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Abstract 

Background: Extended-spectrum β-lactamase producing Enterobacterales (ESBL-E) are important causative agents 
for infections in humans and animals. At the Equine Veterinary Teaching Hospital of the University of Helsinki, the first 
infections caused by ESBL-E were observed at the end of 2011 leading to enhanced infection surveillance. Contact 
patients were screened for ESBL-E by culturing infection sites and rectal screening. This study was focused on describ-
ing the epidemiology and microbiological characteristics of ESBL-E from equine patients of the EVTH during 2011–
2014, and analysing putative risk factors for being positive for ESBL-E during an outbreak of Klebsiella pneumoniae 
ST307.

Results: The number of ESBL-E isolations increased through 2012–2013 culminating in an outbreak of multi-drug 
resistant K. pneumoniae ST307:blaCTX-M-1:blaTEM:blaSHV during 04–08/2013. During 10/2011–05/2014, altogether 139 
ESBL-E isolates were found from 96 horses. Of these, 26 were from infection-site specimens and 113 from rectal-
screening swabs. A total of 118 ESBL-E isolates from horses were available for further study, the most numerous being 
K. pneumoniae (n = 44), Escherichia coli (n = 31) and Enterobacter cloacae (n = 31). Hospital environmental specimens 
(N = 47) yielded six isolates of ESBL-E. Two identical E. cloacae isolates originating from an operating theatre and 
a recovery room had identical or highly similar PFGE fingerprint profiles as five horse isolates. In the multivariable 
analysis, mare–foal pairs (OR 4.71, 95% CI 1.57–14.19, P = 0.006), length of hospitalisation (OR 1.62, 95% CI 1.28–2.06, 
P < 0.001) and passing of a nasogastric tube (OR 2.86, 95% CI 1.03–7.95, P = 0.044) were associated with being positive 
for ESBL-E during the K. pneumoniae outbreak.

Conclusions: The occurrence of an outbreak caused by a pathogenic ESBL-producing K. pneumoniae ST307 strain 
highlights the importance of epidemiological surveillance of ESBL-E in veterinary hospitals. Limiting the length of 
hospitalisation for equine patients may reduce the risk of spread of ESBL-E. It is also important to acknowledge the 
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Background
Multi-drug resistant bacteria are one of the biggest 
threats for human and animal health. It has been esti-
mated that by year 2050 antimicrobial resistance will 
annually cause more human deaths than cancer if the 
development of resistance continues to accelerate [1]. 
Extended-spectrum betalactamase-producing Enterobac-
terales (ESBL-E) and especially ESBL Klebsiella spp. are 
important causative agents of difficult-to-treat nosoco-
mial infections in both humans and animals, and the high 
occurrence of ESBL-E is a worldwide challenge [2–4]. 
Infections caused by ESBL-E are especially troublesome 
in equine medicine, as only a limited number of antimi-
crobial agents are suitable for horses.

Similar ESBL-E strains and ESBL enzymes have been 
isolated from humans and animals and the detection of 
these can indicate possible transmission through contact 
with animals as well as food [2]. As humans are in close 
contact with horses kept as companion animals, the risk 
for transmission of bacterial strains between horses and 
humans cannot be neglected. Drug-resistant Enterobac-
terales among horses have been assumed to be acquired 
from the environment or from people [5]. The effec-
tiveness of the transmission of ESBL-characteristics is 
based on mobile genetic elements, and resistance genes 
can move from one bacterial species to another [6]. For 
example, dozens of plasmids have been identified that 
often carry multiple antimicrobial resistance genes in 
various K. pneumoniae isolates [7]. The vast research 
interest in antimicrobial resistance in animals has so 
far been in livestock, however companion animals and 
horses have been somewhat overlooked. There have been 
few reports on the nosocomial spread of ESBL-E in small 
animal and equine hospitals [8, 9].

This study describes the characteristics of ESBL-E in 
equine patients at a veterinary teaching hospital in Fin-
land, with a special reference to an outbreak of K. pneu-
moniae ST307:CTX-M-1. This strain of K. pneumoniae is 
known to have caused outbreaks in human hospitals, e.g. 
a neonatal intensive care unit [10, 11], and occurrence 
and transmission of this strain have also been reported 
in small animal veterinary practices [12, 13]. However, 
no outbreak of ESBL -K. pneumoniae ST307 has been 
reported in horses previously. The study will also shed 
light on some possible risk factors for horses being posi-
tive for ESBL-E in a hospital setting. This information will 

aid in understanding the importance of control measures 
in the prevention of antimicrobial resistant pathogens in 
equine clinical settings.

Sporadic ESBL-E isolates have been observed in com-
panion animal and equine infections in Finland since 
2004 [14]. In 2011, the Clinical Microbiology Laboratory 
(CML) of the Faculty of Veterinary Medicine, serving the 
Equine Veterinary Teaching Hospital (EVTH) of the Uni-
versity of Helsinki, reported several subsequent equine 
ESBL-E infections at EVTH, followed by an increase in 
frequency in 2012. In 2013, an outbreak of K. pneumo-
niae was identified as multiple subsequent discoveries 
of a similar isolate of K. pneumoniae (based on antibio-
gram and phenotypic ESBL production) were recognized 
from bacterial cultures. Other ESBL-E species were also 
observed at the same time.

