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ABSTRACT  

Context: Despite gut microbiome being widely studied in metabolic diseases, its role 

in polycystic ovary syndrome (PCOS) has been scarcely investigated. 

Objective: Compare the gut microbiome in late fertile age women with and without 

PCOS and investigate whether changes in the gut microbiome correlate with PCOS-related 

metabolic parameters. 

Design: Prospective, case-control study using the Northern Finland Birth Cohort 

1966. 

Setting: General community. 

Participants: 102 PCOS women and 201 age- and body mass index (BMI)-matched 

non-PCOS control women. Clinical and biochemical characteristics of the participants were 

assessed at ages 31 and 46 and analyzed in the context of gut microbiome data at the age of 

46. 

Intervention(s): None 

Main outcome measure(s): Bacterial diversity, relative abundance, and correlations 

with PCOS-related metabolic measures. 

Results: Bacterial diversity indices did not differ significantly between PCOS and 

controls (Shannon diversity p = 0.979, unweighted UniFrac p = 0.175). Four genera whose 

balance helps to differentiate between PCOS and non-PCOS were identified. In the whole 

cohort, the abundance of two genera from Clostridiales, Ruminococcaceae UCG-002 and 

Clostridiales Family XIII AD3011 group, were correlated with several PCOS-related markers. 

Prediabetic PCOS women had significantly lower alpha diversity (Shannon diversity p = 
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0.018) and markedly increased abundance of genus Dorea (FDR = 0.03) compared to women 

with normal glucose tolerance. 

Conclusion: PCOS and non-PCOS women at late fertile age with similar BMI do not 

significantly differ in their gut microbial profiles. However, there are significant microbial 

changes in PCOS individuals depending on their metabolic health.  

 

Key Words: PCOS, gut microbiome, metabolic traits, type 2 diabetes 
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INTRODUCTION 

Polycystic ovary syndrome (PCOS) is one of the most prevalent endocrine and 

metabolic disorders in women, affecting 8–18% of women in reproductive age, depending on 

the studied population and applied diagnostic criteria (1–3). PCOS is characterized by 

persistent menstrual irregularities, clinical or biochemical hyperandrogenism and polycystic 

ovarian morphology. It is a complex disorder associated with a variety of metabolic 

derangements, including obesity, insulin resistance (IR) and type 2 diabetes (T2D). However, 

regardless of obesity, IR is present in up to 50% of women with PCOS (4, 5). The etiology of 

PCOS remains unknown but is believed to be multifactorial where genetics, intrauterine 

environment, lifestyle factors and possibly alterations in the gut microbiome could have a 

role (6). 

The human gut microbiota refers to all of the microorganisms inhabiting the 

gastrointestinal tract (7), where the majority belong to four bacterial phyla - Bacteroidetes, 

Firmicutes, Proteobacteria and Actinobacteria (8). Improved metabolic health has been 

related to increased microbial diversity and diverse microbiome gene content (9), while 

changes in the gut microbiome composition have been associated with a vast number of 

diseases and disorders beyond the gastrointestinal health, including T2D (10–13), obesity 

(14–17), IR (18, 19) and depression (20–22), among others.  

Recently, the possible link between PCOS and gut microbiome has drawn increased 

attention. Previous studies investigating the relationship between gut microbiome and PCOS 

in women of different ethnicities have reported reduced bacterial diversity and altered overall 

composition as well as changes in the relative abundance of specific bacteria, mostly 

belonging to Bacteroidetes and Firmicutes phyla (23–27). Nevertheless, despite the reported 

links between the gut microbiota and clinical parameters in PCOS, the results are inconsistent 
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and the community structure and function of the gut microbiome in women with PCOS 

remains unclear. Moreover, lack of body mass index (BMI) adjustment or BMI-matched 

controls, small sample size, ethnic differences, and variability in the methods used when 

conducting the microbiome analysis can lead to difficulties in reproducing the results. Hence, 

population-based cohorts, in which individuals have been evaluated during the follow-up 

visits, provide an important resource to define homogeneous phenotypes and detect changes 

in multiple pathophysiological pathways. Previous studies have included PCOS women of 

reproductive age, whereas the effects of the microbiome on the health of women during the 

late reproductive and pre- or early menopausal years have remained unstudied. 

The aim of our study was to test whether gut microbiome is associated with PCOS in 

late fertile age women including age- and BMI-matched controls. We also aimed to assess 

different metabolic and hormonal markers related to PCOS and their associations with the gut 

microbiome.  

MATERIAL AND METHODS 

Study population 

The study population consisted of a subset of females in the longitudinal Northern 

Finland Birth Cohort 1966 (NFBC1966) which includes all expected births in 1966 in the two 

northernmost provinces of Finland (28, 29). The NFBC1966 is a unique population-based 

cohort, which was established as a longitudinal research program to promote health and well-

being of the population. Data collection procedures and the identification of PCOS cases in 

the NFBC1966 have been described earlier (30–32). A flow-chart of the sample selection 

process is represented in Supplementary Figure 1 (33). In brief, at age 31 a questionnaire was 

sent to all women with known addresses in Finland and a majority of them also participated 

in a clinical examination with anthropometric measurements and blood samples drawn and 
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analyzed. At age 46 the women were invited for a follow-up and to fill in a questionnaire. 

