was evaluated within the search area.

Herbarium specimens of vascular plants were often collected although vascular plants were identified in the field. For bryophytes and lichens, specimens were almost always collected, and the identity of about half of the study species needed to be confirmed by microscopy. Specimens collected are deposited in H.

Here, habitat loss means the total destruction of a suitable habitat within the identified area. Habitat deterioration is used in two different meanings: (1) lowered habitat quality, (2) strongly reduced area of a potentially suitable habitat. This is because it was often not possible to separate these two factors or both occurred within the delimited area. In the first case only habitats with lowered quality (but perhaps not fully unsuitable for the species) were found. Typical examples are e.g. a drained mire with some potentially suitable mire vegetation as a habitat for mire plants, and forests with few old trees as habitats for epiphytes growing on old trees. In the second case more than 50% of the habitat (but less than 100%) in the delimited area was considered to have disappeared. If 0-50% of the area of the habitat was estimated as disappeared, change in habitat quality was considered as impossible to evaluate. Thus, habitat deterioration also includes many cases in which it is not possible to know whether the disappearance of a population was because of habitat loss or deterioration.

Usually only direct changes in habitat quality were herein considered to have caused habitat deterioration. However, air pollution was considered to have caused habitat deterioration for the pollution-sensitive lichens *Bryoria bicolor* (Thor, 1998, Jääskeläinen et al. 2010), *Lobarina scrobiculata* (Hallingbäck, 1989, Jääskeläinen et al. 2010) and *Usnea barbata* (Jääskeläinen et al. 2010).

Present arable land in Lohja was considered to be totally unsuitable for *Buglossoides arvensis*. Formerly, this species was common on arable land in southern Finland, but no recent records on arable fields occur in Finland. Thus, for *B. arvensis*, present arable land seems to be totally unsuitable.

If a species was found within the delimited area but from a different habitat type than previously recorded, the original population was, however, considered to have persisted. This is because (1) the original habitat description may have been obscure (e.g. fens may be in herbarium specimens sometimes labelled 'wet meadows'), (2) the original population may have occurred in more than one habitat type, but was reported only from one type, (3) the original population may have switched its habitat.

The probable reason for disappearance was evaluated for all populations that had disappeared (Appendix 1). In many cases, more than one reason within the delimited area of the old record occurred. Then a factor causing largest habitat loss within the delimited area (if possible to evaluate) was considered as a probable reason for disappearance.

The proportion of disappeared populations between the main habitat types (farmland, forests, mires, rock outcrops and shores), between the threat categories (regionally extinct – excluded due to the very low number of records) and between vascular plants, bryophytes and lichens were analysed with the chi-square test.

Species nomenclature follows Lampinen and Lahti (2018) for vascular plants, Hodgetts (2015) for bryophytes, and Stenroos et al. (2016) for lichens.

3. Results

From the total of 315 populations, 259 populations had disappeared (82%) and 56 were re-discovered (18%). All populations were discovered from habitats identified in the field as potentially suitable. Note that the actual disappearance rate may have been higher because it was frequently impossible to assess whether the population found was the same as the one observed previously or another adjacent population.

The proportion of disappeared populations significantly differed between the main habitat types (Table 1) (p = <0.001). From most habitat types, over 80% of the populations had disappeared. The lowest disappearance rate was on rock outcrops (58.3%).

The habitat was totally destroyed within the delimited area for 72.6% of the populations. Habitat deterioration (including partial habitat loss) was the second most important reason for disappearance: 22.4% of the populations. This includes twelve lichen populations, which were assessed to have disappeared due to air pollution. For 5.0% of the populations, it could not be reckoned with certainty whether habitat quality had changed or not. Most of these were populations of *Campanula cervicaria* and *Lythrum portula*.

The main reasons for population disappearance (Table 2, Appendix 1) were agriculture (45.6%) (particularly arable cultivation, eutrophication due to the use of fertilisers, and abandonment of grasslands) and forestry (17.4%) (particularly the felling of trees, drainage). It was frequently difficult to assess the probable reason for population disappearance because commonly more than one factor was identified within the delimited area to have caused habitat loss and deterioration. In those cases the factor which has probably caused highest habitat loss was defined as the probable reason for disappearance. However, in several cases it was not possible to evaluate whether the disappearance was caused by forestry or agriculture (7.7%). It was particularly difficult to evaluate whether semi-natural grasslands had disappeared due to agricultural changes or whether they had been actively afforested for forestry. Other important causes for population disappearance were construction (15.1%; the construction of houses, roads and waterways), limestone mining (5.0%), and air pollution (4.6%).

The proportion of agriculture as the reason for population disappearance was very high among vascular plants (60.3%), but rather low among bryophytes (16.3%) and lichens (8.1%). Bryophyte populations have mainly disappeared due to construction (30.2%) and forestry (25.6%). Lichen populations have mainly disappeared as a result of forestry (48.6%) and air pollution (32.4%).

The disappearance rate of populations did not differ between vascular plants, bryophytes and lichens (Fig. 1) (p = 0.719). The proportion of disappeared populations was higher among older than rather recent records (1960–1979), but the difference was smaller than expected (Fig. 2.). The first record group found between the years 1960–1979 also showed a high

Table 1

Disappearance rate (%) of populations of threatened vascular plants, bryophytes and lichens in various habitats.

	%
Forests (n = 70)	77.1
- on the ground $(n = 34)$	59.4
 on standing old and dead trees (n = 26) 	88.5
- on logs and stumps $(n = 10)$	100
Mires and springs $(n = 38)$	78.9
Rock outcrops $(n = 48)$	58.3
Shores and waters $(n = 44)$	81.8
Grasslands $(n = 51)$	98.0
Arable land $(n = 22)$	95.5
Other farmland habitats $(n = 33)$	93.9
Unknown habitat ($n = 9$)	100

Table 2

The probable reasons for the disappearance of vascular plant, bryophyte and lichen populations. Number of disappeared populations given.

	all	plants	bryophytes	lichens
Forestry	45	16	11	18
- felling of trees	32	6	8	18
- drainage for forestry	3	0	3	0
- afforestation	10	10	0	0
Agriculture/forestry	20	18	2	0
- disappearance of grasslands	16	16	0	0
- drainage	4	2	2	0
-				
Agriculture	118	108	7	3
- converted to arable land	20	17	3	0
- disappearance of grasslands/				
overgrowth after the end of grazing	18	17	1	0
- use of fertilisers or herbicides	70	68	2	0
 disappearance of wooden barns 	3	0	0	3
- other reason/unknown	5	5	0	0
Limestone mining	13	3	9	1
Construction	39	22	14	3
Air pollution	12	0	0	12
Unknown cause	12	12	0	0
All	259	179	43	37

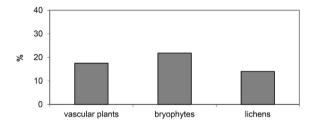


Fig. 1. The proportion (%) of the existing populations in different species groups.

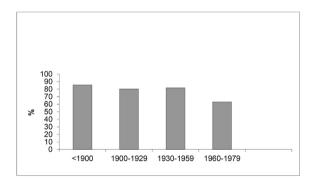


Fig. 2. The proportion of the populations that have disappeared on the basis of the earliest record of the population.

disappearance rate (62.9%). The proportion of populations that had disappeared differed among the three threat levels: it was highest among the vulnerable species and lowest among critically endangered species (p = 0.001) (Fig. 3.).

4. Discussion

In revisitation studies of plants, only repeated revisits allow the separation of population extinctions from simple nondetection (Kéry et al., 2006). To avoid pseudoextinctions, the populations of threatened species were searched 3–5 times during various years if it was not certain after one visit that no suitable habitat exists anymore. Nevertheless, some vascular plants have very long persistent seedbanks or may hide a long time in adult dormancy. One cannot be certain whether the species has permanently disappeared or will reappear in the future after a long absence. Such species are at least *Campanula*

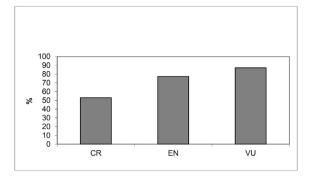


Fig. 3. The proportion of the populations that have disappeared assigned to the IUCN red list categories. CR = critically endangered, EN = endangered, VU = vulnerable.

cervicaria and *Lythrum portula* (long-term persistent seed bank) and *Cephalanthera rubra* (adult dormancy), which are also the most problematic study species for evaluating whether any potentially suitable habitat exists anymore.

Because there is often substantial uncertainty regarding the spatial location of old records, it is difficult to evaluate why the populations have disappeared (Stehlik et al. 2007). Nevertheless, the change in the study landscape during the past century has been so drastic that in most cases no suitable habitat for threatened species occurred anymore within the delimited area of 1–3 square kilometres or even more (3–10 square kilometres).

If more than half (but not all) of potentially suitable area for a species has been lost within the delimited area, the disappeared population was judged to have disappeared as a result of habitat deterioration. In these cases, no high quality habitats occurred, but habitat patches may have been potentially suitable. Even for these populations, habitat loss is a more probable reason for disappearance, since most of the habitat was probably lost. Due to the inaccuracy of old records, this cannot be proven.

It remained unclear for 13 disappeared populations whether habitat quality had changed or not. Even in these cases, habitat loss or some deterioration of habitat quality is possible or even probable. Most of these were populations of *Campanula cervicaria* and *Lythrum portula* records lacking habitat information. *C. cervicaria* grows mainly on edge habitats, mainly road banks and field margins. In edge habitats, *C. cervicaria* has declined in Finland, due to overgrowth, nutrient enrichment and the use of herbicides (Ryttäri et al., 2012). *L. portula* is an ephemeral annual species of open wet habitats somewhat infrequently present in its habitats.

