
https://helda.helsinki.fi

Managing risks and opportunities in cyber-physical systems

with software architecture assessments

Tuovinen, Antti-Pekka

de Gruyter

2021

Tuovinen , A-P , Christophe , F , Kettunen , P , Mikkonen , T & Männistö , T 2021 ,

Managing risks and opportunities in cyber-physical systems with software architecture

assessments . in K Engemann & R O'Connor (eds) , Project risk management : Managing

software development risk . vol. 2 , Developments in managing and exploiting risk , de

Gruyter , Berlin , pp. 3-24 . https://doi.org/10.1515/9783110652321-002

http://hdl.handle.net/10138/341401

https://doi.org/10.1515/9783110652321-002

publishedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.

1

Managing Risks and Opportunities
in Cyber-Physical Systems

With Software Architecture Assessments

Antti-Pekka Tuovinen*, François Christophe†, Petri Kettunen*,
Tommi Mikkonen*, and Tomi Männistö*

*University of Helsinki, Helsinki, Finland
†Häme University of Applied Sciences,

Hämeenlinna, Finland

Abstract

With the advances in digitalization, the balance between software-related risks and
opportunities is becoming a key decision, but without a thorough insight into the
possibilities and liabilities of software, this is a difficult step to take. Hence, companies
more commonly follow an approach where they have a linear model for product
evolution, and try to avoid large-scale changes in the system as a whole. The software
architecture of a cyber-physical system (CPS) is one of the main factors that determine
the sustainability of the system from the point of view of development, maintenance,
and evolution. However, a software architecture is not inherently good or bad, it is just
more or less fit for purpose, and software architecture assessment is an effective way
to establish its fitness. In this chapter, we share our experiences on using a series of
software architecture assessment workshops as a mechanism to identify risks and
opportunities of an existing CPS software product line and to help in planning the
renewal of the software system accordingly, taking into account the evolutionary line
of new features as well as potential future disruptive technologies. The assessments
took place at a company that provides industrial automation solutions and that takes
the usual risk-oriented view to software engineering. The factors they would like to
study include feature creep, sensitivity for control points, and scaling the current
product line to meet changing customer demand.

Keywords: Risk management, opportunity management, planned staged investment,
software architecture assessment, cyber-physical systems.

1 Introduction
When a new generation of cyber-physical system (CPS) emerges, it is often
unclear which are risks and which are opportunities within the scope of the new
generation. With the advances in digitalization, the balance between software
risks and opportunities is becoming a key decision, but without a thorough
insight into the possibilities and liabilities of software in the system, this is a

2

difficult step to take. Hence, companies more commonly follow an approach
where they have a linear model for product evolution, and try to avoid large-scale
changes in the system as a whole. Such issues have been encountered in various
contexts, including in particular mobile devices, but few practical approaches
have been proposed. One of those that has been used in industry is planned staged
investments [1], which divides the life cycle of the product into steps of
investment and harvesting. During the former, an investment is made in the
system under development by introducing new features and capabilities, and by
improving quality. During harvesting, software is maintained at minimum cost,
and no large investments in new features or improved quality are made.

The systems architecture of a CPS sets a framework for its key qualities and
structures. The software architecture is one of the main factors that determine the
sustainability of the system from the point of view of development, maintenance,
and evolution. However, a software architecture is not inherently good or bad; it
is just more or less fit for purpose. In order to assess the fitness of a software
architecture for its particular context and requirements, the architecture can be
assessed using established, mature methods. A software architecture assessment
(a.k.a software architecture evaluation) can also have specific goals – identifying
risks when planning changes, or, considering the feasibility of further investment
in a system vs. its replacement are common reasons for conducting a software
architecture assessment, for example.

In this chapter, we share our experiences on using a series of software
architecture assessment workshops as a mechanism to identify risks and
opportunities of an existing CPS software product line and to help in planning
the renewal of the software system accordingly, taking into account the
evolutionary line of new features as well as potential future disruptive
technologies. In terms of planned staged investments, the goal is to identify
opportunities to be gained during the next planned investment period, as well as
to manage risks during the ongoing maintenance period.

The rest of the chapter is structured as follows. In Section 2, we introduce the
case company’s CPS domain, software product lines, and software architecture
assessments. In Section 3, we discuss the role of architecture assessments as a
risk management tool in the context of software product lines. In Section 4, we
present our case study, executed together with a company operating in the
domain of cyber-physical systems in industrial automation. In Section 5, we
provide an extended discussion on our findings. Finally, in Section 6, we draw
our conclusions.

2 Background
The background of this work consists of three different dimensions, Cyber-
Physical Systems, Software Product Lines, and architecture assessments. In the
following, we introduce briefly each of them in separate subsections.

2.1 Cyber-Physical Systems
Cyber-Physical Systems (CPS) are systems that simultaneously act in the
physical and digital space, comprising both physical and computational
processes and involving people [2]. Typical examples of CPSs include drones,
various robots, and autonomous vehicles and larger, complex systems such as
Smart Grids. Since a major part in their development includes the design of
physical, mechanical and electrical elements, the development has been executed

3

under their terms and engineering disciplines and software has traditionally
played only a minor role inside each device and system component
independently. The situation is now changing rapidly, and software is becoming
a major factor in innovation in CPSs [3] [4]. Modern CPSs are increasingly
interconnected and utilize multiple sources of data [5]. Such capabilities are
inherently software-based.

In the advent of the fourth industrial revolution, the Industrial Internet, software
is becoming more and more entangled in physical machines, each of them
playing a role in achieving a system level goal [6]. Such a goal is accomplished
by machines forming a cyber-physical system [7]: a network of machines
executing software in a distributed and asynchronous way [8]. The impact of
cyber-physical systems on industrial services in manufacturing is considerable
[9], turning companies that have been designing machinery to software
companies.