During the latter follow-up, clinical examinations with blood and fecal sample collection, oral 

glucose tolerance test (OGTT) and anthropometric measurements were performed. The 

participants received no specific instructions or recommendations regarding their diet prior to 

fecal sample collection. Women with PCOS in the cohort were identified based on the 

questionnaires at ages 31 and 46. Briefly, at age of 31, women were asked whether they had 

oligo- m norrh    O   or h rsut sm.  f th y  nsw r   “y s” to  oth  th y w r   ons   r    s 

PCOS cases. At 46, instead of OA and hirsutism questions, the women were asked if they had 

   n     nos   w th poly yst   ov r  s  PCO   n  or PCOS  n  thos   nsw r n  “y s” w r  

considered PCOS cases. The total PCOS population consisted of women who reported both 

hirsutism and OA at age 31 and/or PCO/PCOS at age 46. The validity of the PCOS diagnosis 

using the method described above has been verified in previous publications (31, 32, 34). The 

non-PCOS control population consisted of women with no PCOS symptoms at 31 nor 

PCO/PCOS by 46 years of age. Women who were on hormonal contraceptives or were 

pregnant at 31 years were excluded. The Finnish register for drug reimbursements was used 

to identify women who had been prescribed antibiotics, antimycotics, letrozole or tamoxifen 

within the 3 months preceding sample collection, who were then excluded. Also, women not 

permitting the use of their data were excluded. Two BMI-matched controls were chosen for 

each woman with PCOS. Women with PCOS from whom fecal samples were available were 

identified from the dataset. The total study population for the current study was 304 women 

with 102 women with PCOS and 202 non-PCOS control women. The study has been 

approved by the ethical committee of Northern Ostrobothnia hospital district. All participants 

of the NFBC1966 have given informed consent for the data and samples to be used for 

scientific purposes. 
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Sampling and laboratory measurements 

Hormonal measurements 

Testosterone (T) was assayed from serum using Agilent triple quadrupole 6410 liquid 

chromatography–mass spectrometry equipment (Agilent Technologies, Wilmington, DE, 

USA). Elevated T level at ages 31 and 46 was defined according to the normal upper limit for 

T at these respective ages based on the 97.5% percentile calculated in this population (2.3 

nmol/L at age 31 and 1.7 nmol/L at age 46). Consequently, at age 31, women with T > 2.3 

nmol L w r   ons   r   to h v   l v t   T l v ls  n  thos  w th T ≤  .3 nmol L  s wom n 

with normal T levels. An elevated T level at age 46 was defined as serum level of T > 1.7 

nmol L  n  norm l T l v l  s s rum T ≤  .7 nmol L. Sex hormone binging globulin (SHBG) 

was assayed by chemiluminometric immunoassay (Immulite 2000, Siemens Healthcare, 

Llanberis, UK). The free androgen index (FAI) was calculated using the following equation: 

T (nmol/L) / SHBG (nmol/L) × 100. For more detailed information please see Ollila et al. 

2016 (32). 

Glucose metabolism assessment 

Plasma glucose was analyzed by an enzymatic dehydrogenase method (Advia 1800, 

Siemens Healthcare Diagnostic Inc., Tarrytown, NY, USA). Serum insulin was analyzed by a 

chemiluminometric immunoassay (Advia Centaur XP, Siemens Healthcare Diagnostics, 

Tarrytown, NY, USA). A 75 g glucose OGTT was performed with blood glucose and insulin 

measurements were taken before and after 30 min, 60 min and 2 h of glucose intake. Area 

under the curve (AUC) for glucose and AUC for insulin were calculated using the equation 

[(fasting X + (2 × (30 min X) + (3 × 60 min X) + (2 × 120 min X)] × 15, where X states 

glucose (mmol/L) or insulin (µU/mL). The secretion index was calculated using the equation 

(fasting insulin (µU/mL) + 30 min insulin (µU/mL)) × 6.945 / (fasting glucose (mmol/L) + 
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30 min glucose (mmol/L)). Matsuda index was calculated using the equation 10000 / sqrt 

((fasting insulin (µU/mL) × fasting glucose (mmol/L) × 18) × (AUC glucose × 18 / 120 × 

AUC insulin / 120)) (32, 35). The disposition index was calculated by multiplying the 

secretion index by Matsuda index.  

Individuals were grouped according to WHO classification of diabetes based on their 

OGTT results (36). A person was categorized as preT2D if they had impaired fasting glucose 

(IFG: fasting plasma glucose from 6.1 to 6.9 mmol/L), impaired glucose tolerance (IGT: 2 h 

glucose from 7.8 to 11.0 mmol/L), or both. A person was considered diabetic if they had 

fasting plasma glucose over 7.0 mmol/L or 2 h plasma glucose over 11.2 mmol/L. Based on 

BMI scores, individuals were assigned into BMI groups: underweight (BMI below 18.4), 

normal weight (BMI 18.5-24.9), overweight (BMI 25-29.9), and obese (BMI over 30) 

[Supplementary Table 1 (33)]. 

Gut microbiome analysis  

Fecal samples were collected at home by the study participants at age 46. It was 

recommended that the fecal sample should be delivered in a cooler on the day of collection. If 

that was not possible, the sample was stored for one or two days in a freezer at -20ºC until 

delivery. After delivery, the fecal samples were initially stored at -20ºC and then moved to -

70ºC for long-term storage.  

