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1  Introduction  
Fuzzy systems have proven to be very useful in model construction over the past 

decades. This is by virtue of their linguistic and approximate reasoning approaches 
which will provide a basis for simple and user-friendly modelling. Thousands of 
practical applications have confirmed the goodness of these systems. 

However, we still expect certain supplementary methods in fuzzy modelling in 
particular in the human sciences because the methods used in the natural sciences, 
especially in the engineering sciences, which seem to prevail in the fuzzy systems, 
are unable model all the specific features of the human behavior. Examples of these 
are the human intentions, decisions, motives and ethical aspects. 

Within fuzzy systems we are also applying insufficiently such prevailing crisp 
methods which may enhance our fuzzy model construction or the interpretation of 
the model’s outcomes. The conventional statistical methods, for their part, may pro-
vide resolutions to this problem area, and we will apply them below. 

 Statistical methods, and fuzzified statistical methods, have been applied to cer-
tain fuzzy models already [2,6,10,15,32], but still more studies are expected. Below 
we will apply statistical methods to fuzzy cognitive maps from the human scientific 
standpoint because there already seems to be several studies on these maps but they 
mainly stem from the methods of neural networks and engineering, and even sub-
jective or ad hoc reasoning is performed in this context. In the quantitative human 
sciences, on the other hand, we aim at objectivity and also apply empirically justi-
fied methods to our data analysis. Hence, we will study how such statistical methods 
as regression analyses may enhance or supplement the fine-tuning and interpretation 
of these models. Our results may also be applied to other fuzzy systems in general.  

Chapter 2 presents the basic principles of the fuzzy cognitive maps. Chapter 3 
considers at theoretical level how certain statistical methods may be utilized within 
the fuzzy cognitive maps and also provides a concrete example. Chapter 4 concludes 
our examination. 
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2  Fuzzy Cognitive Maps   
The fuzzy cognitive maps (FCM) mainly base on the ideas of Axelrod and Kosko 

[1,13], and they are used for simulating and forecasting such phenomena of the real 
world which consist of numerous variables and their interrelationships. The FCMs 
may also include feedback operations. The concept maps [19,20], in turn, provide 
an example in which case even more wide-ranging interrelationships may be used, 
and they are quite much applied in the human sciences. 

In statistics the structural equation models, such as Mplus™, LISREL™ and 
AMOS™, are used for this purpose as well as time series analysis, but the FCMs 
are usually simpler and more robust in model construction [16,17].  

The traditional Axelrod’s cognitive maps base on classical bivalent or trivalent 
logic and mathematics and hence they can only model coarsely their interrelation-
ships [1]. Kosko enhanced these maps by applying the Hebbian neural networks and 
by using the numeric concept variable values which usually range from 0 to 1, and 
these values denote the degrees of activation of the variables or concepts. The de-
grees of relationship between the variables, in turn, may range from -1 to 1 in which 
case the benchmarks -1, 1 and 0 denote full negative effect, full positive effect and 
no effect, respectively [13].  

Due to the mathematical properties of the numeric cognitive maps, in iterations 
on the time axis the values of its concepts may oscillate (limit cycles), are chaotic 
or will finally become stable (fixed-point attractors). For example, in control appli-
cations our goal is usually to achieve certain fixed points or other type of stabilities. 

If empiric data, history data, in a given period of time is unavailable, we only 
operate with a priori maps, and thus we apply human intuition or expertise in our 
constructions, otherwise we may construct a posteriori maps and then we apply 
such methods as statistics (e.g., regression and path analysis), neural networks or 
evolutionary computing [9,12,14,22-26]. Hence, appropriate data may yield usable 
FCMs in a more or less automatic manner. 

On the other hand, the construction of a posteriori FCM models still await such 
usable methods which can yield stable interrelationships between the concepts, i.e., 
similar relationship outputs if the model construction with the data is repeated, be-
cause today we seem to lack this feature, but this problem is not considered here. 
Many FCM constructions also seem to include subjective or ad hoc interpretations 
and decisions, and this problem is discussed below. 

The numeric FCMs can only establish monotonic causal interrelationships be-
tween the concepts, whereas fuzzy linguistic cognitive maps enable us to avoid this 
problem [4,27,28]. The latter approach is also more user-friendly due to its linguis-
tic nature and, in this sense, they resemble more the concept maps [20]. We only 
focus on the numeric FCMs below because they provide the basis for their analyses. 

