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Abstract

In a previous paper, we obtained several “compact versions” of Rubio de Francia’s weighted
xtrapolation theorem, which allowed us to extrapolate the compactness of linear operators from
ust one space to the full range of weighted Lebesgue spaces, where these operators are bounded.
n this paper, we study the extrapolation of compactness for bilinear operators in terms of bilinear

uckenhoupt weights. As applications, we easily recover and improve earlier results on the weighted
ompactness of commutators of bilinear Calderón–Zygmund operators, bilinear fractional integrals and
ilinear Fourier multipliers. More general versions of these results are recently due to Cao, Olivo
nd Yabuta (arXiv:2011.13191), whose approach depends on developing weighted versions of the
réchet–Kolmogorov criterion of compactness, whereas we avoid this by relying on “softer” tools, which
ight have an independent interest in view of further extensions of the method.

c 2021 The Author(s). Published by Elsevier B.V. on behalf of Royal Dutch Mathematical Society (KWG).
his is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

eywords: Rubio de Francia extrapolation; Multilinear Muckenhoupt weights; Compact operators; Calderón-Zygmund
operators; Fractional integral operators; Fourier multipliers; Commutators

1. Introduction

Rubio de Francia’s weighted extrapolation theorem [18] is one of the cornerstones of the
odern theory of weighted norm inequalities. It enables one to deduce the boundedness of
given operator on L p(w) for all 1 < p < ∞ and all weights w ∈ Ap(Rd ), provided this

∗ Corresponding author.
E-mail addresses: tuomas.hytonen@helsinki.fi (T. Hytönen), stefanos.lappas@helsinki.fi (S. Lappas).
https://doi.org/10.1016/j.indag.2021.09.007
0019-3577/ c⃝ 2021 The Author(s). Published by Elsevier B.V. on behalf of Royal Dutch Mathematical Society
(KWG). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://www.elsevier.com/locate/indag
https://doi.org/10.1016/j.indag.2021.09.007
http://www.elsevier.com/locate/indag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.indag.2021.09.007&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:tuomas.hytonen@helsinki.fi
mailto:stefanos.lappas@helsinki.fi
https://doi.org/10.1016/j.indag.2021.09.007
http://creativecommons.org/licenses/by/4.0/


T. Hytönen and S. Lappas Indagationes Mathematicae 33 (2022) 397–420

D

w
i
w
p
e
e
s
d

T
f
w

h
q

h

a

T

i
o

c
O

operator is bounded on L p0 (w0) for some 1 < p0 < ∞ and all weights w0 ∈ Ap0 (Rd ).
ifferent versions of this extrapolation theorem are studied in [16].
A multilinear Rubio de Francia extrapolation theorem of boundedness on weighted spaces

as first established by Grafakos and Martell in [21] (see also the extension of this result
n [15]). The main disadvantage of these results is that they treat each variable separately
ith its own Muckenhoupt class of weights and do not fully use the multilinear nature of the
roblem. In this direction, Li–Martell–Ombrosi [31] (see also [30,34] for further extensions to
nd-point cases) obtained a more satisfactory multilinear analogue of the Rubio de Francia’s
xtrapolation theorem dealing with the multilinear A p⃗(Rmd ) classes introduced in [29]. We
tate here the bilinear version of their extrapolation result as follows (we will provide detailed
efinitions in the next section):

heorem 1.1 ([31], Corollary 1.5). Let F be a collection of triplets ( f, f1, f2) of non-negative
unctions. Let p⃗ = (p1, p2) be exponents with 1 ≤ p1, p2 < ∞, such that given any
⃗ = (w1, w2) ∈ A p⃗(R2d ), the inequality

∥ f ∥L p(νw⃗, p⃗) ≲
2∏

i=1

∥ fi∥L pi (wi ),

olds for all ( f, f1, f2) ∈ F , where 1
p =

1
p1

+
1
p2

and νw⃗, p⃗ =
∏2

i=1 w
p/pi
i . Then for all exponents

⃗ = (q1, q2) with 1 < q1, q2 < ∞, and for all weights v⃗ = (v1, v2) ∈ Aq⃗ (R2d ) the inequality

∥ f ∥Lq (νv⃗,q⃗ ) ≲
2∏

i=1

∥ fi∥Lqi (vi )

olds for all ( f, f1, f2) ∈ F , where 1
q =

1
q1

+
1

q2
and νv⃗,q⃗ =

∏2
i=1 v

q/qi
i .

In a recent paper, we [26] first provided the extrapolation of compactness of a linear
operator. Moreover, we obtained generalizations of the preceding compact extrapolation to the
“off-diagonal” and limited range cases.

Inspired by the work above, we extend our results of [26] about the extrapolation of
compactness to the following bilinear setting:

Theorem 1.2. Let Θ be a collection of ordered triples of Banach spaces (Y1, Y2, Y ), and let
T be a bilinear operator defined and

bounded T : Y1 × Y2 → Y for all (Y1, Y2, Y ) ∈ Θ

nd

compact T : X1 × X2 → X for some (X1, X2, X ) ∈ Θ .

hen T is

compact T : Z1 × Z2 → Z for all (Z1, Z2, Z ) ∈ Θ

n each of the several cases of Θ involving weighted L p spaces as described in Theorem 2.9
f Section 2.

Shortly before our completion of this paper, this same result, even in a more general version
overing higher order multilinearities and quasi-Banach spaces, was already announced by Cao,
livo and Yabuta [6], which gives these authors a priority to this result. The overall relation
398
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of the present paper and [6] is a bit complicated, due to several subsequent versions of both
works that were posted in the arXiv. As said, version 1 of [6] (Nov 2020) preceded ours, but
did not provide a self-contained argument, since some results were quoted from a preprint of
the same authors that was not publicly available. This was fixed in version 2 of [6] that was
posted shortly after version 1 of the present work in Dec 2020. On the other hand, versions 1
and 2 of [6] did not treat the “off-diagonal” cases of extrapolation, which we covered since our
version 1 (case (2) of our Theorem 2.9) but which was only added (in a more general form)
in version 3 of [6] (Feb 2021). The newest version of [6] hence seems to supersede ours in
all aspects, but there are a couple of features in our approach that still make it a worthwhile
alternative:

• As in the previous part [26] of this series, we have tried to make our approach as “soft”
as possible, so that compactness is achieved by abstract means, without the need to
describe concrete conditions for compactness in the weighted L p spaces. This is a main
difference of our approach compared to all other works on compactness of operators on
L p(w), including the recent [6], where weighted versions of the Fréchet–Kolmogorov
compactness criterion play a key role (see [6, Lemma 2.9], which extends [37, Lemma
4.1]).

• Our result is still powerful enough to recover and improve several compactness results for
bilinear commutators that were available before [6] (for applications see Sections 6–8).

The paper is organized as follows: in Section 2, we recall some definitions about multilinear
Muckenhoupt weights and we state in detail our main result (see Theorem 2.9). In Section 3 we
present the proof of Theorem 2.9 by collecting some previously known results and taking some
auxiliary results for granted. Sections 4 and 5 are devoted to the proofs of these auxiliary results
(see Proposition 3.2). In Sections 6–8 we provide several applications of our main results. In
particular, we obtain results for the commutators of bilinear Calderón-Zygmund operators,
bilinear fractional integral operators and bilinear Fourier multipliers.

Notation

Throughout the paper, C always denotes a positive constant that may vary from line to
line but remains independent of the main parameters. We use the symbol f ≲ g to denote
that there exists a positive constant C such that f ≤ Cg. The term cube always refers to a
cube Q ⊂ Rd and |Q| denotes its Lebesgue measure. We denote the average of w over Q as
⟨w⟩Q := |Q|

−1 ∫
Q w and p′ is the conjugate exponent to p, that is p′

:= p/(p − 1).

2. Preliminaries and the statement of the main result

We begin by recalling several definitions related to linear and multilinear Muckenhoupt
weights.

Definition 2.1 ([33]). A weight w ∈ L1
loc(Rd ) is called a Muckenhoupt Ap(Rd ) weight (or

w ∈ Ap(Rd )) if

[w]A p := sup
Q

⟨w⟩Q⟨w
−

1
p−1 ⟩

p−1
Q < ∞, 1 < p < ∞,

[w]A1 := sup⟨w⟩Q∥w−1
∥L∞(Q) < ∞, p = 1,
Q
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where the supremum is taken over all cubes Q ⊂ Rd , and ⟨w⟩Q := |Q|
−1 ∫

Q w. A weight w

s called an Ap,q (Rd ) weight (or w ∈ Ap,q (Rd )) if

[w]A p,q := sup
Q

⟨wq
⟩

1/q
Q ⟨w−p′

⟩
1/p′

Q < ∞, 1 < p ≤ q < ∞,

here p′
:= p/(p − 1) denotes the conjugate exponent.

efinition 2.2. Given a vector of weights w⃗ = (w1, . . . , wm), and p⃗ = (p1, . . . , pm) ∈

0, ∞)m , we define

νw⃗, p⃗ :=

m∏
j=1

w
p/p j
j , νw⃗ :=

m∏
j=1

w j .

efinition 2.3 ([29]). Let p⃗ = (p1, . . . , pm) and 1
p =

∑m
j=1

1
p j

with 1 ≤ p1, . . . , pm < ∞.
e say that a vector of weights w⃗ = (w1, . . . , wm) satisfies the multilinear A p⃗(Rmd ) condition

or w⃗ ∈ A p⃗(Rmd )) if

[w]A p⃗ := sup
Q

⟨νw⃗, p⃗⟩
1
p
Q

m∏
j=1

⟨w
1−p′

j
j ⟩

1
p′

j
Q < ∞,

here the supremum is taken over all cubes Q ⊂ Rd , and ⟨w j ⟩Q :=
1

|Q|

∫
Q w j .

