
https://helda.helsinki.fi

Impact of Opportunistic Reuse Practices to Technical Debt

Capilla, Rafael

IEEE Computer Society

2021

Capilla , R , Mikkonen , T , Carrillo , C , Fontana , F A , Pigazzini , I & Lenarduzzi , V 2021 ,

Impact of Opportunistic Reuse Practices to Technical Debt . in 2021 IEEE/ACM

INTERNATIONAL CONFERENCE ON TECHNICAL DEBT (TECHDEBT 2021) . IEEE

Computer Society , pp. 16-25 , 4th IEEE/ACM International Conference on Technical Debt

(TechDebt) , 22/05/2021 . https://doi.org/10.1109/TechDebt52882.2021.00011

http://hdl.handle.net/10138/341457

https://doi.org/10.1109/TechDebt52882.2021.00011

acceptedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.

Impact of Opportunistic Reuse Practices to
Technical Debt

Rafael Capilla
Rey Juan Carlos University

Madrid, Spain
rafael.capilla@urjc.es

Tommi Mikkonen
University of Helsinki

Helsinki, Finland
tommi.mikkonen@helsinki.fi

Carlos Carrillo
Technical University of Madrid

Madrid, Spain
carlos.carrillo@upm.es

Francesca Arcelli Fontana
University of Milano-Bicocca

Milano, Italy
francesca.arcelli@unimib.it

Ilaria Pigazzini
University of Milano-Bicocca

Milano, Italy
i.pigazzini@campus.unimib.it

Valentina Lenarduzzi
LUT University
Lahti, Finland

valentina.lenarduzzi@lut.fi

Abstract—Technical debt (TD) has been recognized as an
important quality problem for both software architecture and
code. The evolution of TD techniques over the past years has led
to a number of research and commercial tools. In addition, the
increasing trend of opportunistic reuse (as opposed to systematic
reuse), where developers reuse code assets in popular repositories,
is changing the way components are selected and integrated into
existing systems. However, reusing software opportunistically can
lead to a loss of quality and induce TD, especially when the
architecture is changed in the process. However, to the best
of our knowledge, no studies have investigated the impact of
opportunistic reuse in TD. In this paper, we carry out an ex-
ploratory study to investigate to what extent reusing components
opportunistically negatively affects the quality of systems. We use
one commercial and one research tool to analyze the TD ratios of
three case systems, before and after opportunistically extending
them with open-source software.

Index Terms—Technical debt, opportunistic reuse, architec-
tural debt

I. INTRODUCTION

Managing technical debt [1] has become a challenging
research area for software engineers to keep the quality of
systems under control and ease software maintenance tasks.
The evolution of technical debt (TD) approaches since several
years has produced significant advances in terms of metrics
and tools to estimate the different forms of debt, with particular
attention paid to architecture and code debt [2]. Recent studies
[3] have shed light on modern sources of technical debt
in software-intensive systems, on how software organizations
cope with TD symptoms, and on ways and strategies to handle
and fix the issues (e.g. bugs, smells) adopted by the many
forms of technical debt [4] [5].

One of the factors that may influence the estimation of
technical debt is the reuse of third-party components and
their integration into an existing system. As reuse practices
may have strong implications in the architecture (e.g. when
a platform or a protocol is replaced), we need to estimate
the impact on architectural debt derived from the reuse of
software components and when new functionality is added.
As Martin Griss [6] stated in 2015, "software reuse it isn’t

what it use to be", wishing to highlight the evolution of reuse
practices from feature reuse (i.e. mainly used in software
product line approaches) to reuse in sourcing and crowd
models. Nowadays, many of the systematic reuse approaches
have been replaced in favor of opportunistic reuse, where
developers search for reusable components in key repositories,
such as GitHub, Bitbucket, or Gitlab. In many cases, selecting
the right open source components is not easy as many fac-
tors, such as licensing, popularity, low code quality affecting
technical debt, or the build process after integration, may
complicate the selection process [7]. In addition, the impact
of reusing and integrating third-party components may affect
important quality attributes such as safety, integrability, and
reliability among others. In other cases, upgradeability plays
an important role in the selection of a particular component
versus other options.

Some recent studies [8] describe a reusability index based
on several metrics to quantify reuse of reusable assets, but
the work does not describe a connection to technical debt
when reusing components. As to the best of our knowledge
there are no works exploring the impact and the connection
opportunistic reuse plays in TD, in this research work we
analyze how this opportunistic reuse trend affects the technical
debt ratios in several open-source projects and we analyze such
TD ratios before and after reusing third-party components,
and what are the implications for the software architecture.
More specifically, we used SonarQube1 and Arcan [9] tools to
analyze the code and architectural debt ratios in three different
applications to investigate the effects of reusing functionality
in open source repositories.

The rest of this work is structured as follows. In Section II
we describe related work concerning the different legs of this
research. In Section III we provide an overview of SonarQube
and Arcan tools used in this study. Section IV outlines the
case study design. The results are described in Section V and
Section VI discusses our findings. In Section VII we discuss

1https://www.sonarqube.org/

the threats to validity of our work, and in Section VIII we
draw some final conclusions.

II. RELATED WORK

In this section, we will describe the most relevant related
work, covering opportunistic reuse practices and the role of
technical estimators for software quality analysis.

A. Opportunistic Reuse

It has traditionally been assumed that software reuse re-
quires solid practices and principles to foster. For instance,
Morisio et al. [10] conclude that successes in software reuse
are achieved due to: commonality among applications, man-
agement committed to introducing reuse processes, modifying
non-reuse processes, and addressing human factors. Similarly,
Griss [11] asserts that architecture, process, organization, cul-
ture, management, and other non-technical factors are usually
more critical for reuse than the use of a particular technology,
and Jalender et al. [12] claim that organization, processes, and
technical expertise are the prerequisites of successful software
reuse. Tracz [13] mentions the concept of unplanned reuse
(e.g. ad-hoc reuse) which occurs frequently in the software
community but considered an error-prone and time-consuming
task compared to software initially designed for reuse.