Alternatively, most of these 13 population disappearances may be pseudoextinctions. *Campanula cervicaria* and *Lythrum portula* have a long-persistent seed bank and *Cephalanthera rubra* may hide decades in adult dormancy. Thus, one cannot be certain whether the populations have permanently disappeared or have the potential to reappear from dormancy.

The presented results suggest that vascular plant, bryophyte and lichen populations have disappeared almost exclusively because their habitats have totally disappeared, reduced in size or reduced in quality due to forestry, agriculture, construction, mining and pollution. In the Finnish red list (Rassi et al., 2010), these are the most important factors for the decline of threatened plants, bryophytes and lichens. More subtle changes in habitat quality, fragmentation, problems related to small population size per se and other reasons may have contributed to only a few disappearances of local populations of threatened species.

It is well-known that habitat destruction and deterioration are the main reasons for the disappearance of populations of threatened species (Pimm and Raven, 2000; Maxwell et al., 2016). However, numerous studies have also emphasised other reasons, such as fragmentation (Matthies et al. 1994). Despite the importance of the issue, there are only a few local and regional studies that have tried to quantitatively evaluate the causes of disappearance of populations of all threatened species among at least one species group of plants or cryptogams. Hooftman et al. (2016) studied the population extinctions of declining vascular plants in the UK, and concluded that half of the extinctions were caused by habitat loss and half by gradual processes causing delayed extinctions. In this case, a clearly larger proportion of populations disappeared due to habitat loss and deterioration. This may reflect the longer time period of the study.

The results of subtle or no importance of habitat fragmentation and small population size per se are against the major paradigm in ecology emphasising the importance of fragmentation (Haddad et al., 2015). Nevertheless, results similar to those presented here have been reported in some single species studies (Lindborg and Ehrlén, 2002; Jacquemyn et al., 2003; Adriaens et al., 2009). In a study of populations of threatened plant *Primula farinosa*, Lindborg and Ehrlén (2002) found out that no population has disappeared when habitat quality has remained the same, but in cases of lowered habitat quality most populations have disappeared.

The present results do not necessarily mean that subtle changes in habitat quality, fragmentation, etc., have no importance for the decline of threatened species in the study area. In this connection, the effects of habitat loss and deterioration were so overwhelming that the importance of other factors could not be verified. The present results suggest that, in a real world,

human-made habitat destruction and deterioration have been so severe that other theoretically important factors causing the disappearance of populations of threatened species seem somewhat negligible.

The result of the present study may be related to the long temporal scale of the study. Within the time scale of 30–130 years, most of the habitats of threatened species have been destroyed. On shorter temporal scales, the importance of other factors besides habitat quality may be seen (Fischer and Stöcklin, 1997; Paltto et al., 2006; Hooftman et al., 2016). However, as old detailed habitat information on habitat quality is generally missing, it may be very difficult to notice changes in habitat quality potentially important for threatened species (Mortelliti et al., 2010). Thus, changes in habitat quality are easily downgraded or neglected as a cause of population disappearances (Mortelliti et al., 2012; Heinrichs et al., 2016).

There is a clear correlation between the number of threatened species and human population density (Thompson and Jones, 1999; McKee et al., 2003). Human population density in Lohja is 131 people/km². Considered in a European context, this is a rather low density. In more densely populated areas, effects of habitat destruction and deterioration on threatened species have probably been even more pronounced than in the present study area.

The proportion of populations that have disappeared was opposite to the threat status, as it was highest among vulnerable species and lowest among critically endangered species. This may be because species having highest threat status are originally very rare habitat specialists for the most part, and several species in the lower threat status have originally been rather common, but strongly reduced. The results also suggest that the threat status of some species assigned as vulnerable may be underestimated.

The disappearance rates between different habitats in the present study show similarities to other European studies (Lampolahti and Syrjänen, 1992; Stehlik et al., 2007). The area of semi-natural grasslands, mires (particularly rich fens) and springs has much decreased in northern Europe, particularly in its southern part. In forests, high disappearance rates of populations of threatened species are particularly caused by the decline of old-growth forests (Hanski and Hammond, 1995; Esseen et al., 1997). Many arable weeds have strongly declined in Europe, mainly due to the use of fertilisers, pesticides and improved crop seed cleaning (Storkey et al., 2011). The high disappearance rate on arable land was mostly caused by one species (*Buglossoides arvensis*) and it is related to habitat change due to fertilisation and use of herbicides (Svensson and Wigren, 1986).

Population persistence was highest on rock outcrops. This is in accordance with the fact that the negative influence of human activities on biodiversity has commonly been less severe on rock outcrops than elsewhere in the landscape (Pykälä, 2004; Fitzsimons and Michael, 2017). However, the disappearance rate of 55% on rock outcrops is high if compared with known habitat changes on rock outcrops. More than 90% of the original area of rock outcrops has remained in the study area. However, negative human impacts have been more severe on those rock outcrops, mainly due to limestone mining and construction that have harboured threatened species, i.e. calcareous rocks and rocks by the lakeshores. Furthermore, air pollution has been an important factor with regard to population disappearances of threatened lichens on rocks.

No previous local or regional study comparing the disappearance rates of populations of threatened vascular plants, bryophytes and lichens seems to be available. In the present study, the rates were similar, suggesting that during the national red-listing of these three groups, criteria have been used similarly. Interestingly, the importance of different reasons for the disappearance of populations highly differs between the species groups studied. Agriculture was the main reason for disappearance of vascular plant populations, forestry for lichen populations, and construction and forestry for bryophyte populations. This difference can largely be explained by the absence of obligatory epiphytic and epixylic vascular plants in northern Europe, whereas 30% of threatened bryophytes and 61% of threatened lichens in the study area are such.

Threatened vascular plants mainly grow in sites where the growth of trees is suppressed by natural (e.g. drought, flooding) or human-made factors. Many such species benefitted from traditional animal husbandry, i.e. livestock grazing and mowing of the landscape, which largely compensated suppression of natural disturbances (by fires, flooding, gap dynamics and large herbivores) made by humans (Pykälä, 2000). Drastic change in agriculture during the past 100–150 years has resulted in their existence being threatened by agriculture.

The study intensity prior to 1980 was much higher among plants than bryophytes or lichens. If the sampling intensity had been the same among the three groups, forestry may have been a more important reason for total population disappearance than agriculture. The high disappearance rate of bryophytes due to construction may be an artefact. Bryologist S. O. Lindberg mainly collected bryophytes during the late 1800s from the present centre of the City of Lohja, i.e. from the area most heavily influenced by the construction of houses.

The results suggest an increasing rate of disappearance of populations of threatened species during the latter part of the study period. Walker and Preston (2006) also reported an increase in the vascular plant species-related disappearance rate after 1950 as compared to the previous century. In accordance with these results, Pykälä (2004) showed high recent disappearance rates of threatened and rare epiphytic lichen populations growing on old trees in the study area during the 1990s.

5. Conclusion

The final message of the present study is unambiguous. Habitat loss and deterioration have caused almost all disappearances of populations of threatened vascular plants, bryophytes and lichens. Disappearance rates differ from one habitat to another, but no habitat type occurs with low disappearance rates. The loss of populations of threatened species has

increased after 1950. Efficient conservation measures are needed for the habitats of threatened species. Biodiversity loss cannot be stopped without increasing habitat conservation. Species cannot survive without suitable habitats.

Declarations of interest

None.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Acknowledgements

The botanists who have visited the study area are thanked for sharing their records of the study species. The author is grateful to Risto Murto for supplying the data on a number of inhabitants in the study area. An anonymous referee is acknowledged for the numerous comments improving the manuscript.

Appendix. The disappeared populations and the reasons for disappearance. S = species group: B = bryophyte, L = lichen, V = vascular plant, T = threat class: RE = regionally extinct, CR = critically endangered, EN = endangered, VU = vulnerable, Exact = delimited area of the population (km2), F = first positive record, L = last positive record, Rea1 = reason for disappearance: 1 = habitat loss, 2 = habitat deterioration, 3 = unknown. Rea2 (reason for disappearance): A = agriculture, C = construction, F = forestry, M = limestone mining, P = air pollution, W = water construction, ? = unknown

