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Abstract 

We inoculated Tuber aestivum and T. sinoaestivum on Carya illinoinensis to explore the effects of 

inoculation on host plant growth, enzyme activities, the physicochemical properties of rhizosphere 

soil, the denitrifying bacterial community in the rhizosphere, and the distribution of mating type 

genes in the rhizosphere. We found that the Tuber spp. inoculation increased the height of the host 

plant and that the stem circumference of the host was greater two months after inoculation. Six 

months after inoculation, the peroxidase activity of the seedlings inoculated with T. sinoaestivum 

was higher than that of the control. At four and six months after inoculation, the superoxidase 

dismutase activities of the seedlings inoculated with T. aestivum were higher than those of the 

seedlings inoculated with T. sinoaestivum. Six months after inoculation, nitrate nitrogen content was 

lowest in the control and highest in the T. sinoaestivum treatment. Among the nirS-type denitrifying 

bacteria community, the relative abundances of Proteobacteria were high. T. aestivum and T. 

sinoaestivum inoculation did not affect the diversity of denitrifying bacteria. The mating type genes 

MAT1-1-1 and MAT1-2-1 were detected in the rhizosphere of C. illinoinensis inoculated with T. 

sinoaestivum and T. aestivum, and MAT1-1-1 dominated over MAT1-2-1. 

Keywords 

Tuber; rhizosphere; host plant growth; mating type gene; denitrifying bacteria diversity 

Introduction 

Truffles (Tuber spp. in the class Ascomycetes) are edible fungi that form symbiotic associations 

with certain plants (Singer 1961). The genus Tuber has been estimated to contain at least 180 species 

worldwide (Bonito et al. 2013). The popularity of truffles stems from their distinct aroma and unique 

taste (Talou et al. 1987; Vahdatzadeh et al. 2015). The nutritive and nutraceutical value of truffles 

is high due to their protein and mineral levels that are higher than those of other edible fungi 

(Beuchat et al. 1993). In addition, truffles are relatively rich in beneficial components, e.g. 

micronutrients, polysaccharides, sphingolipids, fatty acids, and flavonoids (Akyuz 2013; Pattanayak 

et al. 2017).  



3 
 

The ascospores of truffles need to germinate under appropriate conditions to form mycelium and 

then infect the root tip of a host plant to form a symbiotic system known as ectomycorrhiza (Kües 

& Martin 2011). The development of ectomycorrhiza may be induced by plant root exudates that 

are, together with the host plant genotype and soil type, an important driving force in determining 

the rhizosphere microbial community structure (Berendsen et al. 2012). The growth and 

development of ectomycorrhiza is influenced by several environmental factors such as soil pH, soil 

moisture content, ambient temperature, and nutritional status (Hause et al. 2002). In return, 

ectomycorrhiza can improve the soil structure and promote the absorption of nutrients, such as 

phosphorus and nitrogen, by host plants (Dominguez-Núñez et al. 2012). The ectomycorrhiza 

increases the total surface area for nutrient absorption (Liu et al. 2020), and ectomycorrhizal roots 

may secrete organic acids to break down surrounding primary minerals (Arocena & Glowa 2000). 

Sexual development in sexually reproducing fungi is controlled by the mating type (MAT) locus 

(Ni et al. 2011). The mating type loci MAT1-1 and MAT1-2 are called idiomorphs due to their 

dissimilar sequences and genes (Metzenberg & Glass 1990; Rubini et al. 2010). MAT1-1 idiomorph 

carries mating type gene MAT1-1-1 that encodes a protein with an α-box-domain, and MAT1-2 

idiomorph carries MAT1-2-1 that encodes a protein with an high mobility group (HMG) 

transcription factor (Martin et al. 2010; Rubini et al. 2010). Heterothallic fungi require two strains 

for mating; one strain carries either the MAT1-1 or MAT1-2 locus (Rubini et al. 2010).  

Under extreme environmental conditions, the excessive reactive oxygen produced in plants can 

damage the cell membrane system, and even cause cell senescence or death (Thompson et al. 1987). 