When p j = 1, ⟨w
1−p′

j
j ⟩

1
p′

j
Q is understood as (infQ w j )−1.

emark 2.4. Note that if m = 1, then A p⃗(Rmd ) is just the classical weight class Ap(Rd ).

efinition 2.5 ([27]). Let m ≥ 1 be an integer, p⃗ = (p1, . . . , pm) ∈ (0, ∞)m , 1
p =

∑m
j=1

1
p j

,
s j ∈ (0, p j ] (1 ≤ j ≤ m) and 1

s =
∑m

j=1
1
s j

. We say that a vector of weights w⃗ = (w1, . . . , wm)
atisfies the multilinear A p⃗/s⃗(Rmd ) condition (or w⃗ ∈ A p⃗/s⃗(Rmd )) if

[w]A p⃗/s⃗ := sup
Q

⟨νw⃗, p⃗⟩
1
p
Q

m∏
j=1

⟨w
1−

( p j
s j

)′

j ⟩

1
s j

−
1

p j
Q < ∞,

here the supremum is taken over all cubes Q ⊂ Rd , and ⟨w j ⟩Q :=
1

|Q|

∫
Q w j .

When p j = s j , ⟨w
1−

( p j
s j

)′

j ⟩

1
s j

−
1

p j
Q is understood as (infQ w j )

−
1

p j .

emark 2.6. When s1 = · · · = sm = 1, A p⃗/s⃗(Rmd ) is just the weight class A p⃗(Rmd ) from
efinition 2.3. Note that we do not assign any independent meaning to the subscript “ p⃗/s⃗” in

A p⃗/s⃗ ; the quotient line only serves a separator of the two vector indices p⃗ and s⃗.

efinition 2.7 ([10,32]). Let p⃗ = (p1, . . . , pm) ∈ [1, ∞)m , 1
p =

∑m
j=1

1
p j

and p∗ be a number
1/m < p ≤ p∗ < ∞. We say that a vector of weights w⃗ = (w1, . . . , wm) satisfies the

ultilinear A p⃗,p∗ (Rmd ) condition (or w⃗ ∈ A p⃗,p∗ (Rmd )) if
400
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[w]A p⃗,p∗ := sup
Q

⟨ν
p∗

w⃗
⟩

1
p∗

Q

m∏
j=1

⟨w
−p′

j
j ⟩

1
p′

j
Q < ∞,

here the supremum is taken over all cubes Q ⊂ Rd , and ⟨w j ⟩Q :=
1

|Q|

∫
Q w j .

When p j = 1, ⟨w
−p′

j
j ⟩

1
p′

j
Q is understood as (infQ w j )−1.

emark 2.8. When m = 1, we note that A p⃗,p∗ (Rmd ) will degenerate into the classical weight
lass Ap,p∗ (Rd ).

As we will work in the weighted setting, we consider weighted Lebesgue spaces

L p(w) :=

{
f : Rd

→ C measurable
⏐⏐⏐ ∥ f ∥L p(w) :=

(∫
Rd

| f |
pw

)1/p
< ∞

}
.

Our main result about the extrapolation of compactness for bilinear operators is as follows:

heorem 2.9. Let Θ be a collection of ordered triples of Banach spaces (Y1, Y2, Y ), and let
T be a bilinear operator defined and

bounded T : Y1 × Y2 → Y for all (Y1, Y2, Y ) ∈ Θ (2.10)

nd

compact T : X1 × X2 → X for some (X1, X2, X ) ∈ Θ . (2.11)

hen T is

compact T : Z1 × Z2 → Z for all (Z1, Z2, Z ) ∈ Θ

n each of the following cases, where α ≥ 0, s⃗ = (s1, s2) ∈ [1, ∞)2 and 1
s =

1
s1

+
1
s2

:

(1) Θ consists of all triples
(

Lq1 (v1), Lq2 (v2), Lq (νv⃗,q⃗ )
)

, where

q⃗ = (q1, q2) ∈ (s1, ∞) × (s2, ∞),
1
q

=
1
q 1

+
1
q 2

< 1, νv⃗,q⃗ =

2∏
j=1

v

q
q j
j

and

(a) v⃗ = (v1, v2) ∈ Aq⃗/s⃗(R2d ), or
(b) v⃗ = (v1, v2) ∈ Aq1/s1 (Rd ) × Aq2/s2 (Rd ).

(2) Θ consists of all triples
(

Lq1 (vq1
1 ), Lq2 (vq2

2 ), Lq∗

(νq∗

v⃗
)
)

, where

q⃗ = (q1, q2) ∈ (1, ∞)2,
1
q

=
1
q 1

+
1
q 2

∈ (α, α+1),
1
q∗

=
1
q

−α, νv⃗ =

2∏
j=1

v j

and

(c) v⃗ = (v1, v2) ∈ Aq⃗,q∗ (R2d ), or

(d) v⃗ = (v1, v2) ∈ Aq1,q̃1 (Rd ) × Aq2,q̃2 (Rd ), where
1

=
1

−
α

.

q̃ j q j 2
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Remark 2.12.

(1) Because of the extrapolation Theorem 1.1, in the case (1a) of Theorem 2.9 it is enough
to assume the boundedness (2.10) of a bilinear operator T from Lq1 (v1) × Lq2 (v2) to
Lq (νv⃗,q⃗ ) for some exponents q⃗ = (q1, q2) ∈ (s1, ∞)×(s2, ∞) such that 1

q =
1
q 1

+
1
q 2

< 1
and all weights v⃗ = (v1, v2) ∈ Aq⃗/s⃗(R2d ). The same observation applies to all the rest
cases of Theorem 2.9. Also, notice that in the case (2) of Theorem 2.9 the point of the
condition 1

q ∈ (α, α + 1) is that we want that q∗
∈ (1, ∞).

(2) The improvements [30,34] of the bounded extrapolation Theorem 1.1 show that one can
more generally allow for 1 ≤ p1, p2 ≤ ∞ in the assumptions, and 1 < q1, q2 ≤ ∞

in the conclusions, as long as one of q j remains finite. In particular, under case (1a)
of Theorem 2.9, the assumption (2.10) automatically bootstraps to a larger collection
Θ̃ ⊋ Θ , which is defined like Θ in (1a), but with q⃗ ∈ (s1, ∞] × (s2, ∞] \ {(∞, ∞)}.
On the other hand, the compactness assumption (2.11), which is made on some
(X1, X2, X ) ∈ Θ , would obviously be weakened by allowing for (X1, X2, X ) ∈ Θ̃ , and it
is natural to ask whether this weakening of the assumptions (and hence strengthening of
Theorem 2.9) is still valid. We suspect “yes”, but a justification of this would seem
to require elaborating several parts of the argument, and hence we have decided to
leave this extension outside the scope of the present work. We would like to thank an
anonymous referee for raising this interesting question. (One might also ask whether one
could achieve a more general conclusion allowing for all (Z1, Z2, Z ) ∈ Θ̃ , but here we
suspect that the answer is “no”, or at least beyond any natural extension of the present
approach. The reason is that our key Proposition 3.2 is about realizing the Z j spaces as
interpolation spaces between some X j and Y j spaces, and this would not be possible if
Z j was allowed to be an end-point L∞ space of the scale of L p spaces.)

. Proof of the main result via abstract interpolation

We collect the results from which the proof of Theorem 2.9 follows.
Following [12], we say that Ā = (A1, A2) is a Banach couple if the two Banach spaces

A j are continuously embedded in the same Hausdorff topological vector space. We write A◦

j
or the closure of A1 ∩ A2 in the norm of A j . The Banach couple A is said to be regular if
A◦

j = A j for j = 1, 2.
We denote by B( Ā × B̄, Ē) = B( Ā × B̄, (E1, E2)) the operators that satisfy the following:

∥T (a, b)∥E j ≤ M j∥a∥A j ∥b∥B j , a ∈ A1 ∩ A2, b ∈ B1 ∩ B2, j = 1, 2,

here T is a bilinear operator defined on (A1 ∩ A2) × (B1 ∩ B2) with values in E1 ∩ E2 and
M j are positive constants.

Let (Ω , µ) be a σ -finite measure space. We denote by M the collection of all (equivalence
lasses of) scalar-valued µ-measurable functions on Ω that are finite µ-almost everywhere. The
pace M becomes a complete metric space with the topology of convergence in measure on
ets of finite measure.

We say that a Banach space E of functions in M is a Banach function space if the following
our properties hold:

(a) Whenever g ∈ M, f ∈ E and |g(x)| ≤ | f (x)| µ-a.e., then g ∈ E and ∥g∥E ≤ ∥ f ∥E .
(b) If fn → f µ-a.e., and if lim infn→∞ ∥ fn∥E < ∞, then f ∈ E and ∥ f ∥E ≤

lim inf ∥ f ∥ .
n→∞ n E
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(c) For every Γ ⊆ Ω with µ(Γ ) < ∞, we have that χΓ ∈ E .
(d) For every Γ ⊆ Ω with µ(Γ ) < ∞ there is a constant cΓ > 0 such that

∫
Γ | f |dµ ≤

cΓ∥ f ∥E for every f ∈ E .

Let (Γn) be a sequence of µ-measurable sets of Ω . We put Γn → ∅ µ-a.e. if the characteristic
functions χΓn converge to 0 pointwise µ-a.e.

We say that a function f ∈ E has absolutely continuous norm if ∥ f χΓn ∥E → 0 for every
sequence (Γn) satisfying that Γn → ∅ µ-a.e. The space E is said to have absolutely continuous
norm if every function of E has absolutely continuous norm.

If E is a Banach function space then E is continuously embedded in M. Hence, if E1 and
E2 are Banach function spaces on Ω , we have that (E1, E2) is a Banach couple.

Let 0 < θ < 1. If E1 or E2 has absolutely continuous norm, then

[E1, E2]θ = { f ∈ M : | f (x)| = | f1(x)|1−θ
| f2(x)|θ , f j ∈ E j , j = 1, 2}

nd

∥ f ∥[E1,E2]θ = inf{max(∥ f1∥E1 , ∥ f2∥E2 ) : | f | = | f1|
1−θ

| f2|
θ
}.

n particular [E1, E2]θ is a Banach function space.
Our main abstract tool is the following theorem of Cobos–Fernández–Cabrera–Martı́nez [12]:

heorem 3.1 ([12], Theorem 3.2). Let Ā = (A1, A2), B̄ = (B1, B2) be Banach couples. Assume
hat (Ω , µ) is a σ -finite measure space, let Ē = (E1, E2) be a couple of Banach function spaces
n Ω , let 0 < θ < 1 and T ∈ B( Ā × B̄, Ē). If T : A1

◦
× B1

◦
→ E1 compactly and E1 has

bsolutely continuous norm, then T may be uniquely extended to a compact bilinear operator
rom [A1, A2]θ × [B1, B2]θ to [E1, E2]θ .