S Species	Т	Locality	Exact	F	L	Rea1	Habitat	Rea2	Comments
B Acaulon muticum	RE	Kiviniemi	1	1883	1889	1	Arable field	A	No arable fields in the area. Disappeared from Finland due to intensification in arable use (fertilisation and/or use of herbicides)
B Amblyodon dealbatus	VU	Panimo	0.5	1900	1900	1	Rich fen	С	No rich fens in the area, whole area built up (with houses and industry)
V Androsace septentrionalis	EN	Kirkniemi	0.5	1933	1935	2	Road verge	С	Decreased habitat quality (or habitat loss) due to 1. construction o houses, 2. abandonment (end of grazing and mowing), 3. nutrient enrichment due to fertilizers
B Aneura mirabilis	EN	Immula	0.1	1974	1974	1	Spruce mire	F	Habitat destroyed due to forestry (drainage and clear felling)
L Blastenia ferruginea	VU	Tamsaari	1	1968	1968	1	Forest	F	Habitat destroyed due to felling of trees for forestry
V Botrychium matricariifolium		Vaanila	0.1	1960	1960	1	Semi- natural grassland	A	Overgrowth after the end of grazing, no grasslands in the area
B Brachythecium tommasinii	EN	Pitkäniemi	0.5	1903	1903	2	Calcareous rock	М	Most of the calcareous rocks in the area destroyed due to mining, bu one potentially suitable site existing
L Bryoria bicolor	EN	Mustasaari	0.2	1937	1937	2	Siliceous rock	Р	Lowered habitat quality due to air pollution
V Buglossoides arvensis	EN	Kiviniemi	0.5	1881	1881	1	Arable field	A	No arable field in the area. Habitat destroyed due to change in agriculture (pesticides, fertilisation and efficient cleaning of grain seeds)
V Buglossoides arvensis	EN	Hermala	0.5	1890	1890	1	Calcareous rock	А	Habitat destroyed due to change in agriculture (overgrowth after th end of grazing, pesticides, fertilisation)
V Buglossoides arvensis	EN	Kirkonkylä	1	1892	1892	1	?	A	No suitable habitat. Habitat destroyed due to change in agricultur- (pesticides, fertilisation and efficient cleaning of grain seeds) or due to building of houses.
V Buglossoides arvensis	EN	Outamo	2	1892	1892	1	Arable field	А	Habitat destroyed due to change in agriculture (pesticides, fertilisation and efficient cleaning of grain seeds)
V Buglossoides arvensis	EN	Sandbacka	1	1892	1892	1	Arable field	А	Habitat destroyed due to change in agriculture (pesticides, fertilisation and efficient cleaning of seeds)
V Buglossoides arvensis	EN	Paloniemi	5	1892	1892	1	Arable field	А	Habitat destroyed due to change in agriculture (pesticides, fertilisation and efficient cleaning of seeds)
V Buglossoides arvensis	EN	Seppälä	1.5	1892	1892	1	Arable field	А	Habitat destroyed due to change in agriculture (pesticides, fertilisation and efficient cleaning of grain seeds)
V Buglossoides arvensis	EN	Vappula	3	1892	1892	1	Arable field	А	Habitat destroyed due to change in agriculture (pesticides, fertilisation and efficient cleaning of seeds)
V Buglossoides arvensis	EN	Humppila	1	1884	1893	1	Arable field	А	Habitat destroyed due to change in agriculture (pesticides, fertilisation and efficient cleaning of grain seeds)
V Buglossoides arvensis	EN	livars	0.5	1886	1893	1	Arable field	A	Habitat destroyed due to change in agriculture (pesticides, fertilisation and efficient cleaning of grain seeds)

S Species	Т	Locality	Exact	F	L	Rea1	Habitat	Rea2	Comments
V Buglossoides arvensis	EN	Koivula	1	1893	1893	1	Probably arable field	А	Habitat destroyed due to change in agriculture (pesticides, fertilisation and efficient cleaning of seeds)
V Buglossoides arvensis	EN	Lojoby	2	1893	1893	1	Arable field	Α	Habitat destroyed due to change in agriculture (pesticides, fertilisation and efficient cleaning of seeds)
V Buglossoides arvensis	EN	Seppä	1	1892	1893		Arable field	А	Habitat destroyed due to change in agriculture (pesticides, fertilisation and efficient cleaning of seeds)
V Buglossoides arvensis	EN	Suoniitty	2	1893	1893	1	By house	А	Habitat destroyed due to change in agriculture (pesticides, fertilisation and efficient cleaning of seeds)
V Buglossoides arvensis	EN	Niitunpaita	1	1893	1893	1	Arable field	А	Habitat destroyed due to change in agriculture (pesticides, fertilisation and efficient cleaning of seeds)
V Buglossoides arvensis	EN	Osuniemi	3	1900	1900	1	Arable field	Α	Habitat destroyed due to change in agriculture (pesticides, fertilisation and efficient cleaning of grain seeds)
V Buglossoides arvensis	EN	Ojamo	2	1902	1902	1	Semi- natural grassland	A	No grasslands in the area, probably overgrown after abandonmer
V Buglossoides	EN	Hiittinen	3	1907	1907	1	Arable field	А	Habitat destroyed due to change in agriculture (pesticides,
arvensis V Buglossoides arvensis	EN	Kirkniemi	4	1907	1907	1	Semi- natural grassland	A	fertilisation and efficient cleaning of grain seeds) No grasslands in the area. Habitat destroyed by overgrowth after t end of grazing and/or change in agriculture (pesticides, fertilisatio
V Buglossoides	EN	Sedola	1	1892	1910	1	Probably	Α	Habitat destroyed due to change in agriculture (pesticides, fertilisation and efficient cleaning of seeds)
arvensis V Buglossoides arvensis	EN	Askola	2	1892	1916	1	arable field Arable field	A	Habitat destroyed due to change in agriculture (pesticides, fertilisation and efficient cleaning of seeds)
V Buglossoides arvensis	EN	Varola	2	1956	1956	1	Rock on field margin	Α	Overgrowth after the end of grazing and eutrophication due to fertilisers
V Buglossoides arvensis	EN	Kouvola	0.3	1960	1960	2	Small rock by the house		Habitat deterioration or loss due to overgrowth (abandonment or grazing)
V Buglossoides arvensis	EN	Maksjoki	0.2	1964	1985	1	Railway verge	С	Habitat destroyed due to macadamisation of the railway verge
B Buxbaumia viridis	CR	Jalassaari	0.1	1963	1963	2	Forest	С	Lowered habitat quality due to the construction of summer cottag and forest management
L Calicium abietinum	EN	Humppila	1	1891	1891	1	Wooden barn	А	Habitat destroyed due to removal of barns
L Calicium quercinum	CR	Torhola	0.1	1938	1938	1	Garden	С	Felling of trees, no suitable looking trees
V Campanula cervicaria	VU	Prestgården	0.5	1868	1868	2	Garden	С	Lowered habitat quality or loss due to the construction of houses nutrient enrichment and ornamental plants
V Campanula cervicaria	VU	Hermala	3	1879	1879	2	?	Α	Lowered quality of edge habitats due to fertilisation, use of herbicides and overgrowth
V Campanula cervicaria	VU	Routio N	2	1887	1887	1	Semi- natural grassland	A/F	No grasslands in the delimited area, overgrown after abandonme or afforested
V Campanula cervicaria	VU	Sedola	2	1887	1887	1	Semi- natural grassland	A/F	No grasslands in the delimited area, overgrown after abandonme or afforested
V Campanula cervicaria	VU	Paavola	0.5	1890	1890	2	? (Edge habitat?)	Α	Lowered quality of edge habitats due to fertilisation, use of herbicides and overgrowth
V Campanula	VU	Hakala	1	1892	1892	3	?	?	Not known (lowered quality?)
cervicaria V Campanula cervicaria	VU	Kirkonkylä	2	1893	1893	2	?	A	No grasslands in the area, most of the previously potentially suitab habitat turned to arable land, afforestated or built up for houses
V Campanula cervicaria	VU	Rajaportti	1	1893	1893	2	?	А	No grasslands in the area, lowered quality of edge habitats due to fertilisation
V Campanula cervicaria	VU	Lylyinen	3	1894	1900	1	Semi- natural	A/F	No grasslands in the delimited area, disappeared due to agricultu or forestry
V Campanula cervicaria	VU	Kouvola	2	1910	1910	3	grassland Ditch	?	Not known (possibly subsurface drainage, overgrowth or nutrien enrichment)
V Campanula cervicaria	VU	Askola	2	1913	1913	2	?	A	No grasslands on the area, lowered quality of edge habitats due t fertilisation
V Campanula cervicaria	VU	Jalassaari	2	1913	1913	1	Semi- natural	A	No grasslands in the delimited area, abandoned or converted to arable land
V Campanula cervicaria	VU	Piispala	3	1900	1913	3	grassland ?	?	Not known
V Campanula cervicaria	VU	Tamminiemi	1	1874	1916	1	Semi- natural	A	No grasslands in the delimited area, probably converted to arable land
							grassland		(

(continued on next page)

