
https://helda.helsinki.fi

Propositional union closed team logics

Yang, Fan

2022-06

Yang , F 2022 , ' Propositional union closed team logics ' , Annals of Pure and Applied Logic

, vol. 173 , no. 6 , 103102 . https://doi.org/10.1016/j.apal.2022.103102

http://hdl.handle.net/10138/341194

https://doi.org/10.1016/j.apal.2022.103102

cc_by

publishedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.



Annals of Pure and Applied Logic 173 (2022) 103102
Contents lists available at ScienceDirect

Annals of Pure and Applied Logic

www.elsevier.com/locate/apal

Propositional union closed team logics

Fan Yang
Department of Mathematics and Statistics, PL 68 (Pietari Kalmin katu 5), 00014 University of Helsinki, 
Finland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 24 August 2020
Received in revised form 21 
November 2021
Accepted 1 February 2022
Available online 10 February 2022

MSC:
03B60
03B05
03B70
03B20

Keywords:
Dependence logic
Inclusion logic
Team semantics

In this paper, we study several propositional team logics that are closed under 
unions, including propositional inclusion logic. We show that all these logics are 
expressively complete, and we introduce sound and complete systems of natural 
deduction for these logics. We also discuss the locality property and its connection 
with interpolation in these logics.
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1. Introduction

In this paper, we study propositional union closed team logics. These logics are variants of dependence 
logic, which was introduced by Väänänen [34] as a non-classical first-order logic for reasoning about de-
pendencies. This framework extends the classical logic by adding new atomic formulas for charactering 
dependence and independence between variables. Examples of such atoms are dependence atoms (giving 
rise to dependence logic [34]), inclusion atoms (giving rise to inclusion logic [13]) and independence atoms
(giving rise to independence logic [18]). Dependence logic and its variants adopts the so-called team se-
mantics, which was introduced by Hodges [26,27]. The basic idea of team semantics is that dependency 
properties can only manifest themselves in multitudes. Thus, formulas of these logics are evaluated under 
teams, which, in the propositional context, are sets of valuations. In particular, a propositional inclusion 
atom p ⊆ q is said to be true in a team X, if every truth value of p in X occurs as a truth value of q; in 
other words, values of p are “included” in the values of q.
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In logics based on team semantics, also called team(-based) logics, two closure properties are of particular 
interest: the downwards closure and the union closure property. Dependence logic is closed downwards, 
meaning that the truth of a formula on a team is preserved under taking subteams. In this paper, we 
focus on propositional team-based logics that are closed under unions, meaning that if two teams both 
satisfy a formula, then their set-theoretic union also satisfies the formula. Inclusion logic is the first studied 
union closed team logic [13]. First-order dependence and inclusion logic can be translated into existential 
second-order logic (ESO) [34,13]. More precisely, first-order dependence logic characterizes all downwards 
closed ESO-team properties [31], whereas some but not all union closed ESO-team properties are definable 
in first-order inclusion logic [15]. While both dependence and inclusion logic are strictly weaker than ESO
on their own, full ESO can be characterized by first-order logic extended with both the downwards closed 
dependence atoms and the union closed inclusion atoms [13].

Interestingly, the complementary feature of downwards closure and union closure properties is also found 
on a more basic level in team semantics: Team logics are often defined as conservative extensions of classical 
logic. The conservativity is described through the flatness property of classical formulas, which states that 
every classical formula is satisfied in a team X if and only if every singleton team of a valuation in X
satisfies the formula, or equivalently, every valuation in X satisfies the formula in the sense of the usual 
semantics. The property of flatness can actually be decomposed into downwards closure and union closure, 
in the sense that a formula is flat if and only if it is both downwards closed and union closed (see Fact 2.1), 
assuming that the empty team satisfies the formula (which is often the case for many typical team logics).