Proficient design of modern, complex CPSs requires advanced competencies due
to their heterogeneous nature, physical world concurrent processes, and
timeliness requirements [10] [5]. Notably, there are considerable research
problems concerning for example multidisciplinary integrated system
architecture modeling. With the increasingly central role of software in most
CPSs, developing such new system architecture designs requires extensive
software architecture competencies.

As with any software, the architecture plays a key role in ensuring the continuous
operation of any CPS. In particular, industrial systems need to be operated
continuously regardless out-of-order issues of components of this system. Due
to high reliability requirements, software architecture plays a decisive role in all
phases of the life cycle of a CPS with the software development phase having the
most impact on the entire CPS sustainability [11]. To meet these goals at system
level, software architecture of industrial CPSs needs to answer requirements of
system orchestration, machine availability, predictive maintenance, and failure
assessment. As for practical guidelines for meeting quality, interoperability and
compatibility needs, the Industrial Internet Consortium has developed a
reference architecture for designing software components for CPSs [12],
highlighting the growing importance of software and software architecture in the
CPS domain.

New CPS technologies offer significant opportunities, but they also pose
considerable risks. The key source of development opportunities is the possibility
to build new “smartness” and intelligence into the integrated and interconnected
systems in totally new ways. For example, modern electricity network Smart
Grids are large-scale CPSs with advanced control functions and automated
metering services [13]. However, they have also introduced new software-related
risks such as cyber-security issues. Both recognizing such new opportunities and
managing the risks call for advanced software architectural capabilities.

2.2 Software Product Lines
A software product line (SPL) [14] is a collection of methods, techniques, tools,
software components, and other assets that are used to create a collection of
related products, sometimes referred to as a product family. The technical
components that form the fundamental part of the product line are commonly
referred to as core assets. These core assets are then reused in different products,
and if necessary, they can be complemented with product-specific software
components. While building on flexibility characteristics of software, SPLs can
be applied in the design of CPSs [15]. Examples include cars, TVs, mobile
phones, and many other mass-manufactured systems in which software plays a

4

key role [16] [17].

A key element of any SPL is product-line architecture (PLA), which defines how
the core assets and product specific components are organized to create products.
In addition to the usual things included in software architectures, PLA also
includes information about creating different variants. Building on PLA, a
common way to partition an SPL is to organize core assets as a platform that can
be extended, specialized, or tailored for product-specific use, at various levels
[18]. Hence, two roles are needed: platform engineering and application
engineering, both with different responsibilities. Platform engineering creates
reusable components – the platform – that eventually make up the platform,
which require assumptions on how future products will be built using them. In
contrast, application engineering creates actual products, which requires a stable
platform.

As platform and application engineering are run in parallel, but in the end share
the same business goals, they need a common management function to steer the
development. Examples of management decisions include resourcing of different
flavors of engineering, schedules, and customer care. However, as the short-term
technical goals of platform and application engineering are different, it is often
difficult to balance between the different needs. Moreover, overlooking either
type of engineering can lead to severe problems in the long run – focusing only
on platform engineering leads to failing to deliver products in a timely fashion,
and focusing only on products leads to increasing technical debt in core assets.

Planned Staged Investments [1] is a technique for managing and rebuilding SPLs
in a sustainable way, based on technical and market needs. The overall aim is to
manage more effectively SPLs when conflicting requirements simultaneously
emerge from needs to redesign and reuse the software.

The key idea of Planned Staged Investments is to differentiate between two
different operational modes – investment and harvesting – to coordinate the
competing, parallel needs of redesign and reuse. These alternating modes can be
characterized as follows:

• Investment: During investment, engineering effort is put into improving
reusable asset creation. Development focuses on designing and
improving product line’s core assets. In fact, they might even partly
integrate product development. As an example, so-called lead products,
commonly used in SPLs, are typically representatives of the first
generation products built on a new generation of core assets forming the
platform.

• Harvesting: During harvesting, benefits are gained from the investment
in the form of simplified and faster product creation. The focus is placed
on product development, and investments to core assets are minimized
to only those that are critical for stability and robustness, thus reducing
the need for product line engineering.

To summarize, the investment mode is a step change that requires careful
planning, requirements, and technical surveys on technically feasible solutions.
In contrast, harvesting mode supports iterative, rapid, and agile product creation.
There are also pitfalls associated with the approach [1]. The most obvious one is
that a prolonged harvesting stage will always lead to decreased productivity and
lower quality while product-specific needs become increasingly difficult to meet
owing to accumulating technical debt. Then, the management may consider that
an investment needed is actually an indication of poor engineering rather than as
a logical consequence of the overly extended harvesting period. Therefore, the

5

harvesting period must be long enough to be profitable, and the investment phase
must be extensive enough to renew the system. From the technical point of view,
it is often difficult to developers to accept that the software made during
harvesting contains numerous issues and problems that could be eliminated with
some attention from designers.

2.3 Software Architecture Assessment
Assessing software architectures is a practical necessity for ensuring that the
designed architecture meets its functional and quality requirements [19]. Over
the past twenty years or so, several methods for evaluating and assessing
software architectures have been developed (see e.g., [20] [21] [22] [23] [24]
[25] [26]). Providing a comprehensive overview of the various methods falls
beyond the scope of this chapter. However, in the following we introduce the
salient properties of the prominent approaches that we have used, together with
some first-hand experiences.

Two fundamentally different approaches to software architecture assessment
exists: those based on experts asking questions and reviewing architectural
artefacts (e.g., ATAM [27] [20]) and those based on measurements.

When performing reviews, the assessment team first collects information
regarding the expectations of the stakeholders of the system. In scenario-based
review approaches, the concerns and questions are posed as concrete scenarios
involving a particular situation and stimuli that the system must respond to in a
satisfactory manner. The scenarios exhibit important quality concerns of
stakeholders, and they are evaluated together with the team responsible for the
architecture. Evaluating a scenario means determining, with technical experts,
whether or not the system will be able to produce a satisfactory response and
identifying those aspects of the design that either support or inhibit reaching a
favorable outcome. Scenarios can be predefined and reused in many different
assessments virtually unmodified because they often address common situations
related to, for example, security and maintainability.