S Species	Т	Locality	Exact	F	L	Rea1	Habitat	Rea2	Comments
V Campanula cervicaria	VU	Lillojamo	1	1913	1919	1	Semi- natural grassland	A/F	No grasslands in the delimited area, disappeared due to agricultu or forestry
V Campanula cervicaria	VU	Vohloinen	2.5	1932	1932	2	Ditch bank	A	Lowered quality of edge habitats due to fertilisation, use of herbicides and overgrowth or habitat destruction due to subsurfa drainage
V Campanula cervicaria	VU	Virkkala	3	1934	1934	1	Semi- natural grassland	A	No grasslands in the delimited area, disappeared due to abandonment (?)
V Campanula cervicaria	VU	Linnaniemi	0.5	1934	1936	2	Road bank & field margin	А	Lowered habitat quality due to fertilisation
V Campanula cervicaria	VU	Skraatila	3	1964	1964	?		?	Not known
V Campanula cervicaria	VU	Hormavik	0.1	1973	1973	2	Road verge	A	Lowered habitat quality due to fertilisation and overgrowth
/ Campanula cervicaria		Talpelanlahti			1978		Clear cut forest	F	Disappeared due to planting of trees for forestry
/ Carex hartmanii	EN	Pitkäniemi	1	1893	1893	1	Semi- natural grassland	С	Habitat destroyed due to the building of factories
/ Carex	VU	?	250	1893	1893	1	Rich fen	A/F	No undrained rich fens in the study area, drained for forestry or
heleonastes / Carex remota	EN	Porla	0.1	1965	1988	1	Springy	W	converted to arable land Habitat destroyed due to water construction (pumping of water)
/ Carex viridula	VU	Lehmijärvi	3	1934	1934	2	forest Lakeshore	A	(Pykälä 1993) Lowered habitat quality because of overgrowth of shores due to
var. bergrothii / Cephalanthera rubra	CR	Karhuniemi	0.2	1890	1898	2	Forest	С	nutrient enrichment, construction of summer cottages, and draina Summer cottages built on the site, small patches of potential habi still existing
	CR	Pitkäperä	0.1	1945	1945	1	Forest	F	Clear felling of the growing site c. 1980 (Pykälä 1992)
	CR	Harvakkala	1.5	1958	1958	2	Forest	F	Most of the delimited area clear cut, small patches of potential habitat may be left
/ Cephalanthera rubra	CR	Maksjoki	2	1959	1959	2	Forest	F	Clear felling of more than half of the delimited area
/ Cephalanthera rubra	CR	Palanutkallio	2	1962	1962	3	Forest	?	Not known (summer cottages possibly built on the site, possibly collecting)
rubra		Pietilä	0.1		1975		Forest	?	Unknown, possibly hiding in adult dormancy
rubra		Koikkala	0.1		1983		Forest	F	Lowered habitat quality due to increase of spruce in the growing s (too shady for the species), possibly illegal collecting
B Cephalozia lacinulata		Tytyri	1		1885		Forest	M	Habitat loss, habitat mainly destroyed due to mining, and partly of to felling of trees
3 Cephalozia macounii 2 Cetrelia		Lill-Ojamo Ivars	1 0.2		1877 1917		Forest Siliceous	F F	Habitat destroyed due to felling of trees or possibly construction houses Habitat deterioration due to clear felling for forestry
olivetorum	LIN	Ivals	0.2	1917	1917	2	rock	r	habitat deterioration due to clear fenning for forestry
Cetrelia olivetorum	EN	Kaijola	3	1945	1945	3	Siliceous rock	F	Habitat deterioration due to clear felling for forestry and air pollution
Chaenotheca phaeocephala		Humppila	1		1892		Wooden barn	A	Habitat destroyed due to removal of barns
Cliostomum corrugatum		Humppila	1		1892		Wooden barn	A	Habitat destroyed due to removal of barns
Cliostomum griffithii		Tamsaari	1		1892		Forest	F	No suitable habitat in the delimited area. Reason for disappearan felling of trees for forestry
Collema subnigrescens		Tamminiemi	0.5		1917		Forest	F	Habitat deterioration (or total loss) due to felling of aspens
Collema subnigrescens		Virkkala	2		1929		Forest	F	No suitable habitat in the delimited area. Probable reason for disappearance felling of trees for forestry
salebrosum		Ojamo	0.5		1900		Spring	C	Habitat destroyed due to construction of houses or fish farm
V Crassula aquatica		Jalassaari	3		1874		? (probably lakeshore)		Habitat destroyed due to water eutrophication (due to agricultur and industry) and water level regulation
V Crassula aquatica		Pulli	3		1874		? (probably lakeshore)		Habitat destroyed due to water eutrophication and water level regulation
V Crassula aquatic V Crassula aquatica		Ojamo Hevonsaari	1 0.5		1877 1882		Spring Lakeshore	C A	Habitat destroyed due to construction of houses or fish farm Habitat destroyed due to water eutrophication and water level regulation
V Crassula	VU	Bredvik	1	1886	1886	1	Lakeshore	A	Habitat destroyed due to water eutrophication and water level regulation

S Species	ľ	Locality	Exact	۲	L	кеа1	Habitat	кеа2	Comments
V Crassula aquatica	VU	Kirkniemi	3	1886	1886	1	Lakeshore	A	Habitat destroyed due to water eutrophication and water level regulation
/ Crassula aquatica	VU	Kyrkön	0.5	1886	1886	1	Lakeshore	A	Habitat destroyed due to water eutrophication and water level regulation
/ Crassula aquatica	VU	Pitkäniemi	0.5	1888	1888	1	Lakeshore	A	Habitat destroyed due to water eutrophication and water level regulation or the building of factories
Crassula aquatica	VU	Tytyri	1	1886	1888	1	Lakeshore	A	Habitat destroyed due to water eutrophication and water level regulation
Crassula aguatica	VU	Kyrkstad	2	1891	1891	1	Lakeshore	Α	Habitat destroyed due to water eutrophication and water level regulation
' Crassula aquatica	VU	Lylyinen	3	1893	1893	1	Lakeshore	A	Habitat destroyed due to water eutrophication and water level regulation
' Crassula aquatica	VU	Karhuniemi	1	1903	1903	1	Lakeshore	A	Habitat destroyed due to water eutrophication and water level regulation
/ Dactylorhiza incarnata ssp. cruenta	VU	Anttila	0.5	1884	1888	1	Wet meadow (prob. rich fen)	A	No rich fens or meadows, probably converted to arable land
Dianthus arenarius	EN	Lohjan as.	2	1874	1884	2	Esker forest	F	Lowered habitat quality: 1. total prevention of forest fires causin increase of trees, 2. the building up of many previously potentia suitable habitats
Diphasiastrum tristachyum	EN	Lohja-Ojamo	2	1892	1894	1	Esker forest	F	No suitable habitat due to fire suppression and increase of tree density due to silvicultural measures (planting of trees)
lycopodioides		Seppälä	1		1874		Fen meadow	A	Turned to arable land
lycopodioides		Pietilä	2		1879		Fen	A	Turned to arable land or drained for agriculture
sendtneri		Karhuniemi	0.3		1946		Rock	С	Probably disappeared due to the construction of summer houses
Drosera intermedia		Vohloinen	1		1877		Lakeshore	A	Habitat destroyed due to water eutrophication and water level regulation
' Drosera intermedia		Haikari	0.5		1883		Lakeshore	A	Habitat destroyed due to water eutrophication and water level regulation
Drosera intermedia		Niemis	1		1883		Lakeshore	A	Habitat destroyed due to water eutrophication and water level regulation
Drosera intermedia		Kirkniemi	3		1886		Lakeshore	A	Habitat destroyed due to water eutrophication and water level regulation
/ Drosera intermedia		Pitkäniemi	0.5		1888		Lakeshore	A	Habitat destroyed due to water eutrophication, water level regulation and building of factories
Drosera intermedia		Hiittinen	0.1		1889		Lakeshore	A	Habitat destroyed due to water eutrophication and water level regulation
/ Drosera intermedia		Lill-Ojamo	1		1894		Fen	C	Habitat destroyed due to the construction of houses
Drosera intermedia		Ojamo Kielen ludë	1		1898		Fen	C	Habitat destroyed due to the construction of houses
Drosera intermedia		Kirkonkylä Produik	2		1906		Lakeshore	A	Habitat destroyed due to water eutrophication and water level regulation
/ Drosera intermedia		Bredvik	1		18		Lakeshore	A	Habitat destroyed due to water eutrophication and water level regulation
/ Elatine alsinastrum / Elatine		Paksalo	4		1909		Pond	A	No ponds in the area, filled probably due to change in agricultur use
' Elatine alsinastrum Enchylium		Karnainen	0.5 3		1927		Pond	A	No ponds in the area, filled probably due to change in agricultur use
bachmanianum		Hermala	С		1890		Lime quarry	IVI	Overgrowth or lime mining, lime quarries in the area too overgrowth, close to lime quarries very small patches of potentia suitable habitat
' Epilobium lamyi			0.5		1916		Lakeshore	A	Habitat destruction due to overgrowth of shores, caused by eutrophication mainly caused by the use of fertilisers in agricult
Epilobium lamyi			0.5		1922		Ditch on arable field	A	Lowered habitat quality due to 1. decrease of ditches (subsurfac drainage), 2. afforestation of approx. half of the potential area, 3 competition with invasive alien species (Epilobium adenocaulon
' Epilobium lamyi		-	0.1		1979		Herb-rich forest (gap)	C	Lowered habitat quality due to 1. the construction of summer cottages, 2. competition with invasive alien species (Epilobium adenocaulon)
/ Epilobium obscurum		Lohja II	1		1906		Lakeshore	C	Habitat destroyed due to the construction of houses (Murto & Pyk 1988)
/ Epilobium obscurum		Lohja I	1		1958		ditch	C	Habitat destroyed due to the construction of houses (Murto & Pyk 1988)
/	EN	Laakspohja	0.5	1903	1962	1	Spring	A	(continued on next pa