However, enzymes such as superoxide dismutase (SOD) and peroxidase (POD) in plant cells can 

scavenge reactive oxygen, and thereby protect the cells (Heath and Packer 1968). The activity and 

content of POD and SOD in plants correlate with their abilities to adapt to adverse environments 

and to tolerate stress (Olmos et al. 1994; Sreenivasulu et al. 2000). Generally, as plants age, the 

peroxide content in tissues increases and SOD activity decreases (McRae and Thompson 1983; 

Thompson et al. 1983; Dhindsa et al. 1981). 

The summer truffles Tuber aestivum, a truffle species widely distributed over Nordic and 

Mediterranean regions (Jeandroz et al. 2008), and T. sinoaestivum, one of the major truffle species 
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in Panxi region, China (Fu et al. 2016; Zhang et al. 2012), are heterothallic (Payen et al. 2014). The 

American pecan Carya illinoinensis is an important cash tree widely cultivated in the truffle 

producing areas. Both T. aestivum and T. sinoaestivum can form mycorrhiza with C. illinoinensis 

(Zhang et al. 2012). Currently, truffle cultivation relies on planting artificially mycorrhized 

seedlings (De Miguel et al. 2014). We inoculated T. aestivum and T. sinoaestivum on C. illinoinensis 

to explore the effects of inoculation on host plant growth, POD and SOD activities, the 

physicochemical properties of rhizosphere soil and the community structure of nitrogen-cycle 

related microorganisms in the rhizosphere. In addition, since truffle fruiting body formation requires 

two parental strains, one with MAT1-1 and the other with MAT1-2 locus (Rubini et al. 2014), we 

analyzed the distribution of the mating genes MAT1-1-1 and MAT1-2-1 in the rhizosphere. 

Materials and methods 

Inoculation of seedlings 

The truffles for making the T. aestivum inoculum were collected from Station d’Expérimentation 

sur la Truffe, Cahors, France, and for T. sinoaestivum from Huidong, Liangshan Yi Autonomous 

Prefecture, China. The truffles were identified  using microscopic examination and ITS molecular 

identification (Wedén et al. 2005; Zambonelli et al. 2012; Zhang et al. 2012). The inocula were 

prepared in sterile conditions as described earlier (Su et al. 2012). In brief, mature fruiting bodies 

were sprayed with ethanol, flame sterilized, ground into fine powder, and suspended into sterile 

water at the concentration of 12,000 spores ml-1. The control inoculum was incubated at 121 °C for 

2h to kill the spores. The inocula were stored in sealed bottles at 4 °C.  

The C. illinoinensis seeds were from Yangbi Walnut Research Institute of Yunnan Academy of 

Forestry, China. The seeds were soaked in 100 mg L-1 gibberellic acid solution and stirred daily for 

a week, sterilized with 0.5% potassium permanganate solution and stored in sterilized river sand for 

2 months. Seedling substrate containing soil, peat, vermiculite and perlite in a ratio of 4:2:3:1 

(v:v:v:v) was blended with distilled water and sterilized. After sand-storage, the seeds were washed 

with distilled water and sowed in pots filled with the seedling substrate in early spring. The pots 

were watered with sterilized water thoroughly and kept in a greenhouse for three months at 20-25 °C 

temperature and 70% to 80% humidity.  
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The seedlings were inoculated with either T. aestivum (AES treatment), T. sinoaestivum (SIN 

treatment) or control inoculum. Growth substrate containing soil, peat, vermiculite and perlite in a 

5:2:2:1 ratio (v:v:v:v) was amended with 12% lime and a moderate amount of sterilized water. The 

three-month-old seedlings were soaked in distilled water to loosen the roots and planted in 1000 ml 

pots filled with 1/3 of sterilized growth substrate. Ten ml of inoculum (approximately 1.0g ascocarp 

per seedling) was added dropwise on and around the roots, and the remaining 2/3 of growth substrate 

was added to the pots and compacted. The pots were watered thoroughly and kept moist by adding 

sterile water when needed. In total the experiment included 150 seedlings (confirmed to survive 

after transplantation) per treatment.  