The aims of this study were: (1) to describe the epide-
miology and microbiological characteristics of ESBL-E 
isolates derived from horses at the EVTH during 2011–
2014; and (2) to analyse putative risk factors for ESBL-E 
infection or gut carriage during an outbreak of K. pneu-
moniae in a veterinary equine hospital.

Methods
Setting and source population
The EVTH of the University of Helsinki is the only vet-
erinary teaching hospital in Finland and admits both 
primary and referral equine patients. The case load 
is approximately 2600 horses annually. Primary cases 
arrive from the greater Helsinki area and referral cases 
are accepted from the whole country. According to the 
EVTH patient record data, a mean of 70 foals is treated 
at the hospital during spring and summertime and most 
stay in the hospital for some days. The EVTH can house 
up to 24 single horses or mare–foal pairs, however, all 
stalls are seldom occupied simultaneously. There is an 
isolation unit with three stalls, but horses can also be 
cohorted in groups of five where each cohort has its 
own entrance and anteroom for separation of clean and 
contaminated areas. Approximately 220 surgeries are 
performed at the EVTH on an annual basis. The surger-
ies consist of emergency procedures, such as colic sur-
geries, and elective procedures, such as castrations and 
arthroscopies.

The EVTH has a hospital hygiene program includ-
ing a surveillance system for nosocomial infections and 

importance of nasogastric tubing as a potential source of acquiring ESBL-E. As ESBL-E were also found in stomach 
drench pumps used with nasogastric tubes, veterinary practices should pay close attention to appropriate equipment 
cleaning procedures and disinfection practices.

Keywords: Bacterial infection, Cluster, Horse, Multi-drug resistant bacteria, Nosocomial infection, Surveillance
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multidrug resistant bacteria. If a horse has a clinical 
infection, an infection site specimen is always obtained. 
According to the hygiene policy, an ESBL-E finding in a 
hospitalised patient initiates contact patient tracing and 
screening for ESBL-E carriage (rectal swab). This is per-
formed in order to recognize a possible outbreak and to 
observe whether standard hygiene precautions are effec-
tive (i.e., no spread of the ESBL-E of concern among 
hospitalised horses). As the first ESBL-E positive speci-
men is indicative of transmission, usually only one posi-
tive specimen was obtained per horse. However, in some 
cases, as infections sites are always cultured, a positive 
rectal swab may have preceded an ESBL-E positive infec-
tion site specimen. If the horse, however, had an ESBL-
E positive infection site, a rectal swab was not routinely 
obtained afterwards. For descriptive epidemiology, we 
wanted to describe the clinical infections due to clinical 
relevance whereas for the risk factor study, the data for 
potential risk factors were only collected from the point 
of admission up until the first ESBL-E positive specimen.

The source population of this study consisted of the 
equine patients hospitalised ≥ 24  h at the EVTH during 
October 2011–May 2014. All adult horses were housed in 
separate stalls with no possibility for direct contact with 
other patients. Mares and suckling foals were housed 
together in the same stall.

Bacteriological specimens
Infection site specimens were taken aseptically with a 
cotton swab (M40 Copan Diagnostics, Italy) or by aspi-
ration from abscesses (Portagerm®, bioMérieux, France) 
by the treating veterinarian. Screening specimens were 
taken from the rectum of the horse and from possible 
infection sites (if any) with a cotton swab (M40). Envi-
ronmental specimens were taken with a sterile swab or 
cotton gauze from stomach drench pumps, nasogastric 
tubes, the operating room, and recovery room premises 
(operation table, top of the anaesthesia unit, enterotomy 
lavage hose, floor, doorstep, and soft padding of a drain).

Microbiological methods
Culture of clinical and environmental specimens and spe-
cies identification were performed as described by Garcia 
and Isenberg [15]. Bacterial species were also identified 
by matrix-assisted laser desorption/ionization time-of-
flight (MALDI-TOF) mass spectrometry (Bruker MALDI 
Biotyper Microflex LT, Bruker Daltonik GmbH, Bremen, 
Germany). Susceptibility testing was executed according 
to CLSI guidelines [16]. The disc diffusion test was per-
formed for the following antimicrobial agents: amikacin, 
gentamicin, amoxicillin/clavulanic acid, cefpodoxime, 
sulphamethoxazole/trimethoprim, enrofloxacin, and 
doxycycline (Oxoid Ltd., UK). Phenotypic identification 

of ESBL-E was performed using the double-disc diffu-
sion test [17], and MASTDISCS® Combi (Mast Group, 
UK) according to the manufacturer’s instructions. In 
addition, the susceptibility to colistin (Colistin ETEST®, 
bioMérieux, France) was tested for selected Enterobac-
ter cloacae, Escherichia coli, K. pneumoniae, Citrobacter 
spp., Enterobacter aerogenes and Klebsiella oxytoca iso-
lates that represented each PFGE-clone, including PFGE 
subclusters. If no veterinary-specific susceptibility break-
points were available in the aforementioned standards, 
human CLSI breakpoints were used [18].

