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Abstract: We consider the use of remote sensing for large-scale monitoring of agricultural land use,
focusing on classification of tillage and vegetation cover for individual field parcels across large
spatial areas. From the perspective of remote sensing and modelling, field parcels are challenging
as objects of interest due to highly varying shape and size but relatively uniform pixel content and
texture. To model such areas we need representations that can be reliably estimated already for small
parcels and that are invariant to the size of the parcel. We propose representing the parcels using
density estimates of remote imaging pixels and provide a computational pipeline that combines the
representation with arbitrary supervised learning algorithms, while allowing easy integration of
multiple imaging sources. We demonstrate the method in the task of the automatic monitoring of
autumn tillage method and vegetation cover of Finnish crop fields, based on the integrated analysis
of intensity of Synthetic Aperture Radar (SAR) polarity bands of the Sentinel-1 satellite and spectral
indices calculated from Sentinel-2 multispectral image data. We use a collection of 127,757 field
parcels monitored in April 2018 and annotated to six tillage method and vegetation cover classes,
reaching 70% classification accuracy for test parcels when using both SAR and multispectral data.
Besides this task, the method could also directly be applied for other agricultural monitoring tasks,
such as crop yield prediction.

Keywords: machine learning; object-based classification; density estimation; histogram; land use;
crop fields; soil tillage; data fusion; multispectral; SAR

1. Introduction

Remote sensing offers a cost-efficient approach for large-scale agricultural land use
monitoring for administrative and research purposes, especially when combined with
machine learning (ML) methods for estimating land use characteristics for individual crop
field parcels [1-3] or other small spatial regions. These methods require a representation
for each parcel derived from its pixels, either an explicitly engineered collection of features
or an internal representation learnt in a data-driven fashion as in popular deep learning
methods such as Convolutional Neural Networks (CNN) [4-7]. Our work is about learning
good representations for crop field parcels that are often small and vary in shape. We also
provide a practical computational pipeline for large-scale agricultural monitoring that can
efficiently integrate information provided by multiple raster images captured at different
resolutions, demonstrating it for the case of off-season soil tillage monitoring in Finland.

Previous studies have indicated object-level classification to be preferable over pixel-
level information in agricultural tasks [8,9], but typically very high-level aggregate infor-
mation such as the mean of individual pixel values has been used for representing parcels,
making discrimination between similar classes difficult. Even though spatial features as
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extracted by CNNs are nowadays routinely used in remote sensing, crop field parcels have
several characteristics that motivate representations focusing on the spectral distribution of
sensor values instead. First of all, image content within each parcel is nearly homogeneous
since the parcels are managed in a uniform way within the parcel boundaries. Hence, the
prior value of spatial information at the pixel level is low. Spatial statistics are also difficult
to estimate for parcels of irregular shape and with large differences in size, especially for
noisy imaging sources like Synthetic Aperture Radar (SAR) as well as for cloud-occluded
multispectral images (MSI). Distributional information about sensor values can, however,
be reliably estimated for objects of any size and shape also in the presence of occlusion and
noise. Consequently, we propose using probability density estimates (DE) of pixel values as
a general purpose representation for such objects and formalize a practical computational
pipeline around these representations, described in Section 2.2.

We assume the pixels of a given raster image area to be drawn from a probability distri-
bution of pixel band values. Rough aggregate summaries, such as mean and median of the
pixel values are still in active use in remote sensing due to simplicity and robustness [10-13],
but our interest lies in the advantages of characterising subtle differences in the whole
distribution. Histograms of pixel values have a long history as a natural representation
of spectral distribution in computer vision [14-16], and they have also been considered in
remote sensing [17-19]. Normalized object histograms are easy to compute but suffer from
poor sample efficiency and objects with different pixel counts are not directly comparable:
a small object’s histogram is likely to have gaps whereas larger ones appear to be more
continuous. Hence, histograms work best at a coarse bin resolution. We prefer direct
modelling of the joint density using multivariate DEs [20,21], so that for each object we
learn a continuous probability density over multi-band pixel values. To use the estimate
as representation for subsequent processing, we collapse the density to bins resemblant
of a histogram, with the advantage of inter- and extrapolation over observation gaps and
reduced noise in pixel values, especially for parcels of varying size. We also consider
Bayesian estimators [22] to account for uncertainty stemming from small pixel counts; in
our data the field parcel size varies from tens to hundreds of pixels.

We apply the proposed method to a case of off-season soil tillage monitoring in Finland.
From the standpoint of environmentally and economically sustainable agriculture, soil
erosion and nutrient runoff from crop fields to surface waters is a long-standing challenge,
to which soil tillage operations are a contributing factor [23,24]. Large-scale information
on annual off-season tillage status of arable land is of interest for agro-environmental
monitoring administration, policy makers as well as wide range of academic domains from
terrestrial carbon studies to hydrological research. The problem is made challenging by the
irregular shapes and small sizes of the parcels in Finland, and the limited amount of labeled
training data within a single country. Furthermore, the annual off-season observation
time window is limited and must take place during a relatively cloudy time of the year in
Finland. The proposed computational pipeline can address all of these challenges.

Previous remote sensing studies of soil tillage detection have focused on spectral
reflectance characteristics [25-27] or radar response [28-30] of soils, green vegetation, and
crop residues. SAR signal penetrates cloud cover and is inherently sensitive to target 3D
structure affecting backscatter mechanisms and angle. On the other hand, optical, for exam-
ple. multispectral reflectance from satellite images can be fully exploited only at cloudless
moments, but it can characterize a wide range of chemical and physical properties of matter
as well as reveal dynamics of organic phenomena. The differences in the physical processes
involved in radar backscatter and optical reflectance signals allow them to respond com-
plementarily to the phenomena being interpreted, which results in enhanced accuracy of
classification and regression for a range of remote sensing applications, for example, in
agricultural or land cover contexts [31-35], or recently in soil tillage detection [36,37]. Our
contribution to the topic is a practical, effort-reducing SAR-MSI data fusion technique. We
use Copernicus Sentinel-1 (51) SAR data with dimensions of two polarity bands, overlaid
with polygon data of crop fields as provided by the Finnish Food Authority. Similarly to
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SAR bands, we construct density estimates over two spectral indices calculated from a
Sentinel-2 (S2) MSI for the same fields during a suitably narrow time window. Both sources
are then merged to estimate the soil tillage category. Besides the Sentinel data used here, we
expect the approach to be applicable to other SAR and MSI data sources, such as Radarsat-2,
Landsat, or Modis.

To summarize, as the main contributions of this work we:

*  Present a method for off-season tillage and vegetation cover detection on crop field
parcels, which is a challenging task due to the heterogeneous size of the objects and a
limited amount of training observations;

*  Propose a representation of a free-form raster image object as a non-parametric proba-
bility density estimate, to be used for increasing robustness to variability in object size,
count and missing pixel data;

*  Introduce an easy-to-use framework for multi-sensor raster data fusion for sources of
varying spatial resolution, applicable also outside the specific task considered here.

2. Materials and Methods
2.1. Materials

We use polygon-delineated boundaries of Finnish crop field parcels illustrated in
Figure 1, collocated with mosaics of SAR and MSI satellite images over a time period from
11-23 April 2018 from Copernicus Sentinel-1 and Sentinel-2 missions, where the parcels
are classified to one of multiple crop field tillage operations that affect, for example, soil
properties and nutrient runoff to surface waters. The illustration reveals that the parcels
have complex shapes and varying sizes, and that many of the parcels are small.

Figure 1. Foreground polygons: Autumn tillage operations annotated to six classes (colors).
Background raster: Red-green rendering of a VH+VV dual polarization Sentinel-1 SAR image. Note:
Due to data protection regulations, the polygons are from publicly open similar data from 2016
instead of our actual data, and the classes are randomized.