Today, modern forms of ad-hoc reuse (i.e. equivalent to the
notion of opportunistic reuse) dig for reusable components into
open-source repositories. However, with the excessive amount
of open-source projects, the chances to find reusable assets
are many. Then, when a partial piece of code is identified
– an obvious key condition for reuse [14] – it can be
opportunistically matched with other pieces of software until
a satisfactory version of a program emerges. In contrast to
the process-centric approach advocated by systematic reuse,
such opportunistic reuse seemingly takes place in an ad-hoc
fashion, scavenging whatever artifacts are found [15].

Strategies for selecting open source components have al-
ready been proposed [7], covering issues such as functionality,
licensing, and popularity. Furthermore, open-source communi-
ties have made it more systematic to decide which subsystems
and projects to reuse, resulting in various models (e.g., [16],
[17], [18], [19]) that aim at describing the maturity of the open-
source software. While there are subtle differences in the mod-
els [20], they share similar concerns [7], such as functionality,
licensing, popularity, code quality, and community vitality.

Fisher et al. [21] have described clone-and-own techniques
as a suitable form of systematic reuse being adopted in recent
years. The authors further propose a methodology that can
be applied at the level of variability models, the rationale
being that clone-and-own techniques commonly lack a sys-
tematic process. Moreover, a recent survey [22] investigates
different forms of reuse from past practices to current ones.
Unfortunately, while the authors provide an insight into how
practitioners do reuse, an in-depth analysis is missing regard-
ing which of these practices are carried out opportunistically.
Another recent work by Ali et al. [23] presents a hybrid
DevOps process that follows systematic reuse-based software

development and management process. The goal of the work
is to reduce the effort and cost of reuse, based on information
retrieval techniques. Finally, two recent papers [15], [24]
highlighted the role of opportunistic reuse practices and their
impact in architecture as well and how this trend is confirmed
by practitioners and developers through a survey.

B. Technical Debt Estimators

There are many ways to estimate technical debt in code
and architecture. Most tools used to estimate technical debt
(TD) ratios rely on a combination of metrics to analyze
statically code and architecture violations and map these to
quality properties. Among these metrics, we can find a recent
study [25] that investigates the relationships between archi-
tecture and design smells in several open-source repositories.
Architectural smells, such as those described in [26], [27]
are an important source of TD that must be estimated to
detect possible violations of design principles (e.g. cyclic
dependencies, ambiguous interface smells), and minimize the
architectural debt [28], [29].

Nowadays, research tools like ARCADE [30] estimate how
an architecture decays through the detection of architecture
smells as indicators of TD symptoms. Designite is a com-
mercial tool able to detect a large number of smells at
implementation, design, and architectural level [31]. Also, few
tools can detect the architectural debt index (ADI). Arcan [9]
is an academic tool developed in this direction. The index
provided by Arcan has been studied by Roveda et al. [32],
and the authors provide a preliminary comparison between
ADI and the Technical Debt Index computed by SonarQube.
According to the different technical debt indexes provided by
tools, a comparison of the indexes [33] and a comparison
of these tools according to different TD features [34] have
been explored in the literature. Other authors like Wu et
al. [35] studied architectural debt indexes through a Standard
Architecture Index including structure-related and global mea-
sures regarding both source code and software models. Finally,
Verdecchia et al. [36] proposed a step-by-step method to build
architectural debt indexes based on architectural violations that
can be identified through static analysis rules.

Code-level TD has been investigated considering different
strategies [37], [38], and ways to measure it [39], [40].
Code-level TD can be detected by different automated static
analysis tools (ASATs) [34]. SonarQube is one of the ASATs

more adopted by developers in industry [41], [34]. How-
ever, few works estimate technical debt using SonarQube
rules, focusing the change- and fault-proneness [42], [43].
Other works investigate the diffuseness of Technical Debt
measured by SonarQube [44], [40]. SonarQube TD items
detected as class level, have a negative influence increasing
change-proneness [39], [41]. Considering the different types
and severity assigned by SonarQube to TD items, there is no
significant difference between the clean and infected classes.
All the TD items have a statistically significant yet small effect
on change-proneness. However, all the TD items classified
as Code Smell affect change-proneness, even if their impact

on the change-proneness is low. Considering fault-proneness,
there is no significant difference among the TD items that
SonarQube claims to increase fault-proneness (i.e. Bugs), only
one out of 36 has a limited effect, and 26 hardly never led to
a failure. Unexpectedly, all the remaining Bugs resulted in a
slight increase in the change-proneness instead [41]. Moreover,
by removing any TD items, developers can prevent up to
20% of faults in the source code [42]. Moreover, the largest
percentage of TD repayment is created by a small subset of
issue types [44], and the most frequently introduced TD items
are related to low-level coding issues [40]. The most accurate
estimations are related to Code Smells, while the least accurate
to Bugs [45], [46].

III. SONARQUBE AND ARCAN

In this section, we briefly introduce the two tools used in this
work. SonarQube is one of the most used tools for software
quality analysis and provides a TD index mainly focused on
code level violations, while Arcan provides an Architectural
debt index focused on problems/smells. We selected these
tools because we have experience using them in previous
projects.

A. SonarQube

SonarQube provides a TD index and two remediation es-
timates2. The TD index (also called squale index is related
to “the effort (minutes) to fix all Code Smells”. The reme-
diation estimates are related to “the effort to fix all bug
issues” (reliability remediation effort), and to “the effort to
fix all vulnerability issues” (security remediation effort). If the
analyzed source code violates a coding rule, or if a metric is
outside a predefined threshold (also named “gate”), SonarQube
generates a “TD issue”. The time needed to remove these
issues (remediation effort) is used to calculate the remedia-
tion cost and technical debt. SonarQube includes reliability,
maintainability, and security rules.

SonarQube defines four types of coding rules: Bugs, Code
Smells, Vulnerabilities, and Hot Spots. Bugs, also named
Reliability rules, create TD issues that “represent something
wrong in the code” and that will soon be reflected in a
bug. Code smells are considered “maintainability-related is-
sues” in the code that decreases code readability and code
modifiability. It is important to note that the term “code
smells” adopted in SonarQube does not refer to the commonly
known term code smells defined by Fowler et al. [47] but
to a different set of rules. Vulnerabilities and Hot Spots
are considered “security-related issues”. SonarQube internally
uses the SQALE methodology [48] to compute the technical
debt ratio and to classify the project to an SQALE rating.
The SQUALE rating is based on the “remediation cost”. The
Remediation cost is defined as the sum of the estimated time
to fix all open issues classified as “Code smells”.

