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In bioinformatics, new genomes are sequenced at an increasing rate. To utilize this data in various
bioinformatics problems, it must be annotated first. Genome annotation is a computational problem
that has traditionally been approached by using statistical methods such as the Hidden Markov
model (HMM). However, implementing these methods is often time-consuming and requires domain
knowledge. Neural network-based approaches have also been developed for the task, but they
typically require a large amount of pre-labeled data.

Genomes and natural language share many properties, not least the fact that they both consist of
letters. Genomes also have their own grammar, semantics, and context-based meanings, just like
phrases in the natural language. These similarities give motivation to the use of Natural language
processing (NLP) techniques in genome annotation.

In recent years, pre-trained Transformer neural networks have been widely used in NLP. This thesis
shows that due to the linguistic properties of genomic data, Transformer network architecture is
also suitable for gene predicting. The model used in the experiments, DNABERT, is pre-trained
using the full human genome. Using task-specific labeled data sets, the model is then trained to
classify DNA sequences into genes and non-genes. The main fine-tuning dataset is the genome of the
Escherichia coli bacterium, but preliminary experiments are also performed on human chromosome
data.

The fine-tuned models are evaluated for accuracy, F1-score and Matthews correlation coefficient
(MCC). A customized estimation method is developed, in which the predictions are compared
to ground-truth labels at the nucleotide level. Based on that, the best models achieve a 90.15%
accuracy and an MCC value of 0.4683 using the Escherichia coli dataset. The model correctly
classifies even the minority label, and the execution times are measured in minutes rather than
hours. These suggest that the NLP-based Transformer network is a powerful tool for learning the
characteristics of gene and non-gene sequences.
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1. Introduction

The first complete genome was sequenced in 1995 [11], and the publishing speed of new
genomes of bacteria, plants, animals and other organisms has accelerated since then
[33]. Genomic data consists of alphabetical characters that denote the nucleotides.
The order of those nucleotides forms the genome, and the gene sequences inside the
genome contain information about different features of the organism. Therefore, taking
advantage of all the published raw genomics data requires annotating those coding
sections and their functions, which is a rather complicated task [22]. In addition to
traditional methods based on rules and statistics, neural networks are a potential tool
for predicting genes. Compared to statistics-based systems, they require less domain
knowledge and are therefore easier to implement.

In this thesis, we investigate the possibility of utilizing a Transformer neural
network in a gene detecting task. In addition to being a powerful tool in Natural
language processing (NLP) [7, 34], Transformer networks can also help in detecting
genes and other coding sections from genomes. The linguistic characteristics of genome
data provide particular support for this approach. More specifically, this thesis focuses
on the use of a Transformer-based pre-trained DNABERT model [18] in detecting genes
of the Escherichia coli (later E. coli) bacterium [30]. We also performe preliminary
experiments on the human genome [12] using the 18th chromosome.

In our experiments, the network receives labeled genome sequences as input, with
labels 1 or 0 indicating whether the sequence is part of a gene or not, respectively. From
these sequences and labels, the model is supposed to learn the characteristics of genes
and make predictions for previously unseen data sequences. Due to a novel approach to
this task, we develop a new evaluation method that allows comparison at the nucleotide
level. Therefore, it is challenging to compare our solution directly to existing systems.
We still make a preliminary comparison to the ability of GeneMarkS [3] to predict E.
coli genes. In addition, the evaluation metrics are compared to the so-called naive
baseline model, where the most likely label is assigned to all nucleotide sequences.

The model performance is measured using various metrics, like accuracy and
Matthews correlation coefficient (MCC) [23]. The latter is especially suitable for our
data with highly unbalanced label distribution [5]. Our best models achieve better
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2 Chapter 1. Introduction

metrics than the naive baseline model, indicating that the Transformer network can
capture some of the underlying semantics of the genome. Therefore, they are a promis-
ing tool to help predict genes from bacterial genomes. However, more work is needed
to bring Transformer neural networks to the level of GeneMarkS in gene prediction
accuracy.

This thesis begins with the Background chapter, where relevant basics and se-
mantics of genomics are presented, as well as related work in terms of the gene detecting
problem. The next chapter, Preliminaries, explains the architecture and mechanisms
of Attention-based Transformer neural networks in detail. Also some state-of-the-art
Transformer models, including the model used in our experiments, DNABERT [18], are
introduced. The procedure from data collection to model fine-tuning is explained in
the Experiments chapter, as well as the results from different models trained. Finally,
the Conclusions chapter covers the summary of those results and a discussion of the
data and methods used. The thesis ends with suggestions for future work.



2. Background

This chapter provides relevant background information for the research methods and
experiments of this thesis. The reader gets the required terms and explanations of
genomics, as well as an overview of similarities between natural language and genome
data. Finally some of the previous works related to the gene predicting task are covered.

2.1 Basics of Genomics

This thesis examines the Transformer neural network’s ability to understand the under-
lying semantics of genomes from the data itself, without needing input from genomics
experts. Therefore it is not crucial to emphasize genomics knowledge, but a basic un-
derstanding of genomics is sufficient to understand the composition of the genome data
used in this study. This section gives an introductory overview of basic genomics as
a recap of high school biology courses. The terminology of genomics used throughout
this work will also be introduced.

Living organisms can be divided into three domains, bacteria, archaea and eu-
karya [13]. Bacteria and archaea consist of one cell with no nucleus and are together re-
ferred to as prokaryotes. All other organisms, such as plants, animals and fungi, belong
to the eukaryotes. Their cellular structure is more complex containing a membrane-
bounded nucleus. All organisms have their DNA in the cell structure which carries
the genetic information of the organism [6]. The double-stranded structure of DNA
consists of a sequence of nucleotides introduced next.

A nucleotide is a chemical structure with three parts: sugar, phosphate and a
nitrogenous base [6]. The nitrogenous base is the most relevant in terms of genomics
data processing since it determines the marker that refers to the nucleotide. Four
nitrogenous bases – adenine, thymine, guanine and cytosine, and their corresponding
letters A, T, G and C – form the alphabet of the data used in bioinformatics. The
double-strand structure of DNA, illustrated in Figure 2.1, comes from nucleotides form-
ing pairs and connecting. Adenines are connected with thymines, and guanines pair
with cytosines. Nucleotides form codons in fragments of three consecutive nucleotides,
which in turn define amino acids and protein biosynthesis, the core process inside the

3



4 Chapter 2. Background

cells.

Figure 2.1: An example of a DNA strand showing how the nucleotides are connected.

The complete set of an organism’s DNA is called a genome, and for prokaryotes,
the DNA inside the cell is the same as its genome. The genome of eukaryotes is a
combination of the DNA from both the nucleus and mitochondria. Most of the genome
is identical between different individuals in the same species, but genetic diversity does
occur. Genomes can be read in both directions, forward and reverse.

A gene is a nucleotide sequence of the genome. The order of nucleotides works
as the source code, or recipe, for the proteins and other molecules. There are typical
codons that indicate the beginning or end of a gene, start and end codons. The codons
inside a gene define the functions of the gene through protein biosynthesis. A bacterial
gene is usually a contiguous nucleotide sequence that begins at one nucleotide and ends
at another.

Eukaryotes have more complicated structures in their genes than prokaryotes.
One gene consists of multiple exons, the coding sequences of a gene, and intron se-
quences between them. Exon sequences folded together in a particular order form the
nucleotide sequence that defines the gene. As mentioned above, the genome has two
reading directions, and therefore the orientation of genes can also be forward or back-
ward. The genes can also overlap with each other, meaning that one gene can start
from the middle of another, or even be entirely inside another [25].

2.2 Semantics of DNA

One inspiration for this thesis was the interest in linguistics and the possibility to use
NLP techniques with genome data. Both language and DNA consist of letters, and
therefore it should be technically possible and effortless to configure NLP systems to
take genome data as an input. In this section, we will introduce the field of NLP and
examine similarities and differences between natural language and DNA.
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In NLP, computers are taught to understand and generate both spoken and writ-
ten language. These tasks are easy for humans, but require a lot of training for a model
to capture all the nuances of the language [19]. For instance, from the sentence ”The
chicken crossed the street slowly because it was so wide” it is clear to the reader, that
"wide" refers to the street, but in theory, it could as well refer to the chicken. There-
fore, the meaning of the sentence is not trivial for the algorithm or NLP model. Often
in NLP, the processed text is divided into sentences or words, and the connections
between those pieces are formed, for instance, with rule-based systems or a neural net-
work learning the connections. That way the system gathers an understanding of the
text and is able to execute the given tasks, for example, telling whether the sentence
has a positive or negative sentiment.

Language is widely used as a metaphor for DNA, but there are also concrete sim-
ilarities between natural language and so-called cell language, which is based on DNA.
This cell language has linguistic features like alphabet, lexicon, sentences, grammar,
phonetics, semantics and articulation [17].

Genome data consist of only four nucleotides A, T, G and C, meaning that the
size of the DNA alphabet is only 4. If we think of codons mentioned in Section 2.1,
we can equate them into words, and therefore the size of the lexicon is 43 = 64. Most
NLP applications handle much larger alphabets and vocabularies.

It is also possible to treat genes as words, and that approach makes the task
instantly more complicated. Our example genome of the E. coli bacterium has genes
of length between 14 to 7077 nucleotides. This is a much wider range of lengths than
lexicons in normal NLP applications. Instead, equating genes to sentences in natural
language makes the task more comparative to NLP tasks, such as labeling sentences
as positive or negative depending on their content.

The DNA of organisms evolves through time. Small incidental changes, also
known as mutations, occur constantly. Therefore genome data is more complicated
than strictly the size of its alphabet or lexicon. Certain rules that locate coding se-
quences can be used to define the grammar of DNA. However, these rules tend to have
many exceptions rendering the resultant grammar very complicated. As mentioned
earlier, this possibility of interpretation is also typical of natural language.

Transformer networks have been popular in NLP applications for recent years.
Their attention mechanism, explained in Section 3.2.2, is said to capture the semantics
of the text by emphasizing important parts and connections in the text [34]. In our ex-
periments, we use the Transformer-based DNABERT model that has been pre-trained
with the human genome. DNABERT is said to ”bring new advancements and insights
to the bioinformatics community by bringing advanced language modeling perspective
to gene regulation analyses” [18]. In the following chapters, we examine in practice the
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NLP tools’ ability to read sentences written in the DNA language.

2.3 Related work

Traditionally, genes are detected with methods that use Open reading frames (ORFs)
and statistics. By definition, ORF is a continuous sequence of nucleotides from a
start codon to the following end codon, excluding the end codon itself [22]. ORF
sequences are potential coding sections to be translated into proteins, but not all of
these sections are coding sections, and not every gene is between consecutive start and
end codons. For prokaryotes, a great proportion of the genes can be found using ORFs,
but overlapping genes cause problems due to the mixed order of start and end codons.

The exon and intron structure of eukaryotic genes requires more complicated
methods. An attempt can be made to identify exon and intron sequences by resolving
the portions of nucleotides since G and C occur in exons more frequently than the
other two nucleotides. Features derived from already known gene sequences of different
organisms can also be used as model examples when annotating new genomes [22].

Markov models utilize conditional probabilities for the gene prediction task. Es-
sentially, the model learns the probability of a certain nucleotide for different types of
genome sequences, based on k previous nucleotides. Markov models and more compli-
cated Hidden Markov models (HMM) [3] are widely used in gene predicting, although
implementing them might be time-consuming and require domain understanding. Yet
they are unable to completely predict the location of genes in genomes, and they also
make false predictions.1.