2.1.1. Crop Field Parcels and Annotations

We are interested in six categories to gauge the variety of land use and management
over winter. The first class of conventional ploughing means mould-board ploughing in



Appl. Sci. 2022,12, 679

40f19

autumn to a depth of 20-25 cm. The second class of conservation tillage comprises tilling
methods that mechanically disturb the soil to a depth less than 15 cm while retaining most
of the crop residues on the surface. The last four classes include cases where the soil is
either covered with crop residues (stubble), or with vegetation (autumn crop, grass). Soil
with autumn crop has typically sparse plant cover before the growing season, and the soil
surface is rough after seedbed preparation, whereas grass vegetation is typically rather
thick, and the soil is covered. Stubble fields are covered with stalks and crop residues. In
autumn spontaneous regrowth and weeds typically start to re-vegetate the soil. A special
category of stubble field growing catch crops means crop fields where a companion crop (catch
crop) re-vegetates the soil after the harvest of the main crop.

The region of interest (ROI) is illustrated in Figure 2 and was chosen on agrometeoro-
logical grounds: autumn tillage operations can span over many autumn months depending
on the soil moisture conditions up until the soil is frozen and covered with snow. Therefore,
the optimal time window to acquire images to monitor winter-time tillage status is shortly
after snowmelt and before seedbed preparation in the spring. This time window is typically
quite short; from two to four weeks. During this time, the soil dries out fast, but also
there may occur sudden snow showers. To select the ROI, we used the regional starting
dates of the thermal growing season in 2018. In this region, by mid April, the mean daily
temperature permanently exceeded 5 °C, and snow had melted from open areas. The ROI
was used to mask the underlying field parcels for reference data.

Reference data were annotated as follows. Information on agricultural land use in
agricultural registers from two preceding growing seasons—2017 and 2018—were com-
pared. The soil cover class was decided based on the variables of the winter-time vegetation
cover related parcel-wise agri-environmental measures declared by farmers. Conservation
tillage and vegetation cover are subsidised and subscribed to parcels. The different types of
vegetation and crop residue cover were inferred from comparing the preceding years crop
types with expertise in crop management. If a parcel was not subscribed to any measure, it
was considered ploughed.

The intersection of the area of the satellite images shown in Figure 2 and of the parcel
polygons yields a total of 127,757 annotated parcels. Annotations across the six classes are
distributed as follows:

Conventional tillage, that is, ploughing 46,765; Conservation tillage 15,211; Autumn
crop 2681; Grass 24,503; Stubble with no tillage 37,750; and Stubble with companion crop
847. We assigned each parcel exclusively to training and test sets by random sampling in
a proportion of 80% for training and 20% for testing, resulting in total of 102,206 samples
available for training and 25,551 for testing. However, in the computational experiments
we mostly used considerably smaller subsets for studying the accuracy of models trained
on less data.

2.1.2. Satellite Imagery

As the first raster component, we use polarimetric SAR intensity data (Ground Range
Detected, GRD) from the Copernicus Sentinel-1 mission. Due to highly dynamic soil
moisture and even plausible short-lived snow cover conditions during the time window, it
is advantageous to use a mean-valued mosaic image composed of several images over the
time period. The Finnish Meteorological Institute (FMI) publishes a preprocessed 11-day
Sentinel-1 mean gamma-nought mosaic product [38]. See Supplement S1 for additional
information and availability of the mosaic. We use an instance of a VV and VH polarity
dataset from April 2018 (11th to 21st). Although the underlying spatial resolution of
a Sentinel-1 Interferometric Wide Swath image is 5 x 20 m for an image of a 250 km
swath [39], FMI mosaic preprocessing [38] resamples the data to 20 m spatial resolution.
As a restriction, measurements prior to 2019 were quantized to 1 dB intensity intervals
by the FMI data pipeline, posing a hard limit to discretization, that is, the binning of the
measurements for the density estimators. Individual Sentinel-1 images that coincide with
the time period and location of the mosaic and our ROI are listed in Supplement S1.
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Figure 2. The region of interest (ROI) and raster data extent over southern Finland.

As a second raster component, we spatially mosaic three Sentinel-2 multispectral
images selected from as close to the time period and ROI of the Sentinel-1 mosaic as possible
(see Supplement S2 for the image identifiers), resampled to 10 m spatial resolution. An
additional criterion for this image selection was a relatively low overall (<10%) percentage
of pixels containing cloud or snow in the quality indicator (QI) metadata of the images.
We also filter out individual pixels with a cloud or snow confidence value of >10%. This
reduces the amount of pixel observations per parcel and makes the pixel sets discontinuous,
but these properties do not cause problems for the proposed approach.

From the Sentinel-2 spectral channels, we calculate relevant basic spectral indices—the
Normalized Differential Vegetation Index (NDVI) [40] and Normalized Differential Tillage
Index (NDTI) [41,42]—as features for our density estimates. Consequently, we have D = 2
for MSI images. The formulas for the indices in the context of Sentinel-2 bands are:

NDVI = (B8 — B4)/(B8 + B4) 1)
and
NDTI = (B11 — B12)/(B11 + B12), ()

where the Sentinel-2 band center wavelengths are: B4 (Red): 670 nm, B8 (NIR): 830 nm, B11
(SWIR): 1610 nm, and B12 (SWIR): 2200 nm.

The SAR VH/VYV bands and the two optical spectral indices per pixel represent two
disparate data sources at different resolutions and image extents (as seen in Figure 2). In
Section 2.2 below we combine these to a common representation per parcel by extracting
the pixels that coincide with the parcel delineation polygons.

2.2. Methods
2.2.1. Problem Formulation

The agricultural land monitoring task can be formulated as a machine learning prob-
lem, where we learn to predict a label § € L for a previously unseen object (field parcel) X’
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given a collection of training observations {(X, y) }. For notational simplicity, we present
the details for classification problems (y are discrete and mutually exclusive categories)
although the representation could also be used for regression (continuous y, such as crop
yield) or structured output problems.

Our focus here is on learning a suitable representation for objects that are pixel subsets
of raster images. We denote individual pixels by column vectors x € RP where the individ-
ual elements correspond to different channels (e.g., spectral bands of MSI or polarization
channels of SAR). Each object o is defined by some subset of the pixels of an image A;
captured within a geospatial region of interest A, and hence can be represented by a matrix
X,i € RP*" storing the 1, pixels for this object as its columns. Note that this formulation
can be generalized in various ways; see Section 4.2.

Even though the focus of this work is on SAR and MSI data for soil tillage applications,
we note that the approach is applicable to any task that satisfies the requirements of:
(1) multi-banded raster data on a region of interest; (2) objects defined in terms of pixel
segments of the images with a (3) class annotation on each object, using a shared coordinate
reference system between the segment annotations and the rasters.

2.2.2. Data Flow: From Objects to Representations and Classification

Figure 3 shows a full data flow from raw images to predictions for the case of two
remote sensing image sources. After sensor- and application-specific preprocessing and
pixel-wise feature engineering of the images A;, we extract for each object these resulting
pixels from each type of image. We associate with each object an unordered pixel set per
image type from within the geometric boundaries of the object shape. In the following,
we represent these data from two data sources of different resolutions and extents using a
shared representation of a multidimensional probability distribution per parcel.

From the object-wise pixel sets we form density estimates p(x) for each object sepa-
rately using a selected density estimation method, and then evaluate the density along a
regular grid G to form the representation f. For practical computation, this representation
is formatted as a vector, which we normalize for additional robustness so that the /> norm
is one, but this normalization is not a critical part of the pipeline. This vector then becomes
the representation for the supervised learning algorithm. For Bayesian density estimators,
we can also consider an alternative representation that also captures the uncertainty of the
estimate, explained later after describing the Logistic Gaussian Process Density Estimation
(LGPDE) method.