If the prevailing methods are used in the numeric FCM simulations, the concept 
(node) values range from zero to unity and their weights or intensities of the inter-
relationships belong to the closed intervals  -1 to 1 [9]. These weights are presented 
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in the connection matrices. Hence, in the basic FCM computer simulations we may 
apply the matrix product, *, 

 
Vt+1= f(Vt*M),       (2.1) 

 
in which the state vector, Vt, contains m concept values at time=t, M is an m×m 
connection matrix, f is the transformation function and vector Vt+1 contains the new 
concept values at time=t+1 [9]. The function f is usually the logistic function, 

 
f(x) = 1 / (1+exp(-𝛌∙x)),      (2.2) 

 
or the hyperbolic tangent function 

 
f(x) = (exp(𝛌∙x)-exp(-𝛌∙x)) / (exp(𝛌∙x)+exp(-𝛌∙x))   (2.3) 

 
 

in which exp is the exponential function and the parameter lambda, 𝛌, is a positive 
value [9]. This function transforms the matrix product values at time=t+1 into the 
closed interval from 0 to 1 or -1 to 1, respectively. Below we also use (2.2), and 
then lambda quite often is having the values of 1 or 5 (Figg. 2.1 and 2.2). We will 
prefer the value of 1 because then the obtained concept values may have larger dis-
persions [11]. 

 

 
Fig. 2.1. Transformation function (2.2) when lambda=1. 
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Fig 2.2. Transformation function (2.2) when lambda=5. 

 
 
The mainstream studies on the FCMs seem to stem from the methods, and even 

the patterns of thought, of the neural networks, in particular from the Hebbian learn-
ing methods [9,13]. Hence, the interpretations on the weights in the connection ma-
trices may be ambiguous and subjective even if empiric history data is used for their 
specifications. In addition, as within the neural networks, their weights may even 
be regarded as such black-box values which only play a secondary role when the 
FCMs are used in practice.  In this context, the leading role of the transformation 
functions is only to serve as a rescaling tool for the initial concept outputs, and they 
are also formulated mainly on the intuitive grounds. The fine-tuning of the original 
FCMs also seems to rely quite often on subjective or ad hoc decisions.  

In the quantitative human sciences, in turn, we apply the widely-accepted sto-
chastic interpretations and decisions when we study our parameters, functions and 
model outcomes. We also aim at the stability of our models when the model con-
struction is repeated.  In this manner, we may understand well the interrelationships 
in our models. In practice this means that the use of the prevailing statistical meth-
ods may provide additional information for us when we study the FCMs. Below we 
will adopt this approach. 

 
 
 
3  Statistical Approach to Fuzzy Cognitive 

Maps 
 
The author has, also with others, studied the general features of FCMs from the 

statistical standpoint by using thousands of random initial concept vectors and con-
nection matrices in computer simulations with MatlabTM and SPSSTM, and the ex-
amples of these can be found in [11,18]. These studies more or less differ from the 
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mainstream studies on the FCMs due to our human-scientific and statistical ap-
proach. In this context we only study one such random-valued FCM model, but our 
results may also be generalized to other FCM models.  

We focus on the connection matrix in Table 3.1, whose number of concepts and 
weights were created randomly, because then it will represent well our general ap-
proach. The weights in the diagonal of Table 3.1 were assigned to be zeros which 
seems quite typical in the engineering applications even though in the real-world 
FCM applications of the human sciences the preceding values of concepts are often 
relevant in the succeeding iteration, i.e., the diagonal contains nonzero values.  

Figure 3.1 depicts the graph based on Table 3.1, and the usual FCM methods 
mentioned in Chapter 2 yielded the concept values in Figures 3.2 and 3.3 when ten 
iterations and the lambda values one and five were used. This model yielded one 
fixed point for each of its concepts. 

From the statistical standpoint, we may first consider all the possible values of 
the concepts at time=1 within a given cognitive map when the values at time=0 (the 
initial values) are given [11]. This procedure was carried out here by using 9 998 
random initial concept vectors plus the vectors which only contained zeros and uni-
ties. The random vector sample was used because it was impossible to use all input 
vector combinations due to the numeric explosion. 

 
Table 3.1. The original random weights of concepts. 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

C1 0.00 0.54 0.97 -0.58 0.38 -0.51 -0.96 -0.06 0.73 -0.67 

C2 0.49 0.00 -0.34 0.01 0.07 0.25 -0.53 -0.85 -0.05 0.58 

C3 -0.54 0.94 0.00 0.72 0.39 -0.57 0.66 -0.33 -0.77 0.31 

C4 -0.87 0.92 -0.94 0.00 -0.01 0.56 -0.66 -0.27 0.82 0.16 

C5 -0.63 -0.71 -0.15 -0.99 0.00 -0.77 -0.74 0.45 -0.54 0.20 

C6 0.06 -0.49 0.09 0.08 -0.38 0.00 -0.12 -0.74 -0.27 0.39 

C7 0.65 -0.39 -0.03 0.66 -0.05 -0.84 0.00 0.24 -0.92 0.59 

C8 -0.73 -0.38 -0.17 -0.14 0.65 -0.32 0.16 0.00 -0.84 0.75 

C9 0.17 -0.58 0.78 0.17 0.35 0.54 0.80 0.03 0.00 0.59 

C10 -0.99 -0.43 -0.83 -0.22 0.14 -0.62 0.18 0.56 0.27 0.00 
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Fig. 3.1. Graph of the connection matrix in Table 3.1. 

 
 
 

 
 
Fig. 3.2. Concept values in ten iterations when lambda=1 (iteration 0 denotes the original random 

values). 
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Fig. 3.3. Concept values in ten iterations when lambda=5 (iteration 0 denotes the original random 

values). 
 