Neural networks bring a new perspective to the task by not being limited to
human-provided rules and statistics [2]. Computational neural networks consist of
layers of algorithms that perform computations for the input. The layers have multiple
weights, which are adjusted during the training to result a model that can predict the
desired output. Especially convolutional neural networks (CNN) are used for genome
annotation tasks [2]. However, they only have a limited view on the input, and therefore
challenges to capture insights from long genome sequences [18].

The performance of the neural network is dependent of the amount of learn-
ing data available. Often the task-specific data is limited, and this leads to a poor
performance [18]. Transformer network architecture [34], explained in Section 3.2.2,
supports a semi-supervised learning, in which the model is first fine-tuned with a mas-
sive amount of general genomic data [18]. It is then fine-tuned to the specific task,
such as gene prediction, with a small labeled dataset. Transformers are already used

1Our reference system, GeneMarks, performs the prediction of E. coli genes with 82% accuracy,
and 10% of all the gene predictions are false predictions
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for other genomics related tasks, such as finding starting points for genes [9, 18]. In the
following sections, we introduce a novel gene predicting approach, where Transformer
neural network learns to read genes from genomic language.





3. Preliminaries

The main objective of this chapter is to give a detailed explanation of the Transformer
network [34], the neural network used in the experiments. After defining the notations
used in this thesis, the architecture of the network is described in Section 3.2. The
following Sections 3.3 and 3.4 introduce some state-of-the-art Transformer models as
well as the model used in the experiments detailed later in Chapter 4.

3.1 Notations

The following notations are used throughout the thesis, unless specified otherwise:

1. All numbers are denoted with lower-case letters and unless indicated otherwise,
they belong to natural numbers (for instance k ∈ N). Matrices are denoted with
capital letters: M ∈ Nm×n. The notation m× n denotes the dimensionality of a
matrix having m rows and n columns.

2. Superscripts are references to the corresponding element and used mostly in con-
nection to weight matrices. For instance the weight matrix W linked to queries
Q is denoted WQ. Subscript i indicates the ith element of a list, such as input
vectors x1, x2, . . . , xm.

3. Indexing starts from number one – not zero, as is common in the context of
programming and coding. Intervals and ranges of integers are denoted with
parenthesis and square brackets, (m,n] meaning the range of integers from m+1
to n. Value m is not included as parenthesis (. . . ) denote an open interval, and
square brackets [. . . ] indicate a closed one.

4. The names of the layers and elements of the network architecture, such as Atten-
tion or Encoder, are capitalized, to distinguish them from the general versions of
the corresponding words.

9
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3.2 Transformer architecture

The Transformer is a neural network architecture proposed in 2017 [34] and it has
since become popular especially in the NLP field [7, 10], but also in other sectors like
computer vision [29]. This section explains the architecture of the Transformer as well
as the steps and parameters related to the training of the network.

As with neural networks in general, the architecture of Transformer networks
consists of layers. The first layer handles the prepossessing of the input. After that,
the main building blocks are called Attention, Feed Forward, Encoder and Decoder
layers. The layers listed above are explained in that order, strictly following the original
implementation of Transformers [34]. Explanations of different layers and the style of
figures are adapted from the blog post "The Illustrated Transformer" [1].

3.2.1 Preprocessing

The input of the model, supposing it is natural language sentences, is first tokenized
to a list of smaller parts, such as words, word parts, or punctuation. Every token is
then embedded into a numerical form of word vectors. Several tools are available for
tokenization and embedding1, and the details of these steps are beyond the scope of
this work. In the case of genome data, these preprocessing steps differ from the natural
language approach and are discussed in more detail in Section 3.4.

The Positional Encoding layer ensures that the model knows the order and po-
sitions of the input vectors. The intuition behind the layer is to add a different kind
of weight to every word vector, from which the model can derive the position of each
word. Let there be m words in the input. For every word vector wm with length n,

and i ∈ [1, n], the positional vector tm is calculated as follows:

Position(wm)i =


sin
(

m
100002i/n

)
, when i is even

cos
(

m
100002i/n

)
, when i is odd

Each index i ∈ [1, n] of the word vector gets a corresponding value in its positional
vector. These values are sine wave values and therefore belong to the range [−1, 1]
giving each positional vector a unique representation. The output of the layer is simply
vectors wm and tm added together.

1Natural Language Toolkit [4] for the tokenization, and word2vec [24] for the word embedding, for
instance.
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3.2.2 Attention

The Attention used in the original Transformer implementation is called Scaled Dot-
Product Attention [34]. Technically, the actual version is Multi-Head Attention, which
gives the model a broader understanding of the input. We will first examine the simple
attention mechanism, and use elements of that further to describe the Multi-Head
feature.

The first definition needed is a Softmax function [15] used in the Attention. The
input of Softmax is a vector x ∈ Rn, and it consists of elements x1, x2, . . . , xn. The
exponential function of a single element is normalized by dividing by the sum of all
exponents. When repeated to each element, the result is a vector length of n where all
the elements are in the range [0, 1] and sum up to 1.

Softmax(x)i = exp(xi)∑n
j=1 exp(xj)

(3.1)

To calculate the Scaled Dot-Product Attention, one sentence worth of prepro-
cessed word vectors is packed into a matrix and cloned into three matrices called
queries, keys and values, marked with Q,K and V, respectively. During the training
process explained in upcoming Section 3.2.5, the model learns corresponding weight
matrices WQ,WK and W V . The Attention, which helps the model to find the associ-
ations between input tokens, can be calculated using these six matrices:

Attention(QWQ, KWK , V W V ) = Softmax
(
QWQ · (KWK)T

√
d

)
VW V (3.2)

The first step is to take a dot product of weighted queries and keys to give each
input token a score against other tokens. The resulting matrix is scaled down with 1√

d

to prevent situations where the dot product gets large and gradients of the Softmax
get extremely small. Here d is the length of the input vectors.1 The Softmax function,
Equation (3.1) is then calculated for each row vector so that the values are scaled and
sum up to 1. These values represent the score of how much every token is expressed
at that particular position. Finally, those scores are multiplied by weighted values to
get the Attention as an output. The steps from the input matrix X to the output Z
are illustrated in Figure 3.1

The Attention function outputs a matrix which tells how much each input token
weights related to other tokens. In natural language, these weights can represent se-
mantic, syntactic or morphological dependencies, for instance. The intuition behind
Multi-Head Attention is to capture multiple different types of these dependencies in-
stead of one [8]. In Multi-Head Attention, Equation (3.2) is executed h times using the

1The scaling factor can also be something else, or even left out.
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Figure 3.1: Data flow from the input vector X to calculated attention matrix Z. Rows in the matrix
X represent input word vectors. Their length in this demonstration is 4, therefore the scaling factor
here is 1√

4 = 1
2 .

same number of different weight matrices WQ
i ,W

K
i and W V

i , where i ∈ [1, h]. Outputs
are then concatenated into one matrix, and multiplied with the weight matrix WO

formed in the learning phase:

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)WO

where headi = Attention(QWQ
i , KW

K
i , V W

V
i )

The resulting matrix is the output of the Multi-Head Attention layer. The di-
mensions of all matrices must be suitable for multiplication operations, and the final
output of the attention layer must also be in the same form as the input. Therefore,
if we have m input vectors of length n, weight matrices WQ,WK and W V must have
dimensionality n× n

h
where h is the number of the heads. Weighted queries, keys and

values then form m × n
h
matrices. When all h Attention heads are concatenated, the

resulting matrix has h · n
h

= n columns, and therefore its dimensionality is m × n.
Lastly, the output weight matrix WO has dimensionality n × n and the final output
of the Multi-Head Attention layer is an m × n matrix denoted with Z. Multi-Head
Attention as well as dimensions of associated matrices are illustrated in Figure 3.2.

There are three different versions of Attention in the Transformer implementation,
which are described in the context of the overall architecture in Section 3.2.4.

3.2.3 Feed Forward network

When the Attention layer tries to emphasize important meanings and connections
from the input, Feed Forward network (FFN) layer is said to capture the patterns and
distributions of the input [14]. Intuitively, it tries to approximate or generalize the
input and learn to predict the desired output from it. In the training phase, explained
in more detail in Section 3.2.5, the parameters of FNN are tuned layer by layer based
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Figure 3.2: Simplification of Multi-Head Attention with three heads (h = 3). Dimensions of the
matrices are given on the left.

on the feedback of error function (3.3). The FFN function is applied independently to
every vector z. It uses weight matrices W F

1 and W F
2 learned in the training phase, as

well as bias terms b1 and b2:

FNN(z) = max(0, zW F
1 + b1)W F

2 + b2

More specifically, the function first has one affine transformation y1 = zW F
1 +

b1 followed by Rectified Linear Unit (ReLU) activation y2 = max(0, y1), and finally
another affine transformation y3 = y2W

F
2 + b2. In the original implementation of



14 Chapter 3. Preliminaries

the Transformer [34], the length of the inner layer vector is 2048 when the input and
output are both length 512. ThereforeW1 andW2 have to be 512×2048 and 2048×512
matrices, respectively.

3.2.4 Encoder and Decoder

Attention and Feed Forward layers are used as sublayers in two types of main lay-
ers, Encoders and Decoders. The overall architecture of the Transformer consists of
a stack of Encoders, and an equal number of Decoders1. The original Transformer
implementation has six layers of Encoders and Decoders.

After tokenization, embedding and positional encoding, the input first flows once
through the Encoders sequentially. The first Encoder E1 takes the preprocessed input,
and the input of Encoder Ei is the output of the previous Encoder Ei−1, when i > 1.
After that, a total of m iterations are needed through all the Decoder layers, where m
is the desired amount of final output vectors. The final output is thereby printed out
token by token, or word by word.

Both the Encoder and Decoder have a Multi-Head Attention layer described in
3.2.2. Because queries, keys and values are cloned from the same vectors, it is referred
to as a Self-Attention layer in this context. The Decoder uses a masked version of
Self-Attention, wherein the ith flow, the input vectors xm,m > i are masked with non-
significant values, such as zeros. That forces the model to make predictions based only
on the previous inputs. This so-called Auto-regressive feature is needed, for example,
in machine translation or language generation tasks.

After the Masked Self-Attention layer, the Decoder has another type of Attention
called Encoder-Decoder Attention. It differs from the Self-Attention in its input: The
outputs of the final Encoder layer are used as keys K and values V and Masked Self-
Attention outputs are used as queries Q. With values from the Encoder layer, the
Attention function (3.2) can pay attention to all the positions of the original input
sequence.

The final sub-layer for both Encoders and Decoders is the Feed Forward layer
explained in Section 3.2.3. The FFN function is applied separately to each row vector
of the Attention layer’s output. In a sense, these row vectors represent individual tokens
in the input, but the Attention function has already captured information about all
the tokens to every row vector through the Softmax operation (3.1).

Figure 3.3 illustrates Encoders, Decoders and their sub-layers as well as shapes
of inputs and outputs of the layers. In addition to these steps, every sub-layer output
is connected to its input by adding them together at the end of the sub-layer. After

1There are also Transformers with only Encoders or Decoders, as it turns out in Section 3.3
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Figure 3.3: Architecture of Encoders and Decoders in Transformer network.

this so-called residual connection step, the sub-layer result is normalized [20]. These
steps are applied to Feed Forward layers as well as to all three kinds of Attention lay-
ers: Self-Attention, Masked Self-Attention and Encoder-Decoder Attention. Residual
connection and normalization are visualized in Figure 3.4.
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Figure 3.4: The residual connection and normalization in every Attention and Feed Forward layer
first adds the layer output to its input, and then normalizes it.

