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Abstract
In the general problem of verisimilitude, we try to define the distance of a statement 
from a target, which is an informative truth about some domain of investigation. For 
example, the target can be a state description, a structure description, or a constitu-
ent of a first-order language (Sect. 1). In the problem of legisimilitude, the target is 
a deterministic or universal law, which can be expressed by a nomic constituent or 
a quantitative function involving the operators of physical necessity and possibil-
ity (Sect. 2). The special case of legisimilitude, where the target is a probabilistic 
law (Sect. 3), has been discussed by Roger Rosenkrantz (Synthese, 1980) and Ilkka 
Niiniluoto (Truthlikeness, 1987, Ch. 11.5). Their basic proposal is to measure the 
distance between two probabilistic laws by the Kullback–Leibler notion of diver-
gence, which is a semimetric on the space of probability measures. This idea can be 
applied to probabilistic laws of coexistence and laws of succession, and the examples 
may involve discrete or continuous state spaces (Sect. 3). In this paper, these earlier 
studies are elaborated in four directions (Sect. 4). First, even though deterministic 
laws are limiting cases of probabilistic laws, the target-sensitivity of truthlikeness 
measures implies that the legisimilitude of probabilistic laws is not easily reduc-
ible to the deterministic case. Secondly, the Jensen-Shannon divergence is applied 
to mixed probabilistic laws which entail some universal laws. Thirdly, a new class 
of distance measures between probability distributions is proposed, so that their 
horizontal differences are taken into account in addition to vertical ones (Sect. 5). 
Fourthly, a solution is given for the epistemic problem of estimating degrees of 
probabilistic legisimilitude on the basis of empirical evidence (Sect. 6).
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1 � The similarity approach to truthlikeness

Karl Popper’s (1963) original work on truthlikeness was based on the concepts of 
truth value (true or false) and logical deduction (entailment). Theories were repre-
sented as deductively closed sets of sentences in some language L, and the compara-
tive notion “more truthlike” was characterized by set-theoretical comparisons of the 
truth content and falsity content of rival theories. The main lesson from the dra-
matic failure of Popper’s definition in 1974 was the need to add the notion of simi-
larity or resemblance to the logical toolbox. In the first formulations of the similarity 
approach, Risto Hilpinen (1976) represented theories as classes of possible worlds 
and employed spheres of similarity from David Lewis’ approach to counterfactu-
als, while Pavel Tichý defined theories as disjunctions of propositional constituents 
and Ilkka Niiniluoto as disjunctions of monadic constituents, adding a function to 
measure the distance between constituents. Soon these notions were extended to full 
first-order languages by Tichý, Niiniluoto, Raimo Tuomela and Graham Oddie, with 
systematic summaries in Oddie´s Likeness to Truth (1986), Niiniluoto´s Truthlike-
ness (1987), and Theo Kuipers’ edition What Is Closer-to-the-Truth? (1987).

In Hilpinen’s treatment, the truthlikeness of a theory depends on its maximum 
and minimum distances from the actual world. Tichý and Oddie favor the average 
distance, while Niiniluoto combines the minimum distance with the normalized sum 
of all distances. In the linguistic formulations, the degree of truthlikeness Tr(H,C*) 
of a theory H in language L depends on the similarity of the disjuncts of H with the 
true constituent C* of L. Here the target C* is the most informative truth expressible 
in the conceptual framework L, and Tr(H,C*) is maximal when H is identical with 
this complete truth C*.1

A successful theory H should give a full and correct description of a domain of 
investigation by its conceptual resources in language L. In other words, H should 
specify the L-structure of the actual world with respect to L, and strongest theories 
are able to do this up to isomorphism. Here L may include qualitative or quantita-
tive concepts. But the choice of the logical complexity of language L allows a finer 
discrimination: the target can be chosen for the purposes of the relevant cognitive 
problem, so that it may be a propositional constituent, a state description, a structure 
description, a monadic constituent, a polyadic constituent of depth-d, or a complete 
first-order theory.2 For each of these choices, the task is to define the distances of 
statements in L from the given target.

Following Popper, one should distinguish here two problems. In the logical prob-
lem of truthlikeness, we are given the true target C*, and we ask what it means to 
say that a theory is close to C* or closer to C* than another theory. In the epistemic 
problem of truthlikeness, the true target C* is unknown, and we ask how we can 
rationally claim or estimate on available evidence E that one theory is close to C* or 
closer to C* than another theory.

1  For surveys, see Niiniluoto (1998), Oddie (2016).
2  For details, see Niiniluoto (1987), pp. 204–208. Most of these logical concepts were developed for the 
purposes of inductive logic by Rudolf Carnap and Jaakko Hintikka (cf. Niiniluoto, 2011).
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To illustrate the similarity approach to these two problems, let L be a monadic 
first-order language with k one-place predicates, and let � =

{
Q1,… , QK

}
 be the 

Q-predicates of L (K = 2 k). The Q-predicates can be defined by the conjunction of 
negated or unnegated primitive predicates of L, so that there is a natural distance 
ρuv = d

(
Qu,Qv

)
 between them.3 The Q-predicates are the strongest predicates 

expressible in L, and they constitute a classification system of individuals in the 
domain of L. A state description in L locates each individual in one and only one 
“cell” defined by a Q-predicate, while a structure description specifies the propor-
tions of individuals in these cells. A monadic constituent Ci of L specifies which 
Q-predicates are empty and which are non-empty:

where (+ / −) is replaced by negation or nothing. As an empty universe is excluded, 
the number of constituents is q = 2K − 1 . If CTi is the class of occupied cells by Ci, 
then (1) can be rewritten in the following form:

If for the true constituent C* there are no empty cells, so that CT* = Q, the world 
is atomistic in the sense that there are no true universal generalizations. For example, 
the truth of the generalization (x)(Fx → Gx) means that the cell F& ~ G is empty. A 
simple distance between monadic constituents is the Clifford-measure:

where Δ is the symmetric difference (see Fig. 1). Variants of (3), which take into 
account distances between Q-predicates, have been considered by Tichý, Oddie, 
and Niiniluoto.4 Then the degree of truthlikeness Tr(H,C*) of a generalization H 
in L depends on the Clifford-distances (or their variants) of the disjuncts of H from 
the true constituent C*. A comparative notion “H1 is closer to the truth than H2” is 
explicated by the condition Tr(H1,C*) > Tr(H2,C*).

