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ABSTRACT: Turbulence is ever produced in the low-viscosity/large-scale fluid flows by velocity shears and, in unstable

stratification, by buoyancy forces. It is commonly believed that both mechanisms produce the same type of chaotic motions,

namely, the eddies breaking down into smaller ones and producing direct cascade of turbulent kinetic energy and other

properties from large to small scales toward viscous dissipation. The conventional theory based on this vision yields a

plausible picture of vertical mixing and has remained in use since the middle of the twentieth century in spite of increasing

evidence of the fallacy of almost all other predictions. This paper reveals that in fact buoyancy produces chaotic vertical

plumes, merging into larger ones and producing an inverse cascade toward their conversion into the self-organized regular

motions. Herein, the velocity shears produce usual eddies spreading in all directions and making the direct cascade. This

new paradigm is demonstrated and proved empirically; so, the paper launches a comprehensive revision of the theory of

unstably stratified turbulence and its numerous geophysical or astrophysical applications.
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1. Introduction

The concept of turbulence (‘‘turba aliena’’) as chaotic mo-

tions of fluid elements (‘‘atoms’’) was known already toRoman

philosopher Lucretius (see the first-century BCE didactic

poem De Rerum Natura). He defined it as ‘‘aimless crowd of

clashing elements, which can be seen in a dance of motes of

dust whirling in a sunbeam’’ and highlighted the arrow from

order to chaos (‘‘direct cascade’’ in modern terms) aiming at

the final death of the universe (the thermal death in the second

law of thermodynamics). Moreover, Lucretius recognized the

existence of an alternative ‘‘involuntary’’ arrow from chaos to

order (‘‘inverse cascade’’). More than two millennia have

passed since then until these findings were rigorously ex-

pressed and quantified: direct cascade, in the nonstratified

three-dimensional turbulence (Kolmogorov 1941a,b, 1942),

and inverse cascades, in the wave turbulence (Zakharov and

Filonenko 1966; Zakharov et al. 1993) and the two-dimensional

hydrodynamic and plasma turbulence (Kraichnan 1967; Kraichnan

and Montgomery 1980).

The present paper reveals the yet overlooked inverse cas-

cade in convective turbulence, namely, in the buoyancy-

generated chaotic plumes, which in fact merge to form larger

plumes; whereas mechanical shear-generated chaotic eddies

break down to produce smaller ones, thus producing the direct

cascade.

Modern vision of stratified turbulence is based on the con-

ventional paradigm generally attributed to Kolmogorov (1941a,b,

1942) with no regard to the fact that his own vision was limited to

the nonstratified homogeneous turbulence. So, the paradigm,

extended in due time to the stratified turbulence as self-evident,

without proof, comprises the following well-known postulates:

d Turbulence develops when the flow instability is strong enough

to overtake the resistance of molecular viscosity so that the

flow breaks down causing chaotic eddies (Reynolds 1883).
d These eddies are unstable themselves and also break down to

generate smaller unstable eddies, thus causing the direct

cascade of the turbulent kinetic energy (TKE) and other

properties of turbulence toward smaller scales and eventual

viscous dissipation (Richardson 1920).
d Turbulence results in the downgradient transport of momen-

tum, energy, and matter, in other words, it transports these

properties in such a way as to level out their spatial hetero-

geneity; so, the turbulent flux of any quantity is calculated as

the product of the gradient of the transferred quantity and

the coefficient of turbulent exchange (Boussinesq 1897).
d Direct cascade feeds all three shares of TKE making them

proportional to each other and yielding isotropic smaller

scales, thus assuring the balance between the generation of
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TKE by velocity shears and its viscous dissipation (Kolmogorov

1941a,b, 1942).