3.2.5 Training

While the architecture is a feature that every Transformer network shares at some
level, there are multiple different adaptations for training the network. Some of the
typical practices and concepts related to the training phase are examined here, and
more specific training parameters are introduced in association with the DNABERT
model in Section 3.4.

Training in essence means learning the most optimal weight matrices so that
the outputs are as close as possible to the desired outputs. The Transformer has
weights WQ

i ,W
K
i ,W

V
i and WO related to Attention layers, as well as W F

1 and W F
2 in

Feed Forward layers. Before training, all the weight matrices are initialized to contain
random numbers forming a normal distribution. Bias terms used in the FFN function
are set to b1 = b2 = 1.0. Every time the weights are used in Attention or FNN functions,
updated versions of bias terms are calculated to be used in the next iteration. The
predictions of these functions are compared to the desired outputs, and the difference
between them is measured with an error function denoted here by e. The cross entropy
loss function is used here as an example of e:

e =
n∑

i=1
−Ŷi log(Yi) (3.3)

where Ŷ and Y are desired and predicted outputs respectively, and n is their
total amount. The result of the error function is used for updating the weights. One
method for that is the gradient descent method, where the weight for next iteration
k+ 1 is calculated using the previous weight W k, learning rate η and a gradient of the
error e with respect to the previous weight:

W k+1 = W k − η ∂e

∂W k
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The learning rate η is a small number that acts as a scaling factor, determining
how much the derivative affects the weights at one step. Optimal weight updating often
requires other methods than simply scaling the gradient at the learning rate. Many op-
timizing techniques are developed on top of the gradient descent method. DNABERT,
for instance, uses an Adaptive Moment Estimation with Weight Decay (AdamW) op-
timizer [21] that utilizes momentum and weight decay methods with separate learning
rate updates. These methods and their mathematical formulas are explained next.

First, to simplify the notations, the gradient with respect to the weight parameter
W and time step t is denoted by gt:

gt = ∂e

∂Wt

The purpose of the momentum terms is to help the model converge faster by
strengthening the movement towards the promising directions.

When the alignment of the gradients’ directions increases, the momentum terms
increase and decrease correspondingly as the gradients’ alignment decreases. AdamW
uses two momentum terms, m and v as well as decay rates β1 and β2 connected to them
respectively. Term m can be seen as an estimate of the mean of the gradients, and v as
an estimate of the uncentered variance of the gradient. The terms are updated using
the following formulas:

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g2
t

β1 and β2 are usually set to 0.9 and 0.999 respectively by the authors’ recommen-
dation. Both terms are then corrected because they tend to bias toward zero.:

m̂t = mt

1− βt
1

v̂t = vt

1− βt
2

Lastly, the update formula of the weights is formulated, using the learning rate
η, bias-corrected momentum terms m̂ and v̂ and weight decay value w:

Wt+1 = Wt −
η√
v̂t + ε

m̂t − ηwtWt

Index t refers to the step time as the parameters are updated separately for every
step. To avoid dividing by zero, ε is added to the denominator of the division. The
authors of the AdamW optimizer propose setting it to 10−8 or a similar extremely small
value.
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The weight decay mechanism works as regularization and therefore helps the
model to avoid overfitting. Weight decay values, as well as learning rates, can also be
updated separately for individual steps and parameters. This approach allows empha-
sizing their importance based, for instance, on the input frequency. The learning rate
η is often updated with a process called warmup [16]. The weights are first initial-
ized as random numbers, and therefore they might diverge in the wrong direction at
the beginning of the training. The warmup method starts with a lower learning rate
and increases it step by step until the desired value is achieved. The learning rate,
weight decay and warmup are revisited in Section 4.4 which covers the hyperparameter
optimization of our model.

3.3 BERT and other Transformers

Since introduced in 2017, there have been many successful implementations of the
attention-based Transformer network [34]. Three of them are introduced in this sec-
tion, two briefly and the last one, BERT, is examined more closely as a preliminary
introduction to the DNABERT model used in the experiments.

OpenAI research lab has developed their Generative Pre-trained Transformer 3
(GPT-3) model with a somewhat similar Attention-based architecture than the original
Transformer [7]. The key difference is that the GPT-3 has no Encoder layers [7, 28].
Instead, it is trained with 175 billion weight parameters and is thus one of the largest
neural networks ever trained. It generalizes well in different NLP tasks and is known
for the ability to generate fluent texts, such as complete articles, given just a short
introduction as input [27].

Transformers are also used for other than strictly NLP models. DALL•E (named
after the artist Salvador Dalí and movie character Wall-E) is a multimodal version of
GPT-3 that produces images from natural language [29]. An example of the image
generated with input words ”an armchair in the shape of an avocado” is shown in
Figure 3.5.

Bidirectional Encoder Representations from Transformers, shortly BERT, is a
state-of-the-art Transformer model, that comes with an open-source collection of pre-
trained BERT models [10]. Good transfer learning capabilities are indeed one interest-
ing feature of Transformers, as ”pre-training teaches the models about the structure
of language” [8]. Therefore one pre-trained BERT model can be fine-tuned for several
different tasks with just a few additional training layers and even a relatively small
amount of data. Such an approach saves resources compared to training a different
model for each task, and the savings in computational power lead, among other things,
to lower CO2 emissions [32]. Additionally, as explained below, pre-training is done
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Figure 3.5: The image of ”an armchair in the shape of an avocado” generated by DALL•E [26].

with unlabeled data and therefore there is no need for a great amount of task-specific,
labeled data.

While GPT-3 has only Decoder layers, BERT only has the Encoder. For the
training, it uses a Masked Language Model (MLM) approach, where part of the input
tokens are masked and the model learns to predict their content by looking at the
non-masked tokens around them [10]. The loss is computed between these predictions
and the ground truth tokens behind the masked ones. The weights are then adjusted
based on the loss.

More precisely, 15% of the input tokens are chosen randomly to be masked. From
these tokens, 80% are replaced with a [MASK] -token, 10% with another random token
and the rest 10% stay unchanged. This approach gives the model the ability to learn
the desired outputs while avoiding overfitting to the masked tokens. It also allows for
a bidirectional view of the input context, unlike in Decoder based systems where the
Masked Self-Attention blocks the right side context of the input.

For fine-tuning, the weights of the model are initialized with pre-trained ones.
The input used for fine-tuning is not masked, instead, depending on the task, the
loss is computed between the outputs and ground truth values. Data used for the
fine-tuning is task-specific, and usually labeled.

There are no labels in the pre-training, but the model gets the ground truth
behind the masked tokens to adjust the weights. Therefore the pre-training part is
called self-supervised learning, and fine-tuning is supervised learning. A large amount
of unlabeled training data combined with a small amount of labeled fine-tuning data
makes this approach in its entirety semi-supervised learning.
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3.4 DNABERT

In our experiments, we use a BERT-based Transformer model that has been pre-trained
with genome data. DNABERT [18] has a similar Encoder architecture and masking
approach as BERT, with minor modifications due to the differences between natural
language and genome inputs. DNABERT uses the human genome as training data. As
explained in Section 2.1, a genome is a long sequence of nucleotides. For pre-training,
the human genome is divided into windows with a maximum length of 510 nucleotides.
When NLP approaches convert words into tokens, DNABERT uses a k-mer approach.
Intuitively, the input window is divided into overlapping sequences of length k to form
the "words" to tokenize.

More precisely, every window w is divided into k-mers, where k = 3, 4, 5 or 6.
That is, for every index i, i ∈ [1, 510 − k), there is a k-mer t = ni, ni+1, . . . , ni+k−1,

where n is one nucleotide. These k-mers are further converted into tokens according
to a vocabulary of all possible k-length nucleotide combinations. The k-mer approach
and tokenization are demonstrated at the top of Figure 3.6.

This approach enriches the contextual information available for the layers of the
network since every nucleotide is concatenated with the surrounding ones. However,
this leads to issues with the random masking approach. The predicting task is too
easy if the correct answer can be deduced from the neighboring tokens. Therefore, the
masking approach is modified so that instead of random separate tokens, continuous
spans of tokens are masked. Weights are then adjusted based on the predictions during
the pre-training. For the first 100000 training iterations, 15% of the inputs are masked,
and masking is increased to 20% for the last 20000 iterations.

The DNABERT model was pre-trained with cross-entropy loss shown in Equation
(3.3). Other parameters for the training were set to β1 = 0.9, β2 = 0.98, ε = 10−6 and
weight decay = 0.01. The purpose of these variables is explained earlier in Section
3.2.5. In DNABERT, the Multi-Head Attention, explained in Section 3.2.2 consists of
12 heads and there are 12 Decoder layers in the model. Lastly, there is a Classification
layer, that performs the final predictions for masked tokens. Figure 3.6 visualizes the
layers of DNABERT architecture.

Unlike in pre-training, there are no masked tokens in the fine-tuning phase. In-
stead, the input has special [CLS] and [SEP] tokens referring to the beginning and the
end of the window, respectively, as well as the corresponding label of the window. The
final classification layer is trained by updating its weights according to the predicted
and true labels.

The self-supervised pre-training gives DNABERT a general understanding of the
so-called DNA language, which can then be fine-tuned for different tasks. The au-
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thors give several examples, one of them called prom-core, where the input window is
classified according to whether it contains a promoter1 sequence or not. As a sequence-
level classification task, it is justified to use the prom-core method as a basis for our
corresponding experiments in which we classify gene sequences. The fine-tuning of
DNABERT for our specific task is discussed in Section 4.2.

Figure 3.6: Demonstration of how one input sequence flows through the DNABERT model. After
tokenized into 3-mers, some spans of tokens are replaced with [MASK]-tokens. The replacing takes
place only in the pre-training. Every token has its corresponding index in the vocabulary, which is
used for embedding. After the positional encoding is added, the pre-processed input vectors are sent
through 12 Encoder layers. In the fine-tuning, the last hidden output goes to a final Classification
layer, that outputs the results.

1Promoters are a certain type of DNA sequences that are related to genes and protein biosynthesis.





4. Experiments

The execution of experiments requires multiple steps, which are explained in this Chap-
ter. The data is collected from the sources and preprocessed to be used for the training.
Section 4.1 opens this process in detail. The tools and commands used for the fine-
tuning are introduced in Section 4.2. Our evaluation setup and metrics are introduced
in Section 4.3. After that, the actual training, including hyperparameter optimization
and the results, is elaborated in Section 4.4.

4.1 Collecting data

For the fine-tuning process, the training data must be labeled according to the gene
predicting task. Therefore we need the nucleotide representation of the genome, as well
as the gene coordinates, to form the proper dataset for training. In this section, the
collecting of the data is explained for two sources, the E. coli genome and the human
chromosome 18.

4.1.1 Escherichia coli K-12

For the experiments with the genome of the Escherichia coli (E. coli) bacterium, two
text files are loaded from the RegulonDB database [30, 31] The genome sequence
of E. coli K-12 bacterium, genome version U00096.3, is loaded in fasta format1. In
addition, the gene sequences of that same E. coli bacterium are also loaded in the
same format. One line in the gene file represents one gene and includes the left and
right end coordinates of each gene, DNA strand direction (forward or reverse) and the
nucleotide sequence of the gene. There is also other information such as the name and
identifier of the gene, but those are not used in the experiments.