If C* is unknown, but a rational epistemic probability measure P is defined over 
the class of constituents of L, then the unknown degree Tr(H,C*) can be estimated 
by its expected value on the basis of evidence E:

(1)Ci = (+∕−)(Ex)Q1(x)&…& (+∕−)(Ex)QK(x)

(2)Ci =
∏

j∈CTi

(Ex)Qj(x)&(x)[ ∨
j∈CTi

Qj(x)].

(3)
ΔC

(
Ci, Cj

)
= |CTiΔCTj|∕K = the number of disagreements of Ci and Cj,

(4)ver(H∕E) =
∑

P
(
Ci∕E

)
Tr
(
H,Ci

)
,

3  This the Manhattan or Hamming distance between Qu and Qv (i.e., the number of disagreements in 
their definition), but normalized to take values between 0 and 1. Q-predicates can also be defined by 
Carnapian families of predicates, and their distance by the Euclidean metric. See Niiniluoto (1987), pp. 
44–47.
4  See Tichý (1976). For discussion, see Oddie (1986), pp. 99–105, Niiniluoto (1987), pp. 310–335. Cf. 
Section 5 below.
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where the sum goes over i = 1, …, q.5 For monadic languages, the relevant pos-
terior probabilities P(Ci/E) of constituents (i.e., degrees of belief on the truth of Ci 
given E) are given by Jaakko Hintikka’s system of inductive logic.6

2 � Verisimilitude vs. Legisimilitude

Following the difference between accidental and lawlike generalizations, a distinc-
tion between verisimilitude and legisimilitude has been proposed by L. J. Cohen. In 
the logical problem of legisimilitude, the target is not just the strongest true state-
ment about the world (in a given language), but a genuine law of nature. A solution 
of this problem for universal or deterministic laws can be based on S. Uchii’s notion 
of nomic constituent.7 Let L(□) be a modal monadic language with the operators of 
nomic necessity □ and nomic possibility ◊, satisfying the system S5. Then a nomic 
constituent tells which Q-predicates are possible and which are impossible:

The number of nomic constituents in L(□) is again q = 2K − 1 . As actuality 
implies possibility, and impossibility implies non-actuality, nomic constituent (5) is 
partly weaker and partly stronger than constituent (3). Laws of nature are disjunc-
tions of nomic constituents. For example, the law ◻(x)(Fx → Gx) is equivalent to 
the disjunction of all nomic constituents which state that the cell F& ~G is physi-
cally impossible. The distance Δ

(
B1, B2

)
 between nomic constituents B1 and B2 can 

be defined by the Clifford-measure |CT1ΔCT2|∕K or its variants. The degree of legi-
similitude of a law of nature H depends on its distance to the true nomic constituent 
B*:

Alternatively, if the cognitive aim is to combine verisimilitude and legisimilitude, 
the target could be the conjunction B* & C*.8 Estimation of legisimilitude can again 
employ expected values based on inductive probabilities.9

Nomic constituents (5) represent laws of coexistence, i.e., lawlike connections 
between attributes or properties. To define laws of succession, introduce a discrete 
temporal index t to Q-predicates:

(5)Bi =
∏

j∈CTi

♢(Ex)Qj(x)&◻(x)[ ∨
j∈CTi

Qj(x)].

leg
(
H,B∗

)
= 1 − Δ

(
H,B∗

)
.

7  See Niiniluoto (1987), pp. 91–98. Nomic constituents correspond to what Kuipers (1982) 
called”theoretical truth” (as opposed to”descriptive truth”) and later “nomic truth” (see Kuipers, 2019).
8  See Niiniluoto (1987), p. 377.
9  For monadic nomic constituents, the relevant posterior probabilities are again obtained from Hintikka’s 
inductive logic (see Niiniluoto, 1987, pp 98–102).

5  This solution to the epistemic problem was proposed by Niiniluoto in 1977 (cf. Niiniluoto, 1987, Ch. 
7).
6  For a survey, see Niiniluoto (2011).
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Here T lists all possible transitions between successive states. For deterministic 
laws, for each i there is only one j such that < i,j > ε T. Again the Clifford-measure 
can be applied to measure the distance between laws of succession:|T1ΔT2|∕K2.10

The class of Q-predicates of a monadic language can be generalized to a quan-
titative state space � ⊆ �k generated by real-valued quantities h1,… , hk.11 In the 
simplest case, Q is the real line or its part with the geometrical distance between 
points ρ

(
x, x�

)
= |x−x�| . More generally, Q is a k-dimensional metric space with the 

Euclidean metric. Here laws of coexistence specify regions of nomically possible 
states

The Clifford-distance between two such laws F1 and F2 is defined by

An alternative approach to quantitative laws expresses how a function hk neces-
sarily depends on h1,… , hk−1 ∶

The distances between two such real-valued functions can be defined by the 
Minkowski or Lp-metrics for functions:

(6)
∏

<i,j>∈T

♢(Ex)(Qt
i
(x)&Qt+1

j
(x)) &◻(x)[ ∨

<i,j>∈T
(Qt

i
(x)&Qt+1

j
(x))].

F(x) = {xε�| f
(
h1(x),… , hk(x)

)
= 0 }.

∫
F1ΔF2

dQ .

hk(x) = g
(
h1(x),… , hk−1(x)

)
.