The weights in matrix 3.1 may have various interpretations in engineering appli-

cations, such as the degrees of intensity of the relationship, but still their real mean-
ings in practice may nevertheless remain unclear or ambiguous. We may also per-
form subjective reasoning when we consider the relevance of the driver concepts 
for a given target concept because, for the sake of simplicity, we often aim at re-
moving the irrelevant drivers. In other words, the simplicity means low density 
(many zero weights) in the connection matrix [9]. 

In the quantitative human sciences, in turn, we aim at objectivity and the forego-
ing type of subjectivity may be reduced by applying such statistical methods as re-
gression analysis. Given a target concept, it will be the response variable (dependent 
variable) in a regression model, whereas the its drivers will be the predictors (inde-
pendent variables). Hence, the weights in the corresponding column in the connec-
tion matrix are directly the linear regression coefficients for the given nontrans-
formed target concept. Thanks for this approach, various useful statistics and other 
outcomes will be obtained in our studies. 

We will consider our FCM at two stages. The first stage examines its nontrans-
formed output values and this is more interesting analysis because these values are 
always, in a sense, the fixed values when the connection matrix is fixed. The second 
stage considers their transformed values, and then various mathematical transfor-
mation functions and output vectors are possible thus increasing the degrees of free-
dom in our models. 
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3.1  Stage 1, the Linear Nontransformed FCM Model 
 

Consider now stage one. We will focus on the first concept in Table 3.1, C1, below 
because its examination already elucidates sufficiently well the application of our 
suggested methods.  

Table 3.1.1 presents the descriptive statistics of these concepts at time=t+1 prior 
to their transformations, and these concept values will take below the priority over 
the transformed ones in our analysis because then we may exclude the effect of the 
parameter lambda in our studies. We notice that these possible concept values, 
which based on 10 000 random initial vectors given at time=t, have dissimilar dis-
tributions and generally these distributions are also dependent upon the number of 
their driver concepts. The latter fact is quite seldom taken into account even though 
it clearly affects the transformed values of the concepts. We will nevertheless pre-
clude this discussion here.  

Table 3.1.2 presents the corresponding transformed concept values when 
lambda=1. We notice that the dispersions are quite small, and thus these outcomes 
may often be undesirable in the concrete applications.  
Figures 3.1.1 and 3.1.2 depict the possible values of C1 at time=t+1 both prior to 
and after the transformation with lambda=1 according to our random initial vectors 
at time=t. Since its nontransformed values are mainly negative, their transformed 
counterparts are centered below the value of 0.5. Figure 3.1.3 depicts how the non-
transformed values of C1 are transformed when lambda=1. 

 
 
Table 3.1.1. The descriptive statistics of the possible nontransformed concept values when 10 000 

initial random vectors were used. 
Concept Range Minimum Maximum Mean Std. Deviation 

C1 3.98 -3.07 .91 -1.1963 .54831 

C2 4.07 -2.41 1.66 -.2896 .55202 
C3 3.30 -2.07 1.22 -.3128 .52685 
C4 2.73 -1.54 1.19 -.1377 .44012 
C5 1.87 -.13 1.74 .7675 .29210 
C6 3.49 -2.99 .49 -1.1466 .50610 
C7 3.54 -2.37 1.17 -.5944 .52323 

C8 2.67 -1.81 .87 -.4775 .41512 
C9 4.08 -2.94 1.14 -.7806 .56001 

C10 3.25 -.23 3.03 1.4479 .44432 
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Table 3.1.2. The descriptive statistics of the possible transformed concept values when 10 000 initial 
random vectors were used. 

 
Concept Range Minimum Maximum Mean Std. Deviation 

C1 .67 .04 .71 .2454 .09780 

C2 .76 .08 .84 .4329 .12732 
C3 .66 .11 .77 .4270 .12210 
C4 .59 .18 .77 .4672 .10521 
C5 .38 .47 .85 .6797 .06272 
C6 .57 .05 .62 .2524 .09240 
C7 .68 .09 .76 .3638 .11511 

C8 .56 .14 .70 .3873 .09534 
C9 .71 .05 .76 .3254 .11670 
C10 .51 .44 .95 .8006 .06995 

 
 
 
 

 
Fig. 3.1.1. The distribution of the possible concept values of C1 prior to the transformations. 
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Fig. 3.1.2. The distribution of the possible concept values of C1 after the transformations. 

 
 
 

 
 

Fig. 3.1.3. The transformed vs. nontransformed values of concept C1 at time=1. 
 
 
Since the possible nontransformed concept values are actually the outcomes of 

linear functions, we may apply linear regression analyses thru their origins in this 
context [7,16,17]. If we use, for example, the concept C1 as our response concept 
and the concepts C2 to C10 are its predictors, we may construct a linear regression 
model with our 10 000 data vectors. Then, the initial random vectors of the concepts 
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C2 to C10 at time=t constitute the predictor data and the concept values of C1 at 
time=t+1 represent the response values. 