This vision, particularly as concerns the unstably stratified

turbulence (the subject matter of the present paper), remained

conceptually unchanged until now. For meteorological and

oceanographic applications this is not too surprising: all theo-

ries based on the above paradigm (Obukhov 1946; Monin and

Obukhov 1954; Mellor and Yamada 1982; Canuto et al. 2001)

yield plausible quantification of the vertical convective turbu-

lence, while inmany applications nothing else is needed. At the

same time, experimental evidence against the conventional

vision of the unstably stratified turbulence has been gradually

accumulated (Zilitinkevich 1971, 1973; Wyngaard and Coté
1971; Kader andYaglom 1990;Marino et al. 2015; Salesky et al.

2017; Pouquet et al. 2018). In the language of Thomas Kuhn

(1962), the state of affairs is called the ‘‘crisis of the conven-

tional paradigm.’’

The present paper demonstrates that the crisis roots in the

irrelevance of the conventional paradigm of the unstably

stratified turbulence, which arose long ago as a literal para-

phrasing of Kolmogorov’s vision of the nonstratified homo-

geneous turbulence. This happened automatically and simply

identified buoyant plumes as mechanical eddies.

Instead, the proposed new paradigm, first declares that

plumes principally differ from eddies and merge to form

larger ones, thus making the inverse cascade, and second

admits the existence of countergradient and nongradient

turbulent transports prohibited in the conventional para-

digm. At the same time, the new paradigm does not contra-

dict the classical Kolmogorov’s theory formulated for the

neutrally stratified homogeneous turbulence.

2. Success and failure of the conventional theory

The conventional and new paradigms of unstably stratified

turbulence are compared belowby the example of plane-parallel

sheared flow inherent in the atmospheric surface layer.Here, the

conventional theory is fair only in the trivial case of so strong

shears that mechanical eddies destroy the weak plumes and,

thus, violently involve them in the direct cascade. In atmospheric

and hydrospheric convective boundary layers such a regime is

observed in the near-surface sublayers comprising roughly 10%

of the stratified surface layer. Beyond this practically non-

stratified sublayer, chaotic plumes produce an inverse cascade

culminating at the largest scales in the conversion of convective

TKE into kinetic energy of self-organized flow patterns: cells or

rolls in the shear-free or sheared convective boundary layers,

respectively.Herewith,mechanical turbulence, generated by the

mean-flow shears, produces a direct cascade culminating in the

viscous dissipation of mechanical TKE into heat at the smallest

eddies. So, in the noticeably unstable stratification, horizontal

TKE is fully mechanical, while vertical TKE is almost fully

convective. This unorthodox picture will be confirmed by ex-

perimental data to be featured in the following sections of

this work.

The atmospheric surface layer is defined as the near-surface

10% of the boundary layer and provides the most convenient

framework for the investigation of the principal nature of

stratified turbulence. Indeed, the vertical turbulent flux of the

momentum per unit mass, t [ (hu0, w0i, hy0, w0i), and the po-

tential temperature, Fu[ hw0u0i. 0, are practically independent

of the height above the surface, z. Here u0, y0, and w0 are wind

velocity fluctuations and u0 is the fluctuation of potential tem-

perature. Turbulence is fully governed by these fluxes and the

buoyancy parameterb5 g/T0, where g is the acceleration due to

gravity and T0 is the reference value of absolute temperature.

From these parameters, one can compose a single length scale,

namely, the Obukhov scale:

L5 jtj3/2(bF
u
)21 . (1)

So, the dimensionless characteristics of the surface-layer tur-

bulence (normalized using the above governing parameters)

become universal functions of z/L (Obukhov 1946). This makes

the surface layer an ideal natural laboratory for the verification

and comparison of alternative theories of turbulence.

The energetics of both stably and unstably stratified turbu-

lence is conventionally defined by a single equation quantifying

the budget of TKE, EK, principally following the Kolmogorov

(1942) vision of the nonstratified turbulence but accounting for

the rate of generation of TKE by the buoyancy forces, bFu, and

possible vertical heterogeneity of turbulence. For the steady-

state thermally stratified surface layer, this equation reads

(Obukhov 1946; Monin and Yaglom 1971)

2t
›U

›z
1bF

u
[

t2

K
M

1bF
u
5 «

KY
1

›F
EK

›z
. (2)