As an example of another kind of review, the DCAR method [24] focuses on
identifying architectural design decisions (meaning both a technical solution for
a design issue and the actual resolution to use it), their rationale, and the
relationships between the decisions. The decisions are then ordered by
importance. In the evaluation part, the participants (typically the architect, the
product owner, domain experts, and evaluation facilitators) discuss the forces
affecting the most important decisions and their consequences (i.e., pros and
cons) and vote whether each decision is good or needs to be reconsidered.

We have found it valuable to combine both the DCAR and ATAM approaches
into a workshop style of architecture assessment [28]. The DCAR part of the
workshop focuses on recovering the key aspects of the design and its history,
while the scenario part can explore also future aspirations, opportunities, and
risks and their impact on the architecture. This is the approach we have followed
also in the case reported here.

Using measurements for assessing software architectures contrast expert reviews
(like ATAM and DCAR above) in the way that the goal is not to raise questions
about the system but to produce answers to questions as hard numbers. However,
whereas not yet implemented designs can often be reviewed, measurements need
a concrete object to measure: a simulation, prototype, or an at least partially
implemented system in a test environment. For example, [29] presents an
approach to evaluate architectural options by using reinforcement learning to

6

find an optimal balance of incurred costs and benefits of alternative architectural
choices run in a simulated system. It is important to recognize that such
measurements are specific to a particular system and its quantified requirements.
Indeed, there are no generally applicable, universal measures for the “goodness”
of an architecture: an architecture is only more or less fit for its purpose as
defined by the quality requirements of the system. Furthermore, relying too much
on numbers (e.g. static metrics computed from code) can have a detrimental
effect on quality – you will certainly get what you measure but that may not be
what you actually need [30]. However, reviews and measurements can be used
together as the RATE architecture assessment approach demonstrates [31] [30].

Scenario-based methods typically require effort and input from several
stakeholders. A thorough assessment typically requires two or three full day
meetings over a few weeks of calendar time and the participation of several key
persons, adding up to tens (even hundreds) of person hours [31]. There is also a
learning curve [32] [23]. Unsurprisingly, scenario-based methods are often
perceived as heavy by the practitioners [33] [34]. On the other hand, assessment
results are valuable and usually well received [31] [32] [35] [34], although they
can be hard to quantify for management for decision-making [31]. As an example
of usefulness of the results, in [30] the authors state that 75% of the over 50
assessments they performed led to concrete actions. Scenarios are a powerful tool
not only for assessing the adequacy of the system under evaluation but also for
making the technical people aware of the needs of the business and for making
the business people aware of the opportunities provided and the challenges and
risks posed by technology [31] [32].

There is evidence that scenario-based assessment and its derivatives are the most
well-known methods in industry [33]. For recent reports on industrial
experiences on architecture assessment and assessment methods (see e.g., [34]
[28] [36] [24] [31] [23] [32]).

3 Software Architecture Assessment as a Risk
Management Instrument

In the world today, there is a vast number of software-intensive CPSs that have
different missions, size, technological basis, and dependencies. There are
systems that are in their inception and there are very mature systems that have
been around for decades. Architecture assessment can be performed not only in
the early phase of the life-cycle of a CPS but also in some significant turning
point in its life. Therefore, assessments can have very different goals and each
system has its unique characteristics [26, p. 125]. Still, there are common
problems that many systems have to cope with. Typical assessment goals and
questions include (paraphrased from [31]):

• How suitable is the architecture as a basis for future products?

• Which framework or technology fits the needs best?

• How can performance, maintainability, or other important qualities be
improved?

• How can the system be modularized to meet new productization and
other business goals?

• What is the overall quality of the system and should it still be maintained
or scrapped and redeveloped?

• How well does the designed architecture meet the key requirements?

7

• How can the system be modernized to meet new requirements and use
modern technologies?

Identifying risks and is an integral part of ATAM [20] [37] and a major
motivation for software architecture assessment in general. However, an explicit
link to risk management processes is usually missing from the descriptions of the
assessment methods. We try to bridge this gap here by projecting the risk related
assessment activities onto the risk management process defined in the
international standard ISO/IEC 16085-2006 [38] that is compatible with the
system and software life-cycle process standards ISO/IEC 15288 and ISO/IEC
12207.

When evaluating scenarios in ATAM, one outcome is to identify architectural
risks. In this context, labeling an architectural design decision as a ’risk’ means
that the decision affects negatively an important quality attribute embodied in
some scenario and hence poses a risk that the resulting system will not meet
stakeholders’ requirements. The formulation of a scenario should state the
required response in as concrete terms as possible, which makes the risk criteria
[38] explicit. So, identified risks are mainly about failing to reach the desired
level of some capability. ATAM does not mandate how to document the risks in
terms of risk exposure [38], for instance. However, because the evaluated
scenarios reflect be the most important stakeholder requirements, the risk of not
satisfying them should be taken seriously.

ATAM recommends collecting risks that have a common (or closely related) root
cause in ’Risk Themes’ for easier linking to business goals and for reporting to
decision makers. Themes correspond to risk categories [38], although themes are
often fine grained focusing on technical aspects. The purpose of collecting risks
and risk themes is to facilitate planning of mitigating actions thereof. However,
proposing risk treatments [38] is out of scope of ATAM and software
architecture assessment in general. So, in terms of the risk management process
defined in [38], the role of architecture assessment is mainly as a task in the
performing risk analysis activity – focusing on architectural design decisions and
their consequences.