Descriptive epidemiology
To detect temporal clustering of different ESBL-E strains, 
all ESBL-isolates (n = 139) collected during October 
2011–May 2014 were plotted by month and by bacte-
rial species in a histogram. To determine the number of 
horses (n = 96) with an ESBL-E and the source of ESBL-
isolates (i.e., infection or colonisation/asymptomatic car-
rier), laboratory and patient data were combined from 
the respective information systems (Provet Net, Finnish 
Net Solutions, Finland) of the CML and the EVTH.

Analytical epidemiology and statistical analyses
The risk factor study concerned a five-month out-
break period of ESBL K. pneumoniae from April 2013 
to August 2013, during which time many other ESBL-
E were also detected. An ESBL case was defined as a 
horse that had been treated at the EVTH ≥ 24  h during 
the aforementioned period, and had returned an ESBL-
E positive result from an infection site and/or from a 
screening specimen after ≥ 24 h of hospitalisation. A con-
trol was a horse from the same population but had been 
ESBL-E negative in screening and/or infection-site speci-
mens. Outpatients and patients with any ESBL-E finding 
were excluded from the control group. Data for potential 
risk factors for being positive for ESBL-E were collected 
for each case during their hospitalisation from the point 
of admission up until the first ESBL-E positive specimen 
(cases) or the latest date of an ESBL-E negative specimen 
(controls). Each horse was considered as an independent 
individual, however, mare and foal housed together also 
formed a separate variable.

Data on basic demographics and potential risk factor 
variables of the cases (n = 52) and controls (n = 90) were 
collected in a Patient Data Collection Form (Additional 
file  1) using Epi-Info (Epi-Info v. 7, CDC, USA). The 
potential risk factors for being positive for ESBL-E were 
first assessed using univariable logistic regression mod-
els, after which a stepwise multivariable logistic regres-
sion analysis was conducted for the risk factors with a 
P-value < 0.05 in the univariable analyses. In the stepwise 
selection process, a significance level of 0.15 was required 
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to allow a variable into the multivariable model, and a 
significance level of 0.20 was required for a variable to 
stay in the multivariable model. Only the main effects of 
the factors were studied (i.e. the analysis did not include 
any interactions between risk factors). For sensitivity pur-
poses, a penalized LASSO (least absolute shrinkage and 
selection operator) logistic regression model [19, 20] was 
fitted. In the LASSO-modelling, Akaike Information Cri-
teria (AIC) was used as the criteria for the optimal model 
selection and the Nesteroy’s optimization as the optimi-
zation technique. Odds ratios (OR) with 95% confidence 
intervals (CI) were calculated. P-values (Wald) < 0.05 
were considered statistically significant. All statistical 
analyses were performed using SAS System for Windows, 
version 9.4 (SAS Institute Inc., USA).

Pulsed‑field gel electrophoresis (PFGE)
Of the total of 139 ESBL-E isolates, 118 isolates from 84 
horses were available for further investigation. PFGE typ-
ing was performed for the 118 isolates according to the 
PulseNet O157 protocol [21]. Clonal similarity of the 
strains was determined [22] and analysed by UPGMA-
cluster analysis with 0.5% optimization and 1% Dice band 
matching tolerance with a ≥ 85% similarity cut off value 
using GelCompar II software version 6.5 (Applied Maths 
NV, Belgium).

Multilocus sequence typing (MLST)
MLST typing was performed for selected E. coli (n = 28) 
and K. pneumoniae (n = 7) isolates that represented each 
PFGE-clone, including subclones. For E. coli, the MLST 
was performed as described by Grönthal et  al. [23]. For 
the MLST of K. pneumoniae we used allele-specific prim-
ers [24] that were attached to the universal sequencing 
primers [25] as described by the Pasteur Institute, Proto-
col 2 [26]. The K. pneumoniae MLST PCR reaction mix-
ture (20 µL in total) contained 10 µL of 2 × Phusion Flash 
High Fidelity Master Mix (Thermo Fisher Scientific, 
Waltham, Massachusetts, USA), 0.25 µM of each primer, 
and 1 µL of DNA template. The PCRs were run in three 
separate protocols: the rpoB products were amplified as 
follows: initial denaturation at 98 °C for 15 s; 30 cycles of 
denaturation at 98 °C for 2 s, annealing at 52 °C for 10 s, 
and elongation at 72 °C for 15 s; final elongation at 72 °C 
for 1  min. The running conditions for the remaining 
genes were the same, except the annealing temperature 
was 67 °C (gapA, infB, mdh) or 62 °C (phoE, ton, pgi).

PCR and sequencing for ESBL‑gene families
The 118 isolates available for further study were inves-
tigated for the carriage of the cefotaxime-hydrolysing 
ESBL (CTX-M), Temoneira β-lactamase (TEM), and sulf-
hydryl variant ESBL (SHV) genes by multiplex-PCR [23]. 

In addition, grouping was performed by sequencing for 
CTX-M-1, -M-2, -M-8, -M-9 or -M-25 for isolates that 
represented each PFGE-cluster or subclusters as follows: 
E. coli (n = 14), K. pneumoniae (n = 8), Citrobacter spp. 
(n = 1), and K. oxytoca (n = 2) [23]. All sequence analysis 
was carried out using CLC Main Workbench (v. 7).