Fig. 1   Clifford-distance between monadic constituents

10  See Niiniluoto (1987), p. 379.
11  See Niiniluoto (1987), Ch. 3.
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Here p = 1 is the Manhattan metric, p = 2 the Euclidean metric, and p = ∞ the 
Tchebycheff metric sup ∣f(x)−g(x)∣.12 The degree of legisimilitude of the law f then 
depends on its distance to the true law f*:

Further, f is closer to the truth than g if and only of leg
(
f, f∗

)
> leg

(
g, f∗

)
.

Quantitative laws of succession can be formulated by relativizing the state x with 
a time: h(x,t) = state of x at time t. Then deterministic dynamical laws tell how the 
state depends on time t and some initial state at time to:

A law of succession specifies nomically possible trajectories F ∶ � ×� → � . 
The distance between such laws can be defined by taking for each Qε� the 
Minkowski distance between the trajectories F1(t,Q) and F2(t,Q), for t ε � , and then 
summing over all possible initial states Qε�.13

3 � Probabilistic laws

The notion of a universal or deterministic law introduced in Sect. 2 can be general-
ized to probabilistic laws, if an objective physical probability measure is available.14 
Following Leibniz, such physical probabilities express “degrees of possibility”. 
This can be understood in terms of single-case propensities: P(G/F) = r means that 
a physical set-up has a numerical disposition of strength r to produce an outcome of 
type G in each trial of type F. Thus, probability statements involve a dispositional 
modal operator, so that they differ from extensional statistical statements about 
actual relative frequencies of attributes in reference classes (i.e., structure descrip-
tions). Universal laws of coexistence and deterministic laws of succession are limit-
ing special cases of probabilistic laws (with propensities 0 and 1).15 Genuine proba-
bilistic laws presuppose that the world is indeterministic, but in statistical modelling 
one may assign in some sense objective probabilities to random phenomena (e.g., 
coin tossing, roulette) even when the underlying reality is deterministic. For the task 

(7)Δp(f, g) = (∫ ∣f(x)−g(x)∣p)1∕p.

leg
(
f, f∗

)
=

1

1 + Δ
(
f, f∗

) .

(
h1(x, t),… , hk(x, t)

)
= F

(
t, h1

(
x, to

)
,… , hk

(
x, to

))
.

14  See Niiniluoto (1987), pp. 118–121.
15  For probabilistic laws with single-case propensities, see Fetzer (1981).

12  See Niiniluoto (1987), p. 385. The metric (7) is based on the differences between the values of two 
functions, but it does not reflect the similarity of their mathematical form (see Niiniluoto, 2019, p. 131). 
For a proposal to measure the distance between quantitative laws as a combination of accuracy and 
nomicity, see Garcia Lapeña (2021).
13  See Niiniluoto (1987), p. 393.
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of defining approximation to such probabilities, the philosophical issue of indeter-
minism and determinism can be left open.

To define probabilistic constituents, replace in a nomic constituent (5) the opera-
tor of physical possibility ◊ with a probability measure P over the discrete state 
space Q of Q-predicates, now understood as the “sample space” or the class of out-
comes of a trial x:

Probabilities (8) over Q define a multinomial context. Then pi = P
(
Qi(x)

)
> 0 if 

and only if Qi is physically possible, for all i = 1,… , K , so that here P is applied to 
the open formula Qi(x) instead of the existential statement in (5). Now a probabilis-
tic constituent (8) is compatible with the nomic constituent Bi with CTi if and only 
if it assigns a positive probability to the Q-predicates in CTi and zero probability to 
other Q-predicates. This means that typically a nomic constituent is an infinite dis-
junction of probabilistic constituents.

In many statistical applications, the trial x counts the number of successes in 
a repeated experiment (e.g., binomial and Poisson distributions), so that the state 
space Q is a subclass of the set N of natural numbers. Then the distance ρ

(
x, x�

)
 

between points in Q is their normalized arithmetical difference.
An important distinction can be made between pure and mixed probabilistic laws. 

A probabilistic constituent, where CTi is a proper subset of Q, is a mixed law in the 
sense that it entails a universal law (cells in Q–CTi are necessarily empty). Pure 
probabilistic laws have no such entailments: the world is atomistic in the sense that 
all Q-predicates in Q are nomically possible (so that no universal laws hold), and a 
positive probability is assigned to all Q-predicates.

To define probabilistic laws of succession, for a discrete space Q the set T of pos-
sible transitions between states is replaced by a matrix of transition probabilities

where p1∕i +…+ pK∕i = 1 for each i. This definition involves the Markov condi-
tion, i.e., the next state depends only on the present state. If transition probabilities 
are 0 or 1, this law reduces to the deterministic law (6).16 Equation (9) determines 
the n-step transition probabilities

and for an irreducible stationary Markov chain the limits of pj/i(n), for n → ∞, give 
a long-run probability distribution. These notions can be generalized to Markov 

(8)
∏

Qi∈Q

[P(Qi(x)) = pi].

(9)pj∕i = P
(
Qt+1

j
(x)∕Qt

i
(x)

)
,

pj∕i(n) = P
(
Qt+n

j
(x)∕Qt

i
(x)

)
,

16  Discrete state systems, both deterministic and probabilistic, with a Markov condition have been stud-
ied by Rescher (1970).
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processes with a continuous time.17 Special cases of probabilistic laws of succession 
can be formulated by quantitative dynamic laws like the law of radioactive decay

where Q(x,t) states that atom x decays within the time-interval [0,t] and λ is a con-
stant. Finally, for a quantitative state space Q a probability measure on Q∞ (i.e., 
infinite sequences of successive states) assigns a physical probability to possible tra-
jectories of a time-continuous stochastic process.

4 � Distance between probabilities

The problem of legisimilitude for probabilistic laws has not yet received much atten-
tion. The main focus in the literature has been on cases, where the target is a univer-
sal or deterministic law, either qualitative or quantitative. The only detailed propos-
als have been given by Rosenkrantz (1980) and Niiniluoto (1987), 403–405, who 
apply the Kullback–Leibler notion of divergence as a measure of distance from a 
probabilistic truth.