For bacterial DNA isolation, first the samples were homogenized in a Stomacher-400 

blender. QIAamp Stool Mini Kit (Qiagen, Venlo, The Netherlands) was used for DNA 

extraction. The standard protocol was followed, with the exception that the samples were 

mixed with the lysis buffer and incubated at 95ºC instead of 70ºC in order to ensure the lysis 

of both Gram-negative and Gram-positive bacteria. The extracted DNA was quantified with 

NanoDrop ND-1000 spectrophotometer (Thermo Fisher Scientific, DE, USA). DNA yield 
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was determined by measuring absorbance ratios spectrophotometrically, and included 

A260/280 nm for protein and A260/230 nm for salt and phenol contamination.  

Microbiome was profiled by sequencing the V3-V4 regions of the 16S rRNA gene on 

 n  llum n  M S q  nstrum nt w th forw r  5’-CCTACGGGNGGCWGCA-3’  n  r v rs  

5’-GACTACHVGGGTATCTAATCC-3’ pr m rs.  ll PCR r   t ons w r  p rform    n  5 

μl volum   ont  n n    .5 μl  X K P  H    Hotst rt r   y m x  K P    osyst ms  

Woburn  M   US    5 μL of    h pr m r    μM    n   .5 μL of  xtr  t    N      n   

under the following cycling conditions: initial denaturation at 95ºC for 3 min, followed by 35 

cycles of denaturation at 95ºC for 30 s, annealing at 55ºC for 30 s, and elongation at 72ºC for 

30 s, with a final extension at 72ºC for 5 min. PCR clean-up was done with AMPure XP 

beads (Beckman Coulter, Indianapolis, IN, USA). Next, a PCR to index the amplicons was 

performed using the Nextera XT Index Kit (Illumina, San Diego, CA, USA) with conditions: 

95ºC for 3 min; 8 cycles of 95ºC for 30 s, 55ºC for 30 s, 72ºC for 30 s, with a final extension 

step of 5 min at 72ºC, and hold at 4ºC. Next, the pooled PCR products were purified using 

AMPure XP beads (Beckman Coulter) before quantification. The final library was paired-end 

sequenced (2 x 300 bp) using a MiSeq Reagent Kit v.3 on the Illumina MiSeq sequencing 

system (Illumina).  

16S rRNA sequencing data analysis 

Raw sequences were demultiplexed with Illumina bcl2fastq2 Conversion Software 

v2.20 and raw data were imported into open-source software QIIME 2 2019.7 (37) using the 

q2-tools-import script with PairedEndFastqManifestPhred33 input format. In total, 

16,063,617 (average 78,743 per person) reads were generated with the V3-V4 16S rRNA 

sequencing. Denoising was done with DADA2 (38), using a quality-aware model of Illumina 

amplicon errors to attain an abundance distribution of sequence variances, which have a 
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difference of a single nucleotide. After retrieving quality scores, q2-dada2-denoise script was 

used to truncate the forward reads at position 288 and trim at position 16. Reverse reads were 

truncated at position 241, trimming was not applied on the reverse read. Chimera removal 

w s  on  us n  th  “ ons nsus” f lt r v   q -dada2-denoise in which chimeras are detected in 

samples individually and sequences found chimeric in a sufficient fraction of samples are 

removed. During this step forward and reverse reads are also merged. All amplicon sequence 

variants (ASVs) were aligned with MAFFT (39) via q2‐ alignment and phylogeny was 

constructed with FASTTREE2 (via q2‐ phylogeny) (40). T xonomy w s  ss  n   to  SVs 

us n  th   l ss fy s l  rn n  v    y s t xonomy  l ss f  r  v   q ‐ feature‐ classifier) (41) 

against the SILVA 16S V3-V4 v132_99 (42) along with a similarity threshold of 99%. 

Altogether, 72,738 ASVs were identified (average of 680 ASVs for women with PCOS, and 

average of 670 ASVs for controls). A total number of 399 genera, 127 families, 56 orders, 29 

classes and 19 phyla were detected. Data filtering steps included pruning samples to exclude 

samples with less than 10,000 reads after which 303 samples were left (102 women with 

PCOS and 201 control women).  

Statistical analysis 

Statistical analyses and data visualization were performed using the statistical 

software R v.3.6.1 (under RStudio v.1.2.1335). All of the visualizations were made using the 

ggplot2 v.3.3.0 (43) and corrplot v.084 (44) packages. A p-value below 0.05 was considered 

to be statistically significant and multiple testing was taken into account using the Benjamini 

and Hochberg False Discovery Rate (FDR) method (45). For beta diversity and association 

analysis we filtered out taxa that were detected in less than 30% of the remaining samples. 

Th    t  w r     r   t   to   nus l v l for furth r  n lys s.  lph   Sh nnon’s  n  x  

o s rv     n   nv rs  S mpson’s  n  x   n    t  [Pr n  p l Coordinate Analysis (PCoA), 
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based on the UniFrac distance metrics (unweighted and weighted)] diversities were 

calculated using the phyloseq v.1.28.0 package (46). Weighted UniFrac metric accounts for 

taxa abundances in calculating the distances, whereas unweighted UniFrac only takes into 

account whether the taxa are present/absent and does not put emphasis on microbial 

abundances. For diversity comparisons, alpha diversity estimators were calculated and 

evaluated using ANOVA, one-way ANOVA tests with Tukey multiple pairwise-comparisons 

as appropriate. ADONIS-2 function from the vegan package using 10,000 permutations for p-

value calculations was used when testing differences in beta diversity. In the clinical 

  om r  r’s   t   omp r son  th  v lu s w r   xpr ss    s m  n ± st n  r    v  t on. 