Results
ESBL‑E isolations and isolation sites
Altogether, 785 infection site specimens from 584 horses 
and 354 screening specimens from 274 horses were 
studied for ESBL-E isolates during October 2011–May 
2014 at the CML. Of these, ESBL-E was found in 25/785 
(3%) infection site specimens and 84/354 (24%) screen-
ing specimens. There were 13 horses which had both 
an ESBL-E positive infection site specimen and a posi-
tive rectal swab. The 25 infection site specimens yielded 
26 isolates of ESBL-E, and the 84 screening specimens 
yielded 113 isolates. Altogether, there were 139 ESBL-
E isolates found during October 2011 to May 2014 
(Fig.  1). Sixty percent of these ESBL-E isolates (n = 83) 
were found during the five-month outbreak, from April 
to August 2013. Figure 1 shows a histogram by time and 
species including the monthly number of investigated 
specimens indicating sampling activity.

The first ESBL-E isolate, E. cloacae, originated from a 
surgical site infection after a colic surgery of a 16-year-
old Finnhorse gelding in late 2011. The second one, K. 
pneumoniae, was isolated from a clinical respiratory tract 
specimen of a 4-day old warmblood filly in June 2012. 
This finding was the first case of a minor K. pneumo-
niae ST107:blaCTX-M-1 clone consisting of four cases in 
June 2012 – April 2013. The most striking increase in the 
number of ESBL-E occurred during April – August 2013, 
when a major clone of 38 multi-drug resistant (MDR) K. 
pneumoniae ST307:blaCTX-M-1 isolates emerged indicat-
ing an outbreak. In addition to beta-lactam antibiotics, 
the members of this clone were resistant to gentamicin, 
trimethoprim-sulfonamides, enrofloxacin and doxycy-
cline (Table 3, Fig. 2).

Out of all ESBL-E isolates, 118 isolates from 84 horses 
were available for further investigation. Of these, the 
most numerous bacterial species was K. pneumoniae 
(n = 44), followed by E. coli (n = 31), Enterobacter cloacae 
(n = 31), K. oxytoca (n = 6), Citrobacter spp. (n = 4), and 
Enterobacter aerogenes (n = 2). Table  1 shows the sites 
of origin of the ESBL-E isolates included in the micro-
biological study. The majority of horses (56/84; 67%) that 
were positive for ESBL-E had only one ESBL-E isolate, 
while 22 horses (26%) had two, and six horses (7%) had 
three ESBL-E isolates.

Environmental specimens (N = 47) investigated during 
December 2012 – September 2013 also revealed ESBL-E 
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isolates (n = 6). Table  2 presents the sampling locations 
and the found species.

Results of geno‑ and phenotypic analyses
During the whole study period 44 K. pneumoniae isolates 
were observed, of which 40 (91%) belonged to the same 
PFGE cluster with only slight variation in PFGE finger-
prints (Table 3, Fig. 2). Of the seven K. pneumoniae iso-
lates for which MLST was performed, six were of ST307 
and one of ST107 (Fig. 2). Three K. pneumoniae isolates 
with a different PFGE pattern (52% similarity compared 
to the major clone) were detected before the outbreak 
(during June–August 2012). The majority (n = 39, 89%) 
of K. pneumoniae isolates clustered temporally within 
the five-month outbreak of ESBL-K. pneumoniae ST307 
(April–August 2013), whereas two isolates of the major 
clone were detected after the outbreak (April – May 
2014).

Among the 31 ESBL-E. coli equine isolates, 24 pulso-
types were seen in four clusters of two to eight isolates 
each (Fig.  3). Sixteen isolates (52%) were singletons. 

Altogether 26 representatives of the 31 E. coli isolates 
from horses were analysed in MLST, resulting in 13 
published E. coli sequence types: ST167 (n = 7), ST10 
(n = 2), ST141 (n = 2), ST1245 (n = 2), and ten single 
representatives (Fig. 3). Three isolates were not identi-
fied in MLST.

The PFGE profiles of ESBL-E. coli isolates from envi-
ronmental specimens and horses differed. The isolates 
from stomach drench pumps were of ST8107, as was the 
closest horse isolate (P-568), however still with less than 
72% similarity.

Results for the remaining 34 isolates of E. cloacae, K. 
oxytoca, Citrobacter sp. and E. aerogenes are presented in 
Table 3 and Fig. 4. Apart from K. oxytoca, these isolates 
presented broad heterogeneity.

Of the 118 ESBL-E isolates from horses, nearly all 
were resistant to gentamicin (116/118 isolates; 98%), 
trimethoprim-sulfamethoxazole (115/118; 97%), doxy-
cycline (105/118; 89%), and more than half to enro-
floxacin (65/118; 55%) (Table  3). Only two isolates (2%) 
were resistant to amikacin. Enterobacter spp. and Cit-
robacter spp. commonly showed both ESBL and AmpC 
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Fig. 2 PFGE clustering of the 44 Klebsiella pneumoniae isolates from horses

Table 1 Description of ESBL-E isolates available for further study, obtained from horses during October 2011 – May 2014

a Twenty-six horses were asymptomatic carriers of two or three ESBL-E isolates (n = 49)
b Eleven horses had a clinical infection caused by two or three ESBL-E isolates (n = 13)