Since our main focus is on the representation itself, we use standard classifiers readily
available as a program library and in frequent use in the research field: the scikit-learn
library’s implementation of the Random Forest (RF), Support Vector Machine classifier
(SVC) and a shallow feed-forward neural network (Multi-Layer Perceptron; MLP).

Sentinel-1 VVVH pixel Estimate 2D Data pipeline
B ,VH pixels . stimate . by) Representation.
SAR image Extract pixels m density, " Flatten m ;eéill )re Concatenate Data fusion
WV, l\/H) Per [=Pxel> jiscretize to [densities™|  density vectors * feature vector ~ ——Supervised leaming—
~ polygon by bins /dim (m, b, by)
Crop field 2+b7)
. (m, bi2+b)
‘p0£§bns 4 (Histogram/ m feature Y
(m) & XxXm GKDE/ ‘ xm vectors Classifier
LGPDE) i . (m b2 | (SYC/MLP/RF)
BN > ¢ ) Estimate 2D I Predicted classes
A . s Calculate Extract pixels | m ! Flatten
Eesntinel 2 pixel | spectral | —2Vh,| (NDVI, NDTI) -pixels denslty ~d aities™ e Evaluate
_ MSl image - >PE NDTI sets discretize to | densities density .
piaTh et bands indices per polygon b bins / dim (m, b, b2) metrics

Figure 3. Process diagram with data flow from left to right.

2.2.3. Density Estimate as a Representation

A desirable object representation should condense relevant information into a similar
form whether the object is spatially small or large. Put more generally, objects should be
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commensurately represented for an arbitrary count of observations in the measurement
space. All density estimates and normalized histograms formally fulfill this requirement
and we can use them to represent the object, but as discussed next, practical methods differ
in terms of comparability given different amounts of pixels.

We consider a fixed-dimensional representation f = [p(x1),..., p(xgp)] suitable as
an input for any classifier, where the x, are center points of elements (bins) in an equally
spaced grid G overlaid on the density’s support dimensions (pixel bands), so that G has B
discretization intervals 1z in each of the D dimensions, with a total of B elements. p(x)
is a probability density that we learn based on the object’s pixel collection X and then
evaluate the density at the points x¢ of G to form the representation. We consider only
cases with D = 2, where the channels are two SAR polarisations or the two vegetation
indices for MSI, so that we can directly model the joint density. For higher-dimensional
cases, an alternative approach is to estimate a marginal density for each channel separately
and evaluate it along a grid of B elements, resulting in a representation f; € R? for each
band separately. A combined representation can then be obtained by concatenating these
asf = [fl,...,fD].

The representation can be computed for all density estimators, and next we discuss
three practical alternatives and their properties.

Multivariate Histogram

As the elementary density estimate, we consider the multivariate histogram. For com-
mon notation with the other estimators, we formulate the normalized multivariate density
histogram in the style of the univariate definition in [21] as a discretized function over G
and multivariate observations x € X with a total count of n:

Vg
p(xg) = P 3)
where v, is the number of observations x falling into the multivariate interval whose index
is denoted by g. These intervals are defined as symmetric hybercubes around the center
points of the grid.

Histograms are broadly used as representations, but are problematic for small objects
with few pixels. We either need to use very small B, losing most of the resolution, or
accept that the bin estimates are increasingly noisy. For large B we will typically have
a significant proportion of bins with no observations at all and the non-zero bins will
include only one pixel observation, and this effect becomes more severe with large D. If
the pixel observations have noise comparable to or larger than the bin width &, a pixel
often falls into one of the neighboring bins (or even further), and direct comparison of
two histograms computed for two noisy realizations of the same object would indicate
no similarity. Histograms also ignore uncertainty completely, which makes them poorly
suited for the comparison of objects of varying size; histograms estimated from fewer pixels
are noisier but this information is not captured by the estimate, and subsequent learning
algorithms would falsely attribute the same amount of confidence for both.

Kernel Density Estimation

Parzen [43] formulated univariate kernel density estimation (KDE) in its modern form
including the smoothing parameter, that is, bandwidth #, as:

pulx) = nlthC‘;xj), @
=
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where the kernel K is a non-negative function and x; are the n data points. We use an
analogously defined multivariate version of KDE [20,44] with a bandwidth matrix S as:

) = L Kalx ), ©
£

with the standard Gaussian kernel Kj,(x) = (27'[)’D/2|S\’1/23_%"%‘3“0“’571" and a diagonal

bandwidth matrix as the covariance matrix 1/Sz; = nD;+14hd determined by Scott’s rule [21].
Note that for small objects the estimator is smoothed more, due to an inverse relationship
between n and S;;. We refer to this estimate as Gaussian KDE (GKDE).

GKDE is an effective, lightweight method of providing smoothed probability density
estimates for point samples independently of discretization interval or data point count.
However, GKDE provides no measure of uncertainty relative to its suggested point esti-
mate, and hence, similarly to histograms, loses information about the relative reliability of
different objects.

Logistic Gaussian Process Density Estimation

For objects with only a few pixels, it becomes important to explicitly quantify the un-
certainty of the density estimate itself, which neither of the above methods can achieve. For
instance, for the extreme case of just one pixel, the histogram becomes a delta distribution,
and while GKDE provides a smoother estimate it still suggests this single noisy pixel alone
to be highly informative of the content. Bayesian estimators, instead, have the ability to
explicitly model uncertainty, and in the following we describe one practical alternative
building on Gaussian Processes (GP).

LGPDE, originally proposed by Leonard et al. [45], assigns a GP prior for the un-
normalized logarithmic density f(x) so that log p(x) = f(x) + C for any x, where C is a
constant required for normalizing the density. The GP assigns a prior over the functions
directly, so that for any finite collection of inputs their joint distribution is a multivariate
normal, and conditioning on some pixel observations X we can then obtain the posterior
distribution p(f|X) that captures the uncertainty of the estimator. Due to the logistic
transform, there is no closed-form analytic expression for the posterior, but both Markov
Chain Monte Carlo (MCMC) sampling [46] and Laplace approximation [22] can be used
for inference. We will later evaluate both the Laplace approximation as well as an MCMC
implementation using the No-U-Turn Hamiltonian Monte Carlo algorithm as provided in
the Stan probabilistic programming environment [47].

We use the formulation of Riihimaéki et al. [22] with explicit enumeration over dis-
cretized support axes for computing the normalization term C. A prior term results from
the logistic transform:

log p(f|G,8) = N (f|Hm,K + HMHT), (6)

where f is a latent function representing the density estimate surface being evaluated
at points x¢ of the discretization grid G, § denotes the hyperparameters of the prior and
the GP kernel, and H(G) is a basis function that modulates the density to achieve finite
support. For 2D densities we use the basis function H(x) = [x1,x3, x5, x3, x1x]T. For a
weakly informative prior, we parametrize a covariance adjustment of M = 10?I and a
zero mean of m = 0. The kernel K = K(G) determines a covariance matrix based on a
given covariance function and a chosen multivariate bin discretization expressed by G. The
posterior is formed using the likelihood

BD
log p(v|f) =v' f — nlog (ZeXp(fb)>, 7)
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where v is a histogram-like vector of observation counts. In the multidimensional case, f
and z are vectorized to a single vector with BP elements. The model induces a density over
arbitrary x, but the construction is already in a form explicitly represented over the grid G.
Hence the representation is formed simply as the exponent of the log density.