Wilcoxon sign rank test was used for testing the differences in the continuous variables 

between the study groups. Statistical analysis between groups of categorical variables were 

 n lyz    y   sh r’s  x  t t st  n  th    t  w r   n    t    s r l t v   n    solut  

frequencies. The core microbiome was identified using the microbiome v.1.6.0 package (47) 

with a detection threshold of 0.01% and prevalence threshold of 95%. Associations between 

alpha diversity and clinical biomarkers were tested using Spearman correlation and adjusting 

for FDR using the cor function from the WGCNA v.1.69.package (48). ANOVA-Like 

Differential Expression tool (ALDEx2 v.1.16.0) (49) was used to identify differentially 

abundant taxa. Selbal v.0.1.0 (50) was used to identify taxa whose balance, a log-contrast 

between two groups of taxa was predictive of PCOS status. Correlation analyses between 

taxa and biomarkers were performed using the function bicorAndPvalue from the WGCNA 

v.1.69 package (48). 
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RESULTS 

Clinical characteristics of study participants 

A total of 303 women were included for analysis (102 PCOS and 201 age- and BMI-

matched healthy controls). Table 1 summarizes the clinical characteristics of the study 

participants. Testosterone at 31 years (p = 0.01) and FAI at 46 years (p = 0.01) were higher in 

women with PCOS when compared with controls. As expected, matching for BMI resulted in 

a lack of significance in the difference in SHBG between the study groups, although the 

SHBG still showed some tendency for being lower in PCOS. Compared with controls, 

women with PCOS reported having fewer menses per year at age 31 and they experienced 

more infertility problems (lifetime) by age 31 and 46 years. 

Landscape of microbiome composition and diversity 

We first characterized the phylogenetic variation across all the samples (n = 303) at 

different taxonomic levels. We detected in total 72,738 ASVs, which resulted in a total 

richness of 399 genus-level taxonomic groups. After filtering out genus present in less than 

30% of the samples, the data consisted of 128 genera, 37 families, 18 orders, 14 classes and 8 

phyla. We observed a typical Western diversity profile for gut microbiota, where Firmicutes 

(54.0%) and Bacteroidetes (31.9%) were the dominant phyla, followed by Proteobacteria 

(6.7%), Actinobacteria (3.4%), and Verrucomicrobia (2.4%) (Fig 1 A). The core microbiome 

(the number of taxa present in over 95% of individuals across the whole cohort) represent 

eight different genera belonging to two most abundant phyla, Bacteroidetes and Firmicutes. 

The most abundant genus was Bacteroides (19.9%), followed by Alistipes (7.5%), 

Faecalibacterium (4.9%), Roseburia (2.5%), Blautia (2.5%), Lachnoclostridium (1.5%), 

Ruminococcaceae uncultured (1.2%), and Oscillibacter (1.1%) (Fig 1 B).  
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Next, we assessed differences in the gut microbiome diversity (alpha and beta 

diversities) between controls and PCOS samples. In alpha diversity analyses, that assesses the 

richness and evenness of the bacterial community, PCOS subjects showed no differences 

from the controls in any of the assessed metrics (PShannon = 0.979, PInverseSimpson = 0.248, 

PObserved = 0.870) [Fig 2A, Supplementary Fig 2 (33)]. Beta diversity, which represents how 

much the community changes between controls and PCOS samples, the PCoA based on both 

unweighted UniFrac (ADONIS p = 0.175, r
2 

= 0.004) and weighted UniFrac measures 

(ADONIS p = 0.44, r
2 

= 0.003), did not show any clustering with PCOS nor difference 

between the PCOS and non-PCOS groups (Fig 2B, C).  

We then investigated whether bacterial richness (Shannon index, as alpha diversity) 

and beta diversity were associated with clinical, hormonal and metabolic parameters for all 

women. The Shannon index was negatively correlated with BMI (FDR = 0.006), fasting 

insulin (FDR = 0.01) and FAI (FDR = 0.02) and positively correlated with SHBG (FDR = 

0.0007), Matsuda Index (FDR = 0.0007) and Disposition Index (FDR = 0.007) 

[Supplementary Table 2 (33)]. Both unweighted and weighted UniFrac had statistically 

significant associations with BMI (FDRweighted = 6.4×10
-4

, FDRunweighted = 5.3×10
-4

), fasting 

insulin (FDRweighted = 0.01, FDRunweighted = 0.003), Matsuda Index (FDRweighted = 5.3×10
-4

, 

FDRunweighted = 6.4×10
-4

), Disposition Index (FDRweighted = 5.3×10
-4

, FDRunweighted = 0.01), and 

SHBG (FDRweighted = 0.007, FDRunweighted = 0.0068) [Supplementary Table 2 (33)]. 

Differences in the gut microbiome between the healthy women and women with 

PCOS 

The relative abundance of the 128 genera (present at least in 30% of the population) 

were compared between healthy control women and PCOS women [Supplementary Table 3 

(33)]. First, we used the ALDEx2 package (v1.16.0), which performs differential abundance 
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analysis for the comparison of two or more conditions, PCOS vs. non-PCOS in this case (49). 