The lines of the E. coli genome file are concatenated to one long string, containing
a total of 4641652 nucleotide characters. Preparing the gene file requires several steps.
First, 21 gene sequences with no coordinates and nucleotide sequences are left out.
The lines are then ordered based on the left end coordinate of each gene, and only

1Fasta format is an established way of presenting bioinformatics sequences in text form.
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coordinates, directions and nucleotide sequences are included. The ground truth data
of E. coli genes thus includes 4665 gene sequences and coordinates, 2297 in the forward
direction and 2368 in the reverse direction of the DNA strand.

4.1.2 Human chromosome 18

The size of the full human genome is over three billion nucleotides. This dataset
is too large in to be utilized reasonably with the tools and computational resources
available. To make the experiment more manageable, we chose to use only a part of
one chromosome. This reduced dataset is of the same order of magnitude with E. coli
dataset.

The human genome file GRCh38_latest_genomic.fna is available in fasta for-
mat from National Center for Biotechnology Information (NCBI) web page [12], and
chromosome 18 is extracted from it using the grep command-line tool. Lines in the
file represent the nucleotides of the chromosome. They are written to a text file and
then concatenated into a sequence containing a total of 80373285 nucleotides.

As explained in Section 2.1 human genes are more complicated than, for instance,
genes of a bacteria. Exons are the main parts of human genes, while introns are non-
coding clips between them. To simplify the prediction task we use only exons instead
of the full human genes. Coordinates of the exons are extracted with the following
steps: From NCBI, we first load file GRCh38_latest_genomic.gff containing different
sequences of the human genome. The file is in General Feature Format (GFF), meaning
that every line contains nine fields, from which we are interested in four: 1. Sequence
id, 3. Type of feature, 4. Start position and 5. End position of the feature. Lines
with Sequence id = NC_000018.10 and Type = exon are extracted to a file called
chr18exons.txt. The file now contains a total of 35998 exon coordinates, and these
are ordered in the same way as the E. coli gene coordinates above to form ground truth
data of exons.

Chromosome 18 is about five times the size of E. coli bacterium in terms of
nucleotide amount. To make the two datasets equal in size, chromosome 18 is reduced
to about one-fifth of the original. The cutting of the chromosome and exon coordinates
is done as follows:

1. Calculate the cutting point by using the length of the full chromosome:
80373285/5 = 16074657

2. If the cutting point is inside an exon sequence, move the point to be the last
index of non-exon
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3. Only exon coordinates with an end point smaller than the cutting point are
included

4. The first 10000 nucleotides are filler characters ’N’ and are therefore excluded.
Exon coordinates are relocated accordingly.

The reduced chromosome 18 dataset contains 15315920 nucleotides and 10285
exon sequences.

4.1.3 Preprocessing

Genome data input for the pre-trained DNABERT model has to be divided into context
windows of length w < 512. Each window has to be in the k-mer form, k being 3, 4, 5
or 6. For instance, if k = 3 and one of the windows is ACCGT with w = 5, the k-mer
representation is ACC CCG CGT. The model is then able to transform each k-mer
into a numerical token using the dictionary of all possible nucleotide combinations of
length k and corresponding integers. For instance in case of k = 3 there are 43 = 64
tokens, and when k = 6 there are total of 46 = 4096 possible tokens. Eventually, every
context window has its own representation consisting of a list of tokens.

For the model to be able to learn genes and non-gene parts of the genome, we
also need a label for each window telling whether the nucleotides belong to the gene
or not. For that purpose, we form a label sequence equal to the length of the genome,
where every index corresponding to a nucleotide is either 1 or 0 depending on whether
it belongs to a gene or not, based on the gene coordinates collected earlier. The final
labeling of train data is not the same as the labeling of the test data. For the training
data, the ground truth labels are presumably available. The testing data, instead, must
follow the scenario where the goal is to predict labels for the novel genome data without
knowing the coordinates. Ground truth coordinates are still used for the evaluation of
the predictions, as we see in Section 4.3.

The training data is first sequenced into gene and non-gene sequences by separat-
ing them from the label exchange points. Every sequence is then divided into windows
with a maximum length of w. In this way, also shorter windows than w are created
in situations where the length of the sequence is not divisible by w. The window-level
labels are the same as the nucleotide-level labels inside each window.

Instead, the test data is first sectioned evenly into w-long windows, and every
window is then labeled proportion of nucleotide-level labels. We consider three different
methods for labeling:

1. The window is labeled as 1 if more than half of its nucleotides belong to a gene,
otherwise, the label is 0.
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2. The window is labeled as 1 if all of its nucleotides belong to a gene, otherwise,
the label is 0.

3. The window is labeled as 1 if any of its nucleotides belong to a gene, otherwise,
the label is 0.

More formally:

Lw = 1, if
∑

i

Lni >
w

2 , else Lw = 0 (4.1)

Lw = 1, if
∑

i

Lni = w, else Lw = 0 (4.2)

Lw = 1, if
∑

i

Lni > 0, else Lw = 0 (4.3)

Here Lw is a label of the window, and Lni is a label corresponding to a nucleotide
in the ith position of the window. The first method is the most justified because it
emphasizes the contribution of non-genes and allows the model to identify sequence
change sites. Therefore method 1 was adopted for the experiments in Section 4.

Before the genome is partitioned into windows, labeled and formed into k-mers,
it is split into separate training and evaluation sets. We use a 70 : 30 split, the training
dataset being 70% of the size of the whole dataset, and the testing dataset being 30%.
Window-label pairs in the training dataset are shuffled whilst testing data remains in
order. The training data is saved as train.tsv1 and the test data as dev.tsv so that
DNABERT can read them. A simplified example of forming the train and test sets,
from genome and coordinates to labeled windows of k-mers, is illustrated in Figure 4.1.

Training datasets are then used to fine-tune the DNABERT model as described
in Section 4.2, and the results of predicting labels for the test set are given in Section
4.4. The codebase for collecting and processing the data is available in Appendix B.

4.1.4 Dataset variations

By using different window lengths and k-mers we get multiple variations of the data.
In our experiments with E. coli, we use lengths between 10, 25, 50, 75, 100, 200, 300 and
500 for the context windows and transform them into 3-mers, 4-mers or 6-mers. We
also use one dataset with window length 75 and k = 4. With the human chromosome
18 data, variations are somewhat similar: Window lengths 15, 25, 75, 100, 200 and 300
are used with 3-mers and 6-mers when experimenting with one-fifth of the full data
size. We also did an experiment with the full chromosome, using 3-mers and window
size 75.

1A text file format in which values are separated by a tabulator.
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Figure 4.1: The train and test labels are formed differently, as seen in this example. The test
windows here have an absolute length of 5 while the train window lengths are in the range of 3 to 5
depending on the gene coordinates. Sections that are shorter than k have to be excluded from the
input, as they would not have a corresponding numerical token in the dictionary. However, the share
of these sections and the impact on the overall result is extremely small. For test window labeling,
both methods 1 or 2 lead to the same label in this example.

In addition to varying window lengths and k-mers, we also did some attempts
to make the data more balanced. Over 88% of E. coli genome consists of genes., and
only 5% of human chromosome 18 is exons. These imbalances are far from optimal
in labeling tasks such as ours, and therefore it is arguable to try to either reduce the
dominating label or increase the diminutive one. [36] With E. coli, we created a dataset
using only coordinates of forward genes and ignoring reversed ones. That led to 43 : 57
ratio between genes and non-genes. The same method was used to create a dataset
with only reversed genes with a ratio of 46 : 54.

With human chromosome 18, balancing experiments were executed by removing
sequences that were labeled as 0, in other words, non-coding sequences between exons.
To get the ratio between labels close to 50 : 50 most of the non-coding sequences have
to be removed. In our experiments using one-fifth of the chromosome, we removed 1300
randomly chosen sequences out of 1410 non-coding sequences. With this approach, the
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ratio between labels 1 and 0 was 39 : 61.
Discussion about these balancing methods, as well as results of balanced dataset

variations, are covered in Section 4.4.2. It is notable here, that the main experiments
were done with the unbalanced E. coli dataset, the results of which can be found in
Section 4.4.1.

4.2 Fine-tuning the DNABERT

The overall process of fine-tuning the pre-trained DNABERT-model is described in
this section, as well as the chosen execution environment. The selection of training
parameters is omitted from this section, although it is strongly related to fine-tuning.
Instead, Sections 4.3 and 4.4 explain in detail how the evaluation method serves in the
selection of optimal parameters.

Collecting and preprocessing of each dataset variation generates two text files
containing training and testing data. In order to use the DNABERT repository as
such, the input files must be named as train.tsv and dev.tsv. Files for different
variations are stored in separate, descriptively named folders.

The DNABERT code-base is open source and the repository is available on Github
[35]. We clone the repository into a Colab notebook and install all the requirements
according to the instructions in the README.md file. Colab notebook is a browser-based
environment for running python code using Google Cloud. It was chosen due to its
capacity to use cloud-hosted GPU resources for the computations.

Depending on the chosen k for k-mer size, we load a corresponding pre-trained
DNABERT model from the Github repository. We then specify the paths for the pre-
trained model, data folder and output model, as well as all the training parameters.
Fine-tuning is then performed by executing the run_finetune.py python file from the
repository with the do_train option. The paths to the data and models are defined
in the command, as well as the training parameters. Appendix A shows the details of
the command, as well as a minor modification to the code base before executing it.

The fine-tuning function uses the data from train.txt to modify the weight
matrices of the pre-trained model and saves the new, fine-tuned model to the specified
path. It takes from a couple of minutes to about an hour to run one epoch in the Colab,
depending on the dataset configurations: When the data is divided into the shortest
windows (w = 15, 25), the amount of input rows is substantially larger than with the
longest windows (w = 300, 500). This naturally increases the iterations of the neural
network layers (introduced in Section 3.2.2), and thus the time spent on training.

After fine-tuning, the results are generated by executing run_finetune.py again,
this time with the do_predict option. For the results, we use the test data created
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in Section 4.1.3 and saved as the dev.tsv. DNABERT uses this file as an input
and predicts labels for those sequences based on the fine-tuned weights of the model.
DNABERT then prints out prediction results like accuracy, F1-score, precision and
recall, but unfortunately, these numbers are not usable in our use case. As explained
in Section 4.1.3, labels for test data are formed at window level, and DNABERT
calculates the results for predictions based on these labels. Instead, we want to evaluate
the predictions at the nucleotide level. Tailored evaluation calculations are explained
in next Section 4.3.

The model was fine-tuned with different hyperparameters, values of k, window
sizes and amounts of epochs. The hyperparameters, such as learning rate and weight
decay, define the weight update process according to Section 3.2.5. Window size and
k-mer affect to the training data structure, and the epochs determines the amount of
training cycles through the data. Both datasets, E. coli and human chromosome 18
were utilized, but E. coli was studied in more depth, while only a few different configu-
rations were tested for the human dataset. The process of how the final configurations
were chosen is described in Section 4.4.

4.3 Evaluation setup

Once the DNABERT-model has been trained with the training data, we test it by
predicting the results for the test data. The run_finetune.py function writes the
results in a NumPy1 file pred_results.npy where for every input window of k-mers,
there is a corresponding value that is in the range of 0 to 1. The default threshold
value is 0.5. Windows with smaller values get label 0 and therefore are predicted as
non-gene sequences, and windows with greater value are predicted to belong to a gene
with label 1.