Plant Physiological and Biochemical Analyses 

To determine infection rate, 15 seedlings per treatment were collected at two, four and six months 

after inoculation. For the other analyses, triplicate samples were taken at the time of inoculation and 

at two, four and six months after inoculation.  

After the collection of the plant samples, rhizosphere soil was removed from the roots by gentle 

shaking and rinsing with water, and used filter paper to remove excess water. Taproot length, plant 

height, stem circumference, and fresh weight of aboveground and underground parts were 

measured. After deactivating the enzymes in a water bath at 100 °C for 10mins, dry weight was 

measured by drying to a constant weight at 75 °C, and the root to shoot ratio was calculated. 

The infection rate was estimated from five randomly selected lateral roots per plant. The roots were 

examined under a microscope and the infection rate was calculated as the percentage of 

ectomycorrhizas (ECMs) on a lateral root using equation R=n/N, in which "n" is the number of 

mycorrhizas on one lateral root, and "N" is the number of all rootlets on this lateral root (Guo et al. 

1989). 

Root respiration activity was measured from rinsed and water-drained root tips. The tips were cut 

into small segments of 0-1.0 cm and the activity was measured using the 2, 3, 5-triphenyltetrazolium 

chloride (TTC) method (Yoshida 1966). Peroxidase (POD) and superoxide dismutase (SOD) 

activities were measured from fresh leaf samples using a modified guaiacol method (Pochinnok 

1981) and the nitroblue tetrazolium (NBT) method (Durak et al. 1993), respectively. 
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Rhizosphere Soil Analyses 

Triplicate samples were taken at the time of inoculation and at two, four and six months after 

inoculation. The seedlings were shaken to remove soil not adhered to the root, after which 

rhizosphere soil was collected by brushing using sterilized brushes and stored at 4 °C. The pH of 

the rhizosphere soil was measured using a China Inspection Body and Laboratory Mandatory 

Approval (CMA) certified pH meter. Organic matter content was measured using the potassium 

dichromate heating - volumetric method (Simakov 1957; Mebius 1960), total nitrogen content using 

a modified semi-micro Kjeldahl method (Bremner 1960), available phosphorus content using the 

0.5 mol L-1 NaHCO3 extraction-molybdenum antimony colorimetric method (Chang and Jackson 

1957), available potassium content using a modified flame photometer method (Grimme and 

Németh 1978), ammonium nitrogen content using a phenol-hypochlorite determination based on 

Kjeldahl method (Smith 1980), and nitrate nitrogen content using ultraviolet spectroscopy (Cawse 

1967). 

Analysis of Denitrifying Microbial Community  

The diversity of denitrifying microbial community was analysed from rhizosphere samples taken 

six months after inoculation. DNA was extracted using a FastDNA Spin Kit for Soil (Bio-Rad Co, 

USA). The quantity and quality of extracted DNA was determined using a fluorescence 

spectrophotometer and electrophoresis in 1% agarose gel. nirS gene fragments were amplified using 

primers nirS-4f (5'-TTCRTCAAGACSCAYCCGAA-3') and nirS-6r (5'-

CGTTGAACTTRCCGGT-3') (Braker 2000). Amplified fragments were purified using 1.5% 

agarose gel electrophoresis and a Gel Extraction Kit (Axygen, USA). The fragments were quantified 

on a Microplate Reader (BioTek, FL×800) using a Quant-iT PicoGreen dsDNA Assay Kit and 

sequenced on Illumina MiSeq sequencing platform in Shanghai Personalbio Biotechnology 

Company (China).  

Low-quality and short sequences were removed using QIIME software (Caporaso et al. 2010) 

installed with BIOCONDA (Grüning et al. 2018). The remaining sequences were merged using 

UCLUST sequence alignment tool (Edgar 2010) and classified into operational taxonomic units 

(OTUs) at 97% similarity level. The nirS community composition and abundance were analyzed 
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and visualized in R (R Core Team 2019). Variation in nirS communities was visualized using non-

metric multidimensional scaling (NMDS) based on unweighted UniFrac distances.  