We did not observe any genera that showed statistically significant differences between the 

PCOS and control women after correcting for multiple testing, the top ten genera identified 

with ALDEx2 are shown in Supplementary Table 4 [Supplementary Table 4 (33)].  

With the Selbal analysis, we aimed to identify microbial signatures - groups of 

microbial taxa that are able to differentiate between PCOS and non-PCOS women. The 

identification of microbial signatures involves modelling the response variable (response 

being PCOS or control)  and identifying the smallest number of taxa with the highest 

prediction accuracy (50). Therefore, these microbial signatures could be used to identify 

PCOS   s s   s   on  n  n  v  u l’s sp   f   m  ro  om . S lbal analysis identified two 

groups of taxa consisting of Paraprevotella-Streptococcus and Eubacterium ventriosum 

group-Bifidobacterium, whose relative abundance or balance could differentiate between 

PCOS women and control women (Fig 2D). The discrimination value of the balance (AUC = 

0.643) demonstrates a modest discrimination between the PCOS and healthy women. 

Interestingly, the Eubacterium ventriosum group, Paraprevotella, and Streptococcus were 

also among the top 10 genera that we identified in the ALDEx2 analysis [Supplementary 

Table 4 (33)]. However, Selbal cannot be compared with ALDEx2 in terms of power and 

FDR since the aim of Selbal is to obtain the best model to predict the response in contrast to 

identifying all taxa that are associated with the response, which is the aim of ALDEx2.  

Associations of taxa with hormonal and metabolic markers 

We correlated the top ten associated taxa [Supplementary Table 4 (33)] to the markers 

that could possibly have a role in the development of PCOS. The abundance of genus 

Ruminococcaceae UCG-002 was positively correlated with Matsuda Index (p = 0.009; FDR 

= 0.140), Disposition Index (p = 0.001; FDR = 0.065) and SHBG (p = 0.001; FDR = 0.065). 
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The abundance of Clostridiales Family XIII AD3011 group was positively correlated with 

Matsuda Index (p = 0.010; FDR = 0.140) and SHBG (p = 0.006; FDR = 0.140) and 

negatively correlated with glycated haemoglobin HbA1c (p = 0.003; FDR = 0.099), 2 h 

glucose level (p = 0.006; FDR = 0.140) and BMI (p = 0.010; FDR = 0.140) [Fig 3, 

Supplementary Table 5 (33)].  

Relationships between PCOS and metabolic traits 

Previous studies have shown that obesity has a critical role in PCOS and individuals 

with PCOS have an elevated risk in developing T2D (51). Therefore, we next aimed to 

evaluate the relationships between the gut microbiome and their potential effect on BMI and 

T2D in PCOS individuals. In order to study the relationships of PCOS and T2D together with 

gut microbiome, we focused on the women with PCOS and categorized them as having a 

normal glucose tolerance (NGT) or preT2D based on the values of fasting and 2 h plasma 

glucose following the OGTT. The preT2D state includes individuals with IFG, IGT, or both 

 s   “M tho s” for   t  ls .  n th  PCOS  roup  th r  w r  76 N T  n  v  u ls  n   4 

preT2D individuals. The four individuals who already had developed T2D based on their 

OGTT and eight individuals with no OGTT data were excluded from this analysis. We 

compared microbiota composition between PCOS women with NGT (n = 76) and with 

preT2D (n = 14). In diversity analyses, both alpha (Shannon index; p = 0.018) and beta 

diversities (unweighted UniFrac; p = 0.003 and weighted UniFrac; p = 0.012) showed 

statistically significant differences between the NGT and preT2D in the PCOS group [Fig 4 

A, B; Supplementary Fig 3 (33)]. These results are in line with previous studies which also 

report decreased microbial diversity in preT2D and T2D compared with NGT (52). As 

weighted UniFrac, opposed to unweighted UniFrac, takes abundance into account, these 

results indicate that the association between preT2D and human gut microbiome could be 
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induced by the presence/absence of more abundant taxa. In contrast, when analyzing control 

women, we did not observe differences in alpha or beta diversities between NGT and preT2D 

women (data not shown). 

We also detected differentially abundant taxa between the NGT and preT2D in PCOS 

women, where the genus Dorea (Fig 4C) had elevated abundance in preT2D with the 

difference being statistically significant after FDR correction (FDR = 0.03). Genera 

Bacteroides (FDR = 0.07), Ruminococcus torques group (FDR = 0.07) and Lachnospiraceae 

UCG-004 (FDR = 0.06) reported results of borderline significance [Supplementary Table 6, 

Supplementary Fig 4 (33)]; all three had elevated abundance in preT2D group. 

To study the effect of BMI on gut microbiome, we divided the PCOS individuals into 

three subgroups based on their BMI values: normal weight (n = 37), overweight (n = 38), and 

obese (n = 27). There were no statistically significant differences in diversity analysis (both 

alpha and beta diversity) between any of the BMI sub-groups [Supplementary Fig 5 A-C 

(33)]. ALDEx2 analysis revealed no statistically significant taxa differences after correcting 

for multiple testing in between the three BMI groups [Supplementary Table 7 (33)].  