Mathematicians have suggested a great number of measures for distances between 
probability distributions. In a comprehensive survey, Cha (2007) lists 45 different 
measures,18 which have been used for various purposes. For example, the central 
limit theorem (the sum of n independent random variables approximates in the limit 
the normal distribution) and laws of large numbers (observed relative frequencies 
and predictive probabilities approach almost surely objective probabilities in a mul-
tinomial Bernoulli process) express distances between epistemic probabilities q and 
objective probabilities p by their geometrical distance |q–p|.19 This amounts to the 
Manhattan metric

For discrete probabilities, the squared Euclidean or quadratic metric

or its variant χ2, is a standard way of measuring the fit between two distributions 
or structural descriptions.20 In the special case of scoring, where qi are probabilis-
tic estimates of the truth values pi of n rival exclusive hypotheses (pj = 1, otherwise 
0), Glenn Brier’s 1950 measure of inaccuracy is quadratic, i.e., d(1, q) = (1−q)2 

(10)P(Q(x, t)) = 1−e−λt,

Δ1(p, q) =
∑|| pi − qi

||.

Δ2(p, q) =
∑(

pi− qi
)2
,

20  See Niiniluoto (1987), pp. 15–16, pp. 302–303, pp. 321–322.

17  See Parzen (1962), pp. 248, 277.
18  Cf. Niiniluoto (1987), pp. 7–8.
19  See Festa (1993).
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and d(0, q) = q2, 21 while I. J. Good in 1952 favored the logarithmic measure 
d(1, q) = − lnq, d(0, q) = − ln(1 − q).22 From these local measures the total scoring 
measure is obtained by summing the inaccuracies of all qi.

Some measures are based on the inner products piqi. Hellinger’s 1909 proposal 
was modified in 1946 in Bhattacharyya’s dissimilarity coefficient:

The directed divergence of a discrete random variable p from another q was 
defined by Solomon Kullback and Richard Leibler in 1951 as the expected logarith-
mic difference between p and q with respect to p:

Here log can be taken to have the binary base 2, so that log2 = 1. Formula (11) 
is also called the relative entropy of p with respect to q. This measure is only a 
semimetric: non-negative, div(p, p) = 0, div(p, q) = 0 if and only if p = q, but non-
symmetric (usually div(p, q) ≠ div(q, p)) , and the triangle equation is not satisfied. 
For continuous probability densities f and g on R, Eq. (11) is replaced by

The symmetric divergence between p and q is defined by

Other variants include the λ-divergence

For λ = ½, it gives the Jensen-Shannon divergence

where H(p) = −Σpilogpi is the Shannon entropy of p. Formula (12) is non-negative 
and symmetric, and its square root is a metric. Renyi divergence is defined by

− log
�√

pi qi.

(11)div(p, q) =
∑

pilog
(
pi∕qi

)
.

div(f(x), g(x)) =

+∞

∫
−∞

f (x) log

[
f (x)

g(x)

]
dx.

divs(p, q) = div(p, q) + div(q, p) =
∑(

pi − qi
)
log

(
pi∕qi

)
.

divλ(p, q) = λdiv(p, λp + (1 − λ)q) + (1 − λ)div(q, λp + (1 − λ)q)

(12)

divJS(p, q) =
1

2
div(p,

p + q

2
) +

1

2
div(q,

p + q

2
) =

1

2
H(

p + q

2
) −

H(p) + H(q)

2

=
1

2

∑
pilogpi +

1

2

∑
qilogqi −

1

2

∑(
pi + qi

)
log

[(
pi + qi

)
∕2

]

=
1

2

∑
pilog

[
2pi∕

(
pi + qi

)]
+

1

2

∑
qilog

[
2qi∕

(
pi + qi

)]
.

21  See Pettigrew (2015). Oddie (2019) accepts the quadratic scoring rule, but argues that it is incompat-
ible with the principles of truthlikeness.
22  See McCutcheon (2019).
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For α = 1, it gives in the limit the Kullback–Leibler divergence, and for α = ½ 
twice the Bhattacharyya distance.

Divergence was originally intended as a tool in information theory.23 In Bayes-
ian statistics it has been used to measure the difference between prior and posterior 
distributions. It can be also used for assessing the similarity of a probabilistic model 
with some aspect of reality.24 The first connection to the studies in truthlikeness 
was developed by Roger Rosenkrantz (1980). Inspired by I. J. Good’s notion of the 
weight of evidence, Rosenkrantz suggested that for a random experiment x and truth 
h*, hypothesis h is more truthlike than hypothesis h′ if

This idea was connected to the similarity approach to truthlikeness by Niiniluoto 
(1987): the distance of a probabilistic hypothesis h from the probabilistic target h* 
is measured by div(h*,h). Thus, hypothesis h is more truthlike than h´ if and only 
if div

(
h∗, h

)
< div

(
h∗, h�

)
 . When the relevant hypotheses h, h′, and h* are speci-

fied by probabilities pi, qi, and pi*, this comparative condition holds if and only if 
Σp∗

i
log

(
qi∕pi

)
< 0 . Generalization to probability density functions is immediate.

More generally, Niiniluoto (1987) recommends divergence div as a solution to 
the problem of probabilistic legisimilitude:

•	 for probabilistic laws of coexistence (8) in qualitative conceptual spaces, the dis-
tance to the true probabilistic constituent

•	 for probabilistic laws of succession (9) in qualitative languages, the distance to 
the matrix of true probability transitions

•	 for probabilistic laws of succession in the quantitative space Q∞, the distance to 
the true probability on Q∞.

Alternative solutions could replace div by some other distance measure, e.g., 
Manhattan, Euclidean, or Bhattacharyya.