The k-mer structure of the input data is no longer needed in the evaluating
process. Instead, we expand the predicted label 1 or 0 to apply to every individual
nucleotide in the corresponding window. For instance, if the predictions for three
consecutive windows are 0.65, 0.8 and 0.45, we get labels 1, 1 and 0 for the win-
dows. Next, every label is multiplied by the window size so that we have as many
labels as nucleotides. With window size 5 we end up having a label sequence of
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 in this example. The resulting sequence is then com-
pared to the ground truth labels of the corresponding sequence of the original genome.
From predicted and ground truth labels we count the amounts of true positives (TP),
false positives (FP), true negatives (TN) and false negatives (TN). Figure 4.2 demon-

1Python’s library for efficient array representations and functions.
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strates more closely the process of addressing predicted labels and computing the TP,
TN, FP and FN counts.

Figure 4.2: Evaluation process from predicted labels to comparison against ground truth labels.
In this example, the window size is 5 and the train data is in the form of 3-mers. The bottom row
demonstrates the formation of true positives (TP), false positives (FP), true negatives (TN) and false
negatives (TN). Accuracy here is TP+TN

15 = 10
15 = 0, 66

Based on these counts, we calculate accuracy, precision, recall, F1-score and
Matthews Correlation Coefficient (MCC) using the following formulas:

accuracy = TP + TN
n

precision = TP
TP + FP

recall = TP
TP + FN

F1 = 2 · precision · recallprecision + recall

MCC = TP · TN− FP · FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Here n is the count of nucleotides in the test data, and also n = TP + TN +
FP+FN. Accuracy is simply the proportion of correct predictions of all predictions. It
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must be noted here that if the proportion of genes from the whole genome is high, the
accuracy would also be high even with a naive model that predicts all the labels to be
1. Therefore, the aim is to get at least better accuracy than the proportion of genes,
to make sure the model has actually learned the predictions using the input data.

Precision tells which fraction of gene predictions are correct, and recall is the
share of correct gene predictions from ground truth genes. Precision and recall can
also be described as positive predictive value and sensitivity, respectively. F1-score
is the harmonic mean of precision and recall, and therefore indicates the accuracy of
those two values combined. F1-score, as well as precision and recall, does not take true
negatives into account, and therefore it might be misleading in situations where the
balance between labels is biased, like in our datasets. Therefore these metrics must be
interpreted with caution, as we wil see in the Section 4.4 in the context of the results.
For instance, a recall value of a naive model is misleadingly 1 since the FN count is
zero.

MCC is said to be a better metric for evaluating binary classification models like
ours, especially when labels are unbalanced [5]. There might be situations where the
denominator would be zero, like the naive model mentioned above. In this case, the
value of MCC is set to zero based on the following reasoning: All the values are non-
negative whole numbers. Therefore, if any of the sums in the denominator is zero, it
means that both of its addends are zeros. Then, also the numerator has to be zero, as
both of the multiplications have zero as a factor.

MCC gives values between −1 and 1. However, if the result is exactly −1, 0 or
1, the metric is not defined [5]:source. In those situations, other metrics should be
considered instead. A random model gets MCC values close to zero, and a good model
is recognized by the values approaching one.

In addition to the metrics described so far, we also plot four figures from each
training to help in the evaluation of the fine-tuned models. An example of these plots
is in Figure 4.3.

Figure 4.3: Example of figures plotted during the training.

The first plot shows the distribution of the predictions on both sides of the thresh-
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old value of 0.5. The second plot, confusion matrix, simply shows the TP, TN, FP and
FN values visualized in the colored grid. The third plot, Receiver Operating Charac-
teristic curve (ROC curve), is explained below, and the fourth plot gives information
about the loss function during the training. The concept of the loss was discussed
earlier in Section 3.2.5.

For plotting the ROC curve we need the True Positive Rate (TPR) and False
Positive Rate (FPR). TPR is simply the recall or sensitivity. FPR is also called the
probability of false alarm, and it is calculated by 1−TPR. TPR is plotted against FPR
over different thresholds from 0 to 1. A diagonal curve means no better than a random
model, and a well performing model has plenty of space above the diagonal and below
the curve. Curves below the diagonal technically mean worse than a random model,
but in that situation switching the labels between each other mirrors the curve by the
diagonal, and therefore also makes the model better.

Our evaluation method tells us what windows are predicted to belong to a gene
and which do not, and processes the results at the nucleotide level. This differs from
some other approaches, such as GeneMarkS, which gives start and end coordinates
of the predicted gene positions. Our approach may mistake in its predictions in two
different ways::

1. There can be windows inside the true gene sequences labeled as non-genes or vice
versa.

2. Beginnings and endings of the genes or non-genes can be labeled wrongly, as the
window start and end points will most likely not hit exactly the ground truth
coordinates.

The coordinate-based approach, in turn, attempts to predict the entire gene sequence
at once by giving the start and end coordinates. We evaluate the GeneMarkS results
also in the nucleotide level as a reference to our results in Section 4.4.1

4.4 Results

Based on the observations during the preprocessing phase and the first fine-tuning
trials, the unbalanced E. coli dataset was chosen for a more detailed model optimization
process. Subsection 4.4 focuses on the results from that process. Results from the
balanced E. coli dataset variations, as well as human chromosome 18 results are briefly
mentioned in Subsection 4.4.2.
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4.4.1 Primary results

This section describes the results obtained with different fine-tuned models using E.coli
data, as well as the hyperparameters and other settings used for fine-tuning those mod-
els. Therefore, this section will also explain how the optimization process proceeded
from the first trials towards the final and best models. The main evaluation results to
be examined are accuracy, MCC, F1-score and precision, all previously explained in
Section 4.3. Loss graphs and ROC curves were also utilized to examine and explain
the performance of the models.

Baseline parameters for the initial fine-tuning were chosen according to the ones
used in the original DNABERT experiments [18], and more specifically in fine-tuning of
their Prom-core model. Table 4.1 shows the parameter settings found in an appendix
of the DNABERT article. The first line shows the initial parameters used. The most
relevant parameters here are k = 3, learning rate = 10−4 and sequence length = 75.
Throughout this thesis, the corresponding term for "sequence length" has been "window
size" and instead of steps, we use the term epoch. Hidden dropout probability, warmup
percent and weight decay were set to 0.1, 0.06 and 0.01, respectively, as shown in Table
4.1.

Table 4.1: Hyperparameter settings used for fine-tuning the original DNABERT Prom-core model.
[18] The hyperparameters in the top row were used as a baseline setting in the beginning of the
parameter optimization process.

Figure 4.4: The initial training parameter setting: k = 3, epochs = 2, w = 75, lr = 10−4,dropout =
0.1,weight decay = 0.01,warmup = 0.06.

The evaluation of the first fine-tuned model produced the following results: ac-
curacy = 0.8884, MCC = 0 and F1-score = 0.9409. MCC being zero means that there
is something wrong in the model, as explained in Section 4.3, and the distribution of
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predictions in Figure 4.4 indeed shows that the first model is naively predicting every
nucleotide belonging to a gene with the same predicted value. The loss is not decreas-
ing as it should, which is also a characteristic of unsuccessful training. This is the
starting point of the parameter optimization process and every evaluation affected the
direction of the next modifications of the parameters. The process can be divided into
four iterations:

1. Learning rate, epochs and k-mers

2. Warmup percent, weight decay and dropout probability

3. Window sizes

4. Window size validation with learning rates

After four iterations, a summary of the results is discussed. Also the results of
the control system, GeneMarkS [3], are briefly presented.

Iteration 1

The learning rate affects the process of updating the weights, as we recall from Section
3.2.5, and the first step was to optimize it. From learning rates 10−4, 10−6 and 10−8 the
middle one gave the best results and encouraged us to try more values near it. Lower
learning rate of 10−7 again led to a "one label model", but with a higher learning rate
of 5 · 10−6, accuracy 0.9027, MCC 0.4316, F1-score 0.9464 and precision 0.9262 were
achieved.

Figure 4.5 shows the plots from the learning rate 10−8, where the distribution of
predictions seems somewhat promising, but the ROC curve revevals that the model is
not working properly. The loss curve indicates that the learning was still in progress.
Therefore, the next step of training was to have three epochs instead of two. From the
learning rates 10−7 and 5 · 10−6 the former did not improve the results, but the latter
one proved to give the best MCC and precision so far, MCC being 0.4728 and precision
0.9403. Accuracy and F1-score were slightly lower than with two epochs, the Accuracy
being 0.8967 and the F1-score 0.9420.

In addition to k = 3, other k-mer values were also explored using three epochs
and a learning rate of 5 · 10−6 but the results were slightly worse than with the 3-mer.
The exact results from fine-tuning with different learning rates, epochs and k-mers are
found in Table 4.2.
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Figure 4.5: k = 3, epochs = 2, w = 75, lr = 10−8,dropout = 0.1,weight decay = 0.01,warmup =
0.06

k Epochs w Learning rate Accuracy MCC F1-score Precision Recall

3
2 75

1.00E-04 0.8884 0 0.9409 0.8884 1
1.00E-06 0.8935 0.2692 0.9426 0.9037 0.9851
1.00E-08 0.7928 0.0014 0.8826 0.8885 0.8768
5.00E-06 0.9027 0.4316 0.9464 0.9262 0.9675
1.00E-07 0.8884 0 0.9409 0.8884 1
5.00E-06 0.8967 0.4728 0.942 0.9403 0.9436

3 75
1.00E-07 0.8884 0 0.9409 0.8884 1

1.00E-04 0.8884 0 0.9409 0.8884 1
5.00E-06 0.8981 0.3898 0.9441 0.9209 0.96856 3 75
1.00E-06 0.8915 0.2662 0.9414 0.9047 0.9812

4 3 75 5.00E-06 0.901 0.4 0.9458 0.9207 0.9722

Table 4.2: Learning rate results from the first iteration. Blue cells indicate the two highest results
of the metrics of each column. Red cells highlight the models where the whole genome is labeled as a
gene.

Iteration 2

MCC is a better indicator for evaluation than accuracy or F1-score in our setup, as
explained in Section 4.3, and therefore the learning rate was fixed as 5 · 10−6, which
gave the highest MCC and precision values. Along with that, three epochs, 3-mers
and w = 75 were used in this iteration, where the purpose was to optimize the other
hyperparameters. Modifying the warmup percent or the weight decay had very little
effect on any of the metrics, as Table 4.3 shows. Instead, increasing the dropout
probability from the initial 0.1 to 0.5 reduced the values. Lower dropout values 0.01
and 0.06 showed minor improvements in the accuracy and the F1-score, but slightly
lower MCC values as well. The differences being insignificant, the warmup percent and
the weight decay values were not modified, but the dropout probability value was fixed
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to be 0.06 for the further experiments with different window sizes.

Warmup Dropout Weight decay Accuracy MCC F1-score Precision Recall
0.06

0.1
0.01

0.8967 0.4728 0.942 0.9403 0.9436
0.1 0.8964 0.4719 0.9418 0.9403 0.9432

0.06

0.1 0.8966 0.4713 0.9419 0.94 0.9438
0.5 0.897 0.4717 0.9422 0.9398 0.9446

0.5
0.01

0.8858 0.3344 0.937 0.9183 0.9565
0.01 0.9036 0.457 0.9466 0.9314 0.9623
0.06 0.9015 0.4683 0.9451 0.9359 0.9545

Table 4.3: Hyperparameter rate results from the second iteration. The two highest values of each
column are colored blue.