In [39], a retrospective analysis of 18 ATAM assessments was done to find
patterns in the risk themes identified. A characterization of 99 themes into 15
categories was developed. The categories range from architecture (run-time &
development-time qualities) to processes and organization, which demonstrates
the wide range of issues that can come up in assessments where business goals
act as a starting point for deriving assessment criteria (i.e. the scenarios). The
main findings of the study were that twice as many risk themes stem from
”omission” rather than ”commission”. That is, they concern design decisions not
done, missing or misunderstood requirements, or other overlooked issues rather
than the consequences of the architectural decisions already made. Interestingly,
the study did not find any correlation between the risk themes identified and the
requirements or the domain of the assessed system. That is, the type of a system
does not seem to predict what kind of risks will come up. As a practical
recommendation, the authors suggest that assessors should be acutely aware of
risks stemming from the organizational context and the process of architecting
rather than the kind of system under development while being on a constant
lookout for important things missed.

Managing the risk related to changes in software is a major reason for doing
architecture assessments according to [30]. They see two distinct ways in which
architecture assessment can proved input for mitigating the risks related to
software change requests: (1) by evaluating how the system and its architecture

8

can accommodate a set of anticipated changes (that are more or less likely to
happen), and (2) by determining the potential impact of concrete change requests
currently at hand. The engineering branch of a development organization
typically initiates these kind of assessments. As examples of external initiators
of assessment they give a potential customer who wants to gauge risks prior to
investment, or an existing customer who wants to sort out known problems [31]
[30]. In a case study focusing on the adaptability of a CPS based on its software
architecture [40], the authors evaluate alternative architecture designs using four
criteria concerning well-known aspects of design and implementation that affect
how well the system can adapt to changing needs and execution context.

Because of the wide range of modern new CPSs, their potential risks stem from
a variety of sources. Not only the cyber parts but also the electronic, hardware
and mechanical parts in conjunction to the humans involved must be taken into
account. In addition, interconnected systems add to the complexity. System risk
factors like safety and security are crosscutting. Consequently, engineering high-
confidence CPSs requires advanced multidisciplinary competencies and co-
development [5].

From the discussion above, it is clear that risk analysis in architecture assessment
is typically focused on identifying things that could go wrong in the architecture
and its development leading to a systemic failure. The findings are distilled and
reported in terms that are understandable for business owners and managers so
that the findings can be fed into the risk management process (e.g. into the project
risk profile [38]) so that the managers can decide about the risk action requests
[38] for treatments to mitigate or remove risks. Naturally, immediate corrective
actions can be agreed on during assessment if managerial decisions are not
required.

However, the literature is lacking examples of viewing risks as opportunities –
of being proactive and recognizing options instead of just reacting to changes
forced on by external developments. Some assessment methods do explicitly
mention recognizing opportunities for architectural improvements as a
motivation for assessments.

On the other hand, in addition to technical findings, other positive effects of
assessments have been recognized. Because an architectural assessment usually
means a deep discussion about product goals and technical possibilities, it not
only helps to create a common frame of reference for the business and technology
sides but it also provides a rare chance to share experiences, knowledge, and the
rationale behind architectural choices [32] [26, p. 6] in the organization. Also, it
gives the opportunity to educate business owners about the potential of
technology and the existing software assets. These ‘soft effects’ may in practice
be even more valuable than the hard technical results [24]. Therefore, we wanted
to explore in our case study how to bring in the other side of risk analysis,
recognizing opportunities, as an additional perspective to architectural
assessment.

4 Case Study
In this section, we present an improvement case study we conducted at a
company that provides industrial automation solutions. The goal of the case study
was to help the case company revisit its CPS software product line in preparation
for the foreseen increasing role of the software in the future. A series of software
architecture assessment workshops were used as the concrete mechanism to
facilitate discussions and to identify risks and opportunities related to the
software.

9

Giving a detailed account of the product line and the technical findings is not the
purpose of this work and, consequently, we describe the product and the findings
in general terms. Our focus is on describing the assessment process, its conduct,
and the value of the outcomes.

Figure 1: Functional scope of Operations Control Software

4.1 Case Company and Case Product
The company provides industrial automation solutions for controlling various
devices and follows the usual risk-oriented view to software they are engineering.
The factors they would like to study reflect to potential risks like feature creep,
sensitivity for control points, and scaling the current product line to meet
changing customer demand. At the same time, various opportunities have been
identified, including new business openings, widening the scope of the product
line, reducing overheads and shortening lead-times in developing customer
specific variants of the software, and reducing the need for bespoke device
interfaces by promoting and embracing new standards in the field.

We call the case product under study Operations Control System (OCS). Figure
1 visualizes the functional scope of OCS. The system controls various industrial
Devices using the Operations and Device Control Data provided by human
operators. Individual Devices are typically combined into conglomerates that
together perform an industrial process with the help of additional hardware
(System HW). The OCS exchanges also information with Enterprise Resource
Planning systems and other Value Adding Processes. OCS has gone through
significant architectural and technological changes over its life cycle. The
installed base of the system (base version and variants) is in the thousands.

From the company’s perspective, the motivations for conducting a review of the
software architecture of OCS comprised of the following questions:

1. Are the architecture and the technological choices on as sound a basis as we
think?

2. Do outside experts see any risks or weaknesses?

Operations
Control SW

System HW

Enterprise
Resource

Planning SW

Operations
and device

control data
(resources)

Value
adding

processes

Devices

10

3. How long can we keep on adding features to a single platform to serve growing
customer needs and what would be the options?

4. How far does the performance of the system scale up in terms of the amount of
operational data and the number of devices controlled?

4.2 Data Collection
Table 1 lists the participants of the series of workshops. Eleven people (the
Informants I1–I11) participated from the case company and five from University
of Helsinki (the Researchers R1–R5). As the table shows, the informants were
very experienced and had core competences bearing on the product. The
researchers had significant academic and industrial experience.

Table 1: Study participants.

Case Company Employees

Researchers (University of Helsinki)

Table 2 lists in chronological order the face-to-face meetings held at the company
premises during the study that were the primary way of collecting the data for
the study. The actual conduct of the assessment process will be explained in
required detail below. The table gives the duration of each event, lists the
participants using the IDs given in Table 1, and explains the main outcomes or
purpose of each event.