Mating Gene Analysis  

Genomic DNA from the youngest fruiting bodies collected from Station d’Expérimentation sur la 

Truffe, Cahors, France, and from Huidong, Liangshan Yi Autonomous Prefecture, China, to make 

standard curves. DNA was extracted using an Extraction Kit (Vazyme Biotech Co., Ltd). Mating 

genes MAT1-1-1 and MAT1-2-1 were amplified using specific primers (Table S1) as described 

previously (Molinier et al. 2016).  The PCR products were purified using 1.5% agarose gel 

electrophoresis and AxyPrep DNA Gel Kit (AXYGEN, USA). The purified PCR products were 

cloned into pMD18-T Vector (pMD18-T Vector cloning, Kit TaKaRa, Japan); a mixture of 5 μL 

PCR products, 0.2 μL pMD18-T carrier and 5 μL ligation solution was incubated in a 16 °C water 

bath for 2h and at 4 °C for 2h. The vector was transformed into JM109 competent cells, prepared 

using the Competent Cell Preparation Kit GK6031 (Shanghai Generay Biotechnology co., Ltd, 

China), by thermal stimulation. After unfreezing on ice, 10 μL ligation reaction and competent cells 

were mixed and placed on ice for 30mins, incubated in a 42 °C water bath for 90 s and on ice for 30 

min. The transformed JM109 cells were cultured in a 2×YT fluid medium at 37 °C for 1h, spread 

on a 2×YT medium containing ampicillin, and cultured at 37 °C for more than 12h. Successful 

transformation of plasmids containing target gene segments were verified by sequencing. Plasmid 

DNA  was extracted using Plasmid Extraction Kit D6943 (Omega Inc., USA). The concentration of 

the plasmid in the extract was measured, and a dilution series from 10-2 to 10-10 was prepared to 

make a standard curve for quantitative PCR (qPCR). 

The abundances of mating genes MAT1-1-1 and MAT1-2-1 in the rhizosphere DNA extracts was 

measured using qPCR. A 20 μL qPCR reaction included 1 μL DNA extract (5-20 ng μL-1), 10 μL 

SYBR  Premix Ex TaqTM Ⅱ, 7 μl ddH2O, and 1 μL of forward and reverse primer (10 μM). The 

amplification program was 3 min at 95 °C, followed by 39 cycles of denaturation at 95 °C for 30 s, 

annealing at 65 °C for 20 s and extension at 72 °C for 30 s, and a final extension at 72 °C for 30 s. 

The fluorescence was measured twice per second. 
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For all the statistical analysis in our experiment, the statistical significance of the differences were 

tested using analysis of variance (ANOVA) and post hoc LSD Duncan tests. Differences were taken 

as statistically significant at p≤0.05. 

Results 

The Effects of Inoculation on Seedlings 

Two months after inoculation with T. aestivum and T. sinoaestivum, no ectomycorrhizas (ECMs) 

were detected on the lateral roots of C. illinoinensis seedlings. At both four and six months after 

inoculation, the infection rate of seedlings inoculated with T. aestivum was lower than that of 

seedlings inoculated with T. sinoaestivum (P < 0.05) (Table 1). There was no ECM on the roots of 

the control seedlings, the rootlets were slender, and the root tips were dark brown (Fig. S1). The 

morphology of the T. aestivum and T. sinoaestivum ECMs were roughly the same (Fig 1). 

At the time of inoculation, the average height of the seedlings was approximately 31 cm (Table 2). 

Six months after inoculation, the height of the inoculated seedlings was higher than that of the 

control seedlings (P < 0.05 p). At two months after inoculation, the stem circumference of the 

inoculated seedlings was greater than that of the control seedlings (P < 0.05 p) (Table 2). 

The root activity of seedlings was on the same level in all the treatments (Table 3). Six months after 

inoculation, the peroxidase (POD) activity of the seedlings inoculated with T. sinoaestivum was 

higher than that of the control (P < 0.05) (Table 3). At two months after inoculation, superoxidase 

dismutase (SOD) activity was highest in the control (P < 0.05) (Table 3). At four and six months 

after inoculation, the SOD activities of the seedlings inoculated with T. aestivum were higher than 

those of the seedlings inoculated with T. sinoaestivum (P < 0.05). 