Rather than a fixed representation f, we now have a set of S posterior samples £(*),
either as produced by the MCMC algorithm or obtained by sampling from the Laplace
approximation. They can be used within the proposed pipeline in two ways. The simplest
alternative is to collapse the posterior to a point estimate as E[exp({f(*))}];s € S, to be
used similarly as the results of other estimators. We call this Point Estimate Classification
(PE-C). The other alternative, here called Posterior Predictive Classification (PP-C), is to pass
all posterior samples of £(s) separately to the classifier, for each object being classified. For
testing, we evaluate the classifier similarly for all posterior samples and compute the poste-
rior predictive class distribution p(c = ¢|x) using standard Monte Carlo approximation.
This allows an end-to-end probabilistic approach for classification even if the classifier itself
is designed to only produce point predictions ¢.

3. Results

We report results for two types of experiments: Technical experiments validating the
computational pipeline (Section 3.1), and evaluation of the method for the soil tillage task
(Section 3.2).

3.1. Technical Validation

The core assumptions of our method are that a probability density of pixel values
represents useful information about the classes of interest, and that we can learn reliable
estimates of those based on individual parcels. We first validate these visually in Figure 4
for the SAR data. The top row shows that estimates computed from all pixels of a given
class are visually distinct, whereas the bottom row shows that estimates computed based on
pixels of individual parcels resemble the class-level information. The figure also illustrates
the difficulty of the problem; the densities are distinct but highly similar in the sense that
simpler representations like mean pixel value are unlikely to be sufficient for separating
the classes.

For accuracy evaluation between the method variants, we use balanced subsets of
parcel data described in Section 2.1.1 to make the results easier to interpret. We consider
only balanced classification problems with equally many observations for each class so
that classification accuracy can directly be interpreted as quality of the method, and we
only consider the classes ploughed, grass and stubble to avoid issues with classification of the
three minor classes that are difficult to separate from each other. For all of the technical
experiments we use a fixed randomly chosen subset of 300 parcels per class (900 samples in
total) for testing, whereas the size of the used subset of training data is a parameter for many
of the experiments, seen on the horizontal axis as “Number of training samples/class”.
This is to investigate model performance with respect to data size.

3.1.1. Comparison of Representations

To demonstrate the effect of object representation on classifier accuracy, we compare
three computationally efficient representations for three classifiers in Figure 5. The ex-
periment was done on MSI data with NDVI and NDTI indices as image bands on data
consisting of relatively small parcels (20...50 px) with B = 50 bins per band. The parameter
B controls both the amount of information we can capture and the reliability of the estimate;
with small B the estimation task is easy but a majority of discriminative information is
lost, whereas with large B we retain all information but can no longer reliably estimate the
density from small samples. The choice of B = 50 (resulting in B?> = 2500 bins in total) is
motivated by Figure 6a, which shows the accuracy as a function of the discretization level
for the case of 50 training samples per class.
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Figure 4. Gaussian kernel density estimate representations of polarimetric SAR intensity measure-
ments for ploughed, grass- and stubble-covered fields. (a—c): Class-level density estimates from a
large random sample of all pixels of all field parcels of a class. (d—f): Density estimates for single
parcels of each class. The small red dots indicate individual pixels, with small jitter so multiple pixels

with identical values are also visible.

Figure 5 reports the accuracy for varying sizes of training data for three different
classifiers. The main observations for our MSI dataset are: (i) All forms of density estimates
outperform naive summary statistics. The baseline of using an aggregate summary of
all pixels, the median of NDVI and NDTI values, barely beats the random baseline of
33% classification accuracy, whereas all density estimates achieve accuracies between 40%
and 60% depending on the case; (ii) direct multivariate estimates are at least as good as
histograms and for some cases (SVC) better; (iii) GKDE performs as well as the multivariate
histogram and sometimes (SVC and MLP for some training set sizes) marginally better.
In summary, the results show that proper density estimators were preferable over both
multivariate and marginal histograms as general representations. Even though there was
no clear difference for one of the classifiers (RF), there were no cases where using GKDE
would hurt.
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—— Multivariate histogram
—— Marginal histograms
—— Median
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Figure 5. Density estimates, histograms and the median as representations for multispectral
NDVI/NDTI data across three different classifiers. (a) SVC (b) MLP (c) RE Each color corresponds to
a representation, the line indicates the average over five random training sets evaluated on a single
test set, and the shaded areas represent 95% bootstrapping-based confidence intervals.
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3.1.2. Effects of Object Size

Next, we detail the performance of density-based representations under challenging
training conditions with very few training instances, highly varying object size, or both. We
do this on SAR data, using B = 12 bins over the range —24...0 dB, to keep computational
complexity manageable for extensive experimentation on all estimators.

We compare three proper density estimators, GKDE and LGPDE, with two inference
algorithms (MCMC and Laplace approximation) and restrict to a single choice of the
classifier to streamline the results; the observations are similar for the other classifiers.
Figure 7 shows the accuracies for these estimators as function of the size of the training data
for three scenarios: small parcels that only uses parcels of 20. .. 30 pixels for training and
evaluation, large parcels that only uses parcels of 90. .. 100 pixels for training and evalution,
and wvariable parcels that uses both small and larger parcels (range of 20. .. 100 px). The main
results are: (i) The problem is considerably easier if the objects are larger but already for
the small parcels of only tens of pixels we comfortably beat the random baseline; (ii) The
accuracy naturally improves when we get more training instances, but already relatively
small number of approximately 30 parcels per class is enough for good accuracy; (iii) The
representations are robust over parcels of varying size, shown by relatively high accuracy
for the case that contains both small and large parcels; (iv) There are no clear differences
between the three density estimators in terms of accuracy.
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Figure 6. Choice of the discretization bins. (a) Accuracy as function of the number of bins for 52
MSI data. (b) S1 SAR intensity (sigma nought, 0p) in crop field pixels concentrate within bounds of
—30...0dB.
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Figure 7. Effect of field parcel size (line style) on MLP accuracy for different estimators (line color).
Confidence intervals omitted for visual clarity.
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Even though we did not observe a direct improvement in classification accuracy for the
more advanced density estimator LGPDE, it has the advantage of explicitly modeling the
uncertainty of the estimate and we can propagate it through the classification process for any
classifier as explained in Section 2.2.2. To demonstrate this, Figure 8 shows the classification
accuracy for the three different classifiers for a dataset of small parcels (20...30 px), for
both PE-C and PP-C. We observe that the PP-C approach that models the uncertainty offers
a small but consistent improvement. Figure 9 shows that the resulting class probability
distributions behave as expected—for small fields the uncertainty is better captured in the
final class distributions.
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— MLP {PP-C)
RF [PE-C)
| RF (PP-C)
0361 ... svcipED)
— SVC(PP-C) e
LT
@ 0554
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Figure 8. Accuracy for smaller parcels increases using posterior predictive LGPDE classification.
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Figure 9. Confidence of small (a) vs. large (b) ploughed fields being classified as ploughed from a
probabilistic perspective, with higher uncertainty for small fields, as expected.

3.1.3. Data Fusion

By learning separate representations for each image modality (capture method or sen-
sor) A;, we can perform easy data integration by simply concatenating the representations
f;. In experiments Sections 3.1.1 and 3.1.2 we showed that both MSI and SAR are valuable
sources of information for this task, and Figure 10 shows that by further combining them
we get a significant improvement in overall accuracy: The combined solution outperforms
MSI, which has the higher accuracy of the single-source capturing methods, on average by
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approximately 8 percentage points. We show the results on 1500 test parcels for the MLP
classifier; the other classifiers followed a similar pattern.

We also evaluated the final accuracy of the data fusion solution for even larger training
data to provide a baseline with ample data. With 6500 training parcels per class we reached
an accuracy of 82%, validating that the accuracy can be further improved by utilising more
data, as expected. However, the improvement over the 78% accuracy obtained already
with 160 parcels per class is only modest. On one hand, this implies that the method can be
reliably estimated already from small data and does not require access to thousands of or
tens of thousands of training instances. On the other hand, it suggests the problem itself is
challenging; as shown in Figure 4 and discussed in the next section, some of the classes are
highly similar in appearance, which sets natural upper bounds on classification accuracy.