Isolates of different species of extended-spectrum β-lactamase producing Enterobacterales (ESBL-E) were obtained from specimens originating from horses at the 
Equine Veterinary Teaching Hospital (EVTH) during the study period

Bacterial species Specimen type Infection site (N = 25)

Isolates
N = 118 (%)

Rectal  screeninga

N = 93 (%)
Infectionb

N = 25 (%)
Abscess Blood IV catheter Udder Respiratory 

tract
Surgical 
incision

Wound Urine

K. pneumoniae n = 44 (37) 33 (35) 11 (44) 1 – 1 1 2 3 2 1

E. cloacae n = 31 (26) 20 (22) 11 (44) – – – – – 9 2 –

E. coli n = 31 (26) 29 (31) 2 (8) – 1 – – 1 – – –

K. oxytoca n = 6 (5) 6 (6) – – – – – – – – –

Citrobacter spp. n = 4 (3) 3 (3) 1 (4) – – – – – 1 – –

E. aerogenes n = 2 (2) 2 (2) – – – – – – – – –
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phenotype, whereas isolates of Klebsiella spp. and E. coli 
expressed only ESBL phenotype. Fifty-four isolates were 
tested for colistin and all were susceptible.

Risk factors for ESBL‑E infections
In multivariable analyses, the length of hospitalisation 
(OR 1.62, 95% CI 1.28–2.06, P < 0.001), being a mare–foal 
pair (OR 4.71, 95% CI 1.57–14.19 P = 0.006), and under-
going a nasogastric intubation (OR 2.86, 95% CI 1.03–
7.95, P = 0.044) were associated with being positive for 

Table 2 ESBL-E isolates from environmental specimens during December 2012 – September 2013 at the EVTH

Extended-spectrum β-lactamase producing Enterobacterales (ESBL-E) isolates of different species were found from environmental specimens, which were obtained 
during December 2012–September 2013 at the Equine Veterinary Teaching Hospital (EVTH)

ESBL‑E finding Surface Sampling date
yyyy‑mm‑dd

Isolate no

E. cloacae Colic operating theatre: operating table 2012–12–17 P-567

E. cloacae Pooled specimen: from the recovery room of the colic operating theatre: floor and doorstep 2013–04–08 P-615

E. cloacae Pooled specimen: enterotomy lavage hose, top of the anaesthesia unit, floor of the recovery room 2013–04–04 P-616

E. coli Pooled specimen: four stomach drench pumps 2013–09–18 P-743

E. coli Pooled specimen: four stomach drench pumps 2013–09–18 P-744

Citrobacter spp. Pooled specimen: from the recovery room of the colic operating theatre: doorstep and soft pad-
ding of a floor drain

2012–12–17 P-566

Table 3 Geno- and phenotypic data of ESBL-E clusters during October 2011–May 2014

Geno- and phenotypic description of the extended-spectrum β-lactamase producing Enterobacterales (ESBL-E) clusters from the equine and environmental specimens 
obtained at the Equine Veterinary Teaching Hospital (EVTH) during the study period. Single type representatives are excluded
a Altogether, 7 representative isolates of K. pneumoniae and 28 isolates of E. coli were investigated in MLST
b In addition to multiplex-PCR results, CTX-M gene group was determined by sequencing for representative isolates. TEM = wild-type TEM
c AK amikacin, CN gentamicin, AMC amoxicillin/clavulanic acid, CPD cefpodoxime, SXT sulphamethoxazole/trimethoprim, ENR enrofloxacin, DO doxycycline, R 
resistant, I intermediate, S susceptible. Susceptibility annotated with a division sign indicates susceptibilities of different isolates
d One isolate was sensitive to doxycycline
e Includes two surface hygienic specimens
f One isolate carried blaTEM only
g One isolate carried blaSHV and blaTEM only

Species PFGEcluster No. of isolates MLST  typea Antibiogramc

bla  geneb AK CN AMC CPD SXT ENR DO

K. pneumoniae A 40 ST 307 CTX-M-1, SHV, TEM S R I/R R R R Rd

B 4 ST 107 CTX-M-1, SHV S R I/R R R S R

E. coli C 8 ST 167 CTX-M-9, TEM S R S/R R R R Rd

E. coli D 3 ST 167 CTX-M-1, TEM S R R R R R R

E. coli E 2 ST 141 SHV, TEM S R I R R S R

E. coli Fe 2 ST 8107 SHV, TEM S R S R R S R

E. coli G 2 Unidentified Type CTX-M-1, TEM S R I R R I S

E. cloacae H 9 – SHV, TEM S R R R R R S/R

E. cloacae I 6 – SHV, TEM S/I R R R R S R

E. cloacae J 3 – SHV, TEM S R R R R I R

E. cloacae K 2 – SHV, TEM S R R R R S/R R

E. cloacae L 2 – SHV, TEM S R R R R I/R R

E. cloacae M 2e – SHV, TEM,  TEMf S R R R R S R

K. oxytoca N 4 – CTX-M, TEM, SHV S R S R R S R

K. oxytoca O 2 – CTX-M, TEM,  SHVg S R S R R S R

Citrobacter spp. P 2 – SHV, TEM S R R R R I R

E. aerogenes Q 2 – SHV, TEM S R R R R S R
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ESBL-E during the outbreak (Table 4). On average, horses 
that tested positive for ESBL-E stayed in the hospital for 
4.3 days, whereas the average stay of control horses lasted 
for 1.7  days. The sensitivity analysis confirmed the pre-
sented results.