As we can see from Table 2 there was strong presence from the company in each
event, which shows a high level of commitment. It is in fact remarkable that the
key persons found time in their busy schedules for this work; it is a common
experience that ’daily workload wins over architecture evaluation’ [26, p. 119].

11

Although the original planned timetable was not met, all the parties showed
flexibility and resilience in seeing the work through. The meetings had clear
goals and although the discussions did sometimes take a meandering course, they
resulted in a wealth of high quality data. This is also reflected by the actual results
obtained in the end and in the expressed interest of the company to continue the
co-operation with the researchers in this area.

Table 2: Data collection events (at the company premises).

Event Duration
[h]

Participants Focus of Outcomes

Workshop 1,
Nov 2018

4 I1, I2, I3, I4, I5, I6, I7
R2, R3, R4, R5

Kick off and introductions, overview
of the CPSs of the company and the
short-term and longer-term business
needs

Workshop 2,
Feb 2019

3,5 I1, I2, I3, I4, I11 R1,
R2, R3, R4, R5

Architecture assessment tutorial, setting
goals for the assessment

Workshop 3,
Feb 2019

5 I1, I2, I4, I7, I8, I11 R2,
R3, R4, R5

Architecture presentation of the OCS core
system, formulating the initial list of
design decisions and scenarios

Workshop 4,
May 2019

5 I1, I2, I3, I4, I7, I8, I9,
I10, I11
R1, R2, R3, R4, R5

Review of the documented design
decisions

Workshop 5,
June 2019

5 I1, I2, I4, I7, I8, I11 R2,
R3, R4, R5

Prioritization of scenarios and
evaluation of the most important ones

4.3 Chronological Description of Activities and Events
The activities of the study were centered on the main events recorded in Table 2
over approximately seven months of calendar time. The first meeting, Workshop
1, introduced the product and the company’s current and projected future
business needs. In this meeting, the general objectives for the study and the forms
of co-operation were agreed. After the meeting, the research team formulated the
first plan with an overall timetable.

Workshop 2 consisted of a tutorial about software architecture and software
architecture assessment given by the research team. Video and other materials
were provided for self-study at the company. In addition, the goals and the scope
(focusing on the core functional parts of OCS device control and data
management) were set in the meeting. After the meeting, a more detailed plan
for the next workshop was produced. The idea was to follow the DASE approach
of lean assessment explained in [28]. Following the approach, the research team
prepared a preliminary list of design decisions and scenario sketches. The
company representatives were asked to come up with their own suggestions for
scenarios based on the researchers’ list, which they did.

Workshop 3 began with a presentation by the OCS architect (Informant 2) about
the design of the system under study and about the most recent changes it had
gone through, as well as the reasoning behind. During the presentation, the
researchers asked questions and collated lists of important aspects of the design

12

in order to reconstruct a list of design decisions (decisions had not been
systematically recorded before). In addition, possible scenarios were sketched
during the first part of the workshop. The original plan was to select the most
important decisions and to document them for analysis and voting (”OK” – ”OK
with some issues” – ”Not OK”) during the first part of the workshop and then,
during the second part of the day, form a list of scenarios and evaluate them.
However, this turned out to be an unrealistic plan. The architecture presentation,
the questions, and the discussions on the aspects of the design and their rationale
took almost all of the time. There was no time left for documenting decisions,
but some time was used to go through a few scenarios prepared by the researchers
in advance. However, a good picture of the architecture and the design issues
was acquired. At the end of the day, it was clear that two full day meetings would
be needed in order to analyze the design decisions and evaluate scenarios
properly.

After Workshop 3, the researchers formulated a top list of architectural design
decisions and sent them over to the company for commenting and documenting
using the appropriate DCAR template1. The company was again asked to prepare
scenarios. Over the next few months, the company representatives went through
the initial list of decisions selecting the most important ones from the list and
adding some decisions they thought were relevant. This resulted in eleven
carefully documented decisions. They also worked on scenarios but they found
that rather difficult. There was also a lack of time for the work.

The goal of Workshop 4 was to evaluate the design decisions documented by the
company representatives. Thanks to the thorough preparations of the company
people, the evaluation went smoothly and all documented decisions were
analyzed and voted on. Only the informants with the relevant technical
knowledge from the responsible development team were allowed to vote. Several
issues were noted down. In addition, a brief look at the few scenarios prepared
so far was taken. It was clear that effort and help from the researchers’ side was
needed to move this task forward. The document including the decisions and the
voting results (marked using a ’traffic-light’ coloring scheme for OK–some
issues–not OK) as well as any comments was sent at the end of the workshop to
the company representative.

In the final phase of the assessment, the researchers prepared fifteen scenarios
divided into four themes. The themes addressed (1) the current strategic goals of
the company, (2) potential technological and business developments that could
present opportunities or pose risks, (3) threats, and (4) software development
topics. The scenarios were partially documented using an ATAM-style scenario
template, and a separate spreadsheet was prepared that listed the names and other
characteristic attributes of the scenarios. The characteristics include the usual
risk-related factors of probability and potential impact to business, the estimated
time frame for the realization of the scenario, the difficulty or effort of realizing
the scenario (where applicable), and whether or not the scenario includes
opportunities or risks (or both). The company representatives ran their own
scenario gathering sessions and added scenarios and filled in some of the known
attributes of the scenarios in the sheet. This resulted with the final list of 22
scenarios in the four themes with a relatively even distribution.

Workshop 5 was started by first reviewing the list of scenarios and then selecting
those that the participants considered the most important. This resulted in six
scenarios with at least one from each theme. Next, the scenarios were evaluated
by discussing how the architecture would either support or not achieving a

1 http://www.dcar-evaluation.com/?page_id=4

13

favorable outcome. However, not all scenarios were actually stated in a way that
would have allowed determining a definitive response. Some of the scenarios
represented such a visionary state that they were very much outside the scope of
the actual system under study. These could not be handled in a meaningful way
and they were left for future when there would be an actual design to reflect on.
Overall, six scenarios were evaluated thoroughly. Based on the session, three
actions points were recorded for the company for immediate execution. The
actions concerned the current version of the system.