S Species	1	Locality	Exact	F	L	Rea1	Habitat	Rea2	Comments
Epilobium obscurum				_					Habitat destroyed due to the building of an artificial pond (Murto & Pykälä 1988)
V Epipactis palustris	EN	Virkkala	0.1	1954	1975	1	Rich fen	С	Habitat destroyed due to drainage (probably for the construction of houses or less likely for forestry)
V Epipogium aphyllum	VU	Hällberg	0.3	1902	1902	1	Lakeshore forest	С	Habitat destroyed due to the construction of summer cottages
V Epipogium aphyllum	VU	Jalassaari	3	1918	1918	2	Forest	F	Habitat deterioration or loss due to felling of trees and part of the delimited area converted to arable land
V Euphrasia officinalis	EN	Hermala	0.5	1923	1923	1	Semi- natural grassland	A	No grasslands in the area, overgrowth due to end of grazing or nutrient-enrichment due to use of fertilizers
L Evernia divaricata	VU	Nälkömoss	1	1886	1886	1	Forest	F	Habitat destruction due to felling of trees
L Evernia	VU	Krunninmäki	0,3	1891	1891	2	Forest on	F	Habitat deterioration due to felling of trees and air pollution, few
divaricata V Gentianella	EN	Hermala	0.4	1860	1860	2	rock Calcareous	А	mature pines left in the locality Habitat deterioration or loss due to overgrowth after the end of
amarella V Gentianella	EN	Prestgården	1	1868	1868	1	rock Arable field	А	grazing, fertilisation and the construction of houses Habitat destroyed due to change in agricultural use (fertilisation an
amarella V Gentianella	EN	Kiviniemi	0.5	1886	1886	1	or grassland Semi-	А	use of herbicides) Habitat destroyed due to 1. conversion to arable land or 2.
amarella							natural grassland		abandonment (end of grazing and mowing)
V Gentianella amarella	EN	Hiidensaari	0.5	1887	1887	1	Semi- natural grassland	F	No grasslands in the area, probably afforestation
V Gentianella amarella	EN	Jalassaari	1	1890	1890	1	Semi- natural grassland	A	No grasslands in the delimited area, probably converted to arable land
V Gentianella amarella	EN	Kylmälahti	0.5	1890	1890	1	Semi- natural grassland	A	No grasslands in the delimited area, probably converted to arable land
V Gentianella amarella	EN	Mongola	0.5	1883	1893	1	Semi- natural grassland	A	Habitat destroyed due to abandonment or conversion to arable lar
V Gentianella amarella	EN	Tytyri	0.5	1881	1893	2	Calcareous rock	М	Habitat deterioration or loss due to 1. mining and 2. overgrowth
V Gentianella amarella	EN	Vappula	2	1893	1893	1	Semi- natural grassland	A	No grasslands in the area, converted to arable land or afforestated
V Gentianella amarella	EN	Paavola	0.5	1898	1898	1	Semi- natural	A/F	No grasslands in the area, converted to arable land or afforestated
V Gentianella	EN	Pietilä	2	1898	1898	1		А	No grasslands in the delimited area, probably converted to arable
amarella V Gentianella	EN	Piispala	0.5	1913	1913	1	grassland) Lakeshore	A/F	land No grasslands in the area, converted to arable land or afforestated
amarella V Gentianella amarella	EN	Askola I	1	1913	1932	1	grassland Semi- natural	A	No grasslands in the area, probably converted to arable land
V Gentianella amarella	EN	Askola II	2	1916	1943	1	grassland Semi- natural	A	No grasslands in the area, probably converted to arable land
V Gentianella amarella	EN	Svinängen	0.5	1900	1900	1	grassland Semi- natural	A	Disappeared because habitat converted to arable land (Hällström 1903)
V Gentianella amarella	EN	Seppä	0.5	1900	1900	1	grassland Semi- natural grassland	A	Disappeared because habitat converted to arable land (Hällström 1903)
V Gymnadenia conopsea var. conopsea	VU	Pensaari	1	1855	1855	1	? (probably grassland)	A/F	No grasslands in the area, abandoned or afforestated
V Gymnadenia conopsea var. conopsea	VU	Tytyri	0.5	1880	1880	1	Semi- natural grassland	М	No grasslands in the area, habitat destroyed due to mining
Conopsea V Gymnadenia conopsea var. conopsea	VU	Heimo	0.5	1886	1886	1	grassland ? (probably grassland)	A/F	No grasslands in the area, abandoned or afforestated
V	VU	Puusilta	0.5	1887	1887	1	Field margin	A	No grasslands in the area, field margins eutrophicated due to use fertilisers

	Species	Т	Locality	Exact	F	L	Rea1	Habitat	Rea2	Comments
	Gymnadenia conopsea var.									
	conopsea var.									
VC	Gymnadenia conopsea var.	VU	Jantoniemi	1	1887	1887	1	Semi- natural	A/F	No grasslands in the area, abandoned or afforestated
	conopsea							grassland		
V C	Gymnadenia conopsea var.	v	Santalahti	1	1887	1887	1	•	С	No grasslands in the area, built up for summer cottages
	conopsea							- ·		
	Gymnadenia conopsea var.	VU	Sarvi	0.5	1887	1887	1	Semi- natural	С	No grasslands in the area, built up for summer cottages or converted to arable land
	conopsea							grassland		
c	Gymnadenia conopsea var.	VU	Paloniemi	2	1887	1887	1	Field margin	A	No grasslands in the area, converted to arable land or afforestated, field margins eutrophicated due to use of fertilisers
	conopsea	1.01	Dalamäiri	1	1007	1007	1	2 (mashahlar	A / E	No supported in the area convented to eachle land on offenestated
c	Gymnadenia conopsea var. conopsea	vu	Palomäki	1	1887	1887	1	? (probably grassland)	A/F	No grasslands in the area, converted to arable land or afforestated
	Gymnadenia	VU	Kullaksäng	0.5	1891	1891	1	Fen meadow	А	No grasslands or fens in the area, probably drained for arable
с	conopsea var. conopsea	10	Runuksung	0.5	1051	1051		Ten meadow		cultivation
V (Gymnadenia	VU	Hakala	1	1891	1891	1	Semi-	A/F	No grasslands in the area, abandoned or afforestated
	conopsea var. conopsea							natural grassland	,	
VC	Gymnadenia	VU	Kyrkstad	0.5	1892	1892	1	Semi-	С	No grasslands in the area, build for houses or afforestated
C	conopsea var.							natural		
	conopsea							grassland		
	Gymnadenia	VU	Jönsböle	3	1892	1892	1	Semi-	A	No grasslands in the area, probably converted to arable land
	conopsea var.							natural		
	conopsea	м	Daiaportti	0.5	1002	1002	1	grassland	A /E	No grasslands in the area, abandoned or afferentiated
	Gymnadenia	VU	Rajaportti	0.5	1893	1893	I	? (prob. semi-n.	A/F	No grasslands in the area, abandoned or afforestated
	conopsea var. conopsea							grassland)		
	Gymnadenia	VII	Routio	3	1893	1893	1	Semi-	А	No grasslands in the area, abandoned?
	conopsea var.	•0	Routio	5	1055	1055		natural		no grassianas in the area, abandonea.
	conopsea							grassland		
V (Gymnadenia	VU	Hiittinen	1	1893	1907	1	Semi-	Α	No grasslands in the area, converted to arable land?
C	conopsea var.							natural		
	conopsea							grassland		
	Gymnadenia	VU	Tamminiemi	1	1892	1907	1	Herb-rich	A/F	No suitable habitat (grassland patches within a forest), disappeared
	conopsea var.							forest		due to fertilisation or overgrowth after the end of grazing
	conopsea	м	Virklala	2	1011	1011	1	Fon mondow	A /E	No suitable babitat drained for agriculture or forestry
	Gymnadenia conopsea var.	VU	Virkkala	3	1911	1911	I	Fen meadow	A/F	No suitable habitat, drained for agriculture or forestry
	conopsea									
	Gymnadenia	VU	Piispala	0.5	1900	1913	1	Semi-	A/F	No grasslands in the area
	conopsea var.							natural	'	
	conopsea							grassland		
VC	Gymnadenia	VU	Paavola	0.2	1916	1916	1	Oak forest	Α	Overgrown after abandonment (the end of grazing)
	conopsea var.									
	conopsea									
	Gymnadenia	VU	Suvantola	1	1929	1929	I	Semi-	A	No grasslands in the area, overgrown after abandonment?
	conopsea var. conopsea							natural grassland		
	Gymnadenia	VII	Torhola	3	1932	1932	1	Semi-	F	No grasslands in the area, probably afforested
	conopsea var.	vu	Tornola	J	1332	1332	1	natural	1	No grassianus in the area, probably anorested
	conopsea							grassland		
		VU	Huhtasaari	0.1	1956	1956	1	Herb-rich	F	Too shady, increase in the density of trees
C	Gymnadenia							forest		
с V С	Gymnadenia conopsea var.									
C V C	-						1	Clear cut	F	Afforestation of the habitat
0 V 0 0 0 V 0	conopsea var. conopsea Gymnadenia	VU	Talpela	0.1	1979	1982	1			
V (c v V (v c	conopsea var. conopsea Gymnadenia conopsea var.	VU	Talpela	0.1	1979	1982	1	forest		
V (c V (V (c c	conopsea var. conopsea Gymnadenia conopsea var. conopsea		-					forest		
	conopsea var. conopsea Gymnadenia conopsea var. conopsea Gymnadenia		Talpela Ivars	0.1 1.5		1982 1890		forest Semi-	A	No grasslands in the area, fields margin eutrophicated due to use o
	conopsea var. conopsea Gymnadenia conopsea var. conopsea Gymnadenia conopsea var.		-					forest Semi- natural	A	No grasslands in the area, fields margin eutrophicated due to use o fertilisers
	conopsea var. conopsea Gymnadenia conopsea var. conopsea Gymnadenia conopsea var. conopsea	VU	Ivars	1.5	1890	1890	1	forest Semi- natural grassland		fertilisers
V C C V C V C C V C V C V C	conopsea var. conopsea Gymnadenia conopsea var. conopsea Gymnadenia conopsea var.	VU	-		1890		1	forest Semi- natural	A A/F	

(continued on next page)