The Effects of Inoculation on Rhizosphere  

The pH and the contents of organic matter, total nitrogen and available phosphorus and potassium 

were on the same level in all the treatments (Table 4). At the inoculation time, the ammonium 

nitrogen content was lowest in the T. sinoaestivum treatment and at two months after inoculation, 

in the control treatment (P < 0.05) (Table 4). Differences in the nitrate nitrogen content showed no 

clear trend. At the inoculation time, the nitrate nitrogen content was lowest in the T. sinoaestivum 
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treatment (P < 0.05) (Table 4). At two months after inoculation, the nitrate nitrogen content was 

lowest in the T. aestivum treatment and highest in the control (P < 0.05); at four months, lowest in 

the T. sinoaestivum treatment and highest in the control (P < 0.05); and at six months, lowest in the 

control and highest in the T. sinoaestivum treatment (P < 0.05). 

Effects of Inoculation on nirS-type Denitrifying Bacteria 

The diversity and richness of the nirS-type denitrifying bacteria communities were on the same level 

in all the treatments (Table S2). Out of the 2430 OTUs, 632 were detected in all the treatments, and 

300, 535 and 195 were specific for the control, T. aestivum treatment and T. sinoaestivum treatments, 

respectively (Fig. S2). The relative abundance of phylum Proteobacteria was over 70% and those of 

genera Pseudomonas, Pseudogulbenkiania and Rhodanobacter were high in all the treatments (Fig. 

3A, B). The differences in relative abundances within treatments were large. In the NMDS 

ordination, the control samples were slightly separated from the others (Fig. S4). 

Mating Type Gene Distribution 

In line with the increase in infection rate over time, the copy numbers of MAT1-1-1 and MAT1-2-

1 mating genes increased in the rhizosphere of C. illinoinensis inoculated with T. aestivum (Table 

5). In the rhizosphere of C. illinoinensis inoculated with T. sinoaestivum, the copy numbers of 

MAT1-1-1 were lowest at two months after inoculation, and those of MAT1-2-1 became slightly 

lower over time. The ratio of MAT1-1-1 copy number to MAT1 1-1-2-1 copy number increased 

gradually (Table 5), indicating that the MAT1-1-1 carrying strains became more dominant. 

Discussion 

Infection rate is one of the most important criteria to measure the success of mycorrhiza formation. 

The infection rates of C. illinoinensis inoculated with Tuber brumale and T. melanosporum were 

37.3% and 34.5%, respectively, in the first year; in the second year, the infection rate of T. brumale 

increased, whereas that of T. melanosporum decreased due to other ECM forming fungi, such as 

Sphaerosporella brunnea, Trichophaea woolhopeia and Pulvinula constellation (Marozzi et al. 

2017). Similarly, the infection rates of C. illinoinensis inoculated with T. borchii and T. aestivum 

were 62% and 42%, respectively, after 12 months, yet most of the seedlings were also infected with 
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S. brunnea with a relative abundance greater than 11% (Benucci et al. 2012). In our study, the 

infection rates of seedlings inoculated with T. aestivum and T. sinoaestivum were from 45% to 48% 

six months after inoculation and no ECM contaminants were detected. Possibly the strict humidity 

control inhibited contamination, as S. brunnea is known to thrive in high humidity nursery 

environment (Bencivenga et al. 1995; Donnini and Bencivenga 1995). In addition, the contaminants 

may have been undetectable due to the relatively short experimental time in our study; 12 months 

after inoculation, most of the ECM on the roots of C. illinoinensis were Tuber spp., yet after 24 

months the contaminant ECM accounted for the majority of the ECMs (Marozzi et al. 2017). 