TD ratio is calculated as:

TD ratio =
TD cost

(Cost to develop 1 line of code * Number of lines of code)

2https://docs.sonarqube.org/latest/user-guide/metric-definitions/

where the cost to develop a line of code is considered 0.06
days.

Based on the outstanding remediation cost, the project is
rated from A to E according to the following rules. For
instance, for SonarQube 8.5 the TD ratio ≤5%: the rating
is A, while the rating for B belongs to 6%≤ TD Ratio≥10%.

B. Arcan
Arcan has been developed for architectural smells (AS)

detection and the computation of an Architectural Debt Index
(ADI), based on the AS identified in a project [9]. The AS
currently detected by Arcan are the following ones:

• Unstable Dependency (UD): describes a component
(class or package) that depends on other subsystems that
are less stable than the component itself. Detected on
packages.

• Hub-Like Dependency (HL): this smell arises when an
abstraction has (outgoing and ingoing) dependencies with
a large number of other abstractions. It is detected on
classes and packages.

• Cyclic Dependency (CD): refers to a component that is
involved in a chain of relations that break the desirable
acyclic nature of a subsystem’s dependency structure.

The ADI computation, integrated into the Arcan tool, takes
into account: (i) the Number of AS in a project, (ii) the Severity
of an AS: assuming that some instances of AS are more
critical than others, the Index takes into account a Severity
measure according to each AS type, and (iii) the Dependency
metrics of Martin [49] (Instability, Fan In, Fan Out, Efferent,
and Afferent Coupling) used for the AS detection. The final
ADI(P) value quantifies the amount of architectural technical
debt present in a project P. We also report the q(ADI(P)), that
is its quantification as a score value in a range from 1 to 5,
where 5 is the worst rating a project can have. The value is
computed in relation to a reference dataset of over 100 projects
from the Qualitas Corpus [50]. If a project is not affected by
AS, then the ADI is not computed. All the details about the
ADI computation and the reference dataset can be found in a
previous work of the authors of the tool [32].

IV. CASE STUDY DESIGN

We designed and conducted a case study [51] to uncover
the impact of opportunistic reuse practices in the quality of
systems and analyze the technical debt ratios before and after
the integration of open-source software (i.e. understood as
new functionality) in three existing systems. Therefore, we
followed the approach of exploratory case studies [52] as a
way to explore and identify the overall picture of opportunistic
reuse practices. To this aim we raised the following research
questions:

RQ1: Which are the most difficult aspects to integrate new
functionality found opportunistically in open source projects?
Rationale: In this research question we study the effort and the
changes required by a developer when has to integrate third-
party components, so we can compare the integration effort to
develop components from scratch, if necessary.

RQ2: How code debt is affected after the integration of
reusable assets found opportunistically?
Rationale: Here, we wanted to investigate to what extent
opportunistic reuse practices have a significant impact on TD
ratios and the number of new smells in the code.

RQ3: How architectural debt is affected by reusing open-
source software?
Rationale: Like in the previous research question, we are
interested to analyze how architectural debt is affected when
new components are introduced in existing architectures and
what changes induce.

A. Context

In this section, we describe the context of the exploratory
study including the case studies we used and the repositories
we chose to reuse the components.

1) Case study 1: This case study belongs to a bicycle
hiring system (BikeApp) developed at the Telecommunica-
tions School from the Technical University of Madrid (UPM)
between February-May in 2020. The system promotes sus-
tainable transportation in Madrid renting bikes around the city
and using a mobile app. The system is built around an API
that uses a Client/Server style and a persistence layer (Java
Persistence API - JPA) to access the database. The server side
uses J2EE and servlets (i.e. Servlet) supported by Apache
Tomcat 9.0. The client-side uses a multi-window approach
based on Java Swing. The source code of this small project
is only 2.500 SLOC, as we didn’t include the third-party
libraries required to develop the software. We used the Visual
Paradigm tool 16.13 to reverse the architecture of the system,
shown in the class diagram in Figure 1, which encompasses
52 classes. In the Figure, we can see the main BikeApp
class (in brown color), while the UML components (shown
in grey color) provide support for the hsqldb,jackess
libraries for accessing the SQL database and a connection to
the EclipseLink component aimed to link database objects
to Java objects handled by the JPA persistence layer. Also,
the client uses the jxmapviewer graphical library which
receives the location of the bikes encoded in JSON format.

2) Case study 2: Our second case study is an open-source
system called TEAMMATES 4. We used version 7.6.0 for our
analysis. TEAMMATES is a free online tool for managing
confidential peer evaluations for student team projects. The
students can evaluate their performance anonymously in team
projects and search/view reports of their feedback and evalu-
ations. TEAMMATES was designed to provide powerful peer
feedback and peer evaluation mechanism with a very high
degree of flexibility. TEAMMATES runs on the top of Google
App Engine, using cutting-edge cloud technologies and bene-
fits from the infrastructure that power Google’s applications.

3) Case study 3: This case study addresses an IT system
Kurki5, used for managing students participating in courses,

3https://www.visual-paradigm.com/
4https://teammatesv4.appspot.com/web/front/home
5https://github.com/UniversityOfHelsinkiCS/kurki

their course accomplishment, and the necessary operations
to provide grades and other related information. Kurki is
a web application, where then frontend relies on HTML,
CSS, and JavaScript, and the backend includes Java code
for implementing application-specific functions, a web server
for processing requests and responses, and an SQL database
for storing the information. Designed at the Department of
Computer Science, University of Helsinki, Finland, the system
has been deployed to use in the 1990s, and many of the
design choices still present in the system reflect the state-of-
the-art of those days. Over the years, portions of code have
disappeared when people working on the system have left the
project, resulting in updates in certain parts of the system.
Furthermore, numerous developers have participated in the
project. Internally, the system includes some legacy code, but
things that are related to operating it has been upgraded to
today’s standards. For instance, to deploy the system, Docker
is used, and doing a git push to the master branch and running
an associated script are enough to deploy the system.