Iteration 3

The model was then fine-tuned with different window sizes. In addition to the three
hyperparameter values mentioned in the previous iteration, other parameters used here
were k = 3, learning rate = 5 · 10−6 and epochs = 3. Figure 4.6 shows the ROC curves
or windows with lengths of 10, 25, 50, 75, 100, 125, 200 and 500 nucleotides, including
the initial window size 75. The outermost window sizes 10 and 500 clearly have the
lowest curves, while curves for the middle sizes 75, 100 and 125 rise to the highest.
Result values in Table 4.4 confirm this observation. While other window sizes got
clearly lower results than the initial size of 75, the results with window size 100 were
worth closer examination: The accuracy and the F1-score were slightly higher than
with w = 75 but the MCC was 0.4339 and therefore lower compared to 0.4728 with the
window size 75. The same observation applies to the other k-mers, 4 and 6, examined
in this iteration. When looking at the confusion matrix in Figure 4.7, window size 75
with a learning rate of 5 ·10−6, k = 3 and three epochs seems promising: True negatives
count is greater than both false negatives or false positives, unlike in the other settings.

Iteration 4

As a summary from previous steps, the models fine-tuned with learning rate 5 · 10−6

and window sizes 75 and 100 achieved the best results. However, fine-tuning with
different window sizes was executed with only one learning rate, 5 · 10−6, which was
fixed in the first iteration. As a validation of the best window size, the final iteration
was to perform a grid search using the following sets of values for window sizes and
learning rates:
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Figure 4.6: ROC curves for different window sizes explored in the third iteration. Other parameters:
k = 3, learning rate = 5 · 10−6 and epochs = 3

.

Figure 4.7: k = 3, epochs = 3, w = 75, lr = 5−6,dropout = 0.06,weight decay = 0.01,warmup =
0.06.

window sizes = {25, 50, 75, 100, 125, 200}
learning rates = {10−4, 5 · 10−6, 10−6, 10−7, 10−8}

Other parameters stayed as they were in the previous iteration: epochs = 3,
dropout = 0.06, weight decay = 0.01 and warmup percent = 0.06. Figure 4.9 shows
the MCC values of the window sizes from 25 to 500 with different learning rates, and
the exact values are shown in Table 4.5. Window size 75 and learning rate 5 ·10−6 have
the highest MCC of 0.4683. All window sizes except w = 500 perform relatively well
with the learning rate of 5 · 10−6 and the results decrease as the learning rate becomes
lower.
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K-mer Window Accuracy MCC F1-score Precision Recall

3

10 0.8889 0.1243 0.9409 0.892 0.9954
25 0.8953 0.3105 0.9433 0.9086 0.9809
50 0.8958 0.4219 0.9421 0.9293 0.9553
75 0.9015 0.4683 0.9451 0.9359 0.9545
100 0.9023 0.4339 0.9461 0.9271 0.9659
125 0.9005 0.4048 0.9454 0.9222 0.9698
200 0.8917 0.3258 0.9408 0.9136 0.9698
500 0.8881 -0.0029 0.9407 0.8883 0.9996

4
75 0.901 0.4 0.9458 0.9207 0.9722
100 0.9004 0.4181 0.9452 0.9251 0.9661

6
75 0.8981 0.3898 0.9441 0.9209 0.9685
100 0.9001 0.4172 0.9449 0.9252 0.9656

Table 4.4: Window size results from the third iteration.

The training loss in Figure 4.8 showing learning rate 5 ·10−6 and w = 75 indicates
that the network ends up in some unfortunate state in the middle of the training,
resulting in the "one label model" and MCC = 0. Considering the trend with windows
100, 125 and 200 having their best MCC with learning rate 5 · 10−6, we can argue
that it is possible for w = 75 to also reach better results with that learning rate if that
unfortunate state can be avoided. Changing the random seed defined in the DNABERT
repository is worth trying. Nevertheless, the learning rate 5 · 10−6 seems to be more
robust and therefore justifiable.

Figure 4.8: k = 3, epochs = 3, w = 75, lr = 10−4,dropout = 0.06,weight decay = 0.01,warmup =
0.06.

Summary

The model fine-tuned with window size 75 and learning rate = 5 · 10−6 achieved the
most promising results. Other parameters were k = 3, epochs = 3, dropout = 0.06,
weight decay = 0.01 and warmup percent = 0.06. The parameters are nearly the same
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Figure 4.9: MCC values from the fourth iteration, showing different learning rates with a range of
window sizes.

as recommended by the developers of DNABERT, even when the fine-tuning tasks
are rather different when comparing their dna-prom detection and our gene finding
task. Furthermore, the E. coli data is different from human DNA used in dna-prom
detection.

Despite these differences, the pre-trained DNABERT model seems to adapt to
our task relatively well, achieving an accuracy of 90.15%,MCC 0.4683, F1-score 0.9451
and precision 0.9359 when fine-tuned with the setting of training parameters mentioned
above. The second highest MCC, 0.4646, was achieved by training with window size
100 and learning rate 10−4, other parameters staying the same. Training times are also
worth mentioning in this context: The best performing models are fine-tuned in about
20 minutes in the Colab environment mentioned in 4.2.

GeneMarkS results

As a reference system, we have the HMM based system, GeneMarkS [3]. It gives
the predicted start and end coordinates for the genes. Usually its performance is
measured in a gene-level, meaning that we examine the rate between correctly predicted
coordinate pairs and the number of genes in the E. coli, 4665. With this approach,
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Window
Learning rate
1E-04 5E-06 1E-06 1E-07 1E-08

25 0 0.3105 0.2118 0.0319 -0.0019
50 0.4176 0.4219 0.308 0.0336 0.0317
75 0 0.4683 0.3056 0 0.045
100 0.4646 0.4339 0.2985 0 0.013
125 0.4642 0.4048 0.2764 0 -0.0141
200 0.4176 0.3258 0.2324 0 -0.0642
500 0 -0.0029 -0.0067 0 -0.0891

Table 4.5: MCC results from the fourth iterations’ grid search showing ranges of learning rates and
window sizes.

GeneMarkS gives1 total of 4269 predictions, from which 3824 match a ground truth
genes. Therefore, 10.42% of the predictions are false, but 81.97% of the ground truth
genes were correctly predicted.

However, these numbers are not comparable to the metrics in our method, since
it does not give coordinates for the genes. Instead, we have to examine the nucleotide
level labels, and therefore the E. coli genome was labeled according to the predicted
coordinates. When compared to the ground truth labels, we get the following values:

• TP: 4024733

• TN: 494751

• FP: 25226

• FN: 96943

• Accuracy: 0.9737

• MCC: 0.8776

• F1-score: 0.9850

• Precision: 0.9938

• Recall: 0.9765

These values are calculated from the entire E. coli genome, whereas for our sys-
tem, the data was divided into training and evaluation data. However, the GeneMarkS

1Experiments were executed in http://exon.gatech.edu/GeneMark/genemarks.cgi website 23th
of March, 2021.

http://exon.gatech.edu/GeneMark/genemarks.cgi
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evaluation values were almost the same regardless of whether all or part of the genome
was used. We can see that the GeneMarkS results are superior with this evaluation
method. The explanation lies in the high proportion of genes compared to non-genes,
combined with a large number of correctly predicted gene coordinates.

4.4.2 Secondary results

As we recall from Section 2.1, genes can be read either forward or backward from the
genome. Attempts were made to modify the E. coli data towards a better balance
between genes and non-gene sequences by labeling genes from only one direction and
ignoring the coordinates of the other direction. This balancing method is explained
in detail in Section 4.1.4. However, the models showed no signs of converging during
three epochs, and accordingly the results were not promising. We can speculate that the
characteristics of forward and reverse genes might be too similar, causing confusion:
The model can not learn the difference between gene and non-gene sections if both
labels contain similar patterns.

We used k = 6 and window size 75 for these experiments. ROC curves from both
forward and reverse datasets are shown in Figure 4.10(a). Almost diagonal lines for
forward and reverse datasets implicate that the models are comparable to a random or
worse model. As a comparison, a higher ROC curve for unbalanced data with the same
k and w implicates a better model performance. To mention some metrics, accuracy
and MCC for the forward model were 0.5108 and 0.03244, respectively.

The experiments with human chromosome 18 used window size 75 and both 6-
mers and 3-mers. A single model was trained with the full chromosome, but for other
experiments, the data was cut according to the explanation in Section 4.1.4. The
training with full chromosome lasted several orders of magnitude longer than with the
cut dataset, but the results did not differ much. The ROC curves in Figure 4.10(b)
demonstrate how the performance of the model did not reach the average level of E.
coli performance.

The same figure also shows how the results declined when the data was balanced.
The data was modified by removing the non-coding parts between exons, as explained
in Section 4.1.4. However, this approach seems to degrade the quality of the data to
the extent that the model is unable to take advantage of it.

In human chromosome 18, the imbalance between exons and other sequences is
even higher than with E. coli, but the ratio is vice versa: Only 5% of the nucleotides
belong to an exon. This ratio might be causing the poor performance of the preliminary
experiments with the human chromosome. Moreover, the approach to labeling only
exons may be too naive because the structure of human genes is more complex than
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this1.
While the unbalanced E. coli data seemed the most promising in terms of the

results and the model performance, the other dataset variations were not investigated
further.

(a) ROC curves of results from balanced E. coli
datasets compared to a better performing, un-
balanced model.

(b) Human dataset variations: Full chromo-
some with no balancing efforts, and the cut
dataset as unbalanced and balanced versions.

Figure 4.10: The ROC-curves of the experiments with other dataset variations illustrated.

1Returning to Section 2.1, eukaryotic genes also have intron sequences between the encoding exons.



5. Conclusions and discussion

This chapter starts with a summary of the results and findings, suggesting that using
the NLP-based Transformer network is a promising tool for the gene prediction task.
However, there are limitations in the methods and datasets used in this study. These
are discussed in detail in the second section. The last section presents the thoughts for
the follow-up research approaches.

5.1 Summary

The motivation for this thesis was to study the potential of Transformer neural net-
works, commonly used in the NLP field, in the analysis of genome data. Detecting genes
from genomes generally requires deep knowledge about genetics, but our approach was
not based on human expertise. Instead, the intention was to examine whether a neural
network can learn the underlying semantics of a genome and typical gene locations
from labeled input examples. Our approach was to use a pre-trained model to save
time and other resources and fine-tune it with a genome of the E. coli bacterium and
the human chromosome 18.

Indeed, given 20-minute training times, the fine-tuning approach seems practical.
In addition to that, the result values are promising. Compared to the naive baseline
models’ 88.8% accuracy, our best models achieved accuracies over 90% with a greatly
unbalanced dataset. Precision increased even more than MCC, from 0.88 by the base-
line model to 0.9359 using our best performing model.

Correct classification of minority labels, non-genes in the case of E. coli, is difficult
given the unbalanced ratio of the labels. The model has to be particularly confident
to make predictions against a strong prior probability of the majority label. Yet our
best model predicts more TN labels than FP, being confident in this sense. Thus we
can argue that the model makes predictions based on what it has learned rather than
just random guesses.

In addition to evaluating the accuracy, the MCC was used as the main metric
due to its ability to evaluate unbalanced data. The baseline model has zero as False
positive and False negative counts. Therefore, the denominator of the MCC formula

43
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would be zero and MCC is set to 0, as explained in Section 4.3. For this reason, it is not
directly comparable with the MCC = 0.4683 achieved by our best model. However,
MCC values lower than 0 are worse than a random model, and values higher than
0 are better than random guesses. From that perspective, our results are somewhat
promising and indicate that Transformer networks have potential in gene detecting
tasks and could therefore be a beneficial tool in the annotation of new genomes.