Generally, the growth status of woody plants should be determined by combining plant height and 

stem circumference. Inoculation with T. melanosporum resulted in greater basal diameter and height 

of Pinus halepensis seedlings (Dominguez-Núñez et al. 2012). In our study, inoculating with Tuber 

spp. resulted in higher stem circumference two months after inoculation. However, at the end of the 

experiment the Tuber spp. inoculated seedlings were slightly higher yet the stem circumference was 

at the same level as in the control. Thus, concluding that inoculating with T. aestivum and T. 

sinoaestivum would increase the growth of C. illinoinensis is only weakly supported.  

Peroxidase POD and superoxide dismutase (SOD) activities are related to the stress tolerance ability 

of plants. Inoculating Quercus acutissima with T. indicum led to higher root superoxide dismutase 

(SOD) activity and lower root activity (Zhang et al. 2019). Considering the stress tolerance of C. 

illinoinensis, the moderate differences in SOD activities in our study suggested that T. aestivum 

inoculation might be preferred over T. sinoaestivum inoculation.  

In general, inoculating C. illinoinensis with T. aestivum and T. sinoaestivum did not affect the 

physicochemical properties of rhizosphere soil. The available nitrogen, i.e. ammonium and nitrate 

nitrogen, content in the rhizosphere of Quercus acutissima was higher with T. indicum inoculation 

than without (Zhang et al. 2019). In our study, nitrate nitrogen content was higher in the control at 

two and four months after inoculation, but after six months the contents were higher in the 

rhizospheres of Tuber spp. inoculated seedlings. Since C. illinoinensis grew marginally better and 

was therefore expected to take up more nitrogen when inoculated with Tuber spp., the higher nitrate 
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nitrogen content at six months could have been to the ECM that is known to increase host plant’s 

access to nutrients (Stuart and Plett 2020).  

Another possible explanation for the differences in nitrate nitrogen content at six months is 

denitrification where nitrate is reduced into nitrous oxide and nitrogen gases that escape into the 

atmosphere; higher level of denitrification in the control rhizosphere would have resulted in lower 

nitrate level. To assess the role of denitrification, we analysed the soil denitrifying bacterial 

community using high throughput sequencing targeting a functional denitrification marker gene, the 

nitrite reductase-coding gene nirS (Braker et al. 2000). In the rhizosphere of Pinus armandii, T. 

indicum inoculation resulted in lower richness and diversity of bacteria (Li et al. 2017). In our study, 

T. aestivum and T. sinoaestivum inoculation did not affect the diversity of denitrifying bacteria. 

Similar to previous studies on ECM and truffle fruiting body associated bacteria (Ye et al. 2018; 

Yang et al. 2019), among the denitrifying bacteria the relative abundances of Proteobacteria were 

high. As the differences in the community composition of denitrifying bacteria were minor, the role 

of denitrification in the differences in rhizosphere nitrate content remained unclear. In future studies, 

this could be addressed using qPCR targeting the marker genes of denitrification. 

Truffle requires close proximity and interaction of two mating types to complete the fruiting body 

formation as a part of its life cycle, yet the proximity and interaction of hyphae cannot guarantee 

the fruiting body formation (Linde and Selmes 2012). The two parents carry different mating type 

genes, i.e genes MAT1-1-1 and MAT1-2-1. The ECM may act as one of the parents while the other 

parent has been suggested to originate from free spores in the soil or from relatively short-lived 

mycelia (Taschen et al. 2016). In our study, both mating type genes MAT1-1-1 and MAT1-2-1 were 

detected in the rhizosphere of C. illinoinensis inoculated with T. sinoaestivum and T. aestivum. 

Among the T. melanosporum ECMs on Quercus robur, Q. ilex, and Corylus avellana roots, MAT1-

1-1 incidence was higher than that of MAT1-2-1, suggesting that the MAT1-1-1 strains have a 

competitive advantage over MAT1-2-1 strains (Linde and Selmes 2012; Osting and Tedersoo 2015). 