Examples of Banach function spaces that satisfy the assumptions of Theorem 3.1 are the
nweighted Lebesgue spaces L p(Ω ) (see [12, Corollary 3.3]). For the present needs, we will
nly use Theorem 3.1 in the following special setting:

roposition 3.2. Let Θ be a collection of ordered triples of Banach spaces, and let
Y1, Y2, Y ), (Z1, Z2, Z ) ∈ Θ . Then there is another (X1, X2, X ) ∈ Θ and γ ∈ (0, 1) such
hat

[X j , Y j ]γ = Z j , [X, Y ]γ = Z

n each of the cases (1a), (1b), (2a), (2d) of Theorem 2.9.

We postpone the proof of Proposition 3.2 to Section 5. The verification of this proposition
s the only component of the proof of Theorem 2.9 that requires actual computations, rather
han just a soft application of known results.

emma 3.3. If p j ∈ [1, ∞) and w j are weights, then the spaces A j = B j = E j = L p j (w j )
j = 1, 2) satisfy all the assumptions of Theorem 3.1.

roof. By the dominated convergence theorem, it is easy to see that A j = B j = E j = L p j (w j )
ave absolutely continuous norm. The rest of the assumptions of Theorem 3.1 are satisfied by

A j = B j = E j = L p j (w j ) due to the known properties of weighted Lebesgue spaces. □
403
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We can now give the proof of our main result:

roof of Theorem 2.9. We prove the theorem in the case that (1a) are in force. The other
ases are proved in a similar way. In particular, T : Lq1 (v1) × Lq2 (v2) → Lq (νv⃗,q⃗ ) is a
ounded bilinear operator for all q⃗ = (q1, q2) with q j ∈ (s j , ∞) ( j = 1, 2) satisfying

1
q =

∑2
j=1

1
q j

< 1 and all v⃗ = (v1, v2) ∈ Aq⃗/s⃗(R2d ). In addition, it is assumed that
T : L p1 (u1) × L p2 (u2) → L p(νu⃗, p⃗) is a compact operator for some p⃗ = (p1, p2) with
p j ∈ (s j , ∞) ( j = 1, 2) satisfying 1

p =
∑2

j=1
1
p j

< 1 and some u⃗ = (u1, u2) ∈ A p⃗/s⃗(R2d ). We
eed to prove that T : Lr1 (w1)×Lr2 (w2) → Lr (νw⃗,r⃗ ) is actually compact for all r⃗ = (r1, r2) with
j ∈ (s j , ∞) ( j = 1, 2) satisfying 1

r =
∑2

j=1
1
r j

< 1 and all w⃗ = (w1, w2) ∈ Ar⃗/s⃗(R2d ). Now,

x some r j ∈ (s j , ∞) ( j = 1, 2) satisfying 1
r =

∑2
j=1

1
r j

< 1 and w⃗ = (w1, w2) ∈ Ar⃗/s⃗(R2d ).
y Proposition 3.2, we have

[L p j (u j ), Lq j (v j )]θ = Lr j (w j ), [L p(νu⃗, p⃗), Lq (νv⃗,q⃗ )]θ = Lr (νw⃗,r⃗ ),

or some p⃗ = (p1, p2) with p j ∈ (s j , ∞) ( j = 1, 2) satisfying 1
p =

∑2
j=1

1
p j

< 1, some
u⃗ = (u1, u2) ∈ A p⃗/s⃗(R2d ) and some θ ∈ (0, 1). By Lemma 3.3 and by writing A1 = L p1 (u1),
A2 = Lq1 (v1), B1 = L p2 (u2), B2 = Lq2 (v2), E1 = L p(νu⃗, p⃗) and E2 = Lq (νv⃗,q⃗ ), we know
hat T ∈ B( Ā × B̄, Ē), T : A1

◦
× B1

◦
→ E1 is compact and that E1 has also absolutely

ontinuous norm. By Theorem 3.1, it follows that T : Lr1 (w1) × Lr2 (w2) → Lr (νw⃗,r⃗ ) is also
ompact for all r⃗ = (r1, r2) with r j ∈ (s j , ∞) ( j = 1, 2) satisfying 1

r =
∑2

j=1
1
r j

< 1 and all
⃗ = (w1, w2) ∈ Ar⃗/s⃗(R2d ). □

. Preliminaries on linear and multilinear weights

To complete the proof of Theorem 2.9, it remains to verify Proposition 3.2. We quote the
ollowing results which we will use in Section 5 for the proof of Proposition 3.2:

roposition 4.1 ([20], Theorem 1.14). The following statement holds: If 1 < p < ∞, we have
∈ Ap(Rd ) if and only if w1−p′

∈ Ap′ (Rd ).

heorem 4.2 ([27], Theorem 2.1). Let w⃗ = (w1, . . . , wm), 1 ≤ s j ≤ p j < ∞ ( j = 1, 2, . . . , m)
ith 1

p =
∑m

j=1
1
p j

and 1
s =

∑m
j=1

1
s j

. Then w⃗ ∈ A p⃗/s⃗(Rmd ) if and only if⎧⎪⎨⎪⎩w
1−

( p j
s j

)′

j ∈ A p j s j
s(p j −s j )

(Rd ), p j ̸= s j ,

νw⃗, p⃗ ∈ A p
s
(Rd ),

where the condition w
1−

( p j
s j

)′

j ∈ A p j s j
s(p j −s j )

(Rd ) in the case p j = s j is understood as w
s/p j
j ∈

A1(Rd ).

Remark 4.3. The important special case s1 = · · · = sm = 1 of Theorem 4.2 was already
proved in [29, Theorem 3.6].

Theorem 4.4 ([9], Theorem 3.5, [32], Theorem 3.4). Let w⃗ = (w1, . . . , wm), 1 ≤ p1, . . . , pm <

with 1
=

∑m 1 and p∗ be a number 1/m ≤ p ≤ p∗ < ∞. Then w⃗ ∈ A ∗ (Rmd ) if
p j=1 p j p⃗,p
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w

u
t

w
c

s
i

I
t

T
w
w

w
(

and only if⎧⎨⎩w
−p′

j
j ∈ Amp′

j
(Rd ), j = 1, . . . , m,

ν
p∗

w⃗
∈ Amp∗ (Rd ),

here the condition w
−p′

j
j ∈ Amp′

j
(Rd ) in the case p j = 1 is understood as w

1/m
j ∈ A1(Rd ).

Theorem 4.5 ([4], Theorem 5.5.3). If q1, q2 ∈ [1, ∞) and w1, w2 are two weights, then for all
θ ∈ (0, 1) we have

[Lq1 (w1), Lq2 (w2)]θ = Lq (w),

where
1
q

=
1 − θ

q1
+

θ

q2
, w

1
q = w

1−θ
q1

1 w
θ

q2
2 .

In order to present applications of Theorem 2.9 which deal with compact commutators, let
s introduce relevant notation and some definitions. We will denote by b a pointwise multiplier
hat belongs to the space

BMO(Rd ) :=

{
f : Rd

→ C
⏐⏐⏐ ∥ f ∥BMO := sup

Q
⟨| f − ⟨ f ⟩Q |⟩Q < ∞

}
of functions of bounded mean oscillation, or its subspace

CMO(Rd ) := C∞
c (Rd )

BMO(Rd )
,

here the closure is in the BMO norm and C∞
c (Rd ) is the collection of C∞(Rd ) functions with

ompact support.
Let T denote a bilinear operator from X1×X2 into Y , where X1, X2 and Y are some function

paces. For ( f1, f2) ∈ X1 × X2 and for a measurable vector b⃗ = (b1, b2), we define, whenever
t makes sense, the commutators

[T, b⃗]e1 ( f1, f2) = [T, b⃗](1,0)( f1, f2) = b1T ( f1, f2) − T (b1 f1, f2)

[T, b⃗]e2 ( f1, f2) = [T, b⃗](0,1)( f1, f2) = b2T ( f1, f2) − T ( f1, b2 f2)

[T, b⃗](1,1)( f1, f2) = [[T, b⃗]e1 , b⃗]e2 ( f1, f2).

n the same way, we could define [T, b⃗]α for any α ∈ N2, but we will only consider the above
hree cases.

We also quote the following result which we need for our applications in Section 8:

heorem 4.6 ([31], Theorem 2.22). Let T be a bilinear operator and let s⃗ = (s1, s2) ∈ [1, ∞)2

ith 1
s =

1
s1

+
1
s2

. Assume that there exists p⃗ = (p1, p2) ∈ (s1, ∞) × (s2, ∞), such that for all
⃗ = (w1, w2) ∈ A p⃗/s⃗(R2d ), we have

∥T ( f1, f2)∥L p(νw⃗, p⃗) ≲
2∏

i=1

∥ fi∥L pi (wi ),

here 1
p =

1
p1

+
1
p2

and νw⃗, p⃗ =
∏2

i=1 w
p/pi
i . Then, for all exponents q⃗ = (q1, q2) ∈

s , ∞) × (s , ∞), for all weights v⃗ = (v , v ) ∈ A (R2d ), for all b⃗ = (b , b ) ∈ BMO(Rd )2,
1 2 1 2 q⃗/s⃗ 1 2

405



T. Hytönen and S. Lappas Indagationes Mathematicae 33 (2022) 397–420

5

m

L

a

a

t

and for each multi-index α, we have

∥[T, b⃗]α( f1, f2)∥Lq (νv⃗,q⃗ ) ≲
2∏

i=1

∥bi∥
αi
BMO∥ fi∥Lqi (vi ),

where 1
q =

1
q1

+
1

q2
and νv⃗,q⃗ =

∏2
i=1 v

q/qi
i .

. The proof of the key Proposition 3.2

In this section we prove Proposition 3.2. The first step is to connect Theorem 4.5 with the
ultilinear A p⃗/s⃗(Rmd ), A p⃗(Rmd ), and A p⃗,p∗ (Rmd ) conditions as follows:

emma 5.1. Let

q⃗ = (q1, . . . , qm), r⃗ = (r1, . . . , rm), s⃗ = (s1, . . . , sm)

where s j ∈ [1, ∞), q j , r j ∈ (s j , ∞) and

1
q

=

m∑
j=1

1
q j

< 1,
1
r

=

m∑
j=1

1
r j

< 1,
1
s

=

m∑
j=1

1
s j

.