Discussion
Many ESBL-E positive specimens, both from infection 
sites and rectal swabs, were found in horses at the EVTH 
between October 2011 and May 2014. Most of the find-
ings were K. pneumoniae, E. coli, and E. cloacae. During 
the 31-month study period, a major ESBL K. pneumoniae 
ST307:blaCTX-M-1 outbreak of five months (April–August 
2013) occurred at the EVTH, indicating nosocomial 
transmission. This sequence type of K. pneumoniae has 
rapidly disseminated globally and has become a signifi-
cant pathogen in humans [27]; it is known to have caused 
outbreaks in human hospitals [10, 28]. This strain has 
also been reported to cause infections in companion ani-
mals such as dogs and cats [29, 30]. However, our study is 
the first to describe an outbreak of ESBL-K. pneumoniae 
ST307:CTX-M-1 in an equine hospital. The occurrence 
of the outbreak we describe underlines the importance 
of epidemiological ESBL-E surveillance in veterinary 
hospitals.

The ESBL-E isolated in our study caused several kinds 
of infections, most commonly in surgical sites, wounds, 
and the respiratory tract. The most common species 
causing infections was K. pneumoniae ST307. This is in 
line with the findings in the study by Shnaiderman-Tor-
ban, where K. pneumoniae and E. cloacae were the most 
frequently isolated species of ESBL-E from clinical infec-
tions in horses during hospitalisation [31]. The antibio-
grams of the ESBL-E causing infections were very similar 
to each other regardless of the ESBL-isolate; all of the iso-
lates were resistant to cefpodoxime and trimethoprim/
sulphonamides and all, except one, were resistant to gen-
tamicin. Widespread resistance to fluoroquinolones was 
also noted. Multidrug resistance indicated by resistance 
to three or more different antimicrobial classes [32] was 
noted for all ESBL-E isolates that caused a clinical infec-
tion in our study population. The resistance to different 
antimicrobials was also very similar to the antibiograms 
published in the study by Shnaiderman-Torban [33]. The 
only remarkable difference was the susceptibility to ami-
kacin; in our study 92% of the strains were susceptible 
to amikacin, whereas only 76% of the ESBL-E were sus-
ceptible to amikacin in the Shnaiderman-Torban study 
[33]. This might reflect the habits of antimicrobial usage 
as horses in Finland extremely seldom receive amikacin 
due to financial restraints whereas in Israel most foals 

Fig. 3 PFGE clustering of the Escherichia coli isolates from horses (n = 31) and equine hospital equipment (n = 2)
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admitted to the hospital receive ampicillin and amikacin 
for broad-spectrum antimicrobial coverage [34].

Walther et  al. [35] revealed a broad heterogeneity of 
ESBL-producing bacterial species, as was seen in our 
study. The most common genes associated with ESBL-
production in the German study were blaCTX-M-1 and 
blaSHV-12. According to Schmiedel et  al. [36], the sub-
type blaCTX-M-1 was a common finding in equine ESBL-
E isolates. These results are consistent with our findings, 
where the same genes were found among different spe-
cies of Enterobacterales. This could be explained by hori-
zontal gene transfer. A study by Dolejska et al. [37] found 
that E. coli isolates from horses, environmental smears, 
and flies at an equine clinic and a riding centre harboured 
a plasmid, which carried blaCTX-M-1. In addition, the plas-
mids contained numerous other resistance genes, which 
could explain the broad resistance among the different 
bacterial species.

Among the ESBL E. coli isolated in our study, three 
new and numerous previously identified ST types were 
found, which reflects the heterogeneity of the population. 

Similarly, a diverse E. coli population was found in a 
Dutch study describing the occurrence and molecular 
characteristics of ESBL/AmpC producing E. coli in fae-
cal samples from horses in an equine clinic, indicating 
that clonal nosocomial spread was not the only reason 
for the high occurrence of E. coli [3]. Strains positive 
for blaCTX-M-1 and blaCTX-M-2 predominated, and ST10 
among others was the most common sequence type [3]. 
ST10 was also reported by Walther et al. [35] in several 
equine patients in a German veterinary teaching hospi-
tal. However, only two isolates represented ST10 E. coli 
in our study.