The Kullback–Leibler divergence div(p,q) has a limitation which is not noted in 
Niiniluoto (1987). Its definition (11) presupposes that p is absolutely continuous 
with respect to q, i.e., if qi = 0, then pi = 0. Further, when pi = 0, the factor 0log0 
in the sum vanishes. The same condition is required for probability densities: if 
g(x) = 0, then f(x) = 0. This means that the KL-divergence can be applied only to 
pure probabilistic laws, since for mixed probabilistic constituents mistakes in the 
empty cells (or zero points in Q) in the target and hypothesis would not count at all. 
The same problem is faced by the Bhattacharyya distance, whose factors vanish as 
soon as pi or qi is 0, but not by the Minkowski metrics.

Dα(p, q) =
1

� − 1
log

∑
(pα

i
∕qα−1

i
).

div
(
P(x∕h), P

(
x, h∗

))
< div

(
P
(
x∕h�

)
, P
(
x∕h∗

))
.

23  See Kullback (1959).
24  For example, Sober (2002) follows the statistician H. Akaike in measuring the distance between a fit-
ted model (with fixed parameter values) and the truth by the Kullback–Leibler distance.
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This problem with divergence is observed by Rosenkrantz (1980), who suggests 
that in the evaluation of div

(
P(x, h), P

(
x, h∗

))
 zero probabilities are replaced by a 

slightly positive possibility of misclassification, but this ad hoc move is unsatis-
factory. As a better solution one can recommend the use of the Kullback–Leibler 
directed divergence div for pure probabilistic laws, and the Jensen-Shannon diver-
gence divJS (instead of div) to measure the distance between mixed probability dis-
tributions over cells Q or in the transition matrix. The JS-divergence shares the good 
properties of the KL-divergence, but it has a finite value in all cases even when some 
of the probabilities are zero.25

The following examples illustrate various possibilities in analyzing approach to 
probabilistic laws.

Example 1.  Let L be a monadic language with two primitive predicates Fx = x is a 
swan and Gx = x is white. Then there are four Q-predicates in L:

Then the true constituent C* in L states that all Q-predicates are instantiated. Let 
H be the false universal generalization “All swans are white”. H states that Q2 is 
empty and leaves other cells as question marks. Applying the min-sum definition 
with weights γ and γ´ for the min and sum factors, respectively, the degree of truth-
likeness of H is26

Choosing γ = 2/3 and γ´ = 1/3, this is equal to 5/8. The degree of truthlikeness of 
the false constituent C1 with CT1 = {Q1, Q3, Q4} is27

The same numerical results hold for the nomic versions of C*, H, and C1. In the 
probabilistic framework, H corresponds to the law P(Gx/Fx) = 1, but now the target 
is the true probability distribution P* over the cells Q1,…,Q4, and H is a disjunc-
tion of probabilistic constituents with probability 0 for Q2. As the number of black 
swans is small in comparison to white swans, the true probabilistic law is something 
like P(Gx/Fx) = 0.95. It follows, for any reasonable distance measure, that H has a 

Q1x = Fx & Gx

Q2x = Fx & ∼ Gx

Q3x = ∼ Fx & Gx

Q4x =∼ Fx & ∼ Gx.

Tr
(
H,C∗

)
= 1−γ∕4 − 5γ�∕8.

Tr
(
C1, C

∗
)
= 1−γ∕4−γ�∕32 = 79∕96 > 5∕8.

25  divJS is absolutely continuous, since in (12) (pi + qi)/2 = 0 implies pi = 0 and qi = 0.
26  See formula (9.21) with b = b´= 1 and q = 4 in Niiniluoto (1987), p. 338.
27  See formula (6.88) with |I |= 24 and av(*,B) = ½ in Niiniluoto (1987), p. 229.
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relatively high degree of truthlikeness, and in any case higher than that of the law 
P(Gx∕Fx) = 0.5 . But if the cognitive interest of the investigator is to know both the 
nomic and actual features of birds, so that the target is the conjunction P* & C*, then 
H’s overall truthlikeness is reduced, since it mistakenly excludes the cell Q2, while 
laws of the form P(Gx∕Fx) = r < 1 allow for the actual existence of black swans.

Example 2.  Already Example 1 illustrates the fact that the comparison of ordinary, 
nomic and probabilistic constituents is a complicated matter, as they involve differ-
ent targets. For example, a probabilistic constituent P is equivalent to a single nomic 
constituent B only in the special case where just one cell Qi is physically possible – 
and, hence, has probability 1. In other cases, the true nomic constituent B* is an infi-
nite disjunction of probabilistic constituents, and the target-sensitivity does not allow 
a direct comparison of the degrees of truthlikeness of these different types of hypoth-
eses. In particular, the atomistic nomic constituent, which states the possibility of all 
Q-predicates, is the disjunction of all pure probabilistic laws. This means that there 
is no connection between divergence and Clifford-distance for pure probabilistic 
laws. To see this, assume that P1 and P2 are two different laws, and B1 and B2 are the 
nomic constituent entailed P1 and P2. If P1 and P2 are pure laws, then CT1 = CT2 = Q 
and CT1ΔCT2 = ø, so that div(P1,P2) > 0 but the Clifford-distance ΔC(B1,B2) = 0.28 
But some simple comparisons can be made for the special case of uniform mixed 
laws. Thus, suppose C1 and C2 are monadic nomic constituents in a language with K 
Q-predicates with |CT1−CT2|= A, |CT2−CT1|= B, and |CT1 ∩ CT2| = D , so that 
the Clifford distance ΔC between C1 and C2 is (A + B)∕K (see (3)). Let P1 and P2 be 
probabilistic constituents which allocate probability uniformly to CT1 and CT2 (1/c 
and 1/c′, respectively), where c′ ≥ c . Now D = c−A = c� − B . Then the Manhattan 
distance satisfies

If c = c� , this value equals KΔC

(
C1, C2

)
∕c . For the Euclidean distance with 

c = c� we have

A similar connection to the Clifford measure holds for the Jensen-Shannon 
divergence:

Δ1(P1, P2) =
A

c
+

B

c�
+
(
1

c
−

1

c�

)
D =

1

c�
(A + B) −

c

c�
+ 1 =

K

c�
ΔC

(
C1, C2

)
+

c� − c

c�
.