Let v⃗ = (v1, . . . , vm) ∈ Aq⃗/s⃗(Rmd ), w⃗ = (w1, . . . , wm) ∈ Ar⃗/s⃗(Rmd ). Then there exists
p⃗ = (p1, . . . , pm), with p j ∈ (s j , ∞) satisfying 1

p =
∑m

j=1
1
p j

< 1 and u⃗ = (u1, . . . , um) ∈

A p⃗/s⃗(Rmd ), θ ∈ (0, 1) such that

1
r j

=
1 − θ

p j
+

θ

q j
, w

1
r j
j = u

1−θ
p j

j v

θ
q j
j , j = 1, . . . , m, (5.2)

nd
1
r

=
1 − θ

p
+

θ

q
, ν

1
r
w⃗,r⃗ = ν

1−θ
p

u⃗, p⃗ ν
θ
q
v⃗,q⃗ . (5.3)

Proof. By Theorem 4.2 we prove the lemma in its equivalent form: if

v
1−

( q j
s j

)′

j ∈ A s j
s

( q j
s j

)′ (Rd ), νv⃗,q⃗ ∈ A q
s
(Rd )

nd

w
1−

( r j
s j

)′

j ∈ A s j
s

( r j
s j

)′ (Rd ), νw⃗,r⃗ ∈ A r
s
(Rd ),

hen there exists p⃗ = (p1, . . . , pm) with p j ∈ (s j , ∞) with 1
p =

∑m
j=1

1
p j

< 1 and

u
1−

( p j
s j

)′

j ∈ A s j
s

( p j
s j

)′ (Rd ), νu⃗, p⃗ ∈ A p
s
(Rd ), θ ∈ (0, 1)

such that (5.2) and (5.3) hold.
Note that the choice of θ ∈ (0, 1) determines

p j = p j (θ ) =
1 − θ
1

−
θ

, u j = u j (θ ) = w

p j
r j (1−θ )

j v
−

p j ·θ
q j (1−θ )

j , j = 1, . . . , m,
r j q j
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S
e
q

a

w

w

a

and

p = p(θ ) =
1 − θ
1
r −

θ
q

, νu⃗, p⃗ = νu⃗, p⃗(θ ) = ν
p

r (1−θ )
w⃗,r⃗ ν

−
p·θ

q(1−θ )
v⃗,q⃗ ,

so it remains to check that we can choose θ ∈ (0, 1) so that p⃗ = (p1, . . . , pm) with

p j ∈ (s j , ∞) satisfying 1
p =

∑m
j=1

1
p j

< 1 and u
1−

( p j
s j

)′

j ∈ A s j
s

( p j
s j

)′ (Rd ), νu⃗, p⃗ ∈ A p
s
(Rd ).

ince p j (0) = r j ∈ (s j , ∞) and p(0) = r ∈ (1, ∞), the first conditions are obvious for small
nough θ > 0 by continuity. To simplify writing, we denote m̃ = 1/s, m̃ j = s j/s, p̃ j = p j/s j ,
˜ j = q j/s j and r̃ j = r j/s j for j = 1, . . . , m, and observe that these satisfy the same relations

p̃ j = p̃ j (θ ) =
p j (θ )

s j
=

1 − θ
s j
r j

−
θs j
q j

=
1 − θ
1
r̃ j

−
θ

q̃ j

nd p̃ j (0) = r̃ j as the original exponents p j , r j and q j .

We check that u
1− p̃′

j
j ∈ Am̃ j p̃′

j
(Rd ), so we consider a cube Q and write

⟨u
1− p̃′

j
j ⟩Q⟨u

(1− p̃′
j )(− 1

m̃ j p̃′
j −1

)

j ⟩
m̃ j p̃′

j −1
Q

= ⟨w
−

p̃′
j

r̃ j (1−θ )

j v

p̃′
j ·θ

q̃ j (1−θ )

j ⟩Q⟨w

p̃′
j

r̃ j (1−θ )(m̃ j p̃′
j −1)

j v

−

p̃′
j ·θ

q̃ j (1−θ )(m̃ j p̃′
j −1)

j ⟩
m̃ j p̃′

j −1
Q .

In the first average, we use Hölder’s inequality with exponents 1 + ε±1, and in the second
ith exponents 1 + δ±1 to get

≤ ⟨w
−

p̃′
j (1+ε)

r̃ j (1−θ )

j ⟩

1
1+ε

Q ⟨v

p̃′
j ·θ (1+ε)

q̃ j ε(1−θ)

j ⟩

ε
1+ε

Q

× ⟨w

p̃′
j (1+δ)

r̃ j (1−θ)(m̃ j p̃′
j −1)

j ⟩

m̃ j p̃′
j −1

1+δ

Q ⟨v

−

p̃′
j ·θ(1+δ)

q̃ j δ(1−θ )(m̃ j p̃′
j −1)

j ⟩

(m̃ j p̃′
j −1)δ

1+δ

Q

= ⟨(w
1−r̃ ′

j
j )ϱ̃ j (θ )

⟩

1
1+ε

Q ⟨(v
−

1−q̃′
j

m̃ j q̃′
j −1

j )σ̃ j (θ )
⟩

ε
1+ε

Q

× ⟨(w
−

1−r̃ ′
j

m̃ j r̃ ′
j −1

j )τ̃ j (θ )
⟩

m̃ j p̃′
j −1

1+δ

Q ⟨(v
1−q̃ ′

j
j )φ̃ j (θ )

⟩

(m̃ j p̃′
j −1)δ

1+δ

Q ,

(5.4)

here

ϱ̃ j (θ ) :=
p̃′

j (θ )(1 + ε)

r̃ ′

j (1 − θ )
, σ̃ j (θ ) :=

θ p̃′

j (θ )(m̃ j q̃ ′

j − 1)(1 + ε)

q̃ ′

jε(1 − θ )
,

nd

τ̃ j (θ ) :=
p̃′

j (θ )(m̃ j r̃ ′

j − 1)(1 + δ)

r̃ ′

j (1 − θ )(m̃ j p̃′

j (θ ) − 1)
, φ̃ j (θ ) :=

θ p̃′

j (θ )(1 + δ)

q̃ ′

jδ(1 − θ )(m̃ j p̃′

j (θ ) − 1)
.

Now, we choose ε = ε(θ ) and δ = δ(θ ) in such a way that

ϱ̃ j (θ ) = σ̃ j (θ ), τ̃ j (θ ) = φ̃ j (θ ),

which has the solution

ε(θ ) =
θ r̃ ′

j (m̃ j q̃ ′

j − 1)
′

, δ(θ ) =
θ r̃ ′

j
′ ′

.

q̃ j q̃ j (m̃ j r̃ j − 1)
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The strategy to proceed is to use the reverse Hölder inequality for Av(Rd ) weights due to
oifman–Fefferman [13], which says that each W ∈ Av(Rd ) satisfies

⟨W t
⟩

1/t
Q ≲ ⟨W ⟩Q (5.5)

or all t ≤ 1 + η and for some η > 0 depending only on [W ]Av .
Recalling that p̃ j (0) = r̃ j , we see that ϱ̃ j (0) = τ̃ j (0) = 1. By continuity, given any η > 0,

e find that

max(ϱ̃ j (θ ), τ̃ j (θ )) ≤ 1 + η for all small enough θ > 0.

y Proposition 4.1 each of the four functions

w
1−r̃ ′

j
j ∈ Am̃ j r̃ ′

j
(Rd ), w

−

1−r̃ ′
j

m̃ j r̃ ′
j −1

j ∈ A(m̃ j r̃ ′
j )′ (Rd ),

v
1−q̃ ′

j
j ∈ Am̃ j q̃ ′

j
(Rd ), v

−

1−q̃′
j

m̃ j q̃′
j −1

j ∈ A(m̃ j q̃ ′
j )′ (Rd )

atisfies the reverse Hölder inequality (5.5) for all t ≤ 1 + η and for some η > 0. Thus, for all
mall enough θ > 0, we have

(5.4) ≲ ⟨w
1−r̃ ′

j
j ⟩

p̃′
j

r̃ ′
j (1−θ )

Q ⟨v

−

1−q̃′
j

m̃ j q̃′
j −1

j ⟩

θ p̃′
j (m̃ j q̃′

j −1)

q̃′
j (1−θ )

Q

× ⟨w

−

1−r̃ ′
j

m̃ j r̃ ′
j −1

j ⟩

p̃′
j (m̃ j r̃ ′

j −1)

r̃ ′
j (1−θ )

Q ⟨v
1−q̃ ′

j
j ⟩

θ p̃′
j

q̃′
j (1−θ )

Q

= (⟨w
1−r̃ ′

j
j ⟩Q⟨w

−

1−r̃ ′
j

m̃ j r̃ ′
j −1

j ⟩
m̃ j r̃ ′

j −1
Q )

p̃′
j

r̃ ′
j (1−θ )

× (⟨v
1−q̃ ′

j
j ⟩Q⟨v

−

1−q̃′
j

m̃ j q̃′
j −1

j ⟩
m̃ j q̃ ′

j −1
Q )

θ p̃′
j

q̃′
j (1−θ)

≤ [w
1−r̃ ′

j
j ]

q̃′
j

q̃′
j −θ r̃ ′

j
Am̃ j r̃ ′

j
[v

1−q̃ ′
j

j ]
θ r̃ j (q̃ j −1)

q̃ j −θ r̃ j
Am̃ j q̃′

j
.

n combination with the lines preceding (5.4), we have shown that

[u
1− p̃′

j
j ]Am̃ j p̃′

j
≲ [w

1−r̃ ′
j

j ]

q̃′
j

q̃′
j −θ r̃ ′

j
Am̃ j r̃ ′

j
[v

1−q̃ ′
j

j ]
θ r̃ j (q̃ j −1)

q̃ j −θr j
Am̃ j q̃′

j
< ∞,

rovided that θ > 0 is small enough.
Now, we check that νu⃗, p⃗ ∈ Am̃ p(Rd ), so we consider a cube Q and write

⟨νu⃗, p⃗⟩Q⟨ν
−

1
m̃ p−1

u⃗, p⃗ ⟩
m̃ p−1
Q = ⟨ν

p
r (1−θ )
w⃗,r⃗ ν

−
p·θ

q(1−θ )
v⃗,q⃗ ⟩Q⟨ν

−
p

r (1−θ )(m̃ p−1)
w⃗,r⃗ ν

p·θ
q(1−θ )(m̃ p−1)
v⃗,q⃗ ⟩

m̃ p−1
Q .