Here for simplicity, we align the x coordinate along the di-

rection of mean-flow velocity, U, so the vertical turbulent flux

of the momentum becomes t5 hu0w0i, 0;KM52t/(›U/›z) is

the coefficient of vertical turbulent transport for momentum

(often called ‘‘eddy viscosity’’). The left-hand side of Eq. (2) is

the sum of TKE generation rates by the velocity shears and

buoyancy forces, respectively; while the right-hand side is the

sum of the TKE dissipation rate «KY (the downward arrow

symbolizes the direct cascade), and the vertical divergence of

the vertical turbulent flux of TKE FEK
, defined as

F
EK

5 hE0
Kw

0i1 1

r
0

hp0w0i , (3)

where E
0
K is the fluctuation of TKE, p0 is the fluctuation of

pressure, r0 is a reference value of the air density, and the angle

brackets designate statistical averaging.

Kolmogorov (1942) considered the nonstratified turbulence

(Fu 5 0) and developed the first theory of the budget of tur-

bulent kinetic energy in this particular case:

d The turbulent time scale is defined as tT 5 EK/«KY (just

expressing the unknown tT via also unknown «KY), so that the

turbulent length scale is only naturally defined as lT 5E1/2
K tT .

d In view of the fact that in neutral stratification the turbulent

length scale is limited only by distance from the solid surface,

z, it should be proportional to this distance, lT ; z, which

immediately defines the time scale: tT ; z/E1/2
K .
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d Following Prandtl (1932), the coefficient of vertical turbulent

transport for any property,KPROP, is defined as proportional

to the product of the turbulent length scale, lT ; z, by the

square root of vertical TKE, E1/2
KV

.
d Since all the TKE shares have the same origin (the velocity-

shear instability), the horizontal, EKH 5 hu0u0i/2 1 hy0y0i/2,
the vertical, EKV

[ hw0w0i/2, and the total, EK [EKH
1EKV

,

TKE must be similar to each other.

This yields the following constructive definitions:

«
KY

5E3/2
K /(C

D
z) , (4)

K
PROP

;K
M
5C

K
E1/2

KV
z , (5)

E
KV

;E
KH

;E
K
, (6)

F
EK

;2E1/2
KV

z
›E

K

›z
, (7)

whereCD’ 4 andCK’ 0.4 are dimensionless constants defined

empirically (e.g., Monin and Yaglom 1971; Tampieri 2017).

Obukhov (1946) was the first to reveal that the above vision

of the TKE budget yields plausible formulations of the vertical

TKE and coefficients of the vertical turbulent transport not

only for neutral or near-neutral stratification:

E
KV

jtj 5C and
K

M

jtj1/2z
5k , (8)

but also for well-pronounced stratification, particularly for

unstable conditions where these formulations read

E
KV

(bF
u
z)2/3

5C
V

and
K

M

z(bF
u
z)1/3

5C1/2
V C

K
, (9)

where k’ 0.4 is the von Kármán constant; C’ 1, CV ’ 1, and

CK ’ 0.4 are well-established empirical dimensionless con-

stants (e.g., Monin and Yaglom 1971; Garratt 1992; Stull 1997;

Tampieri 2017).

It is worth noting that for near-neutral conditions the con-

ventional theory based on Eqs. (6) and (8) implies that the

vertical turbulent flux of the total TKE is equal to zero:

FEK
5 0, and ›FEK

/›z5 0, consequently. It is consistent

with the local equilibrium between shear production and

dissipation rate of TKE in the inertial layer confirmed by

measurements and direct numerical simulation data. At

the same time, recent findings by Banerjee and Katul

(2013) and Katul et al. (2016) demonstrate the loga-

rithmic scaling for EKH
and highlight the deficiency of

the conventional theory even for the neutrally stratified

surface layer.