Δ2(P1, P2) = (A + B)∕c2 = K ΔC

(
C1, C2

)
∕c2.

28  Fig. 2 in Sect. 5 shows that symmetric difference still has an interesting connection to the distance 
between probability densities.
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However, such connections fail for non-uniform laws. For example, if nomic con-
stituents B1 and B2 are otherwise almost equal, but B1 makes correct possibility 
claims about cells Qi with high true probability p∗

i
 while B2 makes such claims about 

cells Qj with low probability p∗
j
 , then it may happen that truthlikeness ordering is 

reversed when the target changes from B* to P*: ΔC

(
B1, B

∗
)
> ΔC

(
B2, B

∗
)
 , but 

d
(
B1, P

∗
)
< d

(
B2, P

∗
)
.29

divJS
(
P1, P2

)
=

log2c

2c
(A + B) +

logc

c
D−logc

=
log2c

2c
(A + B) −

(
1 −

D

c

)
logc

=
log2c

2c
(A + B) −

logc

c
A

=
log2

c
A

=
K

2c
ΔC

(
C1, C2

)
.

Fig. 2   Distance between probability densities f and g

29  Festa (2007) has proposed a way of measuring the distance between a monadic generalization and 
“the statistical truth” (i.e., true probabilistic constituent). The idea, roughly speaking, is to divide Q-pred-
icates into “statistically common” and “rare” ones, and then demand that a truthlike generalization 
should make true existential claims about common predicates and false exclusion claims only about rare 
predicates.
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Example 3  If p and q are disjoint mixed probabilistic laws (i.e.,CTp ∩ CTq = ⊘ ), 
then

Example 4  The Poisson distribution for a randomly occurring rare event 
p(i), i = 1, 2,… , with a constant mean λ is defined by

The KL-divergence between two Poisson distributions with rates λ and λ´ (where 
λ´ > λ) is

The proof uses the Taylor series

Example 5   The Manhattan difference between two exponential laws (10) with decay 
rates λ and λ′ (where λ′ > λ) is

Example 6  Let p and q be deterministic laws of succession such that 
p2∕1 = 1, p1∕1 = 0 and q2∕1 = 0, q1∕1 = 1 . Then

For indeterministic r with r2∕1 = r1∕1 =
1∕2,

These examples illustrate that several alternative distance measures give fairly 
similar comparative results. For uniform nomic constituents their results are related 
to the Clifford-measure between ordinary constituents, but this relation is not 
straightforward for non-uniform constituents and disappears for pure probabilistic 
laws. When it comes to measure the distance between particular probability values, 
geometrical and quadratic differences seem simple and useful, but for the distance 
between whole probability distributions or densities divergence is a convenient 

Δ1(p, q) =
∑

pi +
∑

qi = 1 + 1 = 2

divJS(p, q) = −
∑ pi

2
log

pi

2
−

∑ qi

2
log

qi

2
−

1

2
H(p) −

1

2
H(q) = 1.

p(i) =
�i

i!
e−�.

�� − � − �log
��

�
.

e� =

∞∑

0

�i

i!
.

Δ1(1 − e−�t, 1 − e−�
�t) =

∞

∫
0

(e−�
�t − e−�t)dt =

�� − �

���
.

divJS(p, q) = −
(
1

2
log

1

2
+

1

2
log

1

2

)
−(0 + 0)∕2 = −log

1

2
= log2 = 1.

divJS(p, r) = −
3

4
log

3

4
−

1

4
log

1

4
−

1

2

(
−
1

2
log

1

2
−

1

2
log

1

2

)
= 2 log 2 −

3

4
log 3 = 0.811.
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choice. The applicability of the Kullback–Leibler divergence is restricted to pure 
probabilistic laws, so that the Jensen-Shannon divergence turns out to be valuable 
complement which can be applied to mixed laws which assign zero probabilities to 
some Q-predicates or sample points.

5 � Vertical versus horizontal distance measures

An important debate about the explication of truthlikeness for monadic languages 
concerned the question, whether the distance between constituents should reflect 
distances between Q-predicates. The Clifford-measure ΔC

(
C1, C

∗
)
 counts all errors 

of C1 about the Q-predicates equally: mistaken existence claims in CT1−CT
∗ and 

mistaken non-existence claims in CT∗ − CT1 have the same weight 1/K in (3). It 
is natural to consider also situations where the cognitive seriousness of errors in 
a false constituent are treated differently, so that the distance from the truth is not 
simply the cardinality of the symmetric difference. Niiniluoto proposed in 1976 
two modifications of the Clifford-measure on the basis of the ρ-measure between 
Q-predicates.30 In the Jyväskylä measure dJ false existence claims are weighted by 
their distance to the nearest non-empty cell, and false non-existence claims by their 
distance to the nearest empty cell, while in the weighted symmetric difference dw the 
first condition holds, but false non-existence claims are weighted by the minimum 
distance to a really non-empty cell. Then ΔC and dw (unlike dJ) are symmetric, and 
ΔC and dJ (unlike dw) are specular, where a specular distance (in the sense of Festa, 
1993) satisfies the condition that the maximally distant constituent from Ci is its 
photographic negative (i.e., all positive claims are replaced by negative ones and 
vice versa).31 If the ρ-measure reflects resemblances between predicates in a family 
(e.g. colors), then for the Jyväskylä measure the generalization “All ravens are grey” 
is closer to the truth than “All ravens are white”.32

Tichý’s (1976) general definition of truthlikeness implies for the monadic case a 
distance measure between constituents which differs from the Clifford-measure ΔC 
and its modifications dJ and dw.33 A linkage η between sets CTi and CTj is a surjec-
tive mapping from the larger of the sets to the smaller one. The cardinality card(η) 
of η is then max

{||CTi
||, |CTj|

}
 , and the breadth of η is the average distance between 

the linked predicates:

The distance dT
(
Ci, Cj

)
 between constituents Ci and Cj is then defined as the 

breadth of the narrowest linkage between CTi and CTj.