When using all predictors in this regression model, the estimates of the regres-
sion coefficients are naturally similar to the weights in Table 3.1. If we aim at re-
moving the irrelevant or insignificant predictors for achieving a simpler model, we 
may apply stepwise regression models. These models were first constructed with 
SPSS for finding the significant predictors. In this manner, we may have stochastic 
justifications for removing the insignificant predictors, and thus the predictors C6 
and C9 were removed from our final model. We notice that these predictors also 
have small weights in column C1 in Table 3.1, but now these removals were not 
performed on subjective grounds.  

Our final regression model had the R-square value of 0.998 and its coefficient 
estimates are presented in Table 3.1.3. Hence, this model should yield output values 
which are virtually similar to the original values of C1 at time=t+1. We notice that 
the regression coefficients (B values) are not identical to the corresponding weights 
in matrix 3.1 because two predictors were removed. The t-tests indicate that the 
remaining predictors seem significant (their levels of significance are below 0.05). 
The beta values indicate that the concepts C10 and C4 seem to be the most relevant 
predictors (the highest absolute values), whereas C2 and C3 seem to play minor 
roles. The tolerances are quite low, and thus the undesirable multicollinearity exists 
to some extent. Figure 3.1.4 depicts the residuals, and they seem normally distrib-
uted around zero. Hence, now we have a plausible statistical model which yields 
nontransformed concept values to C1 by only using the significant predictors.  

 
Table 3.1.3. The estimates of linear regression coefficients for concept C1. 

Concept Unstandardized 
Coefficients B 

Std. Error Standardized Coef-
ficients Beta 

t Sig. 

C2 .524 .002 .229 283.811 .000 

C3 -.511 .002 -.224 -275.610 .000 
C4 -.840 .002 -.368 -455.429 .000 
C5 -.593 .002 -.260 -319.250 .000 
C7 .678 .002 .300 366.492 .000 
C8 -.698 .002 -.306 -380.801 .000 
C10 -.959 .002 -.424 -520.389 .000 
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Fig. 3.1.4. The distribution of residuals within the linear regression analysis for concept C1. 

 
With our regression coefficient estimates (which are the slopes of the predictors) 

we may now perform such what-if reasoning as 
 
If the value of concept C2 at time=t increases 0.5 units, the nontransformed value 
of C1 at time=t+1 will increase B∙0.5 = 0.524∙0.5 = 0.262 units.  
 

However, if collinearity exists, we must be more or less cautious with this type of 
reasoning. 

In this manner, we may construct an appropriate regression model to each such 
target concept which has at least one driver. In Table 3.1.4 the weights of Table 3.1 
are replaced with the new weights when the insignificant weights are removed ac-
cording to our stepwise regression models. Hence, the small weights are removed 
on the statistical grounds. Table 3.1.4 also presents the R-square values of our cor-
responding regression models. Figure 3.1.5 depicts the corresponding simplified 
version of the original graph. 

Figure 3.1.6 depicts our concept values when 10 iterations are calculated with 
our simplified FCM and lambda=1. The average deviation from the original FCM 
values is 0.013. In the human sciences such low level of errors will not arouse any 
critical problems. 

 
 
 
 
 

 
 
 



13 

Table 3.1.4. The simplified connection matrix and the R-squares of the regression models when the 
column concepts were used as the response variables. 

  
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

C1 0.00 0.50 0.97 -0.56 0.40 -0.52 -0.93 0.00 0.72 -0.57 

C2 0.52 0.00 -0.33 0.00 0.00 0.00 -0.50 -0.81 0.00 0.69 

C3 -0.51 0.90 0.00 0.73 0.42 -0.58 0.69 -0.30 -0.78 0.00 

C4 -0.84 0.88 -0.93 0.01 0.00 0.55 -0.62 -0.24 0.81 0.00 

C5 -0.59 -0.76 -0.14 -0.98 0.00 -0.78 -0.70 0.48 -0.54 0.00 

C6 0.00 -0.53 0.00 0.00 -0.35 0.00 0.00 -0.71 0.00 0.49 

C7 0.68 -0.44 0.00 0.67 0.00 -0.85 0.00 0.00 -0.92 0.70 

C8 -0.70 0.00 -0.16 -0.13 0.68 0.00 0.00 0.00 -0.84 0.85 

C9 0.00 -0.62 0.79 0.19 0.38 0.53 0.84 0.00 0.00 0.70 

C10 -0.96 -0.48 -0.83 -0.21 0.00 -0.63 0.00 0.60 0.00 0.00 

R-square 0.998 0.965 0.998 0.997 0.996 0.991 0.989 0.986 0.986 0.992 
 
 
 

 
Fig. 3.1.5. The simplified graph based on the regression models. 
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Fig. 3.1.6. Concept values in ten iterations in the simplified FCM when lambda=1 (iteration 0 de-

notes the original random values). 
 