Similarly, in our study MAT1-1-1 dominated over MAT1-2-1 in the rhizosphere of both C. 

illinoinensis inoculated with T. sinoaestivum and with T. aestivum, possibly due to the competition 

between ectomycorrhizas with different mating types (Rubini et al. 2014). Interestingly, in areas 
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with high T. indicum fruiting body yields the mating type genes were a non-uniformly distributed 

and MAT1-2-1 dominated (Li et al. 2018), whereas MAT1-1-1 dominated in the T. melanosporum 

ECMs of both productive and unproductive trees (Linde and Selmes 2012). Thus, the connection 

between mating type gene distribution and truffle yield may be truffle and host plant species specific, 

and as noted by Linde and Selmes (2012), in addition to the mating type, other factors are clearly 

involved in the formation of fruiting bodies, necessitating further in-depth study to guarantee 

successful cultivation of truffles. 
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Time after inoculation Inoculant Infection rate（%） 

2 months 
T. aestivum 0 

T. sinoaestivum 0 

4 months 
T. aestivum 25.6±1.1a 

T. sinoaestivum 30.6±0.8b 

6 months 
T. aestivum 45.1±0.4a 

T. sinoaestivum 48.3±1.1b 

* Different superscript letters at the time points indicate statistically significant difference between inoculants (p< 0.05) 
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Table 2. Properties of Carya illinoinensis seedlings in the inoculation treatments. 

Month 
Plant height (cm) Root length (cm) Root to shoot ratio Stem circumference (mm) 

Control  T. aestivum  T. sinoaestivum  Control  T. aestivum  T. sinoaestivum  Control  T. aestivum  T. sinoaestivum  Control  T. aestivum  T. sinoaestivum  

0 31.40±1.21a 31.31±1.22a 31.31±1.13a 8.18±0.48a 8.13±0.18a 7.94±0.29a 0.33±0.04a 0.32±0.04a 0.32±0.04a 2.08±0.22a 2.05±0.14a 2.04±0.07a 
2 32.10±0.86a 32.20±1.13a 31.27±1.10a 16.38±1.10a 15.52±1.56a 13.15±2.05a 0.97±0.06a 1.03±0.07a 1.06±0.23a 2.57±0.08b 3.35±0.19a 3.42±0.33a 

4 33.73±0.54a 32.33±2.80a 32.84±1.57a 14.98±1.66a 17.35±0.88a 15.19±0.93a 1.31±0.05a 1.35±0.16a 1.18±0.16a 2.27±0.21a 2.40±0.14a 2.25±0.12a 

6 36.87±0.56b 38.24±1.00a 38.30±0.97a 20.79±1.43a 21.83±1.14a 18.85±2.24a 1.50±0.09a 1.56±0.13a 1.53±0.04a 2.74±0.33a 2.78±0.24a 2.52±0.19a 

Control, inoculated with killed spores. Different letters in the same row indicate statistically significant differences in properties between treatments (p< 0.05) 

 

 

Table 3. Root, peroxidase (POD) and superoxide dismutase (SOD) activities of Carya illinoinensis seedlings in the inoculation treatments. 

Month 
Root activity, μg·g-1·h-1 Plant POD activity, U/g FW Plant SOD activity, u/g FW 

Control  T. aestivum  T. sinoaestivum  Control  T. aestivum  T. sinoaestivum  Control  T. aestivum  T. sinoaestivum  

0 33.21±0.98a 33.30±1.95a 32.89±0.62a 143.78±5.61a 149.33±8.10a 147.68±5.01a 1.68±0.11a 1.62±0.05a 1.66±0.06a 
2 35.69±0.50a 35.33±1.16a 33.52±3.03a 155.08±5.15a 156.30±3.58a 155.24±5.18a 3.83±0.90a 1.53±0.46b 1.66±0.28b 

4 35.95±0.54a 36.24±2.68a 35.91±1.78a 159.05±0.36a 162.25±9.59a 163.37±7.95a 2.08±0.05ab 2.21±0.23a 1.77±0.17b 

6 35.92±0.62a 37.62±1.42a 35.92±0.71a 176.69±11.16b 194.92±8.54ab 210.08±10.18a 1.50±0.52ab 1.99±0.19a 1.03±0.27b 

Control, inoculated with killed spores. Different letters in the same row indicate statistically significant differences in activities between treatments (p< 0.05). 