5.2 Discussion

The methods and data used for this research have limitations and concerns, and those
are discussed in this section. The challenges include problems with the chosen dataset
as well as the window and k-mer settings used for the training data. Another challenge
is the chosen method in respect to the task.

The E. coli genome has a significant imbalance between genes and non-genes,
as mentioned earlier in Section 4.1.4. Therefore interpreting the results is challenging
due to the fact that over 88% accuracy is already achieved by assigning the same
label to all inputs. Separating the relevant and insignificant differences between the
models cannot be done by just comparing the accuracy, but requires other techniques
like the MCC and the ROC curve. Additionally, careful examination of the confusion
matrix is essential. It reveals that often in the predictions, a great proportion of non-
gene nucleotides are marked as genes (FP count), and many nucleotides predicted as
non-gene actually belong to a gene (FN count). Even in the best E. coli models, the
proportion of True negatives is only 10% greater than False positives, and 17% greater
than the False negatives count. By comparison, there are over 14 times as many True
positives as False positives.

In addition to challenges with relevant results, the problem of the "one label
model", where the model learns to predict only one value to every sequence, might
be due to data imbalances. With some other genome with better balance, the model
might be more robust and unlikely to end up in such an unproductive state that causes
failures in the learning process. The example data in DNABERT prom-core1 has an
even ratio between the labels, and it was not reported to have such problems. However,
using the E. coli genome is justified with its easy availability and widespread usage in
research, and the simplicity of the bacterial gene structure.

Experiments with human chromosome 18 have similar challenges regarding the
balance of the data, only the proportions are opposite and label 0 is dominant. In addi-
tion to the balance between labels, overlapping gene sections are a potential limitation

1Available in the DNABERT repository [35].
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when trying to predict gene sections. There are 4665 genes in the E. coli genome, and
902 of them overlap with other genes, being either partly or entirely inside another
gene sequence. Our model only gives labels at the nucleotide level, predicting whether
they belong to any gene. In situations where gene sequences overlap with each other,
one nucleotide can belong to two or even more genes, and our model does not have the
capability of determining that.

Our experiments with the E. coli genome were mainly using the 3-mer represen-
tation, although other k-mers were also tried. This choice can be justified by the fact,
that codons in genes consist of three nucleotides1. However, drawing precise conclu-
sions about the best-performing k-mer size would require further experiments, such as
grid search using various sets of parameters with each k-mers.

The chosen length of sequences, the window size, affects how accurate the predic-
tions can be, in theory. The shorter the window, the closer to the nucleotide level the
predictions can be. On the other hand, it can be argued that the Attention mechanism
in Transformer networks benefits from a reasonable amount of tokens in one input
sequence, to be able to calculate the connections between them. The details of the
Attention mechanism are explained earlier in Subsection 3.2.2. Predicting genes with
DNABERT appears to be a balancing act between short enough windows to avoid
long mislabeled sequences, and long enough windows to give the network the best
opportunity to learn the characteristics of typical gene and non-gene sequences.

The DNABERT Prom-core version used as a pre-trained model requires the input
as a sequence and predicts the labels at the sequence level. When trying to predict
gene sequences of a genome without knowing the ground truth, the genome has to be
divided into sequences blindly, and some of them inevitably contain both gene and
non-gene parts. Therefore the result are not the exact coordinates of genes, but rather
the estimated locations for genes. To determine the exact start and end nucleotides,
a specialist in genomics has to review the predictions and trim the labels, but the
predictions can potentially serve as suggestions or starting points for the specialist.

Another limitation regarding the use of DNABERT in this thesis was the limited
visibility on how the network actually works. Neural networks are somewhat black
boxes overall, as we do not know how exactly the network forms its knowledge about the
given data. Additionally, when using a pre-trained model like DNABERT Prom Core,
the data and parameters used for pre-training are not necessarily the most optimal
for our task. But again, advantages of pre-trained models include savings in time,
computing power and emissions, like already mentioned in Section 3.3, and therefore
we did not pre-train our own model.

Though their open source contribution is highly respected, there are some chal-
1Revisit Section 2.1 for the explanation of codons.
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lenges with using the code-base of DNABERT. There is no clear documentation of
which of the parameters can be modified and how the evaluation metrics are calcu-
lated. Studying the source code to find those answers can be time-consuming. On
the other hand, implementing one’s own Transformer-based neural network for genome
data would also require a lot of time and effort.

5.3 Future work

The imbalance of the gene and non-gene sections leads to many challenges, as discussed
in the previous section. One solution is to oversample the minority sections or under-
sample the majority sections using approaches other than those already tried. Adding
copies of non-gene sections or removing gene sequences, or parts of them, might affect
the semantics of the genome and therefore the networks’ ability to learn the character-
istics of gene locations. Another way to affect the imbalance would be to optimize the
weights of the classes and thus raise the visibility of the minority class, for example
the non-gene sequences in the E. coli genome.

DNABERTs visualization feature can help to better evaluate the model’s level
of understanding over the input genome sequences. It would be interesting to see
whether the model emphasizes some k-mers over others, and how the attention values
are distributed within the windows. However, interpreting those visualizations would
potentially require deeper knowledge about genomics. Another idea for determining
how well the model is learning would be to visualize how the predicted values are
distributed around the gene start and end locations. Are they closer to the threshold
0.5 in those areas, compared to the center of the gene and non-gene sequences?

One of the limitations of our method is its inaccuracy in predicting the start and
end coordinates of genes. Therefore, other approaches than sequence-based methods
should be considered for future experiments with gene detecting tasks. DNABERT and
Transformer networks seem to be able to understand the characteristics of genomes to
some extent, based on both this thesis and the original DNABERT results [18], but the
challenge is to find the best way to benefit from that understanding in this specific task
of finding genes. An interesting basis for further experiments with DNABERT would
be to increase the number of labels based on whether the window is located in the
beginning, middle or end of the gene. Using overlapping windows as input sequences
can also be considered, in either learning or when using the model for predicting.

Using genomes from multiple bacteria for fine-tuning would show the generalizing
abilities of DNABERT and Transformer networks. The genetic structure of eukaryotes
is more complex than that of prokaryotes, but experiments with human chromosomes
and genomes is one interesting avenue for follow-up research.
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Appendix A. Fine-tuning

The fine-tuning was executed in Colab environment using the DNABERT code from
the GitHub repository. The only modification required to the code-base was to change
one import from line 35 in run_finetune.py as follows:

# Before :
from tqdm import tqdm
# After :
from tqdm . notebook import tqdm

Without the modification, unnecessary log lines were printed during the training.
Adding notebook to the import allowed us to follow the loss and learning rate changes
more easily.

Below is an example script for executing run_finetune.py command. Option
do_train is selected in the fine-tuning step, and the prediction is executed with the
do-eval option.

! python run_finetune . py \
−−model_type dna \
−−tokenizer_name=dna3 \
−−model_name_or_path "3−new−12w−0" \
−−task_name dnaprom \
−−do_train \
−−data_dir " . . / . . / d r i v e /MyDrive/dnabert / data_eco l i " \
−−max_seq_length 75 \
−−per_gpu_eval_batch_size=16 \
−−per_gpu_train_batch_size=16 \
−−learn ing_rate 1e−6 \
−−num_train_epochs 3 .0 \
−−output_dir " . . / . . / d r i v e /MyDrive/dnabert /model_ecol i " \
−−logg ing_steps 100 \
−−save_steps 60000 \
−−warmup_percent 0 .06 \
−−hidden_dropout_prob 0 .1 \
−−overwrite_output \
−−weight_decay 0 .01 \
−−n_process 8
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Appendix B. Preprocessing and evaluation scripts

The data was loaded and preprocessed with Python functions using Jupyter Notebook.
The attached file shows the functions for processing the E. coli source files, the genome
and the gene coordinates, before the fine tuning. Preprocessing of human chromosome
18 followed the similar process with minor adjustments due to the differences in the
data format.

After the preprocessing functions, the notebook shows the functions developed
for evaluating the predicted results.
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ecoli_preprocess_and_evaluate

February 9, 2022

1 Collecting and processing data

[1]: import numpy as np
from collections import Counter
import random
import matplotlib.pyplot as plt
import seaborn as sn
import pandas as pd
import sklearn.metrics as metrics
from PIL import Image

[2]: # Gene coordinates (ground truth)
gt_dir = "ecoli_data/regulonDB/txt/gene.txt"
# Genome sequence
ecoli_dir = "ecoli_data/fasta/E_coli_K12_MG1655_U00096.3.txt"

[4]: # Ground truth data with gene coordinates:
# 1. Read the file
gt_data = []
with open(gt_dir, 'r') as f:

gt_lines = f.readlines()
for line in gt_lines:

if line[0] != '#':
gt_data.append(line.split("\t"))

print(f'Total amount genes in the original: {len(gt_data)}') #4686

# 2. Put in order
def order(elem):

r = elem[0]
if len(r) > 0:

return int(r)
else:

return 0

# Choose the needed values
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gt_data_ordered = [d[2:6] for d in gt_data if len(d[2])>0] # Genes with no␣
↪→coordinates are left out

gt_data_ordered.sort(key=order)
print(f'Genes with no coordinates removed, total amount now:␣

↪→{len(gt_data_ordered)}')

# 3. Separate sets for forward and reverse genes
gt_data_forward = [d for d in gt_data_ordered if d[2]=="forward"]
gt_data_reverse = [d for d in gt_data_ordered if d[2]=="reverse"]
print(f'Forward genes: {len(gt_data_forward)}')
print(f'Reverse genes: {len(gt_data_reverse)}')

Total amount genes in the original: 4686
Genes with no coordinates removed, total amount now: 4665
Forward genes: 2297
Reverse genes: 2368

[5]: # Read the genome to one string
with open(ecoli_dir, 'r') as f:

ecoli_lines = f.readlines()[1:]
line_length = len(ecoli_lines[50])
ecoli_lines = [l[:line_length-1] for l in ecoli_lines]

print(f'{len(ecoli_lines)} lines')

ecoli = ''
for line in ecoli_lines:

ecoli += line
print(f'{len(ecoli)} nucleotides in ecoli genome')

61889 lines
4641653 nucleotides in ecoli genome

[8]: # Assigns labels according to the gene coordinates
def label_genome(genome, gt_data):

coordinates = [(int(c[0]), int(c[1])) for c in gt_data]
labels = np.zeros(len(genome))
for i, c in enumerate(coordinates):

# Set all gene labels to 1
labels[c[0]-1:c[1]] = 1

c = Counter(labels)
print(f'Zeros account of the total labels: {c[0]/(c[0]+c[1]):.4f}')
return labels

test_genome = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
test_gt = [(3,8), (11,15), (14,19)]
label_genome(test_genome, test_gt)

Zeros account of the total labels: 0.4231
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[8]: array([0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 0., 0., 0., 0., 0., 0., 0.])