Furthermore, along with the plausible Eq. (9), this vision of

the TKE budget yields for the unstable stratification (z . L)

fully erroneous formulations of the following characteristics of

turbulence:

Vertical flux of TKE

F
EK

;2E1/2
KV

z
›E

K

›z
;2bF

u
z, 0, (10)

horizontal TKE

E
KH

;E
KV

; (bF
u
z)2/3 , (11)

dissipation rate of TKE

«
KY

52t
›U

›z
1bF

u
. (12)

Of these results, Eq. (10) follows from the conventional pos-

tulate of the only downgradient transport; Eq. (11) follows from

the unspoken hypothesis of principal similarity of the buoyancy-

generated plumes and shear-generated eddies, which implies

that plumes (just like eddies) break down to generate smaller

fluid particles spreading in all directions; and Eq. (12) follows

from the same hypothesis, which also implies that both shear-

and buoyancy-generated types of turbulence make the direct

cascade of TKE and therefore are subject to viscous dissipation

into heat at the smallest scales. As a result, the conventional

theory incorrectly reproduces the contribution of large-scale

motions to the turbulent transport in the atmospheric surface

layer (Salesky and Anderson 2018, 2020).

3. Novel theory

The proposed new paradigm declares the principal differ-

ence between the two types of chaotic motions: convective

turbulence composed of vertical buoyant plumes, which

merge to produce larger plumes, thus producing the inverse

cascade; and mechanical turbulence composed of the shear-

generated eddies, which move in all directions and break

down to produce smaller eddies, thus making the direct

cascade. This suggests that total TKE splits into convective

TKE EKC
, consisting only of the vertical share, and me-

chanical TKE EKM
, consisting of the fully mechanical hori-

zontal share and the mechanical part of the vertical share.

Hence, the TKE budget equation, Eq. (2), splits into sepa-

rate equations:

bF
u
5
›F

EKC

›z
[ «

K[
, (13)

2t
›U

›z
5

t2

K
M

5 «
KY

, (14)

where FEKC
is the vertical flux of the convective TKE. Since the

contribution of the mechanical turbulence to the vertical tur-

bulent flux of the vertical TKE should be negligible, we ap-

proximate FEKC
with FEKV

[ (1/2)hw03i1 (1/r0)hp0w0i. This

approximation is validated below (see Fig. 1), proving that the

vertical flux of themechanical TKE is almost negligible andFEKC

practically coincides with the vertical flux of the total

TKE, FEK
.

According to Eq. (13), the rate of production of convective

TKE, bFu, is balanced by the term ›FEKC
/›z, which, therefore,

must signify a rate of its consumption. The only candidate for this

role is the rate of the yet overlooked conversion of convective

TKE into kinetic energy of large-scale self-organized convective

flow patterns (Elperin et al. 2002, 2006; Zilitinkevich et al. 2006).
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If so, the term FEKC
’FEK

, traditionally interpreted as the

downgradient vertical flux transporting the TKE downward,

is, in fact, the countergradient (oriented upward) flux in the

physical space and, at the same time, the inverse flux (from

smaller to larger scales) over the spectrum toward the

conversion of TKE into kinetic energy of self-organized flow

patterns. Experimental data shown in Fig. 1 confirm this fully

nonorthodox vision.

Notably, the balance between the rate of the TKE production

by buoyancy forces and the vertical gradient of the vertical tur-

bulent flux of TKE was long ago revealed empirically by

Wyngaard and Coté (1971). However, general recognition of the

conventional paradigm as applicable to any stratified turbulence

was unshakable, and this empirical discovery went almost unno-

ticed. In the light of the new paradigm, it means nothing but direct

empirical evidence of the separate budget of convective TKE,

Eq. (13) that, in turn, testifies the separate budget of mechanical

TKE, Eq. (14).

The rate of viscous dissipation ofmechanicalTKE, «KY, and the

rate of conversion of convective TKE, «K[, both quantify the

TKE consumption, with the only difference that dissipation con-

sumes the smallest eddies while conversion, the largest plumes.