4) Repositories: To search for reusable components, we
selected the following four open-source repositories: Maven,
GitHub, SourceForge, and GitLab. We based our selection on
the following criteria: (i) explanation and documentation of the
component including a Javadoc file, (ii) compatible license and
version with the target software, (iii) existence of an import
file to facilitate the integration process, (iv) access to the
source code, (v) functionality required (vi) popularity and (vii)
dependencies to other libraries. Some of the aforementioned
items are also discussed in [7].

B. Data Collection and Analysis

In this step of the method, we performed the following
tasks: (i) we run SonarQube 8.5 for the three projects and we
collected the technical debt ratios, the number of smells and
issues, (ii) we run the Arcan tool to compute the architectural
debt index (ADI) and detect the architectural smells for all
the analyzed projects, (iii) we sought in the four repositories
for new functionality to extend the three projects, and (iv)
once the components found were integrated into the three
projects, we run again SonarQube and Arcan to measure the
technical debt and other quality ratios provided by the tools.
The information about the number of components found and
reused is described in Tables II and III. The results of the
technical debt rations after reuse are shown in Table V shows.
The search and integration efforts were computed manually
by two of the authors.

C. Replicability

To allow our study to be replicated, we have published
the complete raw data together with the instruction of the
assignment and the complete questionnaire in the replication
package6.

6 https://github.com/CCS-repository-public/techdebt-2021

Figure 1. Reversed architecture of the BikeApp software

V. RESULTS

First, we describe the outcome from SonarQube and Arcan
tools for the three case studies before extending the functional-
ity with third-party components, such as we describe in Table
I. The results we computed include the technical debt ratios
(TD ratio), code smells (Smells) and issues (Issues) provided
by SonarQube, the number of Architectural Smells (AS) and
the Architectural Debt Index (ADI) provided by the Arcan tool
and the quantification of ADI (q(ADI)) as a score value in the
range from 1 to 5. In order to select and search for reusable
assets, (1) we simulated a scenario where the project’s team
wants to extend the functionalities of that project basing on
potential client requirements; (2) we made a list of the new
desiderata, and (3) we searched for them in the repositories.

The desiderata was brainstormed by three of the co-authors
but we didn’t follow any specific criterion.

Table I
RESULTS FROM SONARQUBE AND ARCAN BEFORE REUSE

SonarQube Arcan
Case studies TD ratio Smells Issues AS ADI q(ADI)
BikeApp 5.2 248 253 0 - -
TEAMMATES 0.6 2087 2905 7 8.0 5
Kurki 1.0 504 536 3 5.0 5

Table II summarizes the number of components we found
for each project and the different repositories. For the BikeApp
case study, we searched for the following functionality: (i)
encode the data between the server and the clients, (ii) provide
new functionality to geolocate the bikes, and (iii) a calendar.

For the TEAMMATES project, we looked for the following
functionality: (i) a voting system, and (ii) an event manager.
Finally, in the case of Kurki as it’s similar to TEAMMATES,
we decided to include only the event manager functionality
so we can compare differences in the TD ratios. For the three
projects, we used different keywords in Google as the search
string to search for reusable assets in the four repositories.

Table II
NUMBER OF REUSABLE COMPONENTS FOUND IN OPEN-SOURCE

REPOSITORIES

Case studies Maven GitHub SourceForge GitLab

BikeApp Encode data 115 170 9 13
Display geolocation 7867 92 5 0
Calendar 1648 111 8 2

TEAMMATES Voting system 17 14 92 9
Event manager 561 80 25 78

Kurki Event manager 561 80 25 78

In Table III we show the components we found and reused
for each project and from which repository we selected
those components. The criteria to select a component from
a particular repository was based on (i) the description of the
functionality of the component, (ii) compatibility of licenses
between the software and the reused component (iii) access to
the source code, (iv) compatibility of the version of the reused
asset with the existing project and dependencies to third-party
libraries, (v) facility to import and configure the component,
and (vi) existence of a Javadoc file explaining how to use the
components found. Other criteria such as popularity or project
releases can be also considered. The developer can select one
or several of these criteria to find the most suitable asset.

Table III
REUSABLE COMPONENTS SELECTED IN OPEN-SOURCE REPOSITORIES

Case studies Maven GitHub SourceForge GitLab
BikeApp Base64 — Base64 —

GoogleMaps GoogleMaps — —
JDatePicker JDatePicker — —

TEAMMATES Voting-
Reward

Voting-Reward,
Voting-System

— —
— FullCalendar — —

Kurki — FullCalendar — —

A. Search and Integration effort

In the following, we explain how we integrated the compo-
nents found in the repositories and the effort taken. We assume
we consider the time needed starting from the initial search
for each component and project until a component was found
and reused, and the time required to integrate the component
into the project and check that the application doesn’t contain
compilation errors and the new functionality is ready to be
used. Regarding the search effort, we run Google queries for
each new functionality and we used the initial set of results
to refine the search in each of the four repositories. If the
selected component doesn’t serve, we refine the query in each
repository or we look for the next popular component. Each

repository has different facilities to perform a refined search
(e.g.: keywords, categories, or search string).

BikeApp: In this case study we reused 3 components.
For the Base64 component and based on the criteria defined
in section 4.1.4, we used the search string "send java data
encoded safety" in Google and we got around 7 million re-
sponses, but the two first pages gave us 21 responses including
Base64. We looked for comments about pros and cons and
we analyzed the functionality of the component as well as
the documentation and other comments. Then, we looked for
the selected component in the four repositories and eventually
selected the one from SourceForge because it doesn’t require
dependencies to other libraries. All this effort took around 4.5
hours. The integration was done by importing the asset directly
without using Maven. We downloaded those libraries required
by the client and the server and we modified the corresponding
Classpath file. Then, we modified the Servlet class (on the
server-side) to gather the HTTP request needed by the Base64
component and we added two new methods to integrate the
reused component. On the client-side, we modified the HTTP
request to process the data received. We also created a new
class to configure the app and select the type of encoding (i.e.
HTML, JSON, Base64). We spent between 1.5 and 1.7 hours
in the integration effort.