0.80
SENS0r

Ms]

075 SAR+MSI

0.70

Accuracy
[=]
(=3}
¥, ]

0.60

0.55

0.50

10 20 a0 80 160 20
MNumber of training samples [ class
Figure 10. Data integration vs single-source classification on a Random Forest classifier. The inte-
grated solution clearly outperforms both MSI and SAR alone for all training set sizes.

3.2. Soil Tillage Detection

Based on the technical validations above, we made the following choices for solving
the soil tillage classification problem: (a) We use both SAR and MSI images; (b) we use RF as
the classifier observed to be the most robust one; and (c) we use GKDE as computationally
efficient and accurate representation. We use B = 50 for MSI and B = 30 for SAR within the
range of —30...0 dB in alignment with [48-50]. Motivation for these choices is illustrated
in Figure 6.

We now use all six classes described in Section 2.1.1: ploughed, conservation tillage,
autumn crop, grass, stubble and stubble with companion crop. We train the model in total
on 43,299 parcels with the number of samples per class ranging from 169 to 15,885, and
evaluate the accuracy on 10,666 parcels not used for training. Together these form the full
set of parcels we find at the intersecting area of the SAR and MSI images in our data. The
overall classification accuracy, evaluated on the test parcels, was 70% and Figure 11 shows
the confusion matrix for the test parcels. The largest classes ploughed, grass and stubble are
classified with high accuracy, whereas the smaller classes conservation tillage, autumn crop
and stubble with companion crop are more difficult to classify correctly.
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Figure 11. Normalized confusion matrix for classification of fused SAR + MSI image objects for the
full set of annotated classes.

4. Discussion
4.1. Soil Tillage Detection

Our main goal was detecting autumn tillage and vegetation cover from earth observa-
tions for large-scale agricultural monitoring. Several previous studies such as [26,28,36]
on tillage detection with SAR imagery alone or fusion of SAR and MSI have concentrated
on tillage intensity classification. However, few studies have detected off-season land
cover classes on broader scale including also vegetation covered land cover types [37,51,52].
Shortage of studies on higher granularity of winter-time land cover classes indicates that
the task is difficult.

We observed significant and consistent improvement in classification accuracy by
combining SAR and MSI data. The result is well in line with those obtained both in crop
tillage classification [36,37] as well as in other EO tasks [34,48,53-55]. Since data fusion is
easy with the proposed object representations, only requiring georeferencing and simple
early fusion, we strongly recommend routinely using both sources for this task. When
using a single image capture method, MSI was here clearly more accurate than SAR, but
this observation needs to be interpreted with care because our experiment was carried out
on images with at most 10% occlusion. During a normal year, the time window for making
observations on tillage operations is short and typically cloudy across Southern Finland,
and MSI alone could not be trusted.

Somewhat low classification accuracy for the classes conservation tillage, autumn crop
and stubble with companion crop is explained by three main reasons: (a) the amount of data
for these classes is smaller compared to the other three, (b) under certain conditions some
of the classes are virtually indistinguishable, and (c) the ground truth data is imperfect due
to mislabeling. Regarding the difficulty of the problem, the autumn crop, stubble and stubble
with companion crop all have variable amounts of plant growth that makes the classes highly
similar in terms of all EO sources. Also, ploughed and conservation tillage may resemble
each other after snow melt in April on certain soil types, especially where stalks have been
highly decomposed.

Regarding mislabeling, the reference data were prepared with automatic rule-based
labeling, which is inherently error-prone. Whereas contradictory examples (duplicates) can
be removed, mislabeling remains a practical challenge due to inevitable simplifications
when building the rules. Imperfections in the underlying information on agricultural
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practices imply that each class membership has different reliability. For example, planting
of autumn crop is explicitly declared by the farmer, thus having really high reliability,
whereas ploughing is merely inferred by applying a long classifying set of rules to the
information. Conservation tillage is an example of low reliability. Farmers explicitly declare
to apply conservation tillage in October as it is subsidized, but if weather conditions are
not suitable for tilling after the declaration date, fields may remain covered by vegetation.
As vegetation cover is considered the more sustainable option, “no-till” is not subject to a
penalty. As a result, probability of stubble field samples mislabeled as conservation tillage
is high.

For improving the quality of the reference data, one could consider unsupervised
clustering techniques as in [56] to discover structure and compare with supervised tech-
niques and the assumed labels. During data exploration we performed an initial trial with
spectral and K-nearest neighbor clustering on the density representation of the objects, the
results of which did suggest some internal structure within the given classes of the dataset.
Additionally, specific geospatial properties such as latitude can be significant in Finland
with varying microclimates affecting vegetation cover and could be used as additional
features to improve the accuracy.

4.2. Modelling Aspects

The proposed computational method is applicable also for other agricultural monitor-
ing tasks besides the specific task of tillage and vegetation cover classification, such as crop
yield prediction. Furthermore, it can be applied to object-based remote sensing tasks also
beyond agricultural monitoring. Hence, we also provide a brief discussion of the method
itself. All forms of multivariate density estimates were observed to outperform simple
object representations of aggregate summaries and marginal histograms for supervised
classification of small and variably sized objects, even though the latter are easier to esti-
mate. Proper density estimators outperformed multivariate histograms in some cases, but
not in all and the difference was in general unexpectedly small. We believe this is primarily
because evaluation is extremely noisy for the scenarios (the smallest datasets with the small-
est objects) that would most benefit from smoothing and uncertainty quantification; more
direct measures of representation quality could be considered for stronger conclusions.

Regarding the representations, GKDE [57,58] has only negligible computational over-
head compared to histograms and no additional tuning parameters (due to the automatic
rule for selecting the bandwidths /), and hence works as general plug-in replacement
for histograms—we did not observe any reasons to prefer using histograms over GKDE.
LGPDE [22] was demonstrated to further slightly improve accuracy while facilitating uncer-
tainty propagation for arbitrary classifiers, but this comes with a significant computational
overhead, even when using the more efficient Laplace approximation. Our results indicate
that there is value in explicitly modeling the uncertainty of the density estimate itself but
we do not yet provide a practical approach for arbitrary problems; to proceed towards
computationally efficient but still accurate LGPDE, one could use sparse variational approx-
imations [59]. Besides LGPDE, we could also consider other Bayesian density estimators,
for instance, Dirichlet process mixtures [60].

In this work we only considered non-parametric density estimators as representations,
since they are generally applicable for all imaging modalities. For SAR specifically, an
alternative would be to consider parametric distribution estimates [61]. For instance, a
Gamma distribution model can be used for pixel intensities [62], and complex-valued
SAR backscatter data can modeled using a complex Wishart distribution [63—65]. How-
ever, actual observed signal can display behaviors that require increasingly sophisticated
distributions to decrease model bias [61].

Finally, we make three generalizing notes on the method. First, it can be applied
directly to representing time series of the observations, either by promoting time to an
additional feature dimension of the density or by concatenating the representations for the
individual time points. Second, the raster images A; may represent multiple sources with
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different spatial resolutions, multiple bands and features. Third, an object’s pixel set X can
be conventionally defined by a geospatial vector polygon, but does not necessarily need to
be contiguous or of any regular shape. For instance, it could be a scattered set of individual
pixels occluded by atmospheric haze in a cloud detection application.