Then, reshaping Kolmogorov’s interpretation of the dissipation

rate of mechanical turbulence, Eq. (4), for the rates of both the

dissipation of mechanical TKE and the conversion of convective

TKE, these two processes are on equal terms quantified as the

ratios of the appropriate energies, EKM
or EKC

, by the common

turbulent time scale, tT ; z/E1/2
K ’ z/E1/2

KC
. This yields the follow-

ing novel formulations:

«
K[

5
E3/2

KC

C
[
z
, (15)

«
KY

5
E

KM
E1/2

KC

C
Y
z

, (16)

whereC[ andCY are dimensionless constants to be determined

empirically (the upward and downward arrows symbolize the

inverse and direct cascades, respectively).

Notably, the idea of turbulent length scale as proportional to

the height over the surface, lT ; z, underlying Kolmogorov’s

concept of dissipation, Eq. (4), is equally relevant to conversion

and unstable stratification, as the latter does not impose any

additional limitations on the vertical turbulent length scale.

We shall emphasize that Eqs. (15) and (16) may not hold for

near-neutral conditions: the exact area of validity and the

transition to the neutral limit in terms of z/L are to be deter-

mined separately. It would require high-resolution numerical

simulation data tailored specifically to resolve this issue.

4. Breaking the dead end of conventional theories

Now it becomes clear how it happens that the principally

erroneous conventional theory yielded plausible formulations

of the vertical TKE and the coefficient of vertical turbulent

transport of momentum specified by Eq. (9). Indeed, since the

share of mechanical turbulence in the total TKE is small, the

physically erroneous conventional vision of the total TKE

budget balancing the total TKEproductionby viscous dissipation,

Eqs. (4)–(7), serves as the lucky approximation of the real budget

of convective TKE balancing its production due to buoyancy

forces by its conversion into kinetic energy of self-organized flow

patterns, Eqs. (13) and (15). So, in spite of the principal dif-

ference between the conventional and new visions/theories,

both yield mathematically equivalent expressions of the pa-

rameters in question. However, the conventional theory yields

FIG. 1. The countergradient nature of vertical turbulent fluxes of the vertical and total TKE, FEKV
and FEK

.

Dimensionless fluxes (a) FEKV
/jtj3/2 and (b) FEK

/jtj3/2 vs dimensionless height z/L quantifying the effect of strati-

fication on turbulence. In full agreement with novel theory, in the noticeably unstable stratification (z . L, solid

lines plotted after Eq. (17) with empirical constant C[ 5C3/2
V 5 1 coincide with the medians of empirical data. So,

(a) yields FEKV
5bFuz, which directly confirms the separate budget of convective TKE, Eq. (13). The very close

similarity between the two panels reveals negligence of the contribution of mechanical turbulence to the fluxes

under consideration. In the almost neutrally stratified sublayer, z,L, the ratio FEKV
/jtj3/2 is constant with height in

accordance with the classical Kolmogorov theory, whereas for z. L this theory is inapplicable. In this and further

figures, the dotted parts of red lines show the extension of the novel theory to the sublayer z,L, whereas the dotted

parts of black lines show the extension of the conventional theory beyond this sublayer. Small dots show the data

immediately retrieved from observations; heavy dots show the ensemble means.
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fully erroneous Eqs. (10)–(12) specifying all the remaining

characteristics of turbulence.

Contrastingly, the novel theory yields, besides Eq. (9), the

true formulations of these characteristics:

vertical flux of the vertical TKE, FEKV
, oriented upward

(countergradient):

F
EKC

jtj3/2
’
F
EKV

jtj3/2
’

F
EK

jtj3/2
5

C3/2
V

C
[

z

L
. 0, (17)

fully mechanical horizontal TKE, EKH
, decreasing

with z/L:

E
KH

jtj 5C
H

�z
L

�22/3

, (18)

the rate of the viscous dissipation of TKE, «KY, balancing

only the rate of its generation by the mean velocity shear

and having nothing to do with the buoyancy-generated

turbulence:

«
KY

z

jtj3/2 5
1

C1/3
V C

K

�z
L

�21/3

. (19)

Here the dimensionless constants CV ’ 1 and CK ’ 0.4 are

well known from the empirical validation of Eq. (9), common

for the conventional and novel theories, while the new con-

stants C[ 5C3/2
V ’ 1 and CH ’ 8.4 are defined from the data

shown in Figs. 1 and 2.