Regarding the search of the GMaps component we looked
for an asset that provides the location of the bikes, so the
search string we used was "get gps coordinates in java". As a
result, we got 1.8 million references. On the two first pages,
we found 4 references, and the asset chosen was found in
Maven and GitHub repositories. Based on the same criteria
as was used in the first case, we selected the component
from the Maven repository because it provides compatibility
information and which dependencies to other libraries are
needed. GitHub does not provide this information in such a
clear way. The effort spent in searching the right component,
and the integration effort are shown in Table IV.

The integration of this asset required the modification of
the class that manages the events to select a hiring bike point
and provide the right address encoded in JSON format. We
also needed to register into the Google Cloud platform in
order to access the Geocode API used to decode the addresses
of a GPS location. In addition, we had some connectivity
problems during the testing of the reused asset that we solved
by installing an additional component required by Google.

Finally, we did the same for a calendar we needed to
integrate using Java Swing and the search string we used
was "Java swing calendar". We got around 5 million results.
From the first two Google pages, we found a reference to the
JDatePicker component, which was available in Maven and
GitHub repositories. We selected the component from GitHub
because it doesn’t exhibit dependencies to other components
and due to the availability of a tutorial and examples of use.
We imported the component and we only needed to modify
the class that manages the event that activates the calendar.
Similar to the other components, the effort spent in the search
process and integration as well are shown in Table IV.

TEAMMATES: We did the same for the TEAMMATES
projects reusing 2 components. Regarding the Voting system
component we used the search string "java student voting
systems" and we got around 9.6 million answers. Screening the
first two Google pages, we found two similar components (i.e.
voting reward and voting system) in different repositories and
reused the voting system component according to our criteria
but the selection was mainly based on because is an indepen-
dent Java project that doesn’t require dependencies to external
projects and also doesn’t require changes to be integrated with
other software. The second component is an extended calendar
including an event manager for appointments. We used the
search string "event manager calendar in java" and we got 9.8
million results but we reused the Event manager component
from GitHub because of the examples provided by the third-
party developer, documentation of use, as well as references
from the other repositories to this component. The results
about the components found and reused are shown in Table
III, while the effort reusing and integrating both components
is available in Table IV.

Kurki: As this is a similar project like TEAMMATES,
we decided to integrate the same FullCalendar component
previously reused so we can compare the trend of the TD
ratios of both projects and observe if there are significant
architectural differences. In this case the search effort is equal
to 0 and the integration effort compared to TEAMMATES just
a little bit higher due to differences in the technologies used in
both projects. Table IV describes the summary of the search
and integration efforts for the different components.

Table IV
SEARCH AND INTEGRATION EFFORTS OF THE REUSED ASSETS (HOURS)

Case studies assets Search effort Integration effort

BikeApp Base64 4.5 1.7
GoogleMaps 5 5.5
JDatePicker 6 1.1

TEAMMATES VotingSystem 6.5 1.4
FullCalendar 6 2

Kurki FullCalendar 0 2.2

Architectural impact after reuse: Finally, we reversed the
new architecture of BikeApp including the new components.
As we can see in Figure 2, the new classes and components
are shown in green color while the entities required by these
elements are displayed in light yellow. Some of the new
entities in green were created by us to invoke the three new
components. We added 13 new classes and components for
the new functionality reused, that is an increment of 17% of
elements from the original design. It might be possible that
reusing different components could have different numbers in
terms of new functionality, but what is more important is that
the architectural style didn’t change after reuse.

B. Debt ratios after reuse

In Table V we describe the results of the technical debt
ratios from SonarQube and the ADI index from Arcan after
reuse. As we can observe we computed the TD ratios for each

project taking into account the SLOC of the new components
in a cumulative way (i.e. the TD ratio of the last component
of each project includes the previous ones). In the case of the
BikeApp project, the trend of the TD ratio observed decreased
from 4.5 to 1.7. However, the number of smells and issues for
SonarQube increased from 248 and 253 (see Table I) to 3551
and 3759 respectively.

From the results of Arcan, we didn’t find any architectural
debt in the original version of the project, but this debt in-
creased after reuse. Our results show many architectural smells
(30 for Base64, 64 for BikeApp-GoogleMaps, and 66 for
BikeApp-JDatePicker) with a high q(ADI) value. In particular,
Arcan identified the following architectural smells: 1 UD, 43
CD, 3 HL for Base64; 18 UD, 43 CD, 3 HL for GoogleMaps;
19 UD, 44 CD and 3 HL smells for JDatePicker. Concerning
the specific types of smell detected, Arcan only identified
smells of type Cyclic Dependency. Hence, the values reported
in Table V refer only to that type of smell.

Regarding the TEAMMATES project, we observed that due
to the size of the project (i.e. 128k SLOC) and the small size
of the reused components, the TD ratios shown in Table V
are the same. Only the number of smells and issues varied.
In the case of the voting system, the number of smells grew
from 2087 to 2136 and the number of issues increased too
from 2905 to 2977. For the event manager component, we
got the same number of smells as for the voting system, the
increment is insignificant, that is 2979 issues. Regarding Arcan
results, the ADI value (both ADI and q(ADI)) did not change
since the original project versions. In particular, the ADI value,
which equals 12.0 for both extensions, is very close to the
ones of BikeApp-GoogleMaps and the BikeApp-JDatePicker.
The only change happened in terms of detected smell types:
respect the original version, which counted 5 UD and 2 CD,
the extended ones show one more UD (for a total of 4) and
one less CD (for a total of 3). About Kurki, we observed the
typical increment in the number of code smells and TD issues
compared to the initial project but the TD ratio decreased from
1.0 to 0.6. This is caused because Kurki is not so big a project
like TEAMMATES and doubling the number of SLOC after
including the new functionality led to a significant reduction
of the TD ratio. Regarding Arcan results, as happened for
TEAMMATES, the ADI value (both ADI and q(ADI)) did not
change from the original project version. Also, the number of
smells by type remained the same, i.e., one smell per type.