5. Conclusions

Remote sensing tasks related to agricultural land use frequently involve delineated
areas of crop fields, for example, field parcels, as bounded objects of interest that have
similarly distributed pixel content with varying degrees of texture. We provided a practical
computational pipeline for large-scale agricultural monitoring tasks, combining robust
distributional representations computed for individual parcels with standard classifiers.
The approach is compatible with arbitrary remote sensing images. We demonstrated
the approach here on Sentinel data, using VH and VV polarities of SAR and for NDVI
and NDTI spectral indices of MSI, but the computational pipeline is compatible with
other EO data sources and indices. Importantly, our approach is amenable for easy data
fusion as each source can be processed independently and in parallel. We described and
evaluated alternative density estimators for forming the representation, ranging from
simple histograms to a non-parametric Bayesian density estimator of LGPDE, and showed
that both provide robust and reliable representations. The advantage of using proper
estimators is bigger for small training sets consisting of small and varying-sized objects,
but we also observed standard multivariate histograms to perform well in most cases.
A simple parametric multivariate density estimator GKDE was found to provide the
best compromise between computational complexity and accuracy, but for end-to-end
uncertainty quantification the LGPDE may offer further advantages.

The approach was demonstrated in the task of off-season soil tillage classification
in Southern Finland for the purpose of administrative monitoring. We used a collection
of 127,757 field parcels monitored in April 2018 and annotated to six tillage method and
vegetation cover classes. The task is challenging due to the small size of many of the
individual parcels, unequal distribution of classes, and in particular because of highly
similar classes and mislabeling of both training and evaluation instances. By combining
MSI and SAR data using the representations that can be estimated already from small
parcels, we reached 70% accuracy with six classes and 82% accuracy for a simplified
problem considering only the three most important classes. This is already sufficient for
partial automation of large-scale tillage monitoring. Furthermore, we showed that, for
the three-class problem, we can reach 78% accuracy already on a very small training set
of less than 500 parcels. The proposed computational method is applicable also for other
agricultural monitoring tasks, such as crop yield prediction. We expect the proposed
method to generalize from polygonal annotations of crop fields to other formats of segment
annotation and types of human-regulated land use.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app12020679/s1, S1. Sentinel-1 data. S2. Sentinel-2 data.

Author Contributions: Conceptualization, M.L., M.Y.-H. and A.K.; methodology, M.L., M.Y.-H. and
A K,; software, M.L. and M.Y.-H.; data curation, M.Y.-H.; writing, M.L., M.Y.-H. and A K.; supervision,
A K. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the European Union (grant 101033957) and Academy of
Finland Flagship programme: Finnish Center for Artificial Intelligence, FCAI

Data Availability Statement: The parcel delineation data used for the study is not currently publicly
available and the authors do not have permission to publish any identifying details. However,
we publish a high-level preprocessed and anonymized dataset that does not reveal geometry or
geographical location of individual parcels to protect the individual private small farmers that own
them. The software for the data flow, the computational methods, the data and instructions for
easy execution as a public Docker container are available at: https://github.com/luotsi/vegcover-
manuscript-12_2021.


https://www.mdpi.com/article/10.3390/app12020679/s1
https://www.mdpi.com/article/10.3390/app12020679/s1
https://github.com/luotsi/vegcover-manuscript-12_2021
https://github.com/luotsi/vegcover-manuscript-12_2021

Appl. Sci. 2022,12, 679 17 of 19

Acknowledgments: Data from Sentinel-1 and Sentinel-2 originates from the European Copernicus
Sentinel Program. We thank Mikko Strahlendorff of the Finnish Meteorological Institute for pro-
cessing the Sentinel-1 mosaics and his valuable comments concerning environmental monitoring
with Sentinel-1 and also would like to acknowledge the CSC — IT Center for Science, Finland, for
computational resources and user support. Open access funding provided by University of Helsinki.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References

1.  Orynbaikyzy, A.; Gessner, U.; Conrad, C. Crop type classification using a combination of optical and radar remote sensing data:
A review. Int. |. Remote Sens. 2019, 40, 6553-6595. [CrossRef]

2. Felegari, S.; Sharifi, A.; Moravej, K.; Amin, M.; Golchin, A.; Muzirafuti, A.; Tariq, A.; Zhao, N. Integration of Sentinel 1 and
Sentinel 2 Satellite Images for Crop Mapping. Appl. Sci. 2021, 11, 10104. [CrossRef]

3. Garioud, A.; Valero, S.; Giordano, S.; Mallet, C. Recurrent-based regression of Sentinel time series for continuous vegetation
monitoring. Remote Sens. Environ. 2021, 263, 112419. [CrossRef]

4. Mateo-Garcia, G.; Gémez-Chova, L.; Camps-Valls, G. Convolutional neural networks for multispectral image cloud masking.
In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, TX, USA, 23-28 July 2017;
pp. 2255-2258.

5. Kussul, N.; Lavreniuk, M.; Skakun, S.; Shelestov, A. Deep learning classification of land cover and crop types using remote
sensing data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 778-782. [CrossRef]

6. Luotamo, M.; Metsdamaki, S.; Klami, A. Multiscale Cloud Detection in Remote Sensing Images Using a Dual Convolutional Neural
Network. IEEE Trans. Geosci. Remote Sens. 2021, 59, 4972-4983. [CrossRef]

7. Fu, G, Liuy, C; Zhou, R;; Sun, T.; Zhang, Q. Classification for high resolution remote sensing imagery using a fully convolutional
network. Remote Sens. 2017, 9, 498. [CrossRef]

8.  Salehi, B.; Daneshfar, B.; Davidson, A.M. Accurate crop-type classification using multi-temporal optical and multi-polarization
SAR data in an object-based image analysis framework. Int. |. Remote Sens. 2017, 38, 4130-4155. [CrossRef]

9. McNairn, H; Ellis, J.; Van Der Sanden, J.; Hirose, T.; Brown, R. Providing crop information using RADARSAT-1 and satellite
optical imagery. Int. . Remote Sens. 2002, 23, 851-870. [CrossRef]

10. RufBBwurm, M.; Kérner, M. Self-attention for raw optical Satellite Time Series Classification. ISPRS ]. Photogramm. Remote Sens.
2020, 169, 421-435. [CrossRef]

11.  Voormansik, K.; Zalite, K.; Stinter, I.; Tamm, T.; Koppel, K.; Verro, T.; Brauns, A.; Jakovels, D.; Praks, J. Separability of Mowing
and Ploughing Events on Short Temporal Baseline Sentinel-1 Coherence Time Series. Remote Sens. 2020, 12, 3784. [CrossRef]

12.  De Vroey, M.; Radoux, J.; Defourny, P. Grassland Mowing Detection Using Sentinel-1 Time Series: Potential and Limitations.
Remote Sens. 2021, 13, 348. [CrossRef]

13. Planque, C.; Lucas, R.; Punalekar, S.; Chognard, S.; Hurford, C.; Owers, C.; Horton, C.; Guest, P; King, S.; Williams, S.; et al.
National Crop Mapping Using Sentinel-1 Time Series: A Knowledge-Based Descriptive Algorithm. Remote Sens. 2021, 13, 846.
[CrossRef]

14. Swain, M.J,; Ballard, D.H. Color indexing. Int. J. Comput. Vis. 1991, 7, 11-32. [CrossRef]

15.  Schiele, B.; Crowley, J.L. Probabilistic object recognition using multidimensional receptive field histograms. In Proceedings of the
IEEE 13th International Conference on Pattern Recognition, Washington, DC, USA, 25-29 August 1996; Volume 2, pp. 50-54.

16. Barla, A.; Odone, F; Verri, A. Histogram intersection kernel for image classification. In Proceedings of the IEEE 2003 International
Conference on Image Processing, Barcelona, Spain, 14-18 September 2003; Volume 3, pp. 3-513.