Equation (18) predicts that fully mechanical horizontal

TKE,EKH
, increases approaching the surface. This dependence

on height has been observed both in free shear convective

boundary layers and neutrally stratified flows. The logarithmic

dependence for the latter was shown by, for example, Banerjee

and Katul (2013) and Katul et al. (2016) and confirmed by di-

rect numerical simulation (DNS) data. The LES data (Abkar

andMoin 2016) of the convective boundary layer also supports

this finding and matches observational data. We expect this

relation to hold for all intermediate regimes of sheared-

convective turbulence.

It should be noted that the coefficient of vertical turbulent

exchange for momentum KM is derived rigorously from the

budget equation for the vertical turbulent flux of momentum.

But in the proposed framework this equation splits into the

pair of equations for its convective and mechanical parts sim-

ilarly to splitting of the convective and mechanical TKE bud-

gets into Eqs. (13) and (14), soKM should be rederived as well.

The authors leave this derivation for a separate paper.

5. Empirical validation

Experimental data needed for validation of Eqs. (17)–(19)

are obtained from meteorological observations at the Eureka

station located in the Canadian territory of Nunavut in con-

ditions of the long-lived convective boundary layer typical of

the Arctic summer. Here, permanent warming of this layer

from the surface is balanced by permanent pumping of colder

air into the layer via the general-circulation mechanisms. Such

balance yields the quasi-stationary regime of turbulence as-

suring more accurate detection of turbulent energies and fluxes

than is possible in short-lived evolving convective layers typical

of midlatitudes. At the same time, no principal contradictions

were found between the available data from observations at

mid- or low latitudes and the more certain data from Eureka

(Grachev et al. 2018).

Turbulent energies and fluxes were calculated directly from

the measured velocity and temperature fluctuations. The

pressure–velocity correlation term could not be evaluated di-

rectly using the available measurement data, the only estimate

could be retrieved from the TKE budget equation. Since all the

other terms are known and the overall residual of the balance

equation never exceeds 10%, the pressure–velocity correlation

term is neglected. We attribute the relative unimportance of

this term to a narrow time averaging applied (the known TKE

budget terms were evaluated as a result of time averaging over

100-s intervals). In the light of the new paradigm, this result is

quite understandable: in the unstably stratified turbulence,

breaking eddies cause pressure fluctuations to make only little

contribution to TKE for the time scales considered, while

buoyant plumes dominating this turbulence do not cause pro-

nounced pressure fluctuations.

Notably, the TKE dissipation rate is not measured directly.

For a long time, the only possibility was to retrieve it from the

TKE budget equation as a residual term, provided that all the

other terms are measured. However, for neutral and stratified

turbulence this equation includes the unmeasurable pressure–

velocity correlation term. This makes the method rather

uncertain. Comparatively recently, a constructive method of

retrieving the dissipation rate from the measured TKE spectra

was proposed (Pearson et al. 2002). It employs Kolmogorov’s

idea that the shape of the TKE spectrum in the inertial interval

is fully controlled by the dissipation rate; so, the latter can be

FIG. 2. Comparison of dimensionless vertical profiles of the fully

mechanical horizontal TKE, EKH
, and the dominantly convective

vertical TKE, EKV
, shown by the blue and red points/curves, re-

spectively. The curves show EKH
after nonorthodox Eq. (18) with

CH 5 8.4, and EKV
after Eq. (9) with CV 5 1 resulting from both

novel and conventional theory. As seen in the figure, the conven-

tional definition of horizontal TKE by Eq. (11) has nothing in

common with reality.
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calculated from the measured spectra. In neutral and stable

stratifications, the method does not raise questions: the TKE

spectrum exhibits just one inertial interval in its high-frequency

part. However, in unstable stratification the TKE spectra ex-

hibit two inertial intervals: one at higher frequencies and an-

other at lower frequencies (e.g., Kader and Yaglom 1991;

Glazunov and Dymnikov 2013; Banerjee et al. 2015). Until the

present, the second interval remained mysterious. The new

paradigm naturally explains it as a manifestation of the inverse

cascade in convective turbulence toward its conversion into the

large-scale self-organized structures. So, the shape of the

spectrum in this low-frequency interval is controlled by the rate

of conversion of convective TKE into kinetic energy of self-

organized structures, just as the spectrum in the high-frequency

interval is controlled by the dissipation rate (see Fig. 3).