In addition to the face-to-face information sharing in the workshops (Table 2),
the case company provided during the study period supplementary
documentation and the presented materials to the researchers. These were
especially valuable given that the researchers were not experts of the industry
domain of the case company.

4.4 Results
The major findings resulting from the reviews of the design decision and the
scenarios of the assessed core part of the software system are listed in Table 3.
The findings are categorized by the expected time frame for required actions
from the company’s side, ranging from Immediate (do now) to Long (in a few
years), and by a uniting topic, or, risk theme, as they are called in ATAM. Each
entry also shortly describes what kind of risk or opportunity is involved. Because
the details of the findings are not important for this exposition, we describe the
issues in general terms. We have included an indicator (D for Decision-based
review and S for Scenario-based review) for the phase of review where the issue
was discovered and recorded; some issues came up in both reviews.

Some of the scenarios turned out to be difficult to prioritize in the assessment.
For example, although the participants from the platform team (responsible for
developing the OCS core software) acknowledged the customer need for a cloud-
based system solution, they also saw this approach risky for the time-critical
functions of OCS. Consequently, there is a potential trade-off between important
system qualities, and the company wanted to discuss the impact of different
options confidentially with their customers.

At a general level, the cooperation between the company and researchers was
mutually beneficial. In particular, the iterative nature of the approach that we
followed was essential because it provided time for both parties to understand
the details, practicalities and limitations of the other party. In other words, the
researchers learned a lot about products and product development at the case
company, and the company representatives had several lessons about software
architecting and architecture assessments. For example, in the beginning,
scenarios as a concept were not so well first understood by the company
representatives and thinking of them spurred vivid discussion, but capturing them
in text was easily left for later. However, during the course of the workshops, the
company representatives were quick to pick up the idea of using a concrete
example to demonstrate a technical detail in their design, to the extent that
scenarios might become a permanent means to justify technical decisions in the
case company. Overall, working with design decisions was easier for them than
working with the scenarios.

When asked for feedback afterwards, the Department manager (Informant I)
stated that they found the results useful for the company. The findings will help
in developing the current platform further and when doing the groundwork for a
new architecture. They also valued the systematic way of evaluating architecture,

14

and they appreciated the outside view that the researchers brought to the process.
In this way, they found their time well spent.

Table 3: Identified risks and opportunities.

† D = Decision-based review ‡ S = Scenario-based review

5 Discussion
As already mentioned, our experiences are based on continuous, iterative
cooperation with the case company. In the following, we provide an extended
discussion to some of the key elements of our approach, and how they are
reflected in our experiences with the case company.

5.1 Role of Planned Staged Investments
Since architecture assessments utilize scenarios as a mechanism for identifying
risks and potential problems, they at the same time are also an effective
mechanism for identifying opportunities, or options that can be easily
incorporated in the existing design. Furthermore, increasing risk awareness
associated with the present design also enables considerations regarding actions
to be taken to mitigate the risks as well as to improve the design in a rational,
planned fashion rather than having to resort to hacks at the last possible moment

15

on a per-customer basis.

To summarize, an evaluation of the present architecture with regard to risks it
contains also enables thinking of potential directions for the future versions, thus
unveiling potential opportunities. Furthermore, a timeline can be created to
highlight the schedule for mitigating risks and grasping the opportunities. Based
on the timeline, it is then possible to allocate different features to releases, using
Planned Staged Investments as the strategy for the allocation.

Based on the experiences with the case company, it is clear that the most urgent
issues will be directly included in the different products, with the present version
of the platform as the baseline. Moreover, some of the features might even be
patches to already existing systems, in particular when considering security-
related risks in case of connected systems. In contrast, some road mapped value
adding functionalities of the future may require a new platform so that they can
be scheduled for release to the whole product line.

5.2 Lessons Learned: Walking the Line between Risk and
Opportunity

Balancing between risks and opportunities turned out to be surprisingly difficult.
The tendency was to always consider risks first, and opportunities only later. To
some extent, this can be explained by the fact that the platform team is used to
getting requirements from the product teams, and there is limited experience in
being able to put in ideas for future features to product teams proactively. An
exception to this observation is actions to renew the software technically from
within, meaning that their newer counterparts could replace older, partly
deprecated subsystems. We believe that this is a somewhat natural situation when
considering platform teams operating in the CPS domain. The responsibility for
implementing and maintaining the software platform weighs more on the teams
than visioning new products.

To improve the situation, assessments would require even deeper participation
by people from the customer interface who would be closer to the needs and
everyday life of the customers. Moreover, they would be at a better position to
consider the opportunities and their importance from the business perspective.

Overall, we experienced and discovered several notable learnings and findings
in our industrial case study presented in Section 4:

• Planning and performing software architecture assessments in
systematic ways require significant resources – particularly time – both
from the assessors and from the software development organization.

• In case of large systems such as the OCS, the scope and focus of the
assessments should be planned and prioritized according to realistic
budgets.

• Because CPS software is by nature deeply coupled and intertwined with
the other elements of the system and its operating environment, it is
imperative to have sufficient high-level comprehension of the entire CPS
in order to be able understand the role and dependencies of the software
(e.g., hardware connections) in the whole system (c.f., Fig. 1).

• Even when conducting just software architecture assessment, the key
business drivers and particular company targets should be known at a
general level.

16

• That helps rationalizing the design choices in the context. Consequently,
the software assessors should have access to such information in
advance and preferably also the business and product stakeholders
participating in the actual assessment process as we did in our company
case.

• In practical industrial settings the architectural knowledge may be
partially tacit and the documentation incomplete. This is understandable
in particular in cases of large systems with very long life times (even
tens of years).

The assessors should be ready to work on such knowledge constraints. It is then
also important to be able to discuss directly with the senior software designers
who can recollect the key information at the time of the architectural decision-
makings possibly done many years ago.