Table V
TECHNICAL DEBT AND ARCHITECTURAL DEBT RATIOS AFTER REUSE

SonarQube Arcan

Case studies assets TD ratio Smells Issues AS ADI q(ADI)

BikeApp Base64 4.5 365 383 30 1.0 3
GoogleMaps 1.7 3494 3701 64 11.0 5
JDatePicker 1.7 3551 3759 66 10.0 5

TEAMMATES VotingSystem 0.6 2136 2977 7 12.0 5
FullCalendar 0.6 2136 2979 7 12.0 5

Kurki FullCalendar 0.6 735 678 3 5.0 5

Figure 2. Final version of the reversed architecture of the BikeApp software

VI. FINDINGS

In this section, we describe our findings answering the three
research questions.

To answer to RQ1: Which are the most difficult aspects
to integrate new functionality found opportunistically in open
source projects?, we can say that the most complex issues
we found during the integration of the reused components
are the following. First, to identify which elements of the
target project needed to be modified are influenced by the
architectural style of the project and which are underlying
technologies used to implement the architectural style of the
project. For instance, for BikeApp and TEAMMATES projects
using the model-view-controller (MVC) style we needed to
identify the right Web technologies (e.g. BikeApp uses Swing
to implement the "view" while TEAMMATES uses Angular).

Second, seeking the right component according to the archi-
tectural style and technologies used in the target project, as in
other cases the integration of a reused component using differ-
ent technologies may lead to performing another search. This
happened when we integrate the voting system component for
TEAMMATES. Also, in the case of TEAMMATES and Kurki,
we observed certain differences in the integration effort caused
by the different technologies used in both projects.

Third, other minor issues like the invocation of the new
component or the creation of an instance of the object can be
solved by common programming techniques. Independently of
some integration problems, we followed the criterion of ease of
integration based on a small number of dependencies to third-
party libraries and the compatibility of the design pattern of
the reused component with the existing application.

From our results and answering to RQ2: How code debt
is affected after the integration of reusable assets found op-
portunistically?, we observed from Table V that the technical
debt ratio decreases if we reuse large-scale components like
the Google Maps. On the contrary, if we start from a large
software project and the sizes of the components are small,
the code debt ratio provided by SonarQube remains almost
the same. In addition, in the majority of the cases, the number
of smells and issues increase, but we found one case (i.e.
the voting system component) where the number of issues
decreased a bit. Another aspect not covered in this study but
worthy to be investigated is the quality and severity of the new
smells and issues and not counting only the number.

About RQ3: How architectural debt is affected by reusing
open-source software?, our results show that reuse has an
impact in terms of architectural smells and consequently of

architectural debt. In general, from what we observed in
Table V, architectural debt increases after reuse, and in partic-
ular when reusing large-scale components (Google Maps and
JDatePicker). In the case of project TEAMMATES, where the
number of AS does not change after reuse, the debt increases
too, meaning that the AS worsen in terms of severity (see
Section III-B), e.g., they grow in size and affect more com-
ponents (classes and packages). The only project which was
not affected by reuse is Kurki, whose number of architecture
smells (AS) and ADI values remained the same. Nevertheless,
one important aspect once open-source software is reuse refers
to those components that can be integrated without performing
significant architectural changes. In some cases, we needed
additional search effort to find suitable components aligned
by the technologies supporting the architecture of the project.

VII. THREATS TO VALIDITY

Some factors might have influenced the results reported in
our study. We discuss the main threats to validity and how we
mitigated them according to Yin’s guidelines [52].

Construct Validity. We adopted the default set of collected
measures considered by the SonarQube model since practi-
tioners are reluctant to customize the built-in quality gate and
mostly rely on the standard set of rules [53]. Also, we have
tried as well as possible to replicate the conditions adopted by
practitioners that use this tool, although we are aware that the
detection accuracy of some rules may not be precise.

Internal Validity. SonarQube detected duplication of the
same issue, reporting the issue violated in the same class and
in the same position but with different resolution times. We
are aware of this fact, but we did not remove such issues
from the analysis since we wanted to report the results without
modifying the output provided by SonarQube and introducing
other biases in the study.

External Validity. We analyzed three case systems trying
to select different projects with different characteristics. How-
ever, we are aware that other projects might present slightly
different results. We have considered for architectural debt
detection only the AS detected by the Arcan tool. We could
have different results by considering other AS, but these smells
based on dependency issues are certainly particularly critical
for a project. We can mitigate this threat using in the future
another tool to validate our initial results detecting architecture
smells.

Conclusion Validity. We can rely on the two tools we
selected. SonarQube is one of the most popular static analysis
tools largely adopted both in academia [54], [55] and in
industry [53]. Validation of Arcan results has been performed
on ten open-source projects [56], on two industrial projects,
with a high precision value of 100% in the results and 63% of
recall [9] and through the feedback provided by practitioners
working on four industrial projects [29].

VIII. CONCLUSION AND FUTURE WORK

To the best of our knowledge, this is the first paper that
examines the impact of reusing software components oppor-
tunistically in different repositories to TD. Our main findings,

investigated to answer the three research questions, show
that for larger projects the TD ratio provided by SonarQube
remains stable or decreases, but in most cases, the number of
code smells and TD issues increase. The same happens when
we add a large component to a small project. We also evaluated
the projects’ architectural debt and the number of architectural
smells before and after reuse. Similar to SonarQube, Arcan
detected more architectural smells after reuse, which resulted
in increasing architectural debt. One interesting outcome is
that in the most affected project (BikeApp), the most common
type of smell is Cyclic Dependency, suggesting that developers
should particularly pay attention to this specific smell while
reusing software. This work, being a case study, does not
provide conclusive evidence of the effect of opportunistic reuse
on TD. Therefore, further research is needed on the topic, to
better understand the right approach to measure TD in relation
to opportunistic code reuse.

In future work, we plan to evaluate these initial trends in
more projects and repositories and compare them to programs
implemented with some other programming languages like
Python. We also plan to investigate how to reduce the initial
search effort when the first component found doesn’t satisfac-
torily serve the project’s needs.