 

Table 4. Physico-chemical properties of Carya illinoinensis rhizosphere soil in the inoculation treatments. 
 

Month 

pH value Organic matter content, g/kg Total nitrogen content, g/kg Available phosphorus, mg/kg 

Control  T. aestivum  T. sinoaestivum  Control  T. aestivum  T. sinoaestivum  Control  T. aestivum  T. sinoaestivum  Control  T. aestivum  T. sinoaestivum  

0 8.23±0.10a 8.37±0.06a 8.25±0.08a 33.27±3.08a 32.87±2.04a 32.45±1.08a 1.05±0.02a 0.97±0.16a 1.03±0.05a 5.91±0.48a 5.89±0.31a 5.65±0.60a 

2 8.25±0.02a 8.39±0.03a 8.27±0.03a 35.75±1.93a 33.14±4.23a 35.86±3.69a 1.05±0.01a 0.96±0.07a 1.08±0.01a 5.70±0.98a 5.81±0.54a 5.64±0.04a 
4 8.26±0.03a 8.39±0.03a 8.28±0.07a 36.91±6.66a 35.63±0.98a 35.72±4.17a 1.06±0.08a 1.06±0.11a 1.05±0.03a 5.62±0.39a 5.80±0.51a 5.89±0.50a 

6 8.26±0.13a 8.40±0.08a 8.33±0.20a 35.58±4.21a 39.04±1.63a 38.00±2.99a 1.04±0.02a 0.99±0.06a 1.02±0.07a 5.63±0.21a 6.01±0.17a 5.77±0.40a 

 Available potassium content, mg/kg Ammonium nitrogen content, mg/kg Nitrate nitrogen content, mg/kg 

Month Control  T. aestivum  T. sinoaestivum  Control  T. aestivum  T. sinoaestivum  Control  T. aestivum  T. sinoaestivum  

0 98.92±2.50a 100.37±3.51a 100.85±0.85a 9.25±0.36a 9.59±0.25a 8.67±0.16b 17.11±0.21a 18.69±1.28a 14.78±1.69b 

2 102.43±1.10a 103.33±2.63a 101.52±4.41a 8.32±0.73b 9.75±0.35a 10.52±0.54a 19.33±3.17a 9.46±0.11c 15.84±0.43b 
4 100.34±5.28a 101.37±4.13a 101.41±4.43a 8.03±0.11a 7.65±0.48ab 7.67±0.42ab 31.59±0.36a 28.83±0.23b 12.87±0.01c 

6 95.45±3.83a 101.37±2.94a 99.91±6.07a 6.43±1.88a 6.91±0.17a 5.79±1.44a 4.77±0.30c 15.32±0.35b 18.06±0.19a 

Control, inoculated with killed spores. Different letters in the same row indicate statistically significant differences in properties between treatments (p< 0.05) 
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Table 5. Copy numbers of the mating type genes in the rhizosphere of Carya illinoinensis inoculated 

with Tuber aestivum and T. sinoaestivum 

Month Inoculant 
MAT1-1-1 

CT value 

MAT1-2-1 

CT value 

MAT1-1-1 copy 

number 

MAT1-2-1 copy 

number 

MAT1-1-1/ 

MAT1-2-1 

2  
T. aestivum  25.80±0.18 27.48±0.55 2000.00±285.83 1078.67±348.23 1.85 

T. sinoaestivum  25.84±0.57 27.65±0.57 2063.33±984.34 976.00±393.18 2.11 

4  
T. aestivum  25.49±0.46 27.20±0.25 2660.00±966.28 1263.33±209.84 2.11 

T. sinoaestivum  25.34±0.09 27.73±0.42 2876.67±204.04 903.67±266.24 3.18 

6  
T. aestivum  24.96±0.55 26.99±0.13 4156.67±1922.04 1710.67±1200.68 2.43 

T. sinoaestivum  25.40±0.52 27.78±0.37 2866.67±1056.28 870.00±205.18 3.30 
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Fig. 3. Distribution of the nirS-type denitrifying bacterial under the different treatments. 

A) Distribution at the phylum level. B) Distribution at the genus level. 