The occurrence of ESBL-E in food-producing animals 
in Finland is very low, but it has not been investigated in 
healthy horses in Finland [38]. The first confirmed case of 
ESBL-E in a horse in Finland was in 2004 [14], although 
it has been found extensively in horses in different parts 
of the world. In the Netherlands 10.8% of healthy horses 
[39] and in Turkey 53.5% of healthy racehorses [40] were 
found to be positive for ESBL-E. A recent report from 
Israel by Shnaiderman-Torban et  al. [31] showed an 

Fig. 4 PFGE clustering of the Enterobacter cloacae isolates from horses (n = 31), equine hospital surfaces and equipment (n = 3)
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occurrence of 21% of ESBL-E in horses in farms, with a 
statistically significant increase in hospitalised horses 
(77.9% occurrence). E. coli and K. pneumoniae were fre-
quently isolated in the study. A German study by Walther 
et al. [35] showed a 10.7% (34/318) incidence of ESBL-E 
in faeces and open wounds of equine patients, and 94% 
of these ESBL-E–positive specimens yielded ESBL E. 
coli. ESBL genes and MDR E. coli have also been found 
in riding centres and stable surroundings [5, 41], and the 
spread of ESBL-producing Enterobacterales species has 
also been shown in other European equine clinics and 
hospitals, for example in the Czech Republic [37], Ger-
many [8], and the Netherlands [3]. The environment can 
be a significant reservoir for ESBL-E and resistance genes 
and potentially allow for transmission to horses [42–44].

From an epidemiological point of view and when 
attempting to control a hospital outbreak, it is highly 
relevant to identify all horses that are possible sources 
for environmental contamination and direct transmis-
sion. These include both equine patients suffering from 
an infection caused by ESBL-E, and asymptomatic 
horses that shed ESBL-E to the hospital environment in 
their excrement. Horses excrete large amounts of faeces 
uncontrollably and thus cause substantial contamination 
of their environment. It has been shown that horse faeces 

have been the main vehicle for ESBL infections in equine 
hospitals [45, 46]. Therefore, it is important to also iden-
tify asymptomatic carriers by obtaining rectal screening 
swabs.

Other sources of contamination, such as the hospital 
environment and fomites, are also important to inves-
tigate as any source might be relevant for a successful 
control of the outbreak. Klebsiella spp. strains have been 
reported to persist in human hospital environments, 
regardless of thorough surface cleaning [47]. Moreover, 
while Klebsiella spp. are ubiquitous in nature, transmis-
sion can also occur via communal surfaces and fomites 
[7]. Among human isolates of K. pneumoniae, the ST307 
genome is reported to encode novel genetic factors, like 
a plasmid-located gene cluster for glycogen synthesis, 
and chromosomally-encoded virulence traits including 
fimbriae [48]. Capsulated ST307 isolates have also shown 
higher resistance to complement-mediated killing. These 
features may advantage the strain regarding persistence 
in the hospital environment and adaptation to the human 
host [48], but it is unknown whether these factors apply 
to horses.

Our study revealed several risk factors associated with 
ESBL-E during the outbreak. The length of hospitalisa-
tion was positively associated with ESBL-E carriage. This 

Table 4 Factors associated with being positive for ESBL-E at the EVTH during the outbreak
ESBL-E cases

(n=52)

Controls

(n=90)

Univariable logistic regression Multivariable logistic regression

Continuous variables n mean n mean Unadjusted OR

(95% CI)

Univariable

P

Adjusted OR

(95% CI)

Multiple 

regression P

Length of previous hospitalisation

(days) 

44 1.16 81 1.63 0.96 (0.86–1.07) 0.496

Length of current hospitalisation (days) 52 4.25 90 1.70 1.64 (1.49–2.32) <0.001 1.62 (1.28–2.06) <0.001

Age (years) 52 6.6 88 8.5 0.95 (0.90–1.01) 0.098

Binary variables n % n %

Breed (Finn horse vs. Warmblood) 9 69.2 4 68.0 1.06 (0.25–4.50) 0.938

Urgency (emergency service vs. 

outpatient)

35 67.3 17 51.1 1.97 (0.97–4.01) 0.062

Previous hospital care elsewhere (yes vs. 

no)

6 11.5 10 11.1 1.04 (0.36–3.06) 0.938

Surgical procedure (yes vs. no) 21 40.4 9 10.0 6.10 (2.52–14.76) <0.001 2.86 (0.92–8.92) 0.070

Antimicrobial treatment (yes vs. no) 42 80.8 35 38.9 6.60 (2.94–14.83) <0.001 2.46 (0.88–6.88) 0.087

Previous visit to EVTH (yes vs. no) 7 14.3 26 28.9 0.98 (0.15–0.96) 0.040

Nasogastric tube passed (yes vs. no) 19 25.0 19 21.1 2.15 (1.01–4.59) 0.048 2.86 (1.03–7.95) 0.044

Mare–foal pair vs. individual horse 19 36.5 11 12.2 4.14 (1.77–9.64) 0.001 4.71 (1.56–14.19) 0.006

Gender (mare vs. stallion) 29 78.4 47 82.5 0.77 (0.27–2.18) 0.624

Gender (gelding vs. stallion) 15 65.2 33 76.7 0.57 (0.19–1.73) 0.319

0.01 0.1   1   10 100

Risk factors associated with the acquisition of extended-spectrum β-lactamase producing Enterobacterales (ESBL-E) during the Klebsiella pneumoniae ST307 outbreak 
at the Equine Veterinary Teaching Hospital (EVTH) during April – August 2013. The number of horses being compared to among cases and controls as well as their 
proportion is displayed for each variable studied. Risk factors with a P-value < 0.05 are highlighted
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has also been shown in studies on ESBL-E in humans [49, 
50]. In previous studies on horses, staying in an equine 
hospital has been shown to increase the carriage rate of 
ESBL-E [31, 34]. Our results indicate that ESBL-positive 
horses stayed in the equine hospital on average over two 
days longer than those that tested ESBL-negative. Longer 
hospitalisation exposes the patient to more handling and 
procedures by the hospital staff, which may contribute to 
the transmission of ESBL-E. This emphasizes the impor-
tance of minimizing the length of hospitalisation when-
ever possible.