DISCUSSION 

In this study, we investigated the relationship of gut microbiome with PCOS status in 

women nearing the end of their fertile age, by assessing a total of 303 women from the 

population-based NFBC1966. We first characterized the gut microbiome diversity and 

composition of the whole study cohort. The gut microbiome profile for Finnish females in 

their late fertile years is representative of the average gut microbiome profile in a population 

consuming a so-called Western-diet with the most prevalent phyla being Firmicutes and 

Bacteroidetes, followed by Proteobacteria, Actinobacteria, and Verrucomicrobia (53). The 

core microbiome (i.e., the genera shared by 95% of samples) in our cohort consists of 8 
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genera, of which 6 overlapped with the recent international MiBioGen consortium study 

findings where a total of 18,473 fecal samples across 25 populations were analysed (54). 

Only two additional taxa, Oscillibacter and Ruminococcaceae uncultured, were identified as 

core members in our cohort. Both gender effect and geographic differences might explain the 

observed differences in core gut microbiota. 

Next, we assessed the diversity and taxonomic differences between the women with 

PCOS and non-PCOS controls. The fecal samples for gut microbiome analysis were only 

collected at the age of 46. Diversity analysis showed no significant difference in bacterial 

alpha and beta diversities between PCOS women and healthy control women. In a previous 

work, Qi et al. also reported no differences in alpha diversity when using whole-genome 

shotgun sequencing between the PCOS and controls, however, they did report significantly 

lower beta diversity in PCOS compared to the controls (55). Diversity differences between 

the PCOS and non-PCOS individuals are inconsistent throughout previous studies; while 

some were able to detect changes in alpha/beta diversities (23, 24, 26, 27, 56), others found 

no significant differences between groups (25, 55, 57, 58). It is possible that PCOS itself does 

not alter the gut microbiome to such extent that it reflects changes in the whole microbiome 

community. Rather the changes in diversity may become significant when analyzing PCOS-

related metabolic traits. We did observe significant associations between diversity measures 

and PCOS-related hormonal and metabolic parameters such as BMI, SHBG levels, and 

insulin sensitivity as well as IR as measured by Matsuda and disposition indices in the entire 

cohort of women.  
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Despite seeing no significantly different taxa between the PCOS and controls after 

multiple corrections, some of the top genera have previously been linked with PCOS-related 

traits. Eubacterium ventriosum group, that we detected in both single taxa and group-based 

modelling analyses, has previously shown to be enriched in obese individuals (59). Another 

genus that we detected both in Selbal as well as in ALDEx analysis was Streptococcus. Liu et 

al. reported in their study that bacteria belonging to Streptococcus belonged to co-abundance 

groups that were increased in PCOS idividuals and were positively correlated with BMI and 

testosterone (25).  The genus Paraprevotella has been formerly detected in prenatal 

androgenized rat model where Paraprevotella was significantly enriched in androgenized 

rodents (60, 61). The fact that many PCOS cases also suffer from hyperandrogenism may 

explain the link between genus Paraprevotella and PCOS. However, in our results 

Paraprevotella was decreased in PCOS women. It is possible that this discrepancy is due to 

the fact that the women were already 46 years old and that their androgen levels did not differ 

anymore from the age- and BMI-matched controls at this time point. The genus Turicibacter 

itself has not been reported to be associated with PCOS previously, but in the present analysis 

it was one of the top genera detected in PCOS. Turicibacter belongs to the family 

Erysipelotrichaceae that has been reported to have elevated levels in PCOS both in mouse 

and human (23, 62). In our analyses we observed three genera from the family 

Ruminococcaceae that belonged to the top taxa found between PCOS and controls. None of 

the genera from Ruminococcaceae which we observed have previously been linked with 

PCOS, although the family itself and some its genera have been associated with PCOS in 

earlier studies (25, 26). It is possible that the different genera from Ruminococcaceae have 

similar metabolic functions that might affect the development of PCOS and its traits. 

Interestingly, in our study one particular genus, the Ruminococcaceae UCG-002, was 

positively associated with higher SHBG level, Matsuda and disposition indices. Finally, using 
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a modelling-based analysis, we were able to identify two groups of microbial taxa whose 

relative abundance differentiate between PCOS and non-PCOS women. Although our data 

show modest discrimination between the PCOS and healthy women among the identified 

microbial groups, this analysis provides an important indication for future prediction studies.  

PCOS is associated with metabolic derangements; more than half of the women are 

ov rw   ht or o  s   n  PCOS r  s s   wom n’s r s  of   v lop n  T    n  m t  ol   

syndrome (63). In our cohort of 102 PCOS women, 38 were overweight and 27 were obese. 

Normal weight, overweight and obese PCOS individuals showed no statistically significant 

changes in bacterial diversities or in taxonomical composition between the three groups. 

Many earlier studies have shown that BMI has a crucial role in the diversity of gut 

microbiome and that higher BMI is strongly associated with gut dysbiosis (64–66). The 

reason for the observed inconsistency could have been the small sample size in our BMI 

based analyses in the PCOS group, as significant associations between diversity and BMI 

were observed when the entire cohort was analyzed. However, we were able to identify 

significant changes in both alpha and beta diversity when comparing women with PCOS 

classified based on OGTT as either NGT or preT2D. This is consistent with previous work, 

showing decreased richness and diversity in individuals with preT2D and T2D (51, 67). In 

addition, PCOS women with preT2D also showed higher abundance of genus Dorea 

compared to women in the NGT group. In a previous work, the genus Dorea has been linked 

to BMI and plasma metabolites such as glutamate and branched chain amino acids (BCAAs) 

which can predict BMI values (68). Naderpoor et al. showed, that the abundance of Dorea 

was positively correlated with fasting blood glucose (69). Interestingly, the abundance of 

Dorea was also significantly associated with various metabolic traits, such as BMI, glucose 

and insulin levels in our cohort [Supplementary Fig 6A-F (33)], providing additional support 

for the role of this genus in metabolic disorders. IR is common in women with PCOS 
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although it is not included in diagnostic criteria for PCOS (4, 5). Cani et al. reported in their 

work that some Gram-negative bacteria have the ability to produce lipopolysaccharides 

which induce inflammation, IR, and obesity, all widely known traits of PCOS (70). 