S Species	Т	Locality	Exact	F	L	Rea1	Habitat	Rea2	Comments
B Hamatocaulis vernicosus	VU	Lohjanselkä	4	1884	1884	1	Fen	С	No rich fens, built up for houses
B Hamatocaulis vernicosus	VU	Paavola-Pieti	2	1890	1890	1	Fen meadow	A	No rich fens, turned to arable land
3 Hamatocaulis vernicosus	VU	Kyrkstad	3.5	1891	1891	1	? (probably fen)	A/F	No rich fens in the delimited area, 1. drained for forestry or 2. converted to arable land
3 Hamatocaulis vernicosus	VU	Pietilä-Askola	2	1892	1892	1	Fen meadow	А	No rich fens, turned to arable land
3 Hamatocaulis vernicosus	VU	Ojamo	0.5	1877	1900	1	Lakeshore (fen)	С	No rich fens in the delimited area, build for houses
B Hamatocaulis vernicosus	VU	Panimo	0.5	1900	1900	1	Fen? meadow	С	No rich fens, destroyed due to the construction of houses
B Herzogiella turfacea	VU	Torhola	3	1878	1878	1	Fen	F	Habitat destoyed due to forestry
B Herzogiella turfacea	VU	Lillojamo	1	1885	1885	1	?	С	Habitat destroyed due to the construction of houses or forestry
B Herzogiella turfacea	VU	Paloniemi	5	1889	1889	2	?	F	Habitat deterioration or loss due to cutting of forests and drainag small patches of potentially suitable habitat in the delimited area
3 Herzogiella turfacea	VU	Osuniemi	3	1891	1891	2	?	F	Habitat deterioration or loss due to cutting of forests and drainag small patches of potentially suitable habitat in the delimited area
/ Lathraea squamaria	VU	Isoteutari	3	1902	1902	2	Forest	F	Habitat deterioration or loss, most of the area clear cut or turned in arable land
/ Lathraea squamaria	VU	Kirkniemi	0.5	1930	1930	1	Forest	F	Growing site clear cut
. Lobarina scrobiculata	VU	Lojobacke	0.1	1886	1886	1	Siliceous rock	С	Habitat destroyed due to the construction of houses
Lobarina scrobiculata	VU	Lahdennummi	1	1887	1887	2	Siliceous rock	Р	Habitat deterioration due to air pollution
Lobarina scrobiculata	VU	Niitunpaita	1	1887	1887	2	Siliceous	Р	Habitat deterioration due to air pollution and forestry practices
Lobarina scrobiculata	VU	Ulvalansaari	1	1887	1887	2	Siliceous	Р	Habitat deterioration due to air pollution or the construction of summer cottages
Lobarina scrobiculata	VU	Varola	3	1890	1890	2	Siliceous	Р	Habitat deterioration due to air pollution
Lobarina scrobiculata	VU	Saukolahti	0.1	1917	1917	2	Siliceous	Р	Habitat deterioration due to air pollution and forestry practices
. Lobarina scrobiculata	VU	Kivikumpu	0.1	1959	1959	2	Siliceous rock	Р	Habitat deterioration due to air pollution and forestry practices
Lobarina scrobiculata	VU	Lehtikallio	0.3	1959	1959	2	Siliceous rock	Р	Habitat deterioration due to air pollution
Lobarina scrobiculata	VU	Laukkamäki	0.1	1960	1960	2	Siliceous rock	Р	Habitat deterioration due to air pollution and later by forestry practices
Lobarina scrobiculata	VU	Myllylampi	0.3	1937	1960	2	Siliceous rock	Р	Habitat deterioration due to air pollution and forestry practices
Lobarina scrobiculata	VU	Skraatila	2	1892	1964	2	Siliceous rock	Р	Habitat deterioration due to air pollution
/ Lythrum portula	VU	Tytyri	1	1887	1887	2	Road	М	Reduction in the area of potentially suitable habitat due to lime mining
/ Lythrum portula	VU	Routio	3	1888	1888	3	?	?	Unknown
/ Lythrum portula	VU	Solhem	0.5	1889	1889	1	?	А	Habitat destroyed due to arable cultivation or construction
/ Lythrum portula	VU	Niitunpaita	0.5	1892	1892	3	Road	?	Unknown
/ Lythrum portula	VU	Vappula	2	1892	1892	3	Forest road	?	Unknown
/ Lythrum portula	VU	Askola	3	1893	1893	3	?	?	Unknown
/ Lythrum portula	VU	Jönsböle	2	1894	1894	1	Lakeshore	А	Habitat destroyed due to eutrophication and water level regulati
/ Lythrum portula	VU	Outamo	3	1898	1898	1	Lakeshore	А	Habitat destroyed due to eutrophication and water level regulation
/ Lythrum portula	VU	Lylyinen	3	18	1903	1	Lakeshore	А	Habitat destroyed due to eutrophication and water level regulati
/ Lythrum portula	VU	Gustafsberg	4	1913	1913	1	Lakeshore	А	Habitat destroyed due to eutrophication and water level regulati
Lythrum	VU	Söderkulla	1	1913	1913	3	Road	?	Unknown
portula /	VU	Vaanila	2	1919	1919	1	Lakeshore	А	Habitat destroyed due to eutrophication and water level regulati

(continued)

S Species	Т	Locality	Exact	F	L	Rea1	Habitat	Rea2	Comments
Lythrum									
portula V Lythrum portula	VL	I Isoteutari	3	1957	1957	3	Clay road	?	Unknown
V Lythrum portula	VU	J Jalaskylä	1	1959	1959	1	Pond	A	No such habitat in the area, probably disappeared due to agricultural changes
V Malaxis monophyllos	EN	Panimo	0.5	1884	1884	1	Wet meadow (rich fen)	С	No rich fens or meadows in the delimited area, destroyed due to the construction of houses
V Malaxis monophyllos	EN	Anttila	0.5	1887	1887	1	Wet meadow (rich fen)	A	No rich fens or meadows, probably converted to arable land
V Malaxis	EN	Ojamo	0.5	1886	1888	1	Fen	W	No rich fens, destroyed due to the construction of fish farm or houses
monophyllos V Malaxis monophyllos	EN	Laakspohja	2	1889	1889	1	Fen	A	No rich fens, probably converted to arable land
monophyllos V Malaxis monophyllos	EN	Hermala	1	1893	1894	2	Fen	A	Habitat deterioration or loss due to drainage of rich fens (one drained fen with some potentially suitable habitat), most rich fen
V Malaxis monophyllos	EN	Pensaari	0.1	1975	1975	1	Forest	С	area probably converted to arable land Habitat destroyed due to the construction of summer cottages
B Meesia	EN	Ojamo	0.5	1886	1886	1	Rich fen/	С	No rich fens, destroyed due to the construction of houses
longiseta B Meesia	EN	Muijala	2	1960	1960	1	spring Rich fen	F	No rich fens, drained for forestry
longiseta B Moerckia	VL	I Ojamo I	0.5	1877	1877	1	Lakeshore	С	Habitat destroyed due to the construction of houses or regulation of
hibernica B Moerckia	VL	I Ojamo II	0.5	1878	1890	1	Rich fen/	С	water level of the lake Habitat destroyed due to building houses or fish farm
hibernica B Neckera	VU	J Ojamo	1	1886	1886	1	spring Forest	F	Habitat destroyed due to felling of trees (or the construction of
pennata B Neckera	VL	J Tamminiemi	0.8	1917	1917	2	Forest	F	houses) Habitat deterioration due to felling of trees
pennata B Neckera	VL	J Aiskuunpuro	0.2	1969	1969	1	Forest	F	Habitat destroyed due to cutting of trees for forestry
pennata B Orthotrichum	VL	J Kiviniemi	0.2	1900	1900	1	Calcareous	М	Habitat destroyed due to limestone mining
cupulatum B Orthotrichum cupulatum	VL	J Lindkulla	0.5	1900	1900	1	rock Calcareous rock	М	Habitat destroyed due to limestone mining
B Orthotrichum cupulatum	VL	J Mongola	0.5	1900	1900	1	Calcareous rock	М	Habitat destroyed due to limestone mining
L Pertusaria pertusa	VL	l Kuoppanokka	0.1	1891	1891	2	Siliceous rock	W	Habitat deterioration due to increase of trees (because of lowering of water table of the lake) causing too much shade to the rock outcrop, and possibly also air pollution
V Polygala amarella	VL	J Jantoniemi	0.8	1933	1933	1	Grassland (?)	A/F	No grasslands in the area, converted to arable land, afforestated or less likely construction for summer cottages
V Polygala vulgaris	VU	J Virkkala	3	1938	1938	1	Semi- natural	A	Grasslands in the delimited area disappeared after the end of grazing or actively afforestated and later most of the area built up for
V Psammophila muralis	VĽ	l Kihilä	0.5	1874	1874	1	grassland Semi- natural	A	houses Habitat destruction due to fertilisation, use of pesticides and overgrowth
V Psammophila	VU	J Kiviniemi	0.5	1881	1884	1	grassland ? Arable field	А	No arable fields in the area, habitat destroyed due to change in
muralis V Psammophila	VL	I Karnainen	2	1890	1890	2	?	A	agricultural use Habitat deterioration or loss due to fertilisation, use of pesticides
muralis V Psammophila	VL	/ Ollila	1	1890	1890	2	Path	A	and overgrowth Habitat deterioration or loss due to fertilisation, use of pesticides and overgrowth
muralis V Psammophila	VL	I Ruolahti	1	1890	1890	2	Arable field	А	and overgrowth Habitat deterioration or loss due to fertilisation, use of pesticides
muralis V Psammophila	VL	I Niitunpaita	0.5	1892	1892	2	margin Road ditch	А	and overgrowth Habitat deterioration or loss due to fertilisation, use of pesticides
muralis V Psammophila	VL	I Hiittinen	0.5	1887	1893	2	Road bank	А	and overgrowth Habitat deterioration or loss due to fertilisation, use of pesticides
muralis V Psammophila muralis	VL	J Lylyinen	3	1892	1894	2	Grassland and arable	A	and overgrowth Habitat deterioration or loss due to fertilisation, use of pesticides and overgrowth
V Psammophila muralis	VL	Jantoniemi	3	1913	1913	2	field ?	A	Habitat deterioration or loss due to fertilisation, use of pesticides and overgrowth
									(continued on next page)