In the first average, we use Hölder’s inequality with exponents 1 + ε±1, and in the second
ith exponents 1 + δ±1 to get

≤ ⟨ν
p(1+ε)
r (1−θ )
w⃗,r⃗ ⟩

1
1+ε

Q ⟨ν
−

p·θ (1+ε)
qε(1−θ )

v⃗,q⃗ ⟩

ε
1+ε

Q ⟨ν
−

p(1+δ)
r (1−θ )(m̃ p−1)

w⃗,r⃗ ⟩

m̃ p−1
1+δ

Q ⟨ν

p·θ (1+δ)
qδ(1−θ )(m̃ p−1)
v⃗,q⃗ ⟩

(m̃ p−1)δ
1+δ

Q

ϱ̃(θ )
1

1+ε
−

1
m̃q−1 σ̃ (θ )

ε
1+ε

−
1

m̃r−1 τ̃ (θ )
m̃ p−1
1+δ φ̃(θ)

(m̃ p−1)δ
1+δ

(5.6)

= ⟨ν

w⃗,r⃗ ⟩Q ⟨(ν
v⃗,q⃗ ) ⟩Q ⟨(ν

w⃗,r⃗ ) ⟩Q ⟨ν
v⃗,q⃗ ⟩Q ,
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where

ϱ̃(θ ) :=
p(θ )(1 + ε)

r (1 − θ )
, σ̃ (θ ) :=

θp(θ )(m̃q − 1)(1 + ε)
qε(1 − θ )

,

nd

τ̃ (θ ) :=
p(θ )(m̃r − 1)(1 + δ)
r (1 − θ )(m̃ p(θ ) − 1)

, φ̃(θ ) :=
θp(θ )(1 + δ)

qδ(1 − θ )(m̃ p(θ ) − 1)
.

Again, we choose ε = ε(θ ) and δ = δ(θ ) in such a way that

ϱ̃(θ ) = σ̃ (θ ), τ̃ (θ ) = φ̃(θ ),

which gives

ε(θ ) = θr (m̃ −
1
q

), δ(θ ) =
θr

q(m̃r − 1)
.

The strategy to proceed is the same as before. In particular, we use the reverse Hölder
inequality (5.5) for Av(Rd ) weights.

Recalling that p(0) = r , we see that ϱ̃(0) = τ̃ (0) = 1. By continuity, given any η > 0, we
find that

max(ϱ̃(θ ), τ̃ (θ )) ≤ 1 + η for all small enough θ > 0.

By Proposition 4.1 each of the four functions

νw⃗,r⃗ ∈ Am̃r (Rd ), ν
−

1
m̃r−1

w⃗,r⃗ ∈ A(m̃r )′ (Rd ),

νv⃗,q⃗ ∈ Am̃q (Rd ), ν
−

1
m̃q−1

v⃗,q⃗ ∈ A(m̃q)′ (Rd )

atisfies the reverse Hölder inequality (5.5) for all t ≤ 1 + η and for some η > 0. Thus, for all
mall enough θ > 0, we have

(5.6) ≲ ⟨νw⃗,r⃗ ⟩

p(θ )
r (1−θ )
Q ⟨ν

−
1

m̃q−1
v⃗,q⃗ ⟩

θp(θ )(m̃q−1)
q(1−θ )

Q

× ⟨ν
−

1
m̃r−1

w⃗,r⃗ ⟩

p(θ )(m̃r−1)
r (1−θ)

Q ⟨νv⃗,q⃗⟩

θp(θ )
q(1−θ )
Q

= (⟨νw⃗,r⃗ ⟩Q⟨ν
−

1
m̃r−1

w⃗,r⃗ ⟩
m̃r−1
Q )

p(θ )
r (1−θ )

× (⟨νv⃗,q⃗⟩Q⟨ν
−

1
m̃q−1

v⃗,q⃗ ⟩
m̃q−1
Q )

θp(θ )
q(1−θ)

≤ [νw⃗,r⃗ ]
q

q−θr
Am̃r

[νv⃗,q⃗ ]
θr

q−θr
Am̃q

.

n combination with the lines preceding (5.6), we have shown that

[νu⃗, p⃗]Am̃ p ≲ [νw⃗,r⃗ ]
q

q−θr
Am̃r

[νv⃗,q⃗ ]
θr

q−θr
Am̃q

< ∞,

rovided that θ > 0 is small enough. This concludes the proof. □

emma 5.7. Let

α ≥ 0, q⃗ = (q , . . . , q ), r⃗ = (r , . . . , r )
1 m 1 m
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where 1 < q1, . . . , qm < ∞, 1 < r1, . . . , rm < ∞ and

1
q

=

m∑
j=1

1
q j

∈ (α, α + 1),
1
q∗

=
1
q

− α,
1
r

=

m∑
j=1

1
r j

∈ (α, α + 1),
1
r∗

=
1
r

− α.

et w⃗ = (w1, . . . , wm) ∈ Ar⃗ ,r∗ (Rmd ), v⃗ = (v1, . . . , vm) ∈ Aq⃗,q∗ (Rmd ). Then there exists
p⃗ = (p1, . . . , pm) with 1 < p1, . . . , pm < ∞ satisfying 1

p =
∑m

j=1
1
p j

∈ (α, α+1), 1
p∗ =

1
p −α,

1
q −

1
q∗ =

1
p −

1
p∗ =

1
r −

1
r∗ , u⃗ = (u1, . . . , um) ∈ A p⃗,p∗ (Rmd ), θ ∈ (0, 1) such that

1
r j

=
1 − θ

p j
+

θ

q j
, w j = u1−θ

j vθ
j , j = 1, . . . , m, (5.8)

nd
1
r

=
1 − θ

p
+

θ

q
, νw⃗ = ν1−θ

u⃗ νθ
v⃗ . (5.9)

roof. Using Theorem 4.4, we prove the lemma in its equivalent form: if

v
−q ′

j
j ∈ Amq ′

j
(Rd ), ν

q∗

v⃗
∈ Amq∗ (Rd )

and

w
−r ′

j
j ∈ Amr ′

j
(Rd ), νr∗

w⃗ ∈ Amr∗ (Rd ),

then there exists p⃗ = (p1, . . . , pm) with 1 < p1, . . . , pm < ∞ with 1
p =

∑m
j=1

1
p j

∈ (α, α+1),
1
p∗ =

1
p − α, 1

q −
1

q∗ =
1
p −

1
p∗ =

1
r −

1
r∗ and

u
−p′

j
j ∈ Amp′

j
(Rd ), ν

p∗

u⃗ ∈ Amp∗ (Rd ), θ ∈ (0, 1)

such that (5.8) and (5.9) hold.
Note that the choice of θ ∈ (0, 1) determines

p j = p j (θ ) =
1 − θ
1
r j

−
θ

q j

, u j = u j (θ ) = w
1

1−θ

j v
−

θ
1−θ

j , j = 1, . . . , m,

and

p = p(θ ) =
1 − θ
1
r −

θ
q

, νu⃗ = νu⃗(θ ) = ν
1

1−θ

w⃗
ν

−
θ

1−θ

v⃗
,

so it remains to check that we can choose θ ∈ (0, 1) so that p⃗ = (p1, . . . , pm) with
1 < p1, . . . , pm < ∞ satisfying 1

p =
∑m

j=1
1
p j

∈ (α, α + 1), 1
p∗ =

1
p − α, 1

q −
1

q∗ =

1
p −

1
p∗ =

1
r −

1
r∗ and u

−p′
j

j ∈ Amp′
j
(Rd ), ν

p∗

u⃗ ∈ Amp∗ (Rd ). Since 1 < p j (0) = r j < ∞ and
/(α + 1) < p(0) = r < 1/α, the first conditions are obvious for small enough θ > 0 by
ontinuity.

We check that u
−p′

j
j ∈ Amp′

j
(Rd ), so we consider a cube Q and write

⟨u
−p′

j
j ⟩Q⟨u

(−p′
j )(− 1

mp′
j −1

)

j ⟩
mp′

j −1
Q = ⟨w

−

p′
j

1−θ

j v

p′
j ·θ

1−θ

j ⟩Q

p′
j

(1−θ )(mp′
j −1)

−

p′
j ·θ

(1−θ)(mp′
j −1) mp′

j −1

× ⟨w j v j ⟩Q .
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In the first average, we use Hölder’s inequality with exponents 1 + ε±1, and in the second
ith exponents 1 + δ±1 to get

≤ ⟨w
−

p′
j (1+ε)

1−θ

j ⟩

1
1+ε

Q ⟨v

p′
j ·θ (1+ε)

ε(1−θ )
j ⟩

ε
1+ε

Q

× ⟨w

p′
j (1+δ)

(1−θ )(mp′
j −1)

j ⟩

mp′
j −1

1+δ

Q ⟨v

−

p′
j ·θ (1+δ)

δ(1−θ )(mp′
j −1)

j ⟩

(mp′
j −1)δ

1+δ

Q

= ⟨(w
−r ′

j
j )ϱ j (θ )

⟩

1
1+ε

Q ⟨(v

q′
j

mq′
j −1

j )σ j (θ )
⟩

ε
1+ε

Q

× ⟨(w

r ′
j

mr ′
j −1

j )τ j (θ )
⟩

mp′
j −1

1+δ

Q ⟨(v
−q ′

j
j )φ j (θ )

⟩

(mp′
j −1)δ

1+δ

Q ,

(5.10)

here

ϱ j (θ ) :=
p′

j (θ )(1 + ε)

r ′

j (1 − θ )
, σ j (θ ) :=

θp′

j (θ )(mq ′

j − 1)(1 + ε)

q ′

jε(1 − θ )
,

nd

τ j (θ ) :=
p′

j (θ )(mr ′

j − 1)(1 + δ)

r ′

j (1 − θ )(mp′

j (θ ) − 1)
, φ j (θ ) :=

θp′

j (θ )(1 + δ)

q ′

jδ(1 − θ )(mp′

j (θ ) − 1)
.