 

3.2  Stage 2, the Transformed FCM Model 
 
At the first stage above, we always obtain unique FCM outputs when the weights 

in the connection matrix are fixed. At the second stage, in turn, our outputs also 
depend upon the transformation function, and thus various models may be con-
structed but the functions (2.2) and (2.3) seem usual. We only focus on transfor-
mation function (2.2), but our results may also be applied to many other functions.  

At the outset, we are also interested in the descriptive statistics of the possible 
concept values when random initial concept values are used. Examples of these are 
provided in Tables 3.1.1 and 3.1.2. In the ordinary FCM studies we may also attempt 
to find the optimal parameter values for functions (2.2) or (2.3) according to the 
given criteria, even the individual parameters for each concept [3,11]. Hence, we 
first assign the coefficients to the linear functions for calculating the untransformed 
values and then we transform these values into a certain interval.  

Within statistics, we may also examine directly with the regression models how 
to predict the transformed target values with the given drivers if the appropriate data 
is available. In this context, we may apply the nonlinear models, but this task is 
usually quite challenging, in particular when several predictors are involved, be-
cause the appropriate regression functions may often be unknown to us. The fuzzy 
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reasoning systems may resolve this problem fluently, but they are not in the focus 
in this study because numerous such studies are available already [29-32]. 

One usual statistical method is logistic regression analysis in which case we may 
obtain the probabilities of acquiring certain concept values [16,17], and, in a sense, 
this method is analogous to FCM modelling. Consider thus our foregoing 10 000 
transformed observations for concept C1 at time=t and lambda=1 in the function 
(2.2). If we, for example, will examine when these transformed values of C1 will 
be above its median at time=t+1, viz. above 0.23, we will first create a new dichot-
omous response variable, C1d, and C1d = 0 when C1 ≤ median, otherwise C1d = 1. 
After this, we may construct our model and we aim to estimate the probabilities of 
obtaining C1d=1. 

Our final logistic regression analysis model with SPSS, which based on various 
stepwise analyses, yielded the similar significant predictors as above with 
Nagelkerke’s pseudo R-square value of 0.953 (when 1 is the maximum value), and 
the regression coefficients are presented in Table 3.2.1.  

We notice in Table 3.2.1 that the Wald tests assume our predictors to be signifi-
cant (small levels of significance). The regression coefficients, B, indicate that if 
the values of the predictors C2 and C7 at time=t will increase, we will have higher 
probability of obtaining the value above the median for C1 at time=t+1 because 
these predictors have significant positive coefficients. The other predictors will de-
crease this probability if their values will increase at time=t due to their negative 
signs (the odds ratio values are useless here because the predictors are continuous 
variables).  

 
Table 3.2.1. The estimates of logistic regression coefficients for concept C1. 

Concept B S.E. Wald df Sig. 

 C2 17.297 .725 568.587 1 .000 

C3 -19.000 .782 590.253 1 .000 
C4 -30.308 1.219 617.789 1 .000 
C5 -22.539 .930 587.733 1 .000 
C7 22.503 .912 609.072 1 .000 
C8 -25.848 1.047 609.832 1 .000 
C10 -34.959 1.393 629.706 1 .000 

Constant 46.655 1.873 620.371 1 .000 
 
Hence, the estimates on the individual probabilities of obtaining the response 

values of C1 above the median at time=t+1 are based on the logistic regression 
equation [16,17] 

 
Probability = 1 / (1+exp(-1∙Z)),  when     (3.2.1) 
Z = 17.297∙C2 - 19.0∙C3 - 30.308∙C4 - 22.539∙C5 + 22.503∙C7 - 25.848∙C8 
-34.959∙C10 + 46.655  
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and exp is the exponential function. Hence, if Z is approximately above -1.25, there 
is high probability of obtaining the value above the median for C1 (Fig. 3.2.1). We 
notice that this calculation is analogous to the calculation of the FCM values when 
lambda=1 with function (2.2) even though now the linear function is specified by 
applying the maximum likelihood method and thus the regression coefficients are 
different [16,17]. 

For example, given the predictor values at time=t, 
 

C2=0.16, C3=0.69, C4=0.74, C5=0.20, C7=0.24, C8=0.43, C10=0.17 
 

the estimated probability that C1 > 0.23 is 0.092 at time=t+1.  
 

 
Fig. 3.2.1. Transformed values of concept C1 when lambda is 1 and 5 vs. their untransformed val-

ues. Also, the probabilities of concept values of C1 being above 0.23 according to the nontransformed 
values of C1. 