According to Eq. (13) this rate, «K[, is balanced by the rate of

production of convective TKE quantified by the vertical tur-

bulent flux of buoyancy, bFu. So, the above method gives the

TKE conversion rate, «K[ 5 bFu, when applied to the low-

frequency inertial interval, and the TKE dissipation rate,

«KY 5 2t ›U/›z, when applied to the high-frequency interval.

The empirical data on dissipation shown in Fig. 4 were re-

trieved by this method from the high-frequency inertial inter-

val utilizing the value of 0.55 for Kolmogorov’s constant used

by Grachev et al. (2015) for the energy spectrum of the lon-

gitudinal velocity component.

Until now, the different nature of the two inertial intervals in

the TKE spectra remained unknown. As a result, the low-

frequency interval was often used for retrieving the dissipation

rate all the more confidently as such a procedure gave the re-

sults consistent with the conventional theory. It is this mistake

that Kader and Yaglom (1990) made in their comprehensive

experimental investigation of various statistical moments of

the surface-layer turbulence. So, the imaginary rate of the TKE

dissipation retrieved in this very informative study is in fact the

rate of the TKE conversion into kinetic energy of self-

organized structures, which exactly balances the rate of the

TKE generation—in strict accordance with the new theory.

This confusion, only natural for that time, deserves notice to

warn modern users of the method against such mistakes.

Figure 1 clearly demonstrates the countergradient vertical

transport of TKE predicted by the new theory and yields a

certain empirical estimate of the dimensionless constant

C[ ’C3/2
V ’ 1. This reveals the perfect balance between the

rate of generation of convective TKE, bFu, and the rate of its

consumption, «K[ 5 ›FEK
/›z’ ›FEKV

/›z, thus proving the

separate budget of convective TKE, Eq. (13), and the en-

tailing separate budget of mechanical TKE, Eq. (14). The

right panel of Fig. 1 demonstrates that the vertical fluxes of

the total and vertical TKE, FEK
and FEKV

, practically coincide

at large enough values of z/L, which means that mechanical

turbulence practically does not contribute to the vertical

flux of TKE.

Figure 2 confirms the predicted opposing behavior of the

horizontal TKE, EKH
/jtj5CH(z/L)

22/3
, decreasing with z/L

and the vertical TKE, EKV
/jtj5CV(z/L)

2/3
, increasing with

z/L. It yields the certain empirical estimate of the constant

CH 5 8.4, and clearly demonstrates the irrelevance of the

conventional paradigm postulating only direct cascade and the

entailing similarity of all shares of TKE.

Figure 4 provides direct empirical evidence of the novel vi-

sion of the TKE dissipation rate, «KY, defined after Eq. (14) or,

equivalently, after Eq. (19). Experimental data on dissipation

FIG. 3. Typical spectrum STKE of TKE measured at the Eureka

research station (8m above the surface; Obukhov length, L; 1m;

1800–1830 UTC 22 Jun 2012). The two inertial intervals in the

spectrum characterized by the25/3 power law are clearly seen. The

low-frequency interval, 0.15, f , 0.7Hz, is controlled by the rate

of conversion of convective TKE into kinetic energy of self-

organized structures «K[, balanced by the TKE buoyant produc-

tion bFu; whereas the high-frequency interval, 1.5 , f , 10Hz, is

controlled by the TKE dissipation rate «KY, balanced by the rate of

its generation by shear 2t›U/›z, and just used to retrieve «KY.