As in the proof of Lemma 5.1, we choose ε = ε(θ ) and δ = δ(θ ) in such a way that

ϱ j (θ ) = σ j (θ ), τ j (θ ) = φ j (θ ),

which is the same as

ε(θ ) =
θr ′

j (mq ′

j − 1)

q ′

j
, δ(θ ) =

θr ′

j

q ′

j (mr ′

j − 1)
.

The strategy to proceed is also the same as in the proof of Lemma 5.1. In particular, we
se the reverse Hölder inequality (5.5) for Av(Rd ) weights.

Recalling that p j (0) = r j , we see that ϱ j (0) = τ j (0) = 1. By continuity, given any η > 0,
e find that

max(ϱ j (θ ), τ j (θ )) ≤ 1 + η for all small enough θ > 0.

y Proposition 4.1 each of the four functions

w
−r ′

j
j ∈ Amr ′

j
(Rd ), w

r ′
j

mr ′
j −1

j ∈ A(mr ′
j )′ (Rd ),

v
−q ′

j
j ∈ Amq ′

j
(Rd ), v

q′
j

mq′
j −1

j ∈ A(mq ′
j )′ (Rd )
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satisfies the reverse Hölder inequality (5.5) for all t ≤ 1 + η and for some η > 0. Thus, for all
mall enough θ > 0, we have

(5.10) ≲ ⟨w
−r ′

j
j ⟩

p′
j

r ′
j (1−θ )

Q ⟨v

q′
j

mq′
j −1

j ⟩

θp′
j (mq′

j −1)

q′
j (1−θ )

Q

× ⟨w

r ′
j

mr ′
j −1

j ⟩

p′
j (mr ′

j −1)

r ′
j (1−θ )

Q ⟨v
−q ′

j
j ⟩

θp′
j

q′
j (1−θ )

Q

= (⟨w
−r ′

j
j ⟩Q⟨w

r ′
j

mr ′
j −1

j ⟩
mr ′

j −1
Q )

p′
j

r ′
j (1−θ )

× (⟨v
−q ′

j
j ⟩Q⟨v

q′
j

mq′
j −1

j ⟩
mq ′

j −1
Q )

θp′
j

q′
j (1−θ )

≤ [w
−r ′

j
j ]

q′
j

q′
j −θr ′

j
Amr ′

j
[v

−q ′
j

j ]
θr j (q j −1)

q j −θr j
Amq′

j
.

n combination with the lines preceding (5.10), we have shown that

[u
1−p′

j
j ]Amp′

j
≲ [w

−r ′
j

j ]

q′
j

q′
j −θr ′

j
Amr ′

j
[v

−q ′
j

j ]
θr j (q j −1)

q j −θr j
Amq′

j
< ∞,

provided that θ > 0 is small enough.
Now, we check that ν

p∗

u⃗ ∈ Amp∗ (Rd ), so we consider a cube Q and write

⟨ν
p∗

u⃗ ⟩Q⟨ν
−

p∗

mp∗−1
u⃗ ⟩

mp∗
−1

Q = ⟨ν
p∗

1−θ

w⃗
ν

−
p∗

·θ
1−θ

v⃗
⟩Q⟨ν

−
p∗

(1−θ )(mp∗−1)
w⃗

ν

p∗
·θ

(1−θ )(mp∗−1)
v⃗

⟩
mp∗

−1
Q .

In the first average, we use Hölder’s inequality with exponents 1 + ε±1, and in the second
ith exponents 1 + δ±1 to get

≤ ⟨ν
p∗(1+ε)

1−θ

w⃗
⟩

1
1+ε

Q ⟨ν
−

p∗
·θ (1+ε)

ε(1−θ )
v⃗

⟩

ε
1+ε

Q ⟨ν
−

p∗(1+δ)
(1−θ )(mp∗−1)

w⃗
⟩

mp∗
−1

1+δ

Q ⟨ν

p∗
·θ (1+δ)

δ(1−θ)(mp∗−1)
v⃗

⟩

(mp∗
−1)δ

1+δ

Q

= ⟨(νr∗

w⃗ )ϱ(θ )
⟩

1
1+ε

Q ⟨(ν
−

q∗

mq∗−1
v⃗

)σ (θ )
⟩

ε
1+ε

Q ⟨(ν
−

r∗

mr∗−1
w⃗

)τ (θ)
⟩

mp∗
−1

1+δ

Q ⟨(νq∗

v⃗
)φ(θ )

⟩

(mp∗
−1)δ

1+δ

Q ,

(5.11)

here

ϱ(θ ) :=
p∗(1 + ε)
r∗(1 − θ )

, σ (θ ) :=
θp∗(mq∗

− 1)(1 + ε)
q∗ε(1 − θ )

,

nd

τ (θ ) :=
p∗(mr∗

− 1)(1 + δ)
r∗(1 − θ )(mp∗ − 1)

, φ(θ ) :=
θp∗(1 + δ)

q∗δ(1 − θ )(mp∗ − 1)
.

Again, we choose ε = ε(θ ) and δ = δ(θ ) in such a way that

ϱ(θ ) = σ (θ ), τ (θ ) = φ(θ ),

hich means that

ε(θ ) =
θr∗(mq∗

− 1)
q∗

, δ(θ ) =
θr∗

q∗(mr∗ − 1)
.

The strategy to proceed is the same as before. In particular, we use the reverse Hölder
nequality (5.5) for A (Rd ) weights.
v
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Recalling that p(0) = r , we see that ϱ(0) = τ (0) = 1. By continuity, given any η > 0, we
find that

max(ϱ(θ ), τ (θ )) ≤ 1 + η for all small enough θ > 0.

By Proposition 4.1 each of the four functions

νr∗

w⃗ ∈ Amr∗ (Rd ), ν
−

r∗

mr∗−1
w⃗

∈ A(mr∗)′ (Rd ),

ν
q∗

v⃗
∈ Amq∗ (Rd ), ν

−
q∗

mq∗−1
v⃗

∈ A(mq∗)′ (Rd )

atisfies the reverse Hölder inequality (5.5) for all t ≤ 1 + η and for some η > 0. Thus, for all
mall enough θ > 0, we have

(5.11) ≲ ⟨νr∗

w⃗ ⟩

p∗

r∗(1−θ )
Q ⟨ν

−
q∗

mq∗−1
v⃗

⟩

θp∗(mq∗
−1)

q∗(1−θ )
Q

× ⟨ν
−

r∗

mr∗−1
w⃗

⟩

p∗(mr∗
−1)

r∗(1−θ)
Q ⟨ν

q∗

v⃗
⟩

θp∗

q∗(1−θ )
Q

= (⟨νr∗

w⃗ ⟩Q⟨ν
−

r∗

mr∗−1
w⃗

⟩
mr∗

−1
Q )

p∗

r∗(1−θ )

× (⟨νq∗

v⃗
⟩Q⟨ν

−
q∗

mq∗−1
v⃗

⟩
mq∗

−1
Q )

θp∗

q∗(1−θ )

≤ [νr∗

w⃗ ]
p∗

r∗(1−θ )
Amr∗

[νq∗

v⃗
]

θp∗

q∗(1−θ )
Amq∗

.

In combination with the lines preceding (5.11), we have shown that

[ν p∗

u⃗ ]Amp∗ ≲ [νr∗

w⃗ ]
p∗

r∗(1−θ )
Amr∗

[νq∗

v⃗
]

θp∗

q∗(1−θ)
Amq∗

< ∞,

rovided that θ > 0 is small enough. This concludes the proof. □

We can also connect Theorem 4.5 with the linear Ap j /s j (Rd ), Ap j (Rd ) and Ap j ,p∗
j
(Rd )

onditions as follows:

emma 5.12. Let

q⃗ = (q1, . . . , qm), r⃗ = (r1, . . . , rm), s⃗ = (s1, . . . , sm)

where s j ∈ [1, ∞), q j , r j ∈ (s j , ∞) and

1
q

=

m∑
j=1

1
q j

< 1,
1
r

=

m∑
j=1

1
r j

< 1,
1
s

=

m∑
j=1

1
s j

.

Let v⃗ = (v1, . . . , vm) ∈
∏m

j=1 Aq j /s j (Rd ), w⃗ = (w1, . . . , wm) ∈
∏m

j=1 Ar j /s j (Rd ). Then
here exists p⃗ = (p1, . . . , pm), with p j ∈ (s j , ∞) satisfying 1

p =
∑m

j=1
1
p j

< 1 and
u⃗ = (u1, . . . , um) ∈

∏m
j=1 Ap j /s j (Rd ), θ ∈ (0, 1) such that

1
r j

=
1 − θ

p j
+

θ

q j
, w

1
r j
j = u

1−θ
p j

j v

θ
q j
j , j = 1, . . . , m,

nd
1
r

=
1 − θ

p
+

θ

q
, ν

1
r
w⃗,r⃗ = ν

1−θ
p

u⃗, p⃗ ν
θ
q
v⃗,q⃗ .
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Proof. This follows by applying [26, Lemma 4.4] to each component separately. □

emma 5.13. Let

α ≥ 0, q⃗ = (q1, . . . , qm), r⃗ = (r1, . . . , rm)

where 1 < q1, . . . , qm < ∞, 1 < r1, . . . , rm < ∞ and

1
q

=

m∑
j=1

1
q j

∈ (α, α + 1),
1
q̃ j

=
1
q j

−
α

m
,

1
r

=

m∑
j=1

1
r j

∈ (α, α + 1),
1
r̃ j

=
1
r j

−
α

m
.

et w⃗ = (w1, . . . , wm) ∈
∏m

j=1 Ar j ,r̃ j (Rd ), v⃗ = (v1, . . . , vm) ∈
∏m

j=1 Aq j ,q̃ j (Rd ). Then there
exists p⃗ = (p1, . . . , pm) with 1 < p1, . . . , pm < ∞ satisfying 1

p =
∑m

j=1
1
p j

∈ (α, α + 1),
1
p̃ j

=
1
p j

−
α
m , 1

q j
−

1
q̃ j

=
1
p j

−
1
p̃ j

=
1
r j

−
1
r̃ j

, u⃗ = (u1, . . . , um) ∈
∏m

j=1 Ap j , p̃ j (Rd ), θ ∈ (0, 1)
uch that

1
r j

=
1 − θ

p j
+

θ

q j
, w j = u1−θ

j vθ
j , j = 1, . . . , m,

nd
1
r

=
1 − θ

p
+

θ

q
, νw⃗ = ν1−θ

u⃗ νθ
v⃗ .