REFERENCES

[1] P. Kruchten, R. Nord, and I. Ozkaya, Managing Technical Debt: Reduc-
ing Friction in Software Development. Addison-Wesley Professional,
2019.

[2] V. Lenarduzzi, T. Besker, D. Taibi, A. Martini, and F. Arcelli Fontana, “A
systematic literature review on technical debt prioritization: Strategies,
processes, factors, and tools,” Journal of Systems and Software, vol. 171,
2021.

[3] R. Verdecchia, P. Kruchten, and P. Lago, “Architectural technical debt: A
grounded theory,” in 14th European Conference on Software Architecture
ECSA 2020, 2020, pp. 202–219.

[4] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt: From metaphor
to theory and practice,” IEEE Softw., vol. 29, no. 6, pp. 18–21, 2012.

[5] Z. Li, P. Avgeriou, and P. Liang, “A systematic mapping study on
technical debt and its management,” J. Syst. Softw., vol. 101, pp. 193–
220, 2015.

[6] M. Griss, “Systematic software reuse – it isn’t what it used to
be!” Keynote presented at the the 14th International Conference
on Software Reuse, Miami, US, 2015. [Online]. Available:
http://icsr2015.ipd.kit.edu/keynotes/index.html

[7] D. Spinellis, “How to select open source components,” Computer,
vol. 52, no. 12, pp. 103–106, 2019.

[8] I. Zozas, A. Ampatzoglou, S. Bibi, A. Chatzigeorgiou, P. Avgeriou, and
I. Stamelos, “REI: an integrated measure for software reusability,” J.
Softw. Evol. Process., vol. 31, no. 8, 2019.

[9] F. Arcelli Fontana, I. Pigazzini, R. Roveda, D. A. Tamburri, M. Zanoni,
and E. D. Nitto, “Arcan: A tool for architectural smells detection,” in
Int’l Conf. Software Architecture (ICSA), 2017, pp. 282–285.

[10] M. Morisio, M. Ezran, and C. Tully, “Success and failure factors in
software reuse,” IEEE Transactions on software engineering, vol. 28,
no. 4, pp. 340–357, 2002.

[11] M. L. Griss, “Software reuse architecture, process, and organization for
business success,” in Proceedings of the Eighth Israeli Conference on
Computer Systems and Software Engineering. IEEE, 1997, pp. 86–89.

[12] B. Jalender, A. Govardhan, and P. Premchand, “A pragmatic approach
to software reuse.” Journal of Theoretical & Applied Information Tech-
nology, vol. 14, 2010.

[13] W. Tracz, Confessions of a Used Program Salesman. Addison-Wesley,
1995.

[14] C. W. Krueger, “Software Reuse,” ACM Computing Surveys, vol. 24,
no. 2, pp. 131–183, 1992.

[15] T. Mikkonen and A. Taivalsaari, “Software reuse in the era of oppor-
tunistic design,” IEEE Software, vol. 36, no. 3, pp. 105–111, 2019.

[16] E. Petrinja, R. Nambakam, and A. Sillitti, “Introducing the opensource
maturity model,” in 2009 ICSE Workshop on Emerging Trends in
Free/Libre/Open Source Software Research and Development. IEEE,
2009, pp. 37–41.

[17] B. Golden, “Making open source ready for the enterprise: The open
source maturity model,” Open Source Business Resource, 2008.

[18] A. Raza, L. F. Capretz, and F. Ahmed, “An open source usability
maturity model (os-umm),” Computers in Human Behavior, vol. 28,
no. 4, pp. 1109–1121, 2012.

[19] T. Kilamo, T. Aaltonen, I. Hammouda, T. J. Heinimäki, and T. Mikko-
nen, “Evaluating the readiness of proprietary software for open source
development,” in IFIP International Conference on Open Source Sys-
tems. Springer, 2010, pp. 143–155.

[20] A. Zahoor, K. Mehboob, S. Natha et al., “Comparison of open source
maturity models,” Procedia computer science, vol. 111, pp. 348–354,
2017.

[21] S. Fischer, L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed, “En-
hancing clone-and-own with systematic reuse for developing software
variants,” in 30th IEEE International Conference on Software Mainte-
nance and Evolution,, 2014, pp. 391–400.

[22] R. Capilla, B. Gallina, C. Cetina Englada, and J. Favaro, “Opportunities
for software reuse in an uncertain world: From past to emerging trends,”
Journal of Software: Evolution and Process, vol. 31, no. 8, 2019.

[23] N. Ali, D. Horn, and J.-E. Hong, “A hybrid devops process supporting
software reuse: A pilot project,” Journal of Software Evolution and
Process, pp. 1–23, 2020.

[24] N. Mäkitalo, A. Taivalsaari, A. Kiviluoto, T. Mikkonen, and R. Capilla,
“On opportunistic software reuse,” Computing, vol. 102, no. 11, pp.
2385–2408, 2020.

[25] T. Sharma, P. Singh, and D. Spinellis, “An empirical investigation on
the relationship between design and architecture smells,” Empir. Softw.
Eng., vol. 25, no. 5, pp. 4020–4068, 2020.

[26] J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic, “Identifying
architectural bad smells,” in 13th European Conference on Software
Maintenance and Reengineering, CSMR, 2009, pp. 255–258.

[27] D. M. Le, C. Carrillo, R. Capilla, and N. Medvidovic, “Relating
architectural decay and sustainability of software systems,” in 13th
Working Conference on Software Architecture, WICSA, 2016, pp. 178–
181.

[28] R. Verdecchia, I. Malavolta, and P. Lago, “Architectural technical debt
identification: the research landscape,” in International Conference on
Technical Debt, (TechDebt’18), 2018, pp. 11–20.

[29] A. Martini, F. Arcelli Fontana, A. Biaggi, and R. Roveda, “Identifying
and prioritizing architectural debt through architectural smells: a case
study in a large software company,” in European Conf. on Software
Architecture (ECSA’18), 2018.