 
Cluster analysis is also useful when we examine how the possible target values 

are obtained according to its drivers. In this context, we may apply both ordinary 
and fuzzy clustering techniques [16,17]. Table 3.2.2 provides an example on the 
cluster centers with Matlab’s fuzzy subtractive clustering tool when four clusters 
are created with our data [5].  
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Table 3.2.2. Examples of cluster centers of the drivers and the corresponding target values. 
Concepts  
at time=t 

Cluster  
center 1 

Cluster  
center 2 

Cluster  
center 3 

Cluster  
center 4 

C2 0.500 0.460 0.613 0.710 

C3 0.633 0.459 0.287 0.050 

C4 0.527 0.456 0.280 0.405 

C5 0.511 0.499 0.148 0.768 

C7 0.472 0.564 0.586 0.293 

C8 0.376 0.679 0.210 0.726 

C10 0.671 0.283 0.314 0.702 

C1 at time=t+1 0.208 0.263 0.454 0.184 

 
Hence, for example, according to the first cluster center, we may reason that  
 
If initially C2≈0.500 and C3≈0.633 and C4≈0.527 and C5≈0.511 and C7≈0.472 
and C8≈0.376 and C10≈0.671, then we will obtain C1≈0.208. 
 
In fact, these clusters and their centers may be used in fuzzy rule-based reasoning 

models if we aim at predicting the target values according to their drivers [2,8,29]. 
This widely-adopted approach is thus a fluent nonlinear method for predicting di-
rectly the transformed values from the initial concept vectors. Discriminant analy-
sis, in turn, is an example on the corresponding statistical method [16,17]. 

We may also apply the multinomial regression models in this context in which 
case the categorical response variable may have more than two values [16-18]. An 
example of this is provided below.  

The foregoing statistical methods provide both novel and supplementary infor-
mation on FMCs which base on widely-used stochastic estimates and reasoning. In 
this manner, we may thus avoid certain subjective and ad hoc conclusions when we 
interpret or fine-tune our FCM models. We will apply these ideas to an empiric 
example below. 

 

3.3  The Liquid Tank Model  
 
Our suggested methods seem useful within the human sciences which is in the 

focus in this study. But we may also apply these methods to other fields and thus 
our example considers the well-known control application because fuzzy control 
models still play a central role in the fuzzy community.  

Our empiric example considers the control application presented in [21,23]. In 
this model two valves, valve1 and valve 2, supply different liquids into the tank. 
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These liquids are mixed for a certain chemical reaction, and our goal is to maintain 
the desired liquid level (amount of liquid) and specific liquid gravity in the tank. 
The third valve, valve3, is used to drain liquid from the tank. 

This FCM model applies the connection matrix presented in Table 3.3.1 which 
is given in [23], and now the preceding values of the target concepts are also used 
in simulations (self-loops, thus the diagonal values in the matrix are 1).  The trans-
formed concept values will use formula (2.2) with lambda=1 as in the original 
model. Table 3.3.2. presents the possible concept values prior to and after the trans-
formations when 10 000 random initial concept vectors were used as above. Figures 
3.3.1 and 3.3.2 depict the corresponding graph (without self-loops) and the concept 
values in ten iterations, respectively. The model will yield fixed-points to the con-
cepts. 

 
Table 3.3.1. The original weights of concepts. 

 Liquid level Valve1 Valve2 Valve3 Gravity 

Liquid level 1 -0.207 -0.112 0.064 0.264 

Valve1 0.298 1 0.061 0.069 0.067 

Valve2 0.356 0.062 1 0.063 0.061 

Valve3 -0.516 0.07 0.063 1 0.068 

Gravity 0.064 0.468 0.06 0.268 1 

 
 

Table 3.3.2. The descriptive statistics of the possible nontransformed and transformed concept values 
when 10 000 initial random vectors were used. 

 
Concepts Range Minimum Maximum Mean Std. Deviation 

Nontransformed      

Liquid level 1.92 -.36 1.56 .5976 .34447 

Valve1 1.63 -.11 1.52 .6952 .32617 

Valve2 1.20 -.07 1.13 .5324 .29359 

Valve3 1.46 .00 1.46 .7336 .30088 

Gravity 1.46 .00 1.46 .7261 .30022 

Transformed      

Liquid level .42 .41 .83 .6413 .07757 

Valve1 .35 .47 .82 .6633 .07170 

Valve2 .27 .48 .76 .6275 .06770 

Valve3 .31 .50 .81 .6722 .06545 

Gravity .31 .50 .81 .6706 .06541 
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Fig. 3.3.1. Graph of the connection matrix in Table 3.3.1. (1=liquid level, 2=valve1, 3=valve2, 

4=valve3, 5=gravity). 
 
 
 
 
 

 
Fig. 3.3.2. Concept values in ten iterations in the original FCM when lambda=1 (iteration 0 denotes the 

original random values). 
 

When stepwise linear regression analyses were applied to such models in which 
each concept at a time was the response variable and the other concepts acted as the 
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possible predictors, we obtained the simplified connection matrix in Table 3.3.3, 
and this Table only contained the statistically significant drivers to each target con-
cept. For example, Gravity was insignificant driver to Liquid level. We notice that 
our final regression models yielded very high R-square values. The average error in 
the concept values in ten iterations was 0.008 when our new FCM values were com-
pared to the original ones. Figure 3.3.3 depicts our simplified FCM when the self-
loops are not presented. 