roof. This follows by applying [26, Lemma 4.7] to each component separately. □

We now have the last missing ingredient of the proof of Theorem 2.9:

roof of Proposition 3.2. We prove the proposition in the case that (1a) are in force. The other
ases are proved in a similar way. We are given q⃗ = (q1, q2), r⃗ = (r1, r2), s⃗ = (s1, s2) with
j ∈ [1, ∞), q j , r j ∈ (s j , ∞) ( j = 1, 2) satisfying 1

q =
∑2

j=1
1

q j
< 1, 1

r =
∑2

j=1
1
r j

< 1, 1
s =

2
j=1

1
s j

and weights w⃗ = (w1, w2) ∈ Ar⃗/s⃗(R2d ), v⃗ = (v1, v2) ∈ Aq⃗/s⃗(R2d ). By Lemma 5.1,

here are some p⃗ = (p1, p2) with p j ∈ (s j , ∞) ( j = 1, 2) satisfying 1
p =

∑2
j=1

1
p j

< 1,
eights u⃗ = (u1, u2) ∈ A p⃗/s⃗(R2d ), and θ ∈ (0, 1) such that

1
r j

=
1 − θ

p j
+

θ

q j
, w

1
r j
j = u

1−θ
p j

j v

θ
q j
j , j = 1, 2,

nd
1
r

=
1 − θ

p
+

θ

q
, ν

1
r
w⃗,r⃗ = ν

1−θ
p

u⃗, p⃗ ν
θ
q
v⃗,q⃗ .

By Theorem 4.5, we then have

[L p j (u j ), Lq j (v j )]θ = Lr j (w j ), [L p(νu⃗, p⃗), Lq (νv⃗,q⃗ )]θ = Lr (νw⃗,r⃗ ),

s we claimed. □

. Commutators of bilinear Calderón–Zygmund operators

In the remaining sections of this paper, we consider a number of applications of our abstract
esults to specific classes of operators. In our first application below, we consider bilinear
alderón–Zygmund operators which are defined as follows:
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Let T be a multilinear operator initially defined on the m-fold product of Schwartz spaces
nd taking values in the space of tempered distributions,

T : S(Rd ) × · · · × S(Rd ) → S ′(Rd ).

ollowing [22], we say that T is an m-linear Calderón–Zygmund operator if, for some 1 ≤

j < ∞, it extends to a bounded multilinear operator from Lq1 (Rd )×· · ·× Lqm (Rd ) to Lq (Rd ),
here 1

q =
∑m

j=1
1

q j
, and it has the representation

T ( f1, . . . , fm)(x) =

∫
(Rd )m

K (x, y1, . . . , ym) f1(y1) . . . fm(ym)dy1 . . . dym, (6.1)

or all x /∈ ∩
m
j=1 supp f j , where the kernel K satisfies the size condition

|K (x, y1, . . . , ym)| ≲
1

(
∑m

j=1 |x − y j |)md
(6.2)

or all (x, y1, . . . , ym) ∈ (Rd )m+1 with x ̸= y j for some j ∈ {1, 2, . . . , m} and the smoothness
ondition

|K (x, . . . , y j , . . . , ym) − K (x, y1, . . . , z, . . . , ym)| ≲
|y j − z|ε

(
∑m

j=1 |x − y j |)md+ε
, (6.3)

or some ε > 0 and all 1 ≤ j ≤ m, whenever |y j − z| ≤
1
2 max1≤ j≤m |x − y j |. Also, T is

alled the multilinear Calderón–Zygmund operator associated with the kernel K .
In [5,29,35], the following weighted boundedness results about the bilinear Calderón–

Zygmund operator associated with kernel K and its commutators were obtained:

Theorem 6.4 ([5], Theorem 1.2, [29], Corollary 3.9, Theorem 3.18 and [35], Theorem 1.1).
Suppose that w⃗ ∈ A p⃗(R2d ) and b⃗ ∈ BMO(Rd )2 with 1

p =
∑2

j=1
1
p j

, 1 < p j < ∞, j = 1, 2,

p ∈ (1, ∞). Then T and [T, b⃗]α for each α ∈ {(0, 1), (1, 0), (1, 1)} are bounded bilinear
operators from L p1 (w1) × L p2 (w2) to L p(νw⃗, p⃗) under either of the following cases:

(1) T is a bilinear Calderón–Zygmund operator associated with kernel K satisfying (6.1),
(6.2), (6.3).

(2) T is a bilinear singular integral operator associated with a kernel K in the sense of
(6.1) and satisfying (6.2), and

(a) T is bounded from

L1(Rd ) × L1(Rd ) → L1/2,∞(Rd ), (6.5)

where L1/2,∞(Rd ) is the weak L1/2 space.
(b) for x, z, y1, y2 ∈ Rd with 8|x − z| < min1≤ j≤2 |x − y j |,

|K (x, y1, y2) − K (z, y1, y2)| ≲
τ ε

(
∑2

j=1 |x − y j |)2d+ε
, (6.6)

where τ is a number such that 2|x − z| < τ and 4τ < min1≤ j≤2 |x − y j |.

emark 6.7. The boundedness of T in [5] is not explicitly stated as a theorem but it is
implicitly contained in the proof of the boundedness of the commutator. As explained in
[5, Theorem 1.2], [29, Corollary 3.9 and Theorem 3.18] and [35, Theorem 1.1] all the
previous bounds for iterated commutators hold for 0 < p < ∞. Also, it was pointed out in
415
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[25, Proof of Theorem 1] (see also [17, Propositions 2.3, 4.1 and Remark 4.2]) that the
condition (6.6) is weaker than, and indeed a consequence of (6.3).

The compactness of the commutator [T, b⃗]α was considered by Bényi–Torres [3] and
u–Chen [5] in the unweighted case:

heorem 6.8 ([3], Theorem 1 and [5], Theorem 1.1). Suppose that b⃗ ∈ CMO(Rd )2, 1
p1

+
1
p2

=

1
p , 1 < p1, p2 < ∞ and 1 < p < ∞. Then [T, b⃗]α is compact from L p1 (Rd ) × L p2 (Rd ) to
L p(Rd ) in each of the cases (1) and (2) of Theorem 6.4.

A combination of Theorems 6.4 and 6.8 with our main Theorem 2.9 recovers and improves
he following results of Bényi et al. [1, Theorems 3.1 and 3.2] and Bu–Chen [5, Theorem 1.1],
ifting their additional assumption that νw⃗, p⃗ ∈ Ap(Rd ):

heorem 6.9. Assume b⃗ ∈ CMO(Rd )2, p1, p2 ∈ (1, ∞), p ∈ (1, ∞) such that 1/p =

/p1 + 1/p2 and w⃗ = (w1, w2) ∈ A p⃗(R2d ). Then [T, b⃗]α is compact from L p1 (w1) × L p2 (w2)
o L p(νw⃗, p⃗) in each of the cases (1) and (2) of Theorem 6.4.

roof. We prove the theorem in the case that the assumptions (1) of Theorem 6.4 are in force.
he other case is proved in a similar way. We verify the assumptions (1a) of Theorem 2.9

or [T, b⃗]α for each α ∈ {(0, 1), (1, 0), (1, 1)} in place of T : By Theorem 6.4, [T, b⃗]α is
bounded operator from Lq1 (u1) × Lq2 (u2) to Lq (νu⃗,q⃗ ) for all q⃗ = (q1, q2) ∈ (1, ∞)2,
= q1q2/(q1 + q2) > 1 and all u⃗ ∈ Aq⃗ (R2d ). By Theorem 6.8, [T, b⃗]α is compact from

Lr1 (Rd ) = Lr1 (v1) × Lr2 (Rd ) = Lr2 (v2) to Lr (Rd ) = Lr (νv⃗,r⃗ ) with v⃗ = (v1, v2) ≡ (1, 1) ∈

Ar⃗ (R2d ) and νv⃗,r⃗ ≡ 1. Thus Theorem 2.9 applies to give the compactness of [T, b⃗]α from
L p1 (w1) × L p2 (w2) to L p(νw⃗, p⃗) for all p⃗ = (p1, p2) ∈ (1, ∞)2, p = p1 p2/(p1 + p2) > 1 and
ll w⃗ ∈ A p⃗(R2d ). □

The proofs in [1,5] were based on considering smooth truncation operators [11,28] and
erifying a weighted Fréchet–Kolmogorov criterion [11]. We avoid these considerations and
btain a more general theorem than these earlier approaches. However, the very recent work of
ao–Olivo–Yabuta [6] achieves a further generalization (lifting also the assumption that p > 1)
y further developing the approach based on a weighted Fréchet–Kolmogorov criterion. It might
e interesting to investigate whether the full scope of the results of [6] could be recovered
voiding this criterion.

. Commutators of bilinear fractional integral operators

In this section we apply Theorem 2.9 to the commutator [Iβ, b⃗]α , where α ∈ {(0, 1), (1, 0),
1, 1)} and, given 0 < β < 2d , the bilinear fractional integral operator Iβ is defined by

Iβ( f1, f2)(x) =

∫
R2d

1
(|x − y1|

2
+ |x − y2|

2)2d−β
f1(y1) f2(y2)dy1dy2.

Chen–Wu [8] and Moen [32] obtained the following weighted boundedness results of the
ilinear fractional integral operator and its commutators:

heorem 7.1 ([8], Theorems 1.4, 1.7 and [32], Theorem 3.5). Suppose that 0 < β < 2d,
⃗ ∈ BMO(Rd )2 and 1 < p1, p2 < ∞ are exponents with 1/p = 1/p1 + 1/p2, 1/2 < p < d/β

⃗
nd q is the exponent defined by 1/q = 1/p − β/d. Then Iβ and [Iβ, b]α for each α ∈
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(

b

{(0, 1), (1, 0), (1, 1)} are bounded bilinear operators from L p1 (w p1
1 ) × L p2 (w p2

2 ) to Lq (νq
w⃗

) for
ll w⃗ = (w1, w2) ∈ A p⃗,q (R2d ).