5.3 Threats to Validity
The validity of as study is basically about the knowledge claims that can be made
based on the results [41]. As our intent was to gain experiences on the usage of
particular architecture evaluation methods, one particular issue in terms of
validity is that of the role of the evaluation approach itself in the results achieved.
The separation of the approach used from the experience of the facilitators in the
actions taken is fundamentally hard. In this study, the researchers, who acted as
the facilitators, have a rather high level of experience in industrial software
engineering and in software architecture research and practice in particular. This
is something one may need to take into account if aiming to apply (generalize)
the results in other cases. On the other hand, the approach to use was defined in
advance and clearly documented while doing, so the guiding decisions made by
the facilitators were not based on intuition or experience alone.

In terms of construct validity, even the central concepts of the study area are not
uniformly defined and much of the domain terminology was not initially familiar
to the researchers, and therefore, a risk for misunderstandings is real. However,
as the collaboration with the company representatives and researchers was very
tight, a form of member checking [42] was continuously used, as the
understanding of the researchers was reflected back to the company participants
and special attention was paid on trying to ensure we were talking about the same
thing. Furthermore, the lack of domain understanding potentially leading to
misunderstanding by the researchers was, at least partially, alleviated by the
emphasis on the need of the case company participants understanding the overall
process and taking the responsibility of the domain issues.

6 Conclusion
We have reported here the practical experiences we gained in using architecture
assessments as a basis for identifying risks and opportunities in the domain of
CPSs. The findings of our architecture assessments are two-fold. On the one
hand, the case company found it easy to discuss scenarios that are close to its
event horizon and build on business requirements from existing customers. These
are hardly the key opportunities for future business, but rather contain potential
risks. On the other hand, getting to a level where business benefits of extended
digitalization and more elaborate software features will start to emerge requires
in-depth connection with the case company and long-term commitment to
elaborate the opportunities thoroughly. Additional discussions including the
company top-management setting the business strategy and positioning of the

17

particular product offering would be grounding.

We can conclude that architecture assessment is an effective way of uncovering
risks that bear on architectures’ capability to support business. This is especially
true when examining an established system; the assessment will help to
determine and affirm the limitations and the scope of the current design.
However, addressing opportunities is not so straightforward. Although, these can
be recognized and discussed, they may not fit the current scope of the system and
thus be difficult to analyze further – unless there already is a clear requirement
for such features from business owners. A possible way forward would be to
develop alternatives for a future architecture and assess them against the
opportunistic scenarios to pave the way for creating a transition path from the
current system to the new one.

Acknowledgments
The authors wish to express their sincere thanks to the case company. This
research was funded by DIMECC1 and the Finnish public funding agency
Business Finland.

References

[1] J. Savolainen, N. Niu, T. Mikkonen and T. Fogdal, "Long-term product line sustainability

with planned staged investments," IEEE software, vol. 30, p. 63–69, 2013.
[2] E. A. Lee, "Cyber physical systems: Design challenges," in 2008 11th IEEE International

Symposium on Object and Component-Oriented Real-Time Distributed Computing
(ISORC), 2008.

[3] J. Lee, H.-A. Kao and S. Yang, "Service innovation and smart analytics for industry 4.0
and big data environment," Procedia Cirp, vol. 16, p. 3–8, 2014.

[4] M. Mikusz, "Towards an understanding of cyber-physical systems as industrial software-
product-service systems," Procedia CIRP, vol. 16, p. 385–389, 2014.

[5] H. A. Müller, "The Rise of Intelligent Cyber-Physical Systems," Computer, vol. 50, pp. 7-
9, 12 2017.

[6] A. Gilchrist, Industry 4.0: The Industrial Internet of Things, 2016.
[7] S. Jeschke, C. Brecher, T. Meisen, D. Özdemir and T. Eschert, "Industrial Internet of

Things and Cyber Manufacturing Systems," 2016.
[8] L. Monostori, B. Kádár, T. Bauernhansl, S. Kondoh, S. Kumara, G. Reinhart, O. Sauer, G.

Schuh, W. Sihn and K. Ueda, "Cyber-physical systems in manufacturing," Cirp Annals,
vol. 65, p. 621–641, 2016.

[9] M. M. Herterich, F. Uebernickel and W. Brenner, "The impact of cyber-physical systems
on industrial services in manufacturing," Procedia Cirp, vol. 30, p. 323–328, 2015.

[10] S. K. Khaitan and J. D. McCalley, "Design Techniques and Applications of Cyberphysical
Systems: A Survey," IEEE Systems Journal, vol. 9, pp. 350-365, 6 2015.

[11] M. Törngren and U. Sellgren, "Complexity Challenges in Development of Cyber-Physical
Systems," in Principles of Modeling: Essays Dedicated to Edward A. Lee on the Occasion
of His 60th Birthday, M. Lohstroh, P. Derler and M. Sirjani, Eds., Cham, Springer
International Publishing, 2018, p. 478–503.

1 https://www.dimecc.com/

18

[12] Industrial Internet Consortium, "Industrial Internet Reference Architecture," Technical
Report, 2015.

[13] X. Yu and Y. Xue, "Smart Grids: A Cyber–Physical Systems Perspective," Proceedings of
the IEEE, vol. 104, pp. 1058-1070, 5 2016.

[14] F. J. Van der Linden, K. Schmid and E. Rommes, Software product lines in action: the best
industrial practice in product line engineering, Springer Science & Business Media, 2007.

[15] E. Niemelä and T. Ihme, "Product line software engineering of embedded systems," ACM
SIGSOFT Software Engineering Notes, vol. 26, p. 118–125, 2001.

[16] A. Sangiovanni-Vincentelli and G. Martin, "Platform-based design and software design
methodology for embedded systems," IEEE Design & Test of Computers, vol. 18, p. 23–
33, 2001.