 
 

Table 3.3.3. The simplified connection matrix and the R-squares of the regression models. 
 Liquid level Valve1 Valve2 Valve3 Gravity 

Liquid level 1 -0.166 -0.074 0 0.349 

Valve1 0.313 1 0.098 0.106 0 

Valve2 0.37 0 1 0 0 

Valve3 -0.501 0 0 1 0 

Gravity 0 0.507 0 0.304 1 

R-square 0.999 0.998 0.997 0.998 0.996 

 
 
 
 

 
Fig. 3.3.3. Graph of the connection matrix in Table 3.3.3. (1=liquid level, 2=valve1, 3=valve2, 

4=valve3, 5=gravity). 
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We will only focus on predicting the liquid levels in the tank. Hence, in [21,23] 
these rules were given,  

 
• if Liquid_level < 0.68, the level is low.  
• If 0.68 ≤ Liquid_level ≤ 0.70, the level is appropriate (the goal level).  
• If Liquid_level > 0.70, the level is high. 
 
If we, for example, will construct such logistic regression model with SPSS 

which may provide the probabilities of obtaining low liquid level according to our 
driver concept values, we should first create a new dichotomous target concept, 
Liquid_d, 

 
• Liquid_d = 1, when the liquid level < 0.68, 
• Liquid_d = 0, otherwise. 
 
The statistics of this logistic regression model, whose Nagelkerke R-square value 

is 0.974, is presented in Table 3.3.4 (the insignificant predictor Gravity was re-
moved). Hence, we notice that our final predictors seem significant according to the 
Wald tests and the signs of the linear regression coefficients, B, indicate (quite self-
evidently) that, among others, 

 
• If the initial liquid level increases, the risk to low liquid level is lower (its B 

value is negative). 
• If the initial flow restriction increases in valve1, the risk to low liquid level 

is lower (its B value is negative). 
• If the initial flow restriction increases in valve2, the risk to low liquid level 

is lower (its B value is negative). 
• If the initial flow restriction increases in valve3, the risk to low liquid level 

is higher (its B value is positive). 
 

Table 3.3.4. The Estimates of the logistic regression coefficients for the new liquid level. 
Concepts B S.E. Wald df Sig. 
 Initial liquid level -94.964 5.195 334.192 1 .000 

Valve1 -28.492 1.585 323.082 1 .000 

Valve2 -34.163 1.892 325.998 1 .000 
Valve3 48.440 2.672 328.687 1 .000 

Constant 69.063 3.780 333.862 1 .000 
 
 
As above, the probabilities of obtaining the low liquid level are calculated with 

the function, 
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Probability = 1 / (1+exp(-1∙Z)),  when     (3.3.1) 
Z = -94.964∙Liquid_level – 28.492∙Valve1 – 34.163∙Valve2 + 48.440∙Valve3 + 
69.063 
 

and exp is the exponential function (Fig. 3.3.4). For example, if the initial predictor 
values are 

 
Liquid level=0.96, Valve1=.032, Valve2=0.53, Valve3=0.96 at time=t, 
 

the probability of obtaining low liquid level is 0.029 at time=t+1. 
 
 
 

 
 

Fig. 3.3.4. The probabilities of obtaining the liquid level below the median vs. the transformed liquid 
levels. 

 
In [18] the corresponding multinomial regression model with SPSS was also 

constructed in which case the Nagelkerke R-square was 0.979, and these results are 
in Table 3.3.5. In this case the goal level in [21,23],  

 
0.68 ≤ liquid level ≤ 0.70,  
 

was our reference class and the low and high levels were below and above this level, 
respectively. This model will actually yield two logistic regression models, and their 
probabilities base on the analyses of,  

 
• low level compared to the goal level 
• high level compared to the goal level 
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Table 3.3.5. The estimates of the multinomial logistic regression coefficients for the liquid tank model. 
Liquid level  B St. Error Wald df Sig. 

Goal vs. low Intercept 79.136 14.739 28.827 1 0.000 

 Liquid_level -109.707 20.377 28.985 1 0.000 

 Valve1 -33.785 6.341 28.392 1 0.000 

 Valve2 -40.126 7.551 28.238 1 0.000 

 Valve3 54.93 10.236 28.797 1 0.000 

Goal vs. high Intercept -126.517 30.898 16.766 1 0.000 

 Liquid_level 151.329 37.194 16.554 1 0.000 

 Valve1 45.568 11.036 17.049 1 0.000 

 Valve2 52.309 12.773 16.772 1 0.000 

 Valve3 -79.126 19.38 16.67 1 0.000 

 
 
Hence, the interpretation on our regression coefficients, B, in Table 3.3.5 is sim-

ilar to that of logistic regression and thus we may reason on the stochastic grounds, 
among others, 

 
• Goal vs. low: the increase in the initial liquid level will cause lower risk to 

achieve low liquid level (B value is negative). 
• Goal vs. low: the increased flows in the valves 1 and 2 will cause lower 

risk to achieve low liquid level from the goal level (their B values are neg 
• Goal vs. low: The increased flow in valve 3 will cause higher risk to 

achieve low liquid level from the goal level (B value is positive).   
• Goal vs. high: the increase in the initial liquid level will cause higher risk 

to achieve high liquid level (B value is positive). 
• Goal vs. high: The increased flows in valves 1 and 2 will cause higher risk 

to achieve high liquid level from the goal level (their B values are positive).   
• Goal vs. high: The increased flow in valve 3 will cause lower risk to 

achieve high liquid level from the goal level (B value is negative).         
 