Therefore, it is plausible that the gut microbiome is involved in the pathogenesis of PCOS by 

mediating IR and systemic inflammation. Moreover, the effect of microbiome could also be 

mediated through metabolites produced by gut microbiome. For example, in a study in mice, 

it was shown that the animals with diet-induced obesity showed improved insulin sensitivity 

after short chain fatty acid (SCFA) supplementation (71). SCFAs are produced through 

fermentation of non-digestible dietary fibers by the gut microbiome and they are an important 

energy source to the gut as well as performing as signaling molecules to affect the host 

metabolism (72). Therefore, it is possible that the dysbiosis of the gut that affects SCFA 

production is in turn, at least to some extent, responsible for the IR seen in PCOS individuals.  

The strength of our current study is that the cohort was homogenous, all women 

belonging to the unique NFBC1966 with minimal ethic and geographic variation. PCOS 

cases and controls were all BMI-matched, thus the BMI effects on the comparisons between 

the cases and the controls are minimal. Furthermore, to our knowledge, the present study 

includes the largest number of PCOS women to date to investigate the associations between 

PCOS and the gut microbiome (73). Additionally, this is the first study assessing microbiota 

of women with PCOS in late fertile age. 

Multiple reasons might explain why we could not confirm previously reported 

associations between microbiome and PCOS. The gut microbiome variation is affected by 

several factors such as diet, geography, medications, age, which all could possibly influence 

the results. In addition, the use of methods for sample collection, DNA extraction, 16S rRNA 

gene sequencing, and data analysis varies widely from study to study. Also, the use of small 
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sample size in some previous studies may limit the ability to detect changes in specific 

bacteria. All of the above factors probably contributed to the discrepancies observed, but the 

identical age and large sample set are perhaps the most important factors that differed from 

previous studies. Earlier studies have been mainly focused on women of reproductive age, 

but the effects of the microbiome on the health of older women who are close to starting 

menopause might be different. At age 46, women with PCOS are less hyperandrogenic and 

metabolically more similar to non-PCOS women, who also have gained weight while ageing. 

It may be that at early and mid-reproductive years, PCOS women may more substantially 

differ from controls in the gut microbiome. Potential limitations of our study are self-

reporting of PCOS symptoms and lack of ultrasonography. Wom n r port n   n th  46-y  r 

qu st onn  r   s h v n     n     nos   w th PCO-ov r  s on ultr soun  r pr s nt poss  ly   

milder hormonal and metabolic profile than the women diagnosed with PCOS in infertility 

clinics. Our study may therefore have underestimated the differences between PCOS and 

controls. However, the validity of self-reported PCOS phenotype has been well established 

(31, 32, 34) and also supported by recently published data (74) and genetic analysis (75). 

Furthermore, in the case of PCOS, it would be interesting to investigate the microbiome not 

only of the gut but also from the reproductive tract. It is possible that PCOS-related infertility 

problems might also be associated with microbiome status as suggested by some early data 

(76). 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/jcem

/advance-article/doi/10.1210/clinem
/dgaa848/5986713 by U

niversity of C
am

bridge user on 21 N
ovem

ber 2020



Acc
ep

ted
 M

an
us

cri
pt

CONCLUSIONS 

This study, utilizing the unique NFBC1966 cohort, revealed that women with PCOS 

in their late reproductive years have no large-scale difference in gut microbiome signature 

compared to age- and BMI-matched women. However, we did identify a number of 

differences between the microbial diversity, as well as specific taxa, and PCOS-related 

hormones and metabolic traits. In addition, we show clear differences in microbiome profile 

in PCOS women in a pre-diabetic state compared to PCOS women with normal glucose 

tolerance. Further (metagenomic, metabolomics, and functional) studies would be required to 

clarify the link between the gut microbiome, metabolites and development of PCOS.  
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FIGURES 

Figure 1: Landscape of microbiome composition in the entire cohort. (A) Pie chart indicates 

the average relative abundances of the top major phyla in the cohort. (B) Mean relative 

abundance of the core microbiome (taxa present in over 95% of individuals) of the cohort at 

genus level. 

Figure 2: Comparison of the gut microbiome diversity between control and PCOS samples. 

(A) Box-plots of the Shannon diversity index (alpha diversity) (p = 0.979), median values 

and interquartile ranges have been indicated on the plots. Beta diversity is represented by 

Principal Coordinate Analysis (PCoA) based on (B) unweighted UniFrac (p = 0.175) and (C) 

weighted UniFrac (p = 0.44) distances. Selbal analysis results (D). The balance is made out 

of two groups of taxa: Paraprevotella-Streptococcus and Eubacterium ventriosum group-

Bifidobacterium. The boxplots characterize the distribution of the balance scores for PCOS 

women and healthy controls. Each plot point on panels B and C represents a single 

individual, the shapes indicate study groups (rhombus: controls, star: PCOS). The right part 

of the panel D holds the ROC curve with its AUC value (0.643), and density curve. 