The compactness of the commutator [Iβ, b⃗]α was considered by Chaffee–Torres [7] and
ang–Zhou–Teng [36] in the unweighted case:

heorem 7.2 ([7], Theorem 3.1(i) and (iii) and [36], Theorems 1.2 (A1) and (A3)). Let
< p1, p2 < ∞, p⃗ = (p1, p2), 1

p =
1
p1

+
1
p2

, 0 < β < 2d, β

d < 1
p1

+
1
p2

, and q such
hat 1

q =
1
p1

+
1
p2

−
β

d and 1 < p, q < ∞. If b⃗ = (b, b) ∈ CMO(Rd )2, then [Iβ, b⃗]α for each
∈ {(0, 1), (1, 0), (1, 1)} is compact from L p1 (Rd ) × L p2 (Rd ) to Lq (Rd ).

Thus, by combining the verification of the assumptions (2c) of Theorem 2.9, Theorems 7.1
nd 7.2 we can now recover and improve the following results of Chaffee–Torres [7, Theorem
.1 (ii)] and Wang–Zhou–Teng [36, Theorem 1.2 (A2)], lifting their additional assumption that

p1q
p

1 , w

p2q
p

2 ∈ Ap(Rd ):

Theorem 7.3. Let 1 < p1, p2 < ∞, p⃗ = (p1, p2), 1
p =

1
p1

+
1
p2

, 0 < β < 2d, β

d < 1
p1

+
1
p2

,
nd q such that 1

q =
1
p1

+
1
p2

−
β

d and 1 < p, q < ∞. If b⃗ = (b, b) ∈ CMO(Rd )2, then
[Iβ, b⃗]α for each α ∈ {(0, 1), (1, 0), (1, 1)} is compact from L p1 (w p1

1 )× L p2 (w p2
2 ) to Lq (νq

w⃗
) for

ll w⃗ = (w1, w2) ∈ A p⃗,q (R2d ).

roof. We verify the assumptions (2c) of Theorem 2.9 for [Iβ, b⃗]α for each α ∈ {(0, 1), (1, 0),
1, 1)} in place of T : By Theorem 7.1, [Iβ, b⃗]α is a bounded operator from Ls1 (u1)× Ls2 (u2) to

Ls∗

(νs∗

u⃗ ) for all s⃗ = (s1, s2) ∈ (1, ∞)2, 1
s =

1
s1

+
1
s2

< 1, s∗ > 1 such that 1
s∗ =

1
s1

+
1
s2

−
β

d and
ll u⃗ ∈ As⃗,s∗ (R2d ). By Theorem 7.2, [Iβ, b⃗]α is compact from Lr1 (Rd ) = Lr1 (vr1

1 ) × Lr2 (Rd ) =

Lr2 (vr2
2 ) to Lr∗

(Rd ) = Lr∗

(νr∗

r⃗ ) with v⃗ = (v1, v2) ≡ (1, 1) ∈ Ar⃗ ,r∗ (R2d ) and νr⃗ ≡ 1. Thus
heorem 2.9 applies to give the compactness of [Iβ, b⃗]α from L p1 (w p1

1 ) × L p2 (w p2
2 ) to Lq (νq

w⃗
)

or all p⃗ = (p1, p2) ∈ (1, ∞)2, 1
p =

1
p1

+
1
p2

< 1, q > 1 such that 1
p −

1
q =

1
s −

1
s∗ =

1
r −

1
r∗ =

β

d
nd all w⃗ = (w1, w2) ∈ A p⃗,q (R2d ). □

The proofs in [7,36] were based on considering smooth truncations of Iβ (see [2] and the
eferences therein) and verifying the weighted Fréchet–Kolmogorov criterion [11]. We obtain
more general result by avoiding this criterion, but Cao–Olivo–Yabuta [6] achieve a further

eneralization by an approach again based on the weighted Fréchet–Kolmogorov criterion.

. Commutators of bilinear fourier multipliers

In this section, we apply Theorem 2.9 to the commutators of bilinear Fourier multipliers
first studied by Coifman and Meyer [14]) which satisfy certain Sobolev regularity conditions.

Given s ∈ R and s⃗ = (s1, s2) ∈ R2, the Sobolev spaces H s(R2d ) and H s⃗(R2d ) are defined
y the norms

∥ f ∥H s (R2d ) =

(∫
R2d

(1 + |ξ1|
2
+ |ξ2|

2)s
| f̂ (ξ1, ξ2)|2dξ1dξ2

) 1
2
,

∥ f ∥H s⃗ (R2d ) =

(∫
(1 + |ξ1|

2)s1 (1 + |ξ2|
2)s2 | f̂ (ξ1, ξ2)|2dξ1dξ2

) 1
2
,

R2d

417
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where f̂ denotes the Fourier transform of f . Let Φ ∈ S(R2d ) satisfy{
supp(Φ) ⊂

{
(ξ1, ξ2) :

1
2 ≤ |ξ1| + |ξ2| ≤ 2

}
;∑

j∈Z Φ(2− jξ1, 2− jξ2) = 1 for all (ξ1, ξ2) ∈ R2d
\ {0}.

or σ ∈ L∞(R2d ), we denote σ j (ξ1, ξ2) = Φ(ξ1, ξ2)σ (2 jξ1, 2 jξ2) for j ∈ Z. The bilinear
ourier multiplier Tσ with symbol σ is defined by

Tσ ( f1, f2)(x) =

∫
R2d

σ (ξ1, ξ2) f̂1(ξ1) f̂2(ξ2)e2π i x(ξ1+ξ2)dξ1dξ2,

or f1, f2 ∈ S(Rd ).
Fujita–Tomita [19], Jiao [27] and Zhou–Li [38] obtained the following weighted bounded-

ess results for Tσ and its commutators:

heorem 8.1 ([19], Theorem 6.2, [27] and [38], Theorem 1). Let b⃗ ∈ BMO(Rd )2. The
perators Tσ and [Tσ , b⃗]α for each α ∈ {(0, 1), (1, 0)} are bounded bilinear operators from

L p1 (w1) × L p2 (w2) to L p(νw⃗, p⃗), where 1
p =

1
p1

+
1
p2

< 1, under either of the following cases:

(1) (a) σ satisfies sup j∈Z ∥σ j∥H s (R2d ) < ∞ with s ∈ (d, 2d],
(b) p j ∈ (t j , ∞) for some t j ∈ [1, 2) such that 1

t1
+

1
t2

=
s
d , and

(c) w⃗ = (w1, w2) ∈ A p⃗/t⃗ (R2d ).
(2) (a) σ satisfies sup j∈Z ∥σ j∥H s⃗ (R2d ) < ∞ with s⃗ = (s1, s2) ∈ (d/2, d]2,

(b) p j > d/s j and
(c) w⃗ = (w1, w2) ∈ Ap1s1/d (Rd ) × Ap2s2/d (Rd ).

roof. In the cases (1) and (2) the boundedness of the operator Tσ is contained in [27] and [19,
heorem 6.2] respectively. The boundedness of the commutators [Tσ , b⃗]α in the case (1) follows
y combining the boundedness of the operator Tσ in [27] with Theorem 4.6. In the case (2)
he boundedness of the commutators [Tσ , b⃗]α is contained in [38, Theorem 1]. □

emark 8.2. As mentioned in [19, Theorem 6.2] and [27], in both of the cases (1) and (2) of
heorem 8.1 the boundedness of the bilinear operator Tσ holds for 0 < p < ∞.

Compactness of the commutator [Tσ , b⃗]α in the unweighted case was considered by
u [23,24]:

heorem 8.3 ([23], Theorem 1.1 and [24], Theorem 1.1). Suppose that b⃗ ∈ CMO(Rd )2. Then
Tσ , b⃗]α for each α ∈ {(0, 1), (1, 0)} is compact from L p1 (Rd ) × L p2 (Rd ) to L p(Rd ) in each of
he cases (1) and (2) of Theorem 8.1.

By combining Theorems 8.1 and 8.3 with our main Theorem 2.9, we can now recover and
mprove the result of Hu [24, Theorem 1.1], lifting their assumption that νw⃗, p⃗ ∈ Ap(Rd ), and
he result of Zhou–Li [38, Theorem 2]:

heorem 8.4. Suppose that b⃗ ∈ CMO(Rd )2. Then [Tσ , b⃗]α for each α ∈ {(0, 1), (1, 0)} is
ompact from L p1 (w1) × L p2 (w2) to L p(νw⃗, p⃗) in each of the cases (1) and (2) of Theorem 8.1.

roof. We prove the theorem in the case that the assumptions (1) of Theorem 8.1 are in force.
he other case is proved in a similar way. We verify the assumptions (1a) of Theorem 2.9 for
418
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[Tσ , b⃗]α for each α ∈ {(0, 1), (1, 0)} in place of T : By Theorem 8.1, [Tσ , b⃗]α is a bounded
perator from Lq1 (u1) × Lq2 (u2) to Lq (νu⃗,q⃗ ) for all q⃗ = (q1, q2) ∈ (t j , ∞)2, q > 1 and all

⃗ ∈ Aq⃗/t⃗ (R2d ). By Theorem 8.3, [Tσ , b⃗]α is compact from Lr1 (Rd ) = Lr1 (v1) × Lr2 (Rd ) =

Lr2 (v2) to Lr (Rd ) = Lr (νv⃗,r⃗ ) with v⃗ = (v1, v2) ≡ (1, 1) ∈ Ar⃗ (R2d ) and νv⃗,r⃗ ≡ 1. Thus
heorem 2.9 applies to give the compactness of [Tσ , b⃗]α from L p1 (w1) × L p2 (w2) to L p(νw⃗, p⃗)

or all p⃗ = (p1, p2) ∈ (t j , ∞)2, p > 1 and all w⃗ ∈ A p⃗/t⃗ (R2d ). If we work under the assumptions
2) of Theorem 8.1 then we verify the assumptions (1b) of Theorem 2.9. □

The proof in [24] was based on the idea of introducing a new subtle bi(sub)linear maximal
perator to control the commutators [Tσ , b⃗]α . As in the cases of the commutators of bilinear
alderón–Zygmund and fractional integral operators both of the original proofs in [24,38]

elied on verifying the weighted Fréchet–Kolmogorov criterion [11], which is avoided by the
rgument above. Again, Cao–Olivo–Yabuta [6] obtain a further generalization by developing
he approach based on the weighted Fréchet–Kolmogorov criterion.
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