[17] P. Liggesmeyer and M. Trapp, "Trends in embedded software engineering," IEEE
software, vol. 26, p. 19–25, 2009.

[18] T. Myllymäki, K. Koskimies and T. Mikkonen, "Structuring product-lines: A layered
architectural style," in International Conference on Object-Oriented Information Systems,
2002.

[19] J. Bosch and P. Molin, "Software architecture design: evaluation and transformation," in
Proceedings ECBS'99. IEEE Conference and Workshop on Engineering of Computer-
Based Systems, 1999.

[20] R. Kazman, M. Klein and P. Clements, "ATAM: Method for Architecture Evaluation,"
2000.

[21] P. Bengtsson, N. Lassing, J. Bosch and H. van Vliet, "Architecture-level modifiability
analysis (ALMA)," Journal of Systems and Software, vol. 69, p. 129–147, 2004.

[22] T. Kettu, E. Kruse, M. Larsson and G. Mustapic, "Using Architecture Analysis to Evolve
Complex Industrial Systems," in Architecting Dependable Systems V, vol. 5135, R. de
Lemos, F. Di Giandomenico, C. Gacek, H. Muccini and M. Vieira, Eds., Springer, 2008, p.
326–341.

[23] E. Woods, "Industrial Architectural Assessment Using TARA," Journal of Systems and
Software, vol. 85, p. 2034–2047, 2012.

[24] U. van Heesch, V.-P. Eloranta, P. Avgeriou, K. Koskimies and N. Harrison, "Decision-
Centric Architecture Reviews," Software, IEEE, vol. 31, pp. 69-76, 1 2014.

[25] M. Raatikainen, J. Savolainen and T. Männistö, "Architecture Management and Evaluation
in Mature Products: Experiences from a Lightweight Approach," in Proceedings of the
10th International ACM Sigsoft Conference on Quality of Software Architectures, New
York, NY, USA, 2014.

[26] J. Knodel and M. Naab, Pragmatic Evaluation of Software Architectures, Springer, 2016.
[27] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson and J. Carriere, "The

Architecture Tradeoff Analysis Method," in Proceedings of the Fourth IEEE International
Conference on Engineering of Complex Computer Systems, 1998. ICECCS '98, 1998.

[28] A.-P. Tuovinen, S. Mäkinen, M. Leppänen, O. Sievi-Korte, S. Lahtinen and T. Männistö,
"Unwasted DASE: Lean Architecture Evaluation," in 18th International Conference on
Product-Focused Software Process Improvement (PROFES 2017), Cham, 2017.

[29] D. Sobhy, L. Minku, R. Bahsoon, T. Chen and R. Kazman, "Run-time evaluation of
architectures: A case study of diversification in IoT," Journal of Systems and Software,
vol. 159, 2020.

[30] J. Knodel and M. Naab, "Mitigating the Risk of software change in practice: Retrospective

19

on more than 50 architecture evaluations in industry (Keynote paper)," in 2014 Software
Evolution Week – IEEE Conference on Software Maintenance, Reengineering, and
Reverse Engineering (CSMR-WCRE), 2014.

[31] J. Knodel and M. Naab, "Software Architecture Evaluation in Practice: Retrospective on
More Than 50 Architecture Evaluations in Industry," in Software Architecture (WICSA),
2014 IEEE/IFIP Conference on, 2014.

[32] V. Reijonen, J. Koskinen and I. Haikala, "Experiences from Scenario-Based Architecture
Evaluations with ATAM," in Software Architecture, 4th European Conference on (ECSA
2010), vol. 6285, M. Ali Babar and I. Gorton, Eds., Springer, 2010, p. 214–229.

[33] A. Banijamali, P. Heisig, J. Kristan, P. Kuvaja and M. Oivo, "Software Architecture
Design of Cloud Platforms in Automotive Domain: An Online Survey," in 2019 IEEE 12th
Conference on Service-Oriented Computing and Applications (SOCA), Kaohsiung,
Taiwan, 2019.

[34] P. Cruz, H. Astudillo, R. Hilliard and M. Collado, "Assessing Migration of a 20-Year-Old
System to a Micro-Service Platform Using ATAM," in IEEE International Conference on
Software Architecture Companion (ICSA-C), Hamburg, 2019.

[35] S. Ferber, P. Heidl and P. Lutz, "Reviewing Product Line Architectures: Experience
Report of ATAM in an Automotive Context," in Software Product-Family Engineering,
vol. 2290, F. van der Linden, Ed., Springer, 2002, p. 364–382.

[36] S. Bellomo, I. Gorton and R. Kazman, "Toward Agile Architecture: Insights from 15
Years of ATAM Data," IEEE Software, vol. 32, p. 38–45, 2015.

[37] P. Clements, R. Kazman and M. Klein, Evaluating Software Architectures: Methods and
Case Studies, Addison-Wesley, 2002.

[38] International Organization for Standardization (ISO)/International Electrotechnical
Commission (IEC), International Standard ISO/IEC 16085:2006 Systems and software
engineering — Life cycle processes — Risk management, ISO/IEC, 2006.

[39] L. Bass, R. Nord, W. Wood and D. Zubrow, "Risk Themes Discovered through
Architecture Evaluations," in 2007 Working IEEE/IFIP Conference on Software
Architecture (WICSA'07), 2007.

[40] M. Mayrhofer, C. Mayr-Dorn, A. Zoitl, O. Guiza, G. Weichhart and A. Egyed, "Assessing
adaptability of software architectures for cyber physical production systems," in ECSA
2019, Lecture Notes in Computer Science, vol. 11681, T. Bures, D. L. and I. P, Eds.,
Springer Nature Switzerland AG, 2019, pp. 143-158.

[41] W. R. Shadish, C. D. Thomas and C. D. Thomas, Experimental and quasi-experimental
designs for generalized causal inference, Houghton Mifflin Company, 2002.

[42] J. W. Creswell, Research Design: Qualitative, Quantitative and Mixed Methods
Approaches, Sage Publications, 2009.