Abbreviations: AUC: area under the curve; FPR: false positive rate; PCOS: polycystic ovary 

syndrome; ROC: receiver operating characteristic curve; TPR: true positive rate. 

Figure 3: Correlation heatmap of hormonal and metabolic biomarkers in the entire cohort at 

the age 46, and involving top 10 bacteria associated with differences between PCOS and 

control women. Key: *   R ≤  . ; **   R ≤  . . The color key indicates the correlation 

direction (blue: negative correlation, red: positive correlation). Abbreviations: BMI: body 

mass index; FDR: false discovery rate; Hb1Ac: glycated haemoglobin; SHGB: sex hormone 

binding globulin. 
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Figure 4: Comparison of the gut microbiome diversity between NGT (n = 76) and preT2D 

samples (n = 14) among women with PCOS. (A) Box-plots of the Shannon diversity Index 

(alpha diversity), median values and interquartile ranges have been indicated in the plot (p = 

0.018). (B) Beta diversity is represented by Principal Coordinate Analysis (PCoA) based on 

unweighted UniFrac distance (p = 0.003). (C) Genus Dorea with statistically significant 

differences (FDR = 0.03). NGT: normal glucose tolerance; preT2D: pre-type 2 diabetes. Each 

plot point represents a single individual, the shapes indicate study groups (rhombus: NGT, 

star: preT2D). 
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Table 1. Clinical, metabolic, and hormonal characteristics of study population. 

 

31 years 46 years 

Control 

 

PCOS 

 
p-value

a
 

Control 

 

PCOS 

 
p-value

a
 

BMI, kg/m
2 

 25.09±4.81 

(n = 201) 

25.35±5.41 

(n = 100) 

 0.92 

27.44±4.98 

(n = 202) 

26.96±5.08 

(n = 102) 

0.82 

SHBG, nmol/L 

50.60±15.09 

(n = 36) 

40.71±13.90 

(n = 14) 

 0.21 

58.76±30.99 

(n = 200) 

55.76±27.07 

(n = 102) 

0.64 

testosterone, 

nmol/L 

 1.14±0.61 

(n = 152) 

 1.33±0.62 

(n = 75) 

0.01  

0.86±0.33 

(n = 201) 

0.93±0.32 

(n = 102) 

0.08 

FAI 

3.51±3.82 

(n = 10) 

5.70±3.07 

(n = 3) 

0.29 

1.77±1.11 

(n = 200) 

2.04±1.10 

(n = 102) 

0.01 

menses per year 

12.15±1.25 

(n = 190) 

10.43±2.73 

(n = 93) 

1.10×10
-12 

ND  ND ND 

infertility 

problems ever in 

life, n 

28 (16%) 

(n = 179) 

38 (42%) 

(n = 91) 

4.92×10
-06

  

24 (13%) 

(n = 187) 

37 (39%) 

(n = 95) 

1.21×10
-06 

parity 

 1.51±1.26 

(n = 197) 

 1.5±1.19 

(n = 98) 

 0.97 

2.38±1.41 

(n = 188) 

2.25±1.56 

(n = 95) 

0.13 

how many 

miscarriages 

 0.21±0.51 

(n = 198) 

0.24±0.63 

(n = 98) 

0.90  

0.46±1.05 

(n =170) 

0.47±0.97 

(n = 83) 

0.71 

D
ow

nloaded from
 https://academ

ic.oup.com
/jcem

/advance-article/doi/10.1210/clinem
/dgaa848/5986713 by U

niversity of C
am

bridge user on 21 N
ovem

ber 2020



Acc
ep

ted
 M

an
us

cri
pt

fasting glucose, 

mmol/L 

 4.96±0.49 

(n = 156) 

 5.15±1.24 

(n = 78) 

 0.19 

5.05±0.92 

(n = 195) 

5.38±0.58 

(n = 95) 

0.55 

2 h glucose, 

mmol/L 
ND ND ND 

5.88±1.63 

(n = 193) 

5.69±1.45 

(n = 92) 

0.24 

fasting insulin, 

mU/L 

 8.52±3.79 

(n = 155) 

 9.14±4.99 

(n = 78) 

0.70  

9.82±5.65 

(n = 195) 

10.2±7.63 

(n = 95) 

0.79 

2 h insulin, mU/L ND ND ND 

63.03±50.61 

(n = 193) 

57.34±41.81 

(n = 93) 

0.62 

Matsuda index  ND ND   ND 

4.84±2.55 

(n = 190) 

5.24±3.35 

(n = 89) 

0.77 

disposition index  ND  ND ND 

186.15±87.32 

(n = 190) 

189.47±89.59 

(n = 89) 

0.74 

Data are presented as mean ± standard deviation for continuous traits and as absolute proportions and 

prevalence (%). 
a 
W l oxon s  n r n  t st   ont nuous v r   l   or   sh r’s  x  t t st    t  or   l v r   l  . Th  

number of women in separate analyses varies due to non-response to some items. Abbreviations: BMI: body 

mass index; FAI: Free Androgen Index; n: number of individuals; ND: no data; SHBG: sex hormone binding 

globulin; y: year. 
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