17.  Zhang, G.; Jia, X.; Kwok, N.M. Super pixel based remote sensing image classification with histogram descriptors on spectral
and spatial data. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany,
22-27 July 2012; pp. 4335-4338.

18.  Yang, W.; Hou, K.; Liu, B.; Yu, F; Lin, L. Two-stage clustering technique based on the neighboring union histogram for
hyperspectral remote sensing images. IEEE Access 2017, 5, 5640-5647. [CrossRef]

19. Demir, B.; Bruzzone, L. Histogram-based attribute profiles for classification of very high resolution remote sensing images.
IEEE Trans. Geosci. Remote Sens. 2015, 54, 2096-2107. [CrossRef]

20. Simonoff, ].S. Smoothing Methods in Statistics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012.

21.  Scott, D.W. Multivariate Density Estimation: Theory, Practice, and Visualization; John Wiley & Sons: Hoboken, NJ, USA, 2015.

22. Riihimaéki, J.; Vehtari, A. Laplace approximation for logistic Gaussian process density estimation and regression. Bayesian Anal.
2014, 9, 425-448. [CrossRef]

23. Baker, J.; Laflen, J. Water quality consequences of conservation tillage: New technology is needed to improve the water quality
advantages of conservation tillage. J. Soil Water Conserv. 1983, 38, 186-193.

24. Bechmann, MLE.; Bee, E. Soil tillage and crop growth effects on surface and subsurface runoff, loss of soil, phosphorus and

nitrogen in a cold climate. Land 2021, 10, 77. [CrossRef]


http://doi.org/10.1080/01431161.2019.1569791
http://dx.doi.org/10.3390/app112110104
http://dx.doi.org/10.1016/j.rse.2021.112419
http://dx.doi.org/10.1109/LGRS.2017.2681128
http://dx.doi.org/10.1109/TGRS.2020.3015272
http://dx.doi.org/10.3390/rs9050498
http://dx.doi.org/10.1080/01431161.2017.1317933
http://dx.doi.org/10.1080/01431160110070753
http://dx.doi.org/10.1016/j.isprsjprs.2020.06.006
http://dx.doi.org/10.3390/rs12223784
http://dx.doi.org/10.3390/rs13030348
http://dx.doi.org/10.3390/rs13050846
http://dx.doi.org/10.1007/BF00130487
http://dx.doi.org/10.1109/ACCESS.2017.2695616
http://dx.doi.org/10.1109/TGRS.2015.2496167
http://dx.doi.org/10.1214/14-BA872
http://dx.doi.org/10.3390/land10010077

Appl. Sci. 2022,12, 679 18 of 19

25.
26.

27.

28.

29.

30.

31.
32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

Daughtry, C. Discriminating Crop Residues from Soil by Shortwave Infrared Reflectance. Agron. J. 2001, 93, 125-131. [CrossRef]
Daughtry, C.; Doraiswamy, P.; Hunt, E.; Stern, A.; McMurtrey, J.; Prueger, J. Remote sensing of crop residue cover and soil tillage
intensity. Soil Tillage Res. 2006, 91, 101-108. [CrossRef]

Quemada, M.; Daughtry, C.S.T. Spectral Indices to Improve Crop Residue Cover Estimation under Varying Moisture Conditions.
Remote Sens. 2016, 8, 660. [CrossRef]

McNairn, H.; Boisvert, J.; Major, D.; Gwyn, Q.; Brown, R.; Smith, A. Identification of Agricultural Tillage Practices from C-Band
Radar Backscatter. Can. J. Remote Sens. 1996, 22, 154-162. [CrossRef]

McNairn, H.; Duguay, C.; Boisvert, J.; Huffman, E.; Brisco, B. Defining the Sensitivity of Multi-Frequency and Multi-Polarized
Radar Backscatter to Post-Harvest Crop Residue. Can. ]. Remote Sens. 2001, 27, 247-263. [CrossRef]

McNairn, H.; Duguay, C.; Brisco, B.; Pultz, T. The effect of soil and crop residue characteristics on polarimetric radar response.
Remote Sens. Environ. 2002, 80, 308-320. [CrossRef]

Zhang, ]. Multi-source remote sensing data fusion: Status and trends. Int. J. Image Data Fusion 2010, 1, 5-24. [CrossRef]

Haas, J.; Ban, Y. Sentinel-1A SAR and Sentinel-2A MSI data fusion for urban ecosystem service mapping. Remote Sens. Appl.
Soc. Environ. 2017, 8, 41-53. [CrossRef]

Ban, Y.; Jacob, A. Object-based fusion of multitemporal multiangle ENVISAT ASAR and HJ-1B multispectral data for urban
land-cover mapping. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1998-2006. [CrossRef]

Veloso, A.; Mermoz, S.; Bouvet, A.; Le Toan, T.; Planells, M.; Dejoux, J.E; Ceschia, E. Understanding the temporal behavior of
crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sens. Environ. 2017, 199, 415-426. [CrossRef]
Orynbaikyzy, A.; Gessner, U.; Mack, B.; Conrad, C. Crop type classification using fusion of Sentinel-1 and Sentinel-2 data:
Assessing the impact of feature selection, optical data availability, and parcel sizes on the accuracies. Remote Sens. 2020, 12, 2779.
[CrossRef]

Azzari, G.; Grassini, P; Edreira, ].I.LR.; Conley, S.; Mourtzinis, S.; Lobell, D.B. Satellite mapping of tillage practices in the North
Central US region from 2005 to 2016. Remote Sens. Environ. 2019, 221, 417-429. [CrossRef]

Denize, J.; Hubert-Moy, L.; Betbeder, J.; Corgne, S.; Baudry, J.; Pottier, E. Evaluation of Using Sentinel-1 and -2 Time-Series to
Identify Winter Land Use in Agricultural Landscapes. Remote Sens. 2019, 11, 37. [CrossRef]

Finnish Meteorological Institute. Sentinel-1 SAR-Image Mosaic (Slsar). Available online: https://ckan.ymparisto.fi/dataset/
sentinel-1-sar-image-mosaic-slsar-sentinel-1-sar-kuvamosaiikki-s1sar (accessed on 8 February 2021).

European Space Agency. Sentinel-1 SAR Interferometric Wide Swath. Available online: https://sentinels.copernicus.eu/web/
sentinel /user-guides/sentinel-1-sar/acquisition-modes/interferometric-wide-swath (accessed on 8 February 2021).

European Space Agency. Level-2A Algorithm Overview/NDVI. Available online: https://sentinels.copernicus.eu/web/
sentinel /technical-guides/sentinel-2-msi/level-2a/algorithm (accessed on 26 March 2021).

Van Deventer, A.; Ward, A.; Gowda, P; Lyon, J. Using thematic mapper data to identify contrasting soil plains and tillage practices.
Photogramm. Eng. Remote Sens. 1997, 63, 87-93.