S Species	Т	Locality	Exact	F	L	Rea1	Habitat	Rea2	2 Comments
V Psammophila muralis	VU	Lohjan asema	3	1936	1936	2	Arable field	A	Habitat deterioration or loss due to fertilisation, use of pesticides and overgrowth
V Psammophila muralis	VU	Torhola	0.1	1900	1945	1	Small road	F	Habitat destroyed due to overgrowth (open path turned to forest path)
V Psammophila muralis	VU	Vaanila	0.1	1961	1961	1	Open forest path	F	Habitat destroyed due to overgrowth (too shady due to increase of trees)
B Pyramidula tetragona	RE	Solhem	0.2	1883	1891	2	?	A	Habitat deterioration or loss due to abandonment and fertilisation
L Ramalina thrausta	VU	Gustafsberg	1	1886	1886	1	Forest	F	No suitable habitat, habitat destroyed due to felling of trees by forestry
L Ramalina thrausta	VU	Sandbacka	1	1892	1892	1	Forest	F	No suitable habitat, habitat destroyed due to felling of trees by forestry
L Ramalina thrausta	VU	Joenpelto	1	1892	1892	1	Forest	F	No suitable habitat, habitat destroyed due to felling of trees by forestry
L Ramalina thrausta	VU	Outamolahti	2	1892	1892	1	Forest	F	No suitable habitat, habitat destroyed due to felling of trees by forestry
L Ramalina thrausta	VU	Vaanila	3	1934	1934	1	Forest	F	No suitable habitat, habitat destroyed due to felling of trees by forestry
L Ramalina thrausta	VU	Lylyinen	3	1946	1946	1	Forest	F	No suitable habitat, habitat destroyed due to felling of trees by forestry
L Ramalina thrausta	VU	Maksjoki	0.2	1965	1965	1	Forest	F	No suitable habitat, habitat destroyed due to felling of trees by forestry
B Rhodobryum ontariense	EN	Solhem	0.2	1889	1889	1	Calcareous rock	М	Habitat destroyed due to limestone mining
B Rhodobryum ontariense	EN	Kiviniemi	0.5	1891	1891	1	Calcareous rock	М	Habitat destroyed due to limestone mining
B Rhodobryum ontariense	EN	Lindkulla	1	1900	1900	1	Calcareous rock	М	Habitat destroyed due to limestone mining
B Riccia beyrichiana	EN	Kiviniemi	0.5	1877	1877	1	? (prob. calcareous rock)	М	Habitat destroyed due to limestone mining
B Riccia huebeneriana	EN	Ivars	1	1891	1891	1	?	А	No suitable habitat in the area, habitat loss due to overgrowth because of the end of grazing or arable cultivation
B Riccia huebeneriana	EN	Lylyinen	3	1907	1907	1	Pond	A/F	Drainage for forestry or agriculture
V Saxifraga adscendens	EN	Painiemi	0.2	1913	1913	2	Calcareous rock	А	Habitat deterioration due to overgrowth (increase of trees) after the end of grazing
B Syzygiella autumnalis	VU	Ojamo	1	1877	1877	1	Forest	W	Habitat destroyed due to the construction of fish farm or houses
B Syzygiella autumnalis	VU	Liessaari	2	1878	1878	1	Forest	F	No mature logs in the area, habitat destroyed due to felling of trees
B Syzygiella autumnalis	VU	Ojamo	0.5	1890	1903	1	Springy forest	С	Habitat destroyed due to the construction of houses or a fish farm
B Trichocolea tomentella	VU	Ojamo	0.5	1875	1913	1	Spring	С	Habitat destroyed due to the construction of houses or a fish farm
B Trichocolea tomentella	VU	Vaanila	0.5	1961	1961	1	Spring	F	Habitat destroyed due to drainage for forestry purposes
V Ulmus glabra	VU	Pitkäniemi	0.5	1887	1893	1	Forest on lakeshore	С	Habitat destroyed due to construction of factories
V Ulmus laevis	VU	Skraatila	1	1886	1886	2	Lakeshore	С	Habitat deterioration or loss, most of the potentially suitable habitats build for summer cottages
L Usnea barbata	VU	Lohjanharju	5	1890	1890	1	Forest	F	Habitat destroyed due to felling of trees by forestry
L Usnea barbata		Tamminiemi	0.5		1917		Forest	Р	Habitat deterioration due to air pollution and possibly felling of trees
L Usnea barbata		Vaanila	3		1934		Forest	F	Habitat destroyed due to felling of trees by forestry
L Usnea barbata		Lylyinen	3		1947		Forest	F	Habitat destroyed due to felling of trees by forestry
V Viola stagnina		Askola	1		1894		Lakeshore	A	Overgrowth due to eutrophication, drainage and/or regulation of the water table
V Viola stagnina		Kirkniemi	3		1936		Lakeshore	A	Overgrowth due to eutrophication, regulation of the water table and drainage
V Viola stagnina	EN	Tamsaari	0.2	1936	1948	I	Lakeshore grassland	A	No grasslands in the area, overgrowth due to eutrophication and/or regulation of the water table

References

Adriaens, D., Jacquemyn, H., Honnay, O., Hermy, M., 2009. Conservation of remnant populations of Colchicum autumnale – the relative importance of local habitat quality and habitat fragmentation. Acta Oecol. 35, 69–82.
Bellard, C., Cassey, P., Blackburn, T.M., 2016. Alien species as a driver of recent extinctions. Biol. Lett. 12, 20150623.
Bisang, I., Urmi, E., 1994. Studies on the status of rare and endangered bryophytes in Switzerland. Biol. Conserv. 70, 109–116.