(13)B(η) =
1

card(𝜂)

∑

<Qu,Qv>∈𝜂

𝜌
(
Qu,Qv

)
.

31  See Niiniluoto (1987), p. 319.
32  See Niiniluoto (1987), p. 340.
33  See also Oddie (1986), pp. 91–99, who applies this method to depth-d constituents.

30  See Niiniluoto (1978). See also the refined treatment of truth approximation by Kuipers (2019).
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Niiniluoto (1987) rejects Tichý’s proposal for several reasons. The use of average 
in (13) leads to unintuitive examples, and constituents should not be treated as if they 
consisted only of existence claims. Indeed, dT is not specular and does not reflect 
the cognitive goal of finding true universal generalizations. The most fundamental 
objection is that dT

(
Ci, C

∗
)
 can be derived as the minimum distance between two 

state descriptions s and s′, where s entails the uniformly distributed infinite structure 
description entailing Ci and s′ entails C*. Thus, Tichý is not defining the distance 
between Ci and C* in terms of the counted or weighted differences in claims about 
the Q-predicates (and thereby the ability of Ci to express true generalizations), but 
rather in terms of putting an infinite number of individuals in their right places in a 
classification system.34 The latter problem should be solved by choosing the target 
as the true state description and by replacing constituents (in a non ad hoc way) as 
disjunctions of state descriptions.

In spite of this criticism, Tichý’s basic idea is interesting, since the notion of a 
linkage resembles metrics defined for trees in terms of the number of transforma-
tions needed to change one tree to another.35 A linkage takes seriously (but perhaps 
in a wrong way) the demand that “horizontal” distances between Q-predicates are 
relevant. The goal of distributing an infinite number of individuals to their right 
places could be viewed as analogous to the task of distributing a probability mass 
(of measure 1) to its right place. Indeed, a discrete probabilistic constituent (8) allo-
cates the probabilities to a finite number of points in the space Q of Q-predicates, 
and a continuous probability density f on a state space � ⊂ Rn does the correspond-
ing assignment to an infinite number of points. This can be illustrated by the simple 
case where Q is a subset of the real line R and f: � → R+ . If we denote by Df the 
region between the curve f(x) ≥ 0 and the real axis, i.e.,

then the density f gives the probability measure 1 to Df. For two probability densi-
ties f and g, the symmetric difference DfΔDg covers the region between the func-
tions f(x) and g(x) (see Fig. 2). The Manhattan distance is simply the area of this 
region:

which is a direct analogue of the Clifford-distance (3) between constituents.
The Manhattan measure, as well as its Euclidean and divergence alternatives, are 

in an obvious sense vertical, since they measure the distance between probability 
distributions by the absolute, quadratic, or logarithmic differences between the val-
ues of f(x) and g(x), without consideration of horizontal distances between points 
in the sample space Q. This verticality is dramatically seen in Example 3, where 
the distances between the values of two disjoint discrete probabilistic constituents 

Df = {< x, y > | x ε �, 0 ≤ y ≤ f(x)},

Δ1(f, g) =
||| DfΔDg

|||,

34  See Niiniluoto (1987), pp. 328–330.
35  See the Boorman-Olivier and Fu metrics for trees in Niiniluoto (1987), pp. 11–14.
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p and q are maximal, and the distances Δ1(p,q) and divJS(p,q) have their maximal 
values quite independently of the location of p and q with respect to the space Q. A 
counterpart of this result for probability densities is the following observation: if f1 
and f2 are geometrical distributions with the same shape but disjoint domains, then 
Δ1(f1,f2), Δ2(f1,f2), and divJS(f1,f2) have their maximal values quite independently of 
the geometrical distance a between these densities (see Fig. 3). In fact, all distance 
measures surveyed by Cha (2007), which are applicable to mixed probabilistic laws, 
share this feature of verticality.

The observations above motivate the idea that one could try to find measures 
which in some way take into account the horizontal distances between probability 
distributions (in addition to their vertical ones). Then a modification of Tichý’s link-
ages might be fruitful. The detailed development of this suggestion has to be left for 
another occasion, but a simple illustration of the idea can be given here. Consider 
again real-valued probability densities f which define regions Df in a subspace S of 
R2. Let β ∶ S → S be an area-preserving function, so that β[A] has the same area 
as A for all subregions A of S. Thus, β maps Df onto Dg by moving the whole prob-
ability mass from Df to Dg.36 The length of the vector (< x,y > ,β(x,y)) is defined 
by the metric of S, and the breadth of β is defined as the sum (integral) of all these 
lengths for points < x,y > in Df. Then the distance between probabilities f and g is 
the breadth of the narrowest transformation β between Df and Dg. For example, in 
Fig. 3 the mapping β(x, y) = (x − a, y) , i.e., linear shift to the left,37 gives a linkage 
between f2 and f1 whose breadth is a, since

For probabilities on the discrete sample space Q, which in effect define columns 
on the points of Q with the total length one, the corresponding idea is to measure the 
distance between p and q by looking for the shortest length-preserving transforma-
tion between p and q. Such a transformation divides the columns of q into pieces 
and moves them in order to reach a fit with p. If a part of a column qi is moved to Qj, 
then the length of this part is multiplied with the distance ρ(Qi,Qj). For example, let 
� = {0, 1, 2}, ρ(0, 1) = ρ(1, 2) = 1∕2, ρ(0, 2) = 1 . Then p and q have the maximal 
distance 1, if p gives all probability to 0 and q to 2. If

∫
Df2

| < x, y >,< x − a, y > |dxdy = ∫
Df2

a dxdy = a.