[9]: # Make train and test sets from the genome and ground truth coordinates
def get_train_and_test(genome, gt_data, train_size=.7):

labels = label_genome(genome, gt_data)
idx = int(len(labels)*train_size)
return genome[:idx], labels[:idx], genome[idx:], labels[idx:]

[11]: # Genomes and labels for test and train sets
train_genome, train_labels, test_genome, test_labels = get_train_and_test(ecoli,␣

↪→gt_data_ordered)
print(f'Length of train sequence: {len(train_genome)}')
print(f'Length of test sequence: {len(test_genome)}')

Zeros account of the total labels: 0.1120
Length of train sequence: 3249157
Length of test sequence: 1392496

[12]: # Forming the k-mer representations for a nucleotide sequence
def make_kmers(data, k, sliding_window=True):

if len(data)%k != 0 and not sliding_window:
print('Check that seq length is 0 mod k')

output = ''
if sliding_window:

for i in range(0,len(data)-k+1):
output += data[i:i+k]
output += ' '

else:
for i in range(0, len(data)-k+1, k):

output += data[i:i+k]
output += ' '

return output[:-1]

d = 'ATGAAACGCATTAGCACCACCATTACCACCACCATCACCATTACCACAGGTAACGGTGCGGGCTGACC'
make_kmers(d, 6)

[12]: 'ATGAAA TGAAAC GAAACG AAACGC AACGCA ACGCAT CGCATT GCATTA CATTAG ATTAGC TTAGCA
TAGCAC AGCACC GCACCA CACCAC ACCACC CCACCA CACCAT ACCATT CCATTA CATTAC ATTACC
TTACCA TACCAC ACCACC CCACCA CACCAC ACCACC CCACCA CACCAT ACCATC CCATCA CATCAC
ATCACC TCACCA CACCAT ACCATT CCATTA CATTAC ATTACC TTACCA TACCAC ACCACA CCACAG
CACAGG ACAGGT CAGGTA AGGTAA GGTAAC GTAACG TAACGG AACGGT ACGGTG CGGTGC GGTGCG
GTGCGG TGCGGG GCGGGC CGGGCT GGGCTG GGCTGA GCTGAC CTGACC'

[13]: # Train sequences and test sequences are made differently
# Train data is first splitted by labels, and then every sequence is transformed␣

↪→into k-mers
# and then into sequences of desired window size (seq_len)
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def make_train_sequences(genome, labels, seq_len, k=6):
seq_len = seq_len-k+1
labels = np.split(labels, np.where(np.diff(labels[:]))[0]+1)
seqs = []
zeros = 0
idx = 0

for l in labels:
l_len = len(l)
idx+=l_len
# Sequences shorter than k are left out (tokenizer does not have tokens␣

↪→for them)
if l_len >= k:

g = genome[idx-l_len:idx]
kmers = make_kmers(g, k, sliding_window=True).split(' ')

for i in range(0, l_len-1, seq_len):
seq = ' '.join(kmers[i:i+seq_len])
label = int(l[0])
if label == 0:

zeros+=1
line = ('{}{}{}{}'.format(seq, '\t', label, '\n'))
seqs.append(line)

print(f'Zeros account of the total labels in the train set: {zeros/
↪→len(seqs)}')

return seqs

[14]: # Test data is first splitted according to desired window size (seq_len).
def make_test_sequences(genome, labels, seq_len, method=1, k=6):

seqs = []
zeros = 0
for i in range(0,len(genome)-seq_len+1, seq_len):

seq = make_kmers(genome[i:i+seq_len], k, sliding_window=True)

# Only sequences fully inside the gene are labeled as 1
if method==2:

if sum(labels[i:i+seq_len])==seq_len:
label=1

else:
label=0
zeros+=1

# If one or more nucleotides in sequence are inside the gene, label as 1
elif method==3:

if sum(labels[i:i+seq_len])>0:
label=1

else:
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label=0
zeros+=1

# If more than half of nucleotides are inside the gene, label as 1
else:

if sum(labels[i:i+seq_len])>seq_len/2:
label=1

else:
label=0
zeros+=1

line = ('{}{}{}{}'.format(seq, '\t', label, '\n'))
seqs.append(line)

print(f'Zeros account of the total labels in test set: {zeros/len(seqs)}')
return seqs

[15]: # Write the .tsv files in a desired path
def write_test_and_dev_files(train_genome,

train_labels,
test_genome,
test_labels,
seq_len,
path,
k=6,
train_size=0.7,
method=1,
shuffle=True,
sliding_w=False):

train_data = make_train_sequences(train_genome, train_labels, seq_len, k)
test_data = make_test_sequences(test_genome, test_labels, seq_len, method, k)
print(f'Train sequences: {len(train_data)}')
print(f'test sequences: {len(test_data)}')
header = ['sequence label\n']
if shuffle:

np.random.seed(123)
np.random.shuffle(train_data)

train = header + train_data
test = header + test_data
train_dir = path + 'train.tsv'
test_dir = path + 'dev.tsv'

with open(train_dir, 'w') as f_output:
for line in train:

f_output.write(line)

with open(test_dir, 'w') as f_output:
for line in test:

f_output.write(line)
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return train_data, test_data

[16]: # Function for making multiple datasets
def make_datasets(windows, k, method=1):

for w in windows:
print(f'window={w}, k={k}')
trains, tests = write_test_and_dev_files(

train_genome,
train_labels,
test_genome,
test_labels,
w, f'ecoli_data/{k}/method{method}/{w}/', k=k

)
globals()[f'train_{k}_labels_{w}'] = trains
globals()[f'test_{k}_labels_{w}'] = tests

Next steps: Copy train.tsv and dev.tsv files to drive, and run the run_finetune.py with Colab
using –do_train option. To get predictions as the pred_results.npu -file, run the script with –
do_predict option. The file is used for the evaluation.

2 Evaluation

[17]: # Change the predictions from floats in range [0,1] into labels 0 or 1
def make_predicted_labels(data, seq_len, th=0.5):

labels = []
probabs = []
for d in data:

if d>th:
for i in range(seq_len):

labels.append(1)
probabs.append(d)

else:
for i in range(seq_len):

labels.append(0)
probabs.append(d)

return labels, probabs

[18]: # Visualize the distribution of predicted values.
def plot_distribution(data, th):

vals = [int(v*1000) for v in data]
counts = Counter(vals)
keys = counts.keys()
values = counts.values()

c = np.zeros(1000)
for key, value in counts.items():
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c[key]=value
fig = plt.figure(figsize = (6,6))
plt.plot(c, label='predictions')
plt.yscale('log')
fig.suptitle('Distribution of predictions')
plt.axvline(x=th*1000, color='red', label='threshold')
plt.legend(['predictions', 'threshold'])
locs, labels = plt.xticks() # Get the current locations and labels.
stp=1/(len(locs)-2)
lbls = [x/1000 for x in locs]
plt.xticks(ticks=locs[1:len(locs)-1], labels=lbls[1:len(lbls)-1])
plt.savefig('figures/plots/distribution.png')

[19]: # Visualize the TP, TN, FP and FN counts
def plot_confusion(tp,tn,fp,fn):

results = np.array([[tn,fp],
[fn,tp]])

df_cm = pd.DataFrame(results)
strings = np.asarray([['TN', 'FP'],

['FN', 'TP']])
labels = (np.asarray(["{0}: {1}".format(string, value)

for string, value in zip(strings.flatten(),
results.flatten())])

).reshape(2, 2)

fig = plt.figure(figsize = (7,6))
sn.set(font_scale=2)
sn.heatmap(df_cm, annot=labels, fmt="", cmap="YlGn", xticklabels=False,␣

↪→yticklabels=False)
fig.suptitle('Confusion matrix')
plt.xlabel("Predictions")
plt.ylabel("Actual labels")
plt.savefig('figures/plots/confusion.png')

[20]: # Show Matthews correlation coefficient (MCC curve
def plot_roc(gt_labels, probas):

fpr, tpr, threshold = metrics.roc_curve(gt_labels, probas)
fig=plt.figure(figsize = (6,6))

plt.plot(fpr, tpr)
fig.suptitle('ROC')
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.tight_layout(pad=0.5)
plt.savefig('figures/plots/roc.png')
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[21]: # Save loss values from the logs and read them from the file
def get_loss(path):

data = []
avg = 0
with open(path, 'r') as f:

lines = f.readlines()
#print(lines)
for line in lines:

if line[0]=='{':
line = line[:-1]
#print(line)
data.append(eval(line))

elif len(line)>5:
#print(line)
line = line.split(' ')
avg = float(line[-1])

rates = [x.get('learning_rate') for x in data]
losses = [x.get('loss') for x in data]
steps = [x.get('step') for x in data]
return steps, losses, avg

[22]: # Visualize the model performation bu showing the loss values during the training
def plot_loss(path):

steps, losses, avg = get_loss(path)

fig=plt.figure(figsize=(6, 6))
plt.plot(steps, losses, label='training loss')
plt.axhline(y=avg, color='red', label='avg loss')
plt.legend(['training loss', f'avg loss {avg:.4f}'])
plt.xlabel("Steps")
fig.suptitle(f'Loss')
plt.tight_layout(pad=0.5)
plt.savefig('figures/plots/loss.png')
#plt.plot(steps, rates)

[23]: # Combine and save the four images into one.
def make_image(path):

images = [Image.open(x) for x in ['figures/plots/distribution.png',
'figures/plots/confusion.png',
'figures/plots/roc.png',
'figures/plots/loss.png']]

widths, heights = zip(*(i.size for i in images))
total_width = sum(widths)
max_height = max(heights)

new_im = Image.new('RGB', (total_width, max_height))
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x_offset = 0
for i, im in enumerate(images):

new_im.paste(im, (x_offset,0))
x_offset += im.size[0]

new_im.save(path)

[24]: # Calculate the evaluation metrics and show the plots
def evaluate(datapath, losspath, seq_len, test_labels, img_name, th=0.5):

data = np.load(datapath)
print(f'Predicted values are between {np.min(data):.4f} and {np.max(data):.

↪→4f}.')

pr_labels, probabs = make_predicted_labels(data, seq_len, th)
print(f'Count of predicted labels: {len(pr_labels)}')
print(f'Count of gt labels: {len(test_labels)}')

# Chacking that the label lengts match
if len(test_labels)-len(pr_labels)>seq_len:

print('Wrong test labels!')

# TP, TN, FP and FN:
mismatches, tp, tn, fp, fn = 0, 0, 0, 0, 0
for i in range(len(pr_labels)):

if pr_labels[i] != test_labels[i]:
mismatches+=1

if pr_labels[i] == 1 and test_labels[i] == 1:
tp+=1

elif pr_labels[i] == 0 and test_labels[i] == 0:
tn+=1

elif pr_labels[i] == 1 and test_labels[i] == 0:
fp+=1

elif pr_labels[i] == 0 and test_labels[i] == 1:
fn+=1

# Precision and recall:
if tp+fp == 0:

prec = 0.5
else:

prec = tp/(tp+fp)
if tp+fn==0:

rec=0.5
else:

rec = tp/(tp+fn)

# MCC:
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mcc_denom = (tp+fp)*(tp+fn)*(tn+fp)*(tn+fn)
if mcc_denom == 0:

mcc_denom = 1
mcc = (tp*tn-fp*fn)/mcc_denom**.5

print(f'Accuracy: {1-mismatches/len(test_labels):.4f}')
print(f'MCC: {mcc:.4f}')
print(f'F1-score: {2*prec*rec/(prec+rec):.4f}')
print(f'Precision: {prec:.4f}')
print(f'Recall: {rec:.4f}')

plot_distribution(data, th)
plot_confusion(tp,tn,fp,fn)
plot_roc(test_labels[:len(probabs)], probabs)
plot_loss(losspath)
make_image('figures/plots/ecoli/'+img_name)
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