- Burgman, M.A., Keith, D., Hopper, S.D., Widyatmoko, D., Drill, C., 2007. Threat syndromes and conservation of the Australian flora. Biol. Conserv. 134, 73–82. Ceballos, G., Ehrlich, P.R., Barnosky, A.D., García, A., Pringle, R.M., Palmer, T.M., 2015. Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253.
- Ceballos, G., Ehrlich, P.R., Dirzo, R., 2018. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl. Acad. Sci. Unit. States Am. 114, E6089–E6096.
- Chocholoušková, Z., Pyšek, P., 2003. Changes in composition and structure of urban flora over 120 years: a case study of the city of Plzeň. Flora 198, 366–376.
- Clavero, M., García-Berthou, E., 2005. Invasive species are a leading cause of animal extinctions. Trends Ecol. Evol. 20, 110.
- Esseen, P.-A., Ehnström, B., Ericson, L., Sjöberg, K., 1997. Boreal forests. Ecol. Bull. 46, 16-47.
- Feeley, K.J., Terborgh, J.W., 2008. Direct versus indirect effects of habitat reduction on the loss of avian species from tropical forest fragments. Anim. Conserv. 11, 353–360.
- Fischer, M., Stöcklin, J., 1997. Local extinctions of plants in remnants of extensively used calcareous grasslands 1950–1985. Conserv. Biol. 11, 727–737.
- Fitzsimons, J.A., Michael, D.R., 2017. Rocky outcrops: a hard road in the conservation of critical habitats. Biol. Conserv. 211, 36–44.
- Goettsch, B., Hilton-Taylor, C., Cruz-Piñón, G., Duffy, J.P., Frances, A., Hernández, H.M., et al., 2015. High proportion of cactus species threatened with extinction. Native Plants 1, 15142. Article.
- Haddad, N.M., Brudvig, L.A., Clobert, J., Davies, K.F., Gonzalez, A., Holt, R.D., et al., 2015. Habitat fragmentation and its lasting impact on Earth's ecosystems. Sci. Adv. 15 (1), e1500052.
- Hallingbäck, T., 1989. Occurrence and ecology of the lichen Lobaria scrobiculata in southern Sweden. Lichenologist 21, 331–341.
- Hallingbäck, T., 1992. The effect of air pollution on mosses in southern Sweden. Biol. Conserv. 59, 163–170.
- Hanski, I., 2015. Habitat fragmentation and species richness. J. Biogeogr. 42, 989-994.
- Hanski, I., Hammond, P.M., 1995. Biodiversity in boreal forests. Trends Ecol. Evol. 10, 5–6.
- Hällström, E. af, 1903. Manuscript. Deposited in the Botanical Museum of Helsinki (H).
- Heinrichs, J.A., Bender, D.J., Schumaker, N.H., 2016. Habitat degradation and loss as key drivers of regional population extinction. Ecol. Model. 335, 64–73. Hodgetts, N.G., 2015. Checklist and country status of european bryophytes towards a new red list for Europe. Irish Wildlife Manuals 84, 1–125.
- Hooftman, D.A.P., Edwards, B., Bullock, J.M., 2016. Reductions in connectivity and habitat quality drive local extinctions in a plant diversity hotspot. Ecography 39, 583–592.
- Jääskeläinen, K., Pykälä, J., Rämä, H., Vitikainen, O., Haikonen, V., Högnabba, F., Lommi, S., Puolasmaa, A., 2010. Lichens. In: Rassi, P. (Ed.), The 2010 Red List of Finnish Species. Ympäristöministeriö and Suomen Ympäristökeskus, Helsinki.
- Jacquemyn, H., Van Rossum, F., Brys, R., Endels, P., Hermy, M., Triest, L., de Blust, G., 2003. Effects of agricultural land use and fragmentation on genetics, demography and population persistence of the rare Primula vulgaris, and implications for conservation. Belg. J. Bot. 136, 5–22.
- Juslén, A., Pykälä, J., Kuusela, S., Kaila, L., Kullberg, J., Mattila, J., Muona, J., Saari, S., Cardoso, P., 2016. Application of the red list index as an indicator of habitat change. Biodivers. Conserv. 25, 569–585.
- Kerr, J.T., Cihlar, J., 2004. Patterns and causes of species endangerment in Canada. Ecol. Appl. 141, 743–753.
- Kerr, J.T., Deguise, I., 2004. Habitat loss and the limits to endangered species recovery. Ecol. Lett. 7, 1163-1169.
- Kéry, M., Spillmann, J.H., Truong, C., Holderegger, R., 2006. How biased are estimates of extinction probability in revisitation studies? J. Ecol. 94, 980-986.
- Krauss, J., Bommarco, R., Guardiola, M., Heikkinen, R.K., Helm, A., Kuussaari, M., et al., 2010. Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels. Ecol. Lett. 13, 597–605.
- Lampinen, R., Lahti, T., 2018. Kasviatlas 2017. Finnish Museum of natural history, Helsinki. http://koivu.luomus.fi/kasviatlas.
- Lampolahti, J., Syrjänen, K., 1992. A survey of rare and threatened bryophytes in southwestern Finland. Biol. Conserv. 59, 197-200.
- Lande, R. 1993, Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am. Nat, 142, 911-927.
- Lavergne, S., Thuiller, W., Molina, J., Debussche, M., 2005. Environmental and human factors influencing rare plant occurrence, extinction and persistence: a 115-year study in the Mediterranean region. J. Biogeogr. 32, 799–811.
- Lienert, J., 2004. Habitat fragmentation effects on fitness of plant populations a review. J. Nat. Conserv. 12, 53-72.
- Lindborg, R., Ehrlén, J., 2002. Evaluating the extinction risk of a perennial herb: demographic data versus historical records. Conserv. Biol. 16, 683-690.
- Matthies, D., Bräver, I., Maibom, W., Tscharntke, T., 2004. Population size and the risk of local extinction: empirical evidence from rare plants. Oikos 105, 481–488.
- May, R.M., 2010. Ecological science and tomorrow's world. Phil. Trans. R. Soc. B 365, 41-47.
- Maxwell, S.L., Fuller, R.A., Brooks, T.M., Watson, J.E.M., 2016. The ravages of guns, nets and bulldozers. Nature 536, 143-145.
- McKee, J.K., Sciulli, P.W., Fooce, C.D., White, T.A., 2003. Forecasting global biodiversity threats associated with human population growth. Biol. Conserv. 115, 161–164.
- McCune, J.L., Harrower, W.L., Avery-Gomm, S., Brogan, J.M., Csergő, A.-M., Davidson, L.N.K., Garani, A., Halpin, L.R., Lipsen, L.P.J., Lee, C., Nelson, J.C., Prugh, L. R., Stinson, C.M., Whitney, C.K., Whitton, J., 2013. Threats to Canadian species at risk: an analysis of finalized recovery strategies. Biol. Conserv. 166, 254–265.
- Moen, J., Jonsson, B.G., 2003. Edge effects on liverworts and lichens in forest patches in a mosaic of boreal forest and wetland. Conserv. Biol. 17, 380–388. Mortelliti, A., Amori, G., Boitani, L., 2010. The role of habitat quality in fragmented landscapes: a conceptual overview and prospectus for future research. Oecologia 163, 535–547.
- Mortelliti, A., Sozio, G., Boccacci, F., Ranchelli, E., Cecere, J.G., Battisti, C., Boitani, L., 2012. Effect of habitat amount, configuration and quality in fragmented landscapes. Acta Oecol. 45, 1–7.
- Murto, R., Pykälä, J., 1988. Tummahorsma (Epilobium obscurum) Suomessa uhanalaisen kasvin tie lähteistä ojiin. Lutukka 4, 81–87.
- Oostermeijer, J.G.B., Luijten, S.H., den Nijs, J.C.M., 2003. Integrating demographic and genetic approaches in plant conservation. Biol. Conserv. 113, 389–398. Ovaskainen, O., Meerson, B., 2010. Stochastic models of population extinction. Trends Ecol. Evol. 25, 643–652.
- Paltto, H., Nordén, B., Götmark, F., Franc, N., 2006. At which spatial and temporal scales does landscape context affect local density of Red Data Book and Indicator species? Biol. Conserv. 133, 442-454.
- Pimm, S.L., Jenkins, C.N., Abell, R., Brooks, T.M., Gittleman, J.L., Joppa, L.N., Raven, P.H., Roberts, C.M., Sexton, J.O., 2014. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752.
- Pimm, S.L., Raven, P., 2000. Extinction by numbers. Nature 403, 843-845.
- Pimm, S.L., Russell, G.J., Gittleman, J.L., Brooks, T.M., 1995. The future of biodiversity. Science 269, 347-350.
- Pykälä, J., 1992. Uhanalainen punavalkku (Cephalanthera rubra) etelän eksotiikkaa luonnossamme. Lutukka 8, 39-50.
- Pykälä, J., 1993. The ecology and distribution of Carex remota in Finland. Memoranda Soc. Fauna Flora Fennica 69, 77-86.
- Pykälä, J., 2000. Mitigating human effects on European biodiversity through traditional animal husbandry. Conserv. Biol. 14, 705–712.
- Pykälä, J., 2004. Effects of new forestry practices on rare epiphytic macrolichens. Conserv. Biol. 18, 831–838.
- Pykälä, J., 2007. Implementation of Forest Act habitats in Finland: does it protect the right habitats for threatened species? For. Ecol. Manage. 242, 281–287. Rassi, P., Hyvärinen, E., Juslén, A., Mannerkoski, I. (Eds.), 2010. The 2010 Red List of Finnish Species. Ympäristöministeriö and Suomen ympäristökeskus, Helsinki.
- Rejmánek, M., 2018. Vascular plant extinctions in California: a critical assessment. Divers. Distrib. 24, 129-136.
- Rodrigues, A.S.L., Pilgrim, J.D., Lamoreux, J.F., Hoffmann, M., Brooks, T.M., 2006. The value of the IUCN Red List for conservation. Trends Ecol. Evol. 21, 71–76. Ryttäri, T., Kalliovirta, M., Lampinen, R. (Eds.), 2012. Suomen Uhanalaiset Kasvit. Tammi, Helsinki.
- Stehlik, I., Caspersen, J.P., Wirth, L., Holderegger, R., 2007. Floral free fall in the Swiss lowlands: environmental determinants of local plant extinction in a peri-urban landscape. J. Ecol. 95, 734–744.

Stenroos, S., Velmala, S., Pykälä, J., Ahti, T. (Eds.), 2016. Lichens of Finland. Norrlinia 30, 1–896.

Stevens, C.J., Dise, N.B., Mountford, J.O., Gowing, D.J., 2004. Impact of nitrogen deposition on the species richness of grasslands. Science 303, 1876–1879. Storkey, J., Meyer, S., Still, K.S., Leuschner, C., 2011. The impact of agricultural intensification and land-use change on the European arable flora. Proc. R. Soc. B, 279, 1421–1429.

Svensson, R., Wigren, M., 1986. A survey of the history, biology and preservation of some retreating synanthropic plants. Symb. Bot. Ups. 25, 1–74. Thompson, K., Jones, A., 1999. Human population density and prediction of local plant extinctions in Britain. Conserv. Biol. 13, 185–190.

Thor, G., 1998. Red-listed lichens in Sweden: habitats, threats, protection, and indicator value in boreal conierous forests. Biodivers. Conserv. 7, 59–72.

Tomppo, E., Katila, M., Moilanen, I., Mäkelä, H., Peräsaari, J., 1998. Kunnittaiset metsävaratiedot 1990–94, 1998 Folia For. 48, 619–839 (in Finnish).

Van Calster, H., Vandenberghe, R., Ruysen, M., Verheyen, K., Hermy, M., Decocq, G., 2008. Unexpectedly high 20th century floristic losses in a rural landscape in northern France. J. Ecol. 96, 927–936.

Van der Veken, S., Verheyen, K., Hermy, M., 2004. Plant species loss in urban area (Turnhout, Belgium) from 1880 to 1999 and its environmental determinants. Flora 199, 516-523.

Van Herk, C.M., Mathijssen-Spiekman, E.A.M., de Zwart, D., 2003. Long distance nitrogen air pollution effects on lichens in Europe. Lichenologist 35, 347–359.

Walker, K.J., Preston, C.D., 2006. Ecological predictors of extinction risk in the flora of lowland England, UK. Biodivers. Conserv. 15, 1913–1942.

Wilcove, D.S., Rothstein, D., Dubow, J., Phillips, S.A., Losos, E., 1998. Quantifying threats to imperiled species in the United States. Bioscience 48, 607–615. Young, A.G., Boyle, T., Brown, T., 1996. The population genetic consequences of habitat fragmentation for plants. Trends Ecol. Evol. 11, 413–418.

Zamin, T.J., Baillie, J.E.M., Miller, R.M., Rodriguez, J.P., Ardid, A., Collen, B., 2010. National red listing beyond the 2010 target. Conserv. Biol. 24, 1012–1020.