36  A transformation β(x,y) =  < f(x,y),g(x,y) > , where f and g are linear functions, is area-preserving, if 
the absolute value of its Jacobian determinant is one at every point. The Jacobian is composed of the 
partial derivatives of f and g:
  |�f(x, y)∕dx �f(x, y)∕dy|
|�g(x, y)∕dx �g(x, y)∕dy|

37  Note that the Jacobian determinant of this transformation is.
  |1 0|
|0 1|

  so that its value is 1 × 1 + 0 × 0 = 1.
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then the distance between p and q is

But if

then the distance between p and q is ¼. These measures, which combine vertical 
and horizontal aspects, are applicable to both pure and mixed probabilistic laws.

6 � Estimating distance from probabilistic truth

According to the similarity approach to the epistemic problem of truthlikeness, 
unknown degrees of truthlikeness can be estimated by their expected value (4) using 
a posterior probability distribution over constituents. The same idea can be applied 
for the estimation of unknown degrees of divergence, which measure distance from 
the true probabilistic law.

Example 7  38 If p is the true probability of success in a binomial model

and q is our guessed value, then the divergence of q from p in a single trial is

p1 = p2 = p3 = 1∕3

q1 = 1∕6, q2 = 2∕3, q3 = 1∕6.

1

6
.
1

2
+

1

6
.
1

2
=

1

6
.

q1 = 1∕6, q2 = 1∕6, q3 = 2∕3,

B(p, s) =

(
n

s

)
ps(1 − p)n−s

Fig. 3   Disjoint geometrical distributions

38  Cf. Niiniluoto (1987), p. 404.
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As divergence is additive for independent distributions, this divergence in n trials 
is

If the prior distribution g(p) of p is the uniform Beta(1,1), i.e., g(p) = 1 for 
0 ≤ p ≤ 1, by Bayes´ theorem the posterior distribution g(p/s) of p with s successes 
and n-s failures is Beta(s + 1, n-s + 1), i.e.,

whose mean is (s + 1)/(n + 2).39 Then the estimated distance of q from p can be cal-
culated by

It follows that, given s successes in n trials, guess q´ is estimated to be closer to 
the truth than q if and only if

Note that for the deterministic hypothesis q = 1 the value of div(q,p) is not well 
defined, but for the Jensen-Shannon distance

Hence,

div(q, p) = plog
p

q
+ (1 − p)log

1 − p

1 − q
.

n

[
plog

p

q
+ (1 − p)log

1 − p

1 − q

]
.

g(p∕s) =
Γ(n + 2)

Γ(s + 1)Γ(n − s − 1)
ps(1 − p)n−s,

1

∫
0

g(p∕s)div(q, p)dp.

log
q�

q

1

∫
0

g(p∕s)pdp > log
1 − q�

1 − q

1

∫
0

g(p∕s)(1 − p)dp

iff log
q�

q
.
s + 1

n + 2
> log

1 − q�

1 − q
.
[
1 −

s + 1

n + 2

]

iff log
q�

q
∕log

1 − q

1 − q�
>

n − s + 1

s + 1
.

divJS(1, p) =
1

2
plog

p

2
−

1

2
(p + 1)log

p + 1

2
+

1

2
log2.

divJS(1, 0) =
1

2
log2 −

1

2
log

1

2
= log2 = 1.

39  See Festa (1993, pp. 60–61. Here Γ(n) = (n-1)! is the gamma function.
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Example 8  40 Let x1,…, xn be independent measurements of an unknown real-valued 
quantity θ with a normal distribution N(θ, �2):

Then their mean value y =
(
x1 +⋯ + xn

)
∕n is normally distributed N(θ,σ2/n). 

If the prior probability of θ is sufficiently flat normal, then the posterior distribution 
g(θ/y) of θ is approximately N(y,σ2/n), where y is the observed mean. If f(x/θ) is the 
true distribution, and f(x/θo) is our guess, then their estimated directed divergence is

Here the mean y as the best estimate agrees with the result of the Bayes-rule of 
minimizing expected quadratic loss.

7 � Conclusion

We have seen in this paper that the basic idea of the similarity approach to truthlike-
ness can be extended from qualitative and quantitative first-order languages to cases 
where probabilistic statements (and their disjunctions) are compared with probabil-
istic targets. Sections 2 and 3 show how one can naturally proceed from universal 
and deterministic laws to probabilistic laws. Section 4 argues that the Kullback–Lei-
bler divergence has to be supplemented by the Jensen-Shannon divergence as a 
measure between mixed probabilistic laws, i.e., laws which assign zero probabilities 
to some sample points and thereby entail some universal laws. Section 5 formulates 
a research program for studying a new class of measures which account for the hori-
zontal differences between probability densities, based on distances between sample 
points. In this way the theory of probabilistic truth approximation does not only lend 
tools from probability calculus but may suggest novel kinds of problems for math-
ematicians. Finally, Sect. 6 gives examples to show that the method of estimating 
degrees of legisimilitude by their expected value can be generalized from the case of 
deterministic laws to probabilistic laws.

Acknowledgements  I am grateful to Gustavo Cevolani and Theo Kuipers for useful comments on probabilis-
tic truth approximation in general and my paper in particular.

f(x∕θ) =
1

�
√
2�

e−(x− �)2∕2�2

.

∫ g(�∕y) ∫ f (x∕�) log[f (x∕�)∕f
(
x∕�

�

)
]dxdθ

= ∫ g(�∕y) [(�−�o)∕2�
2]dθ

=
1

2�2 ∫ � g(�∕y)d� −
�0

2�2

= (y−θo)∕2σ
2.

40  Cf. Niiniluoto (1987), pp. 281–283, 428.
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