Insertion of a nasogastric tube was also positively asso-
ciated with having an ESBL-E infection or carriage dur-
ing the outbreak. As a procedure, nasogastric tubing is 
rather invasive, since the reusable tube is passed from 
nostril to stomach and can thus cause mucosal trauma 
in the upper airways. These factors may contribute to 
the direct transmission of environmental pathogens. No 
ESBL-E was found in the actual nasogastric tubes or in 
the lubricant in our study, but we found ESBL-E in stom-
ach drench pumps. However, these isolates differed from 
those originating from horses. The transmission of ESBL-
E from the environment or equipment onto the muzzle 
and into the nostrils may enhance the spread of these 
organisms to the gastrointestinal tract during procedures 
such as nasogastric tubing or dental care.

In human studies, numerous species of Enterobacte-
rales were found in the lumen of enteral feeding tubes 
already after a few hours [51]. As many ESBL-E can form 
biofilms, proper cleaning and disinfection of the equip-
ment are important to prevent nosocomial transmis-
sion. Tubes can be washed in a disinfecting washer, or 
they can be soaked in detergent containing fat and pro-
tein-dissolving agents, manually scrubbed, and finally 
disinfected. As a result of this finding by our study, the 
standard cleaning procedure for nasogastric tubes and 
stomach drench pumps was enhanced.

Further, mare–foal pairs demonstrated a higher risk for 
being positive for ESBL-E. In humans, pregnant women 
that are faecal carriers of ESBL-E are more likely to trans-
mit ESBL-E to their new-born infants than mothers with 
no ESBL-E [52]. Digestive tract colonization with ESBL-E 
in humans also increases the risk of acquiring an ESBL-
E infection during hospital care [53]. Foals often receive 
intense care and thus frequent treatments, including 
antimicrobials. They are housed in a stall together with 
their mare and are in close contact with both the mare 
and the hospital environment. A study by Dolejska et al. 
showed that the antimicrobial treatment of the foal 
resulted in excretion of ESBL-producing E. coli also by 
the mare and the horses from the neighbouring stalls, as 
well as contamination of the stable environment [37]. A 

study by Damborg et al. also showed that horses negative 
for ESBL-E on admission were all found positive for fae-
cal carriage of ESBL-E after receiving antimicrobial ther-
apy during hospital care [54].

Schoster et  al. [55] showed that antimicrobial treat-
ment of a hospitalised horse was a risk factor for acquir-
ing ESBL-E. In our study, antimicrobial treatment was 
associated with being positive for ESBL-E in the uni-
variable analysis, but not in the multivariable analysis. 
One explanation might be that hospitalised horses often 
receive antimicrobial treatment parenterally, which pro-
longs the length of stay. The length of hospitalisation was 
shown to be a risk factor for being positive for ESBL-E. 
Association with the length of stay may be the reason for 
antimicrobial treatment alone not having been stated as a 
risk factor in the multivariable analysis.

As the study was retrospective, we were unable to show 
causality behind correlation. We also had to collect data 
from the patients in the medical reports, and therefore 
there may have been differences between the veterinary 
staff of the hospital regarding what information they 
recorded for each patient. This might have affected the 
values for some variables we set for each horse.

Another limitation of the study was that the incoming 
patients were screened for ESBL-E after spending > 24 h 
in the hospital, and not immediately on admission. There-
fore, it is possible that some horses might have been car-
riers already before entering the hospital. Humans that 
are ESBL-E carriers on admission to hospital are at higher 
risk of developing an infection caused by an ESBL-E [56]. 
A similar association has been suggested in horses, but 
evidence that faecal carriage of ESBL-E would correlate 
with a higher incidence of infection, is lacking thus far 
[34]. However, strict infection surveillance was already 
in place before the K. pneumoniae outbreak occurred at 
the EVTH. All infection sites were required to be cul-
tured immediately and before institution of an antimi-
crobial therapy. This allowed for any infection caused by 
an ESBL-E to be detected rapidly. From the standpoint of 
epidemiology and disease prevention, a cross-sectional 
study on local prevalence is suggested.

Conclusions
Klebsiella pneumoniae ST307:CTX-M-1 and other ESBL-
E are capable of giving rise to an outbreak in equine 
hospital settings, which highlights the importance of 
epidemiological surveillance of ESBL-producing Entero-
bacterales in veterinary practises. A broad heterogene-
ity of ESBL-E species and similar ESBL genes among the 
species were revealed in hospitalised horses, which may 
indicate horizontal gene transfer. It is therefore impor-
tant to practise sufficient hygiene measures in handling 
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the patients and cleaning the equipment, and also to 
maintain infection surveillance to prevent nosocomial 
transmission of resistant pathogens. Equine practices 
should also try to minimize the length of hospitalisa-
tion as it may reduce the risk for the spread of ESBL-E in 
equine patients.
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