Zhang, H.; Kang, ].; Xu, X.; Zhang, L. Accessing the temporal and spectral features in crop type mapping using multi-temporal
Sentinel-2 imagery: A case study of Yi'an County, Heilongjiang province, China. Comput. Electron. Agric. 2020, 176, 105618.
[CrossRef]

Parzen, E. On estimation of a probability density function and mode. Ann. Math. Stat. 1962, 33, 1065-1076. [CrossRef]

O’Brien, T.A.; Kashinath, K.; Cavanaugh, N.R.; Collins, W.D.; O'Brien, J.P. A fast and objective multidimensional kernel density
estimation method: FastKDE. Comput. Stat. Data Anal. 2016, 101, 148-160. [CrossRef]

Leonard, T. Density estimation, stochastic processes and prior information. J. R. Stat. Soc. Ser. B (Methodol.) 1978, 40, 113-132.
[CrossRef]

Tokdar, S.T. Towards a faster implementation of density estimation with logistic Gaussian process priors. |. Comput. Graph. Stat.
2007, 16, 633-655. [CrossRef]

Carpenter, B.; Gelman, A.; Hoffman, M.D.; Lee, D.; Goodrich, B.; Betancourt, M.; Brubaker, M.A.; Guo, J.; Li, P.; Riddell, A. Stan:
A probabilistic programming language. J. Stat. Softw. 2017, 76, 1-32. [CrossRef]

Van Tricht, K.; Gobin, A.; Gilliams, S.; Piccard, I. Synergistic Use of Radar Sentinel-1 and Optical Sentinel-2 Imagery for Crop
Mapping: A Case Study for Belgium. Remote Sens. 2018, 10, 1642. [CrossRef]

Vreugdenhil, M.; Wagner, W.; Bauer-Marschallinger, B.; Pfeil, I.; Teubner, I.; Riidiger, C.; Strauss, P. Sensitivity of Sentinel-1
Backscatter to Vegetation Dynamics: An Austrian Case Study. Remote Sens. 2018, 10, 1396. [CrossRef]

Vreugdenhil, M.; Navacchi, C.; Bauer-Marschallinger, B.; Hahn, S.; Steele-Dunne, S.; Pfeil, I.; Dorigo, W.; Wagner, W. Sentinel-1
Cross Ratio and Vegetation Optical Depth: A Comparison over Europe. Remote Sens. 2020, 12, 3404. [CrossRef]

Ho Tong Minh, D.; Ienco, D.; Gaetano, R.; Lalande, N.; Ndikumana, E.; Osman, E; Maurel, P. Deep Recurrent Neural Networks
for Winter Vegetation Quality Mapping via Multitemporal SAR Sentinel-1. IEEE Geosci. Remote Sens. Lett. 2018, 15, 464—468.
[CrossRef]

Denize, J.; Hubert-Moy, L.; Pottier, E. Polarimetric SAR Time-Series for Identification of Winter Land Use. Sensors 2019, 19, 5574.
[CrossRef]

McNairn, H.; Champagne, C.; Shang, J.; Holmstrom, D.; Reichert, G. Integration of optical and Synthetic Aperture Radar (SAR)
imagery for delivering operational annual crop inventories. ISPRS ]J. Photogramm. Remote Sens. 2009, 64, 434—449. [CrossRef]


http://dx.doi.org/10.2134/agronj2001.931125x
http://dx.doi.org/10.1016/j.still.2005.11.013
http://dx.doi.org/10.3390/rs8080660
http://dx.doi.org/10.1080/07038992.1996.10874649
http://dx.doi.org/10.1080/07038992.2001.10854941
http://dx.doi.org/10.1016/S0034-4257(01)00312-1
http://dx.doi.org/10.1080/19479830903561035
http://dx.doi.org/10.1016/j.rsase.2017.07.006
http://dx.doi.org/10.1109/TGRS.2012.2236560
http://dx.doi.org/10.1016/j.rse.2017.07.015
http://dx.doi.org/10.3390/rs12172779
http://dx.doi.org/10.1016/j.rse.2018.11.010
http://dx.doi.org/10.3390/rs11010037
https://ckan.ymparisto.fi/dataset/sentinel-1-sar-image-mosaic-s1sar-sentinel-1-sar-kuvamosaiikki-s1sar
https://ckan.ymparisto.fi/dataset/sentinel-1-sar-image-mosaic-s1sar-sentinel-1-sar-kuvamosaiikki-s1sar
https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-1-sar/acquisition-modes/interferometric-wide-swath
https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-1-sar/acquisition-modes/interferometric-wide-swath
https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-2-msi/level-2a/algorithm
https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-2-msi/level-2a/algorithm
http://dx.doi.org/10.1016/j.compag.2020.105618
http://dx.doi.org/10.1214/aoms/1177704472
http://dx.doi.org/10.1016/j.csda.2016.02.014
http://dx.doi.org/10.1111/j.2517-6161.1978.tb01655.x
http://dx.doi.org/10.1198/106186007X210206
http://dx.doi.org/10.18637/jss.v076.i01
http://dx.doi.org/10.3390/rs10101642
http://dx.doi.org/10.3390/rs10091396
http://dx.doi.org/10.3390/rs12203404
http://dx.doi.org/10.1109/LGRS.2018.2794581
http://dx.doi.org/10.3390/s19245574
http://dx.doi.org/10.1016/j.isprsjprs.2008.07.006

Appl. Sci. 2022,12, 679 19 of 19

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

Inglada, ].; Vincent, A.; Arias, M.; Marais-Sicre, C. Improved Early Crop Type Identification By Joint Use of High Temporal
Resolution SAR And Optical Image Time Series. Remote Sens. 2016, 8, 362. [CrossRef]

Torbick, N.; Huang, X.; Ziniti, B.; Johnson, D.; Masek, J.; Reba, M. Fusion of Moderate Resolution Earth Observations for
Operational Crop Type Mapping. Remote Sens. 2018, 10, 1058. [CrossRef]

Wang, S.; Azzari, G.; Lobell, D.B. Crop type mapping without field-level labels: Random forest transfer and unsupervised
clustering techniques. Remote Sens. Environ. 2019, 222, 303-317. [CrossRef]

John, G.H.; Langley, P. Estimating continuous distributions in Bayesian classifiers (orig. 1995). arXiv 2013, arXiv:1302.4964.
Gramacki, A. Nonparametric Kernel Density Estimation and Its Computational Aspects; Springer: Berlin/Heidelberg, Germany, 2018.
Titsias, M.K. Variational Learning of Inducing Variables in Sparse Gaussian Processes. In Proceedings of the 12th International
Conference on Artificial Intelligence and Statistics, Clearwater Beach, FL, USA, 16-18 April 2009; pp. 567-574.

Escobar, M.D.; West, M. Bayesian density estimation and inference using mixtures. J. Am. Stat. Assoc. 1995, 90, 577-588.
[CrossRef]

Deng, X.; Lopez-Martinez, C.; Chen, J.; Han, P. Statistical Modeling of Polarimetric SAR Data: A Survey and Challenges.
Remote Sens. 2017, 9, 348. [CrossRef]

Shuai, Y.; Sun, H.; Xu, G. SAR image segmentation based on level set with stationary global minimum. IEEE Geosci. Remote
Sens. Lett. 2008, 5, 644—648. [CrossRef]

Nielsen, A.A.; Skriver, H.; Conradsen, K. Complex Wishart Distribution Based Analysis of Polarimetric Synthetic Aperture
Radar Data. In Proceedings of the IEEE 2007 International Workshop on the Analysis of Multi-temporal Remote Sensing Images,
Leuven, Belgium, 18-20 July 2007; pp. 1-6.

Sanchez, S.; Marpu, P.R.; Plaza, A.; Paz-Gallardo, A. Parallel implementation of polarimetric synthetic aperture radar data
processing for unsupervised classification using the complex Wishart classifier. IEEE ]. Sel. Top. Appl. Earth Obs. Remote Sens.
2015, 8, 5376-5387. [CrossRef]

Goumehei, E.; Tolpekin, V.; Stein, A.; Yan, W. Surface water body detection in polarimetric SAR data using contextual complex
Wishart classification. Water Resour. Res. 2019, 55, 7047-7059. [CrossRef]


http://dx.doi.org/10.3390/rs8050362
http://dx.doi.org/10.3390/rs10071058
http://dx.doi.org/10.1016/j.rse.2018.12.026
http://dx.doi.org/10.1080/01621459.1995.10476550
http://dx.doi.org/10.3390/rs9040348
http://dx.doi.org/10.1109/LGRS.2008.2001768
http://dx.doi.org/10.1109/JSTARS.2015.2471083
http://dx.doi.org/10.1029/2019WR025192