[30] M. S. Laser, N. Medvidovic, D. M. Le, and J. Garcia, “ARCADE: an
extensible workbench for architecture recovery, change, and decay eval-
uation,” in European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2020, pp. 1546–1550.

[31] G. Suryanarayana, G. Samarthyam, and T. Sharma, Refactoring for
Software Design Smells: Managing Technical Debt, 1st ed. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2014.

[32] R. Roveda, F. Arcelli Fontana, I. Pigazzini, and M. Zanoni, “Towards
an architectural debt index,” in Euromicro Conference on Software
Engineering and Advanced Applications (SEAA’18). IEEE, 2018.

[33] F. Arcelli Fontana, R. Roveda, and M. Zanoni, “Technical debt indexes
provided by tools: A preliminary discussion,” in 2016 IEEE 8th Inter.
Work. on Managing Technical Debt (MTD), Oct 2016, pp. 28–31.

[34] P. Avgeriou, D. Taibi, A. Ampatzoglou, F. Arcelli Fontana, T. Besker,
A. Chatzigeorgiou, V. Lenarduzzi, A. Martini, N. Moschou, I. Pigazzini,
N. Saarimäki, D. Sas, S. Soares de Toledo, and A. Tsintzira, “An
overview and comparison of technical debt measurement tools,” IEEE
Software, 2021.

[35] W. Wu, Y. Cai, R. Kazman, R. Mo, Z. Liu, R. Chen, Y. Ge, W. Liu,
and J. Zhang, “Software architecture measurement - experiences from a
multinational company,” in 12th ECSA, 2018, pp. 303–319.

[36] R. Verdecchia, P. Lago, I. Malavolta, and I. Ozkaya, “Atdx: Building an
architectural technical debt index,” in Evaluation of Novel Approaches
to Software Engineering (ENASE), 2020.

[37] C. Seaman and Y. Guo, “Measuring and monitoring technical debt,”
Advances in Computers, vol. 82, pp. 25 – 46, 2011.

[38] V. Lenarduzzi, A. Martini, D. Taibi, and D. A. Tamburri, “Towards
surgically-precise technical debt estimation: Early results and research
roadmap,” in International Workshop on Machine Learning Techniques
for Software Quality Evaluation (MaLTeSQuE’19), 2019, pp. 37–42.

[39] I. Tollin, F. Arcelli Fontana, M. Zanoni, and R. Roveda, “Change predic-
tion through coding rules violations,” in 21st International Conference
on Evaluation and Assessment in Software Engineering (EASE’17),
2017, pp. 61–64.

[40] N. Saarimäki, V. Lenarduzzi, and D. Taibi, “On the diffuseness of code
technical debt in java projects of the apache ecosystem,” in Second
International Conference on Technical Debt (TechDebt ’19), 2019, pp.
98–107.

[41] V. Lenarduzzi, N. Saarimäki, and D. Taibi, “Some sonarqube issues
have a significant but small effect on faults and changes. a large-scale
empirical study,” Journal of Systems and Software, vol. 170, p. 110750,
2020.

[42] D. Falessi, B. Russo, and K. Mullen, “What if i had no smells?”
in International Symposium on Empirical Software Engineering and
Measurement (ESEM2017), 2017.

[43] V. Lenarduzzi, F. Lomio, H. Huttunen, and D. Taibi, “Are sonarqube
rules inducing bugs?” in 27th International Conference on Software
Analysis, Evolution and Reengineering (SANER2020), 2020, pp. 501–
511.

[44] G. Digkas, M. Lungu, P. Avgeriou, A. Chatzigeorgiou, and A. Ampat-
zoglou, “How do developers fix issues and pay back technical debt in
the apache ecosystem?” 2018.

[45] V. L. N. Saarimaki, M.T. Baldassarre and S. Romano, “On the accuracy
of sonarqube technical debt remediation time,” in Euromicro Conference
on Software Engineering and Advanced Applications (SEAA’19), 2019.

[46] M. T. Baldassarre, V. Lenarduzzi, S. Romano, and N. Saarimäki, “On
the diffuseness of technical debt items and accuracy of remediation time
when using sonarqube,” Information and Software Technology, vol. 128,
2020.

[47] M. Fowler and K. Beck, “Refactoring: Improving the design of existing
code,” Addison-Wesley Longman Publishing Co., Inc., 1999.

[48] K. Mordal-Manet, F. Balmas, S. Denier, S. Ducasse, H. Wertz, J. Laval,
F. Bellingard, and P. Vaillergues, “The squale model — a practice-based
industrial quality model,” in 2009 IEEE International Conference on
Software Maintenance, 2009, pp. 531–534.

[49] R. C. Martin, “Object oriented design quality metrics: An analysis of
dependencies,” ROAD, vol. 2, no. 3, 1995.

[50] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton,
and J. Noble, “The qualitas corpus: A curated collection of java
code for empirical studies,” in 2010 Asia Pacific Software Engineering
Conference. IEEE, 2010, pp. 336–345.

[51] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical Software Engineer-
ing, vol. 14, no. 2, pp. 131–164, 2009.

[52] R. K. Yin, Case Study Research Design and Methods (5th ed.). Sage,
2014.

[53] C. Vassallo, S. Panichella, F. Palomba, S. Proksch, H. C. Gall, and
A. Zaidman, “How developers engage with static analysis tools in
different contexts,” Empirical Software Engineering, 2019.

[54] V. Lenarduzzi, A. Sillitti, and D. Taibi., “Analyzing forty years of
software maintenance models,” in 39th International Conference on
Software Engineering Companion, ser. ICSE-C ’17, 2017, pp. 146–148.

[55] V. Lenarduzzi, A. Sillitti, and D. Taibi, “A survey on code analysis tools
for software maintenance prediction,” in 6th International Conference in
Software Engineering for Defence Applications. Springer International
Publishing, 2020, pp. 165–175.

[56] F. Arcelli Fontana, I. Pigazzini, R. Roveda, and M. Zanoni, “Automatic
detection of instability architectural smells,” in Proc. of the 32nd Intern.
Conf. on Software Maintenance and Evolution (ICSME 2016). Raleigh,
North Carolina, USA: IEEE, Oct. 2016, eRA Track.