FIG. 4. Novel and conventional visions of the TKE dissipation

rate «KY in unstably stratified turbulence. The nonorthodox

Eq. (19), defining the dissipation, «KY, as inherent only in me-

chanical turbulence, is shown at z. L by the solid blue line, and at

z , L (in the almost neutral stratification) by the dotted blue line.

The conventional theory, assuming that both shear- and buoyancy-

generated TKE are subjected to viscous dissipation, is shown at z,
L by the solid black line and at z . L (beyond the area of its val-

idity) by the dotted black line. Blue dots show empirical values of

«KY retrieved from the low-frequency (large scale) inertial intervals

of the measured spectra of TKE.
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rate are retrieved (as explained above) from the high-frequency

inertial intervals in the TKE spectra. The figure shows the

perfect balance between the TKE dissipation and the easily

measurable TKE generation by the velocity shears, Eq. (14),

exactly complementing the separate budget of convective

TKE, Eq. (13).

The theoretical solid blue curve showing «KY in the no-

ticeably unstable stratification (z . L) agrees with experi-

mental data without any fitting. It is all the more illustrative

that the curve is plotted using the conventional values of the

constants CV ’ 1 and CK ’ 0.4 obtained from the indepen-

dent empirical validation of Eq. (9). To complete the picture,

the dotted blue line shows the extension of novel theory

beyond the area of its relevance—to the practically non-

stratified sublayer z , L. The conventional theory, based on

the unproven claim that the shear- and buoyancy-generated

TKE are both subjected to viscous dissipation at small scales,

is shown by the solid black line inside the narrow mechanical

sublayer (where it holds true) and by the dotted black line

outside this layer (where it fails). As seen from this figure, the

conventional theory overestimates the dissipation rate «KY

up to an order of magnitude. So, the figure clearly demon-

strates that in the pronounced unstable stratification the

lion’s share of TKE is not subjected to viscous dissipation.

6. Conclusions

This paper revises the conventional paradigm of turbulence as

irrelevant to unstably stratified fluid flows characterized by the two

fully different mechanisms of turbulence generation: the convec-

tive instability and the velocity-shear instability. The proposed new

paradigm is declared, demonstrated by the example of turbulence

energetics in the unstably stratified atmospheric surface layer, and

proved experimentally. Its key point is the principally different

nature of the two types of turbulence conventionally considered as

similar: buoyancy-generated plumes and shear-generated eddies.

In contrast to eddies, breaking down into smaller ones and thus

chaotically spreading in three dimensions, plumes adhere to the

buoyancy-oriented vertical motions and do not break down but

merge into larger plumes. This implies coexisting of the two prin-

cipally different types of chaotic motions:

d The familiar mechanical turbulence, producing the direct

cascade from larger to smaller scales and culminating at

minimal scales in viscous dissipation of TKE into heat.
d A completely different convective turbulence, making the

inverse cascade from the smaller to larger scales and culmi-

nating at maximal scales in its conversion into large-scale

self-organized flow patterns.
d This nonorthodox vision of turbulence admits the two

principal lines:
d ‘‘Chaos out of order’’ (paraphrase of the thermodynamic

concept of thermal death) discovered by Richardson (1920)

and utilized in Kolmogorov’s paradigm of the nonstratified

turbulence.
d ‘‘Order out of chaos,’’ conceptually analogous to the

Nietzsche’s ‘‘creative chaos,’’ discovered by Prigogine as

inherent to self-organization, particularly in life systems

(Prigogine and Stengers 1984) and utilized in the proposed

new paradigm of the unstably stratified turbulence.

The new paradigm, when it has already formed, seems self-

evident and almost trivial. It may seem unclear why the inverse

cascade in convective turbulence has gone unnoticed for so

long. This is even more amazing that such a cascade could not

help but come to mind as the only reasonable explanation of

the energy supply for the self-organized convective flow pat-

terns inherent in numerous natural phenomena from convec-

tive boundary layers to stellar convection. However, the

hypnosis of the conventional paradigm happened to be so

strong that its revision took half a century from the first vir-

tually unheard signals of its fallacy (Zilitinkevich 1971, 1973;

Wyngaard and Coté 1971).
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