These examples thus correspond well to the basic principles for controlling this 

system with its FCM. 
The specific probabilities of the low and high liquid levels may be calculated 

with the linear regression coefficients in Table 3.3.5, and then with the logistic func-
tion, 1/(1+exp(-Z)), as above. Hence,  

 
Zlow level = -109.707∙Liquid_level - 33.785∙Valve1 - 40.126∙Valve2 + 
54.930∙Valve3 + 79.136      (3.3.2) 
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Zhigh level = 151.329∙Liquid_level + 45.568∙Valve1 + 52.309∙Valve2 
-79.126∙Valve3 - 126.517     (3.3.3) 
  

For example, given the initial concept values at time=t, 
 
Liquid_level=0.45, Valve1=0.03, Valve2=0.89, Valve3=0.06 
 

the probabilities of obtaining the low, goal and high liquid levels at time=t+1 are 
0.03, 0.97 and 0.00, respectively. 

If we focus on those initial vector values which will lead to the goal values of 
the liquid level, Table 3.3.6 presents the descriptives of these values, and Table 
3.3.7 presents examples of such typical initial vectors when the subtractive cluster-
ing was applied. We notice in Table 3.3.6 that the liquid level should be at least 0.19 
for achieving its goal level in the subsequent FCM iterations, whereas the other 
concepts may vary more freely. 
 

Table 3.3.6. The descriptives of the initial concept values that lead to the goal values of  
the liquid level. 

Concept Minimum Maximum Mean Std. Deviation 
Liquid level .19 1.00 .6748 .18255 

Valve 1 .00 1.00 .5202 .28840 
Valve 2 .00 1.00 .5290 .28294 
Valve 3 .00 1.00 .4854 .28565 
Gravity .01 1.00 .4988 .29010 

 
 

Table 3.3.7. Examples of cluster centers of the initial concept values that lead to the  
goal values of liquid level. 

Concepts Center 
1 

Center 
2 

Center 
3 

Center 
4 

Center 
5 

Center 
6 

Center 
7 

Center 
8 

Center 
9 

Liquid 
level 

0.723 0.447 0.789 0.556 0.873 0.669 0.699 0.765 0.378 

Valve 1 0.504 0.550 0.183 0.812 0.867 0.931 0.169 0.060 0.871 

Valve 2 0.427 0.766 0.706 0.266 0.280 0.755 0.142 0.787 0.624 

Valve 3 0.553 0.233 0.756 0.191 0.908 0.820 0.136 0.487 0.231 

Gravity 0.454 0.463 0.791 0.216 0.630 0.227 0.758 0.101 0.963 

 
 

Thanks for our stochastic approach, we may again avoid better subjective and ad 
hoc decisions when we interpret our connection matrix weights, simplify our origi-
nal models and forecast our FCM concept values in the simulations.  
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4  Conclusions 

 
Fuzzy systems have proven to be applicable in various computer model construc-

tions, and numerous scientific articles are already available about these models. The 
fuzzy cognitive maps were considered above, and this field of fuzziness has also 
been studied quite much already. However, many of the studies on these maps still 
seem to pivot on the methods of the engineering sciences and neural networks, and 
thus they do not necessarily reveal sufficiently their model performance. Hence, we 
expect certain methods which may supplement or clarify our research outcomes and 
even rely less on subjective or ad hoc reasoning.  

Our approach above considered the fuzzy cognitive maps from the standpoint of 
the quantitative human sciences, and in this context, we applied more wide-ranging 
methods. In particular, statistical methods were also applied because they play a 
central role in this field. Thanks for these methods, we may avoid subjectivity better 
and simultaneously acquire further information on our models. We only focused on 
the numerical fuzzy cognitive maps, and especially on their a priori models, because 
these models will provide the basis for their other studies. The statistical analysis of 
a posteriori models with the history data and their linguistic versions will be an 
interesting objective of the future examinations. 

The possible values of the fuzzy cognitive maps were studied by using the ran-
dom initial concept vectors and with a random connection matrix. In this manner, 
we were able to estimate the performance of these maps, and due to our randomized 
approach, the generalization capability of our outcomes seems better. Various re-
gression models were also applied for providing a stochastic basis for this perfor-
mance and also reducing subjectivity. Our results indicated that they corresponded 
well to those of obtained by the prevailing cognitive map methods. Furthermore, 
our methods provided supplementary and objective information on these models as 
well as enhanced their fine-tuning. Naturally, we may also apply other statistical 
methods, and these are possible objectives of the future studies.   

Our approach still awaits further justifications which will base on the perfor-
mance of the concrete applications, and thus future studies are expected in this prob-
lem area. 
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