Understanding the properties of team logics with the downwards closure or union closure property is 
thus arguably a key theme in the research in team semantics. Compared with the relatively well-understood 
downwards closed team logics (particularly dependence logic), union closed team logics have received less 
attention in the literature. Many properties of inclusion logic and other union closed team logics have not yet 
been well-explored, especially on the propositional level. On the first-order level, in 2013, first-order inclusion 
logic was shown by Galliani and Hella [15] to be expressively equivalent to positive greatest fixed point logic 
and thus captures the complexity class NP over finite ordered structures. This breakthrough has sparked 
increasing interests in inclusion logic and union closed team logics in general in recent years. For instance, 
model-checking games for first-order inclusion logic were developed in [16,17], first-order consequences of 
first-order inclusion logic were axiomatized in [36], computational complexity and syntactical fragments of 
first-order inclusion logic were investigated in [14,20–22,32], a team-based first-order logic characterizing 
the union closed fragment of existential second-order logic was identified in [28], etc. As for propositional 
logic, some basic properties of propositional inclusion logic (CPL(⊆)) and other union closed team logics 
were discussed in [38]. The results in [38] are, however, relatively preliminary, compared with the extensive 
account of propositional downwards closed team logics in the literature (e.g., [7,37]). There are some recent 
articles on the expressive power and computational complexity properties of modal inclusion logic [23–25]
that also cover propositional inclusion logic, but only briefly as a special case. The aim of this paper is 
to provide a more in-depth account for the logical properties of propositional union closed team logics, 
including CPL(⊆) and another two logics.

One of the two logics is obtained by extending classical propositional logic with a different type of union 
closed dependency atoms pΥq (with p, q two sequences of propositional variables), called the anonymity 
atoms. These atoms were introduced by Galliani in [12] under the name non-dependence atoms, as they 
state an extreme case of the failure of the functional dependence between p and q. Recently Väänänen [35]
advocated the anonymity atoms with the motivation of anonymity concerns in data safety (and hence the 
name): pΥq means “p is anonymized with respect to q”. Anonymity atoms also correspond exactly to the 
afunctional dependencies studied in database theory (see e.g., [3,4]). A special case 〈〉Υq of anonymity atoms 
with the first component being the empty sequence 〈〉 deserves commenting. Such atoms, denoted also as 
�=(p), are also called inconstancy atoms, as they state that p does not have a constant value in the team. 
First-order logic with inconstancy atoms is known to be equivalent to first-order logic over sentences [13], 
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and first-order logic with arbitrary anonymity atoms is equivalent to inclusion logic [12]. The propositional 
logic with these atoms (denoted as CPL(Υ) and CPL(�=(·))) has so far not been studied.

The other union closed team logic we consider is obtained by adding to classical propositional logic a 
new disjunction �, called the relevant disjunction, which was introduced by Rönnholm [32] as a variant of 
the standard disjunction ∨ in team semantics. The main difference between the two disjunctions is that a 
team can satisfy a disjunction φ ∨ ψ when only one disjunct is satisfied, whereas the relevant disjunction 
φ �ψ requires both disjuncts to be satisfied in a non-void manner (and thus both disjuncts are actually 
“relevant”). The relevant disjunction is studied in the literature also under the name nonempty disjunction
(e.g., [25,38]). In [25], classical modal logic with � was shown to be expressively complete.

The starting point of this paper is the work in [38], where classical propositional logic with relevant 
disjunction (CPL(�)) was shown to be expressively complete. Building on the arguments in [38], we prove 
in this paper that CPL(Υ) as well as CPL(�=(·)) are expressively complete too. It follows essentially from 
the argument of [25] in the context of modal logic that propositional inclusion logic CPL(⊆) (with actually 
a weaker version of inclusion atoms than in [25]) is also expressively complete. All of the these union closed 
logics are thus also expressive equivalent, and they all admit certain disjunctive normal form.

We also provide axiomatizations for CPL(⊆) and CPL(�), which are lacking in the literature. We 
introduce sound and complete natural deduction systems for these logics. As with other team logics, these 
systems do not admit uniform substitution. The completeness theorem is proved by using the disjunctive 
normal form of the logics.

In union closed team logics, a metalogical property, the locality property, deserves particular attention. 
Locality states that the truth of a formula does not depend on the variables that do not occur in the 
formula. While this property is often taken for granted in most familiar logics, it is actually a very non-
trivial property for team logics, especially for union closed team logics. For example, first-order inclusion 
logic with the so-called strict semantics does not satisfy locality [13]. We give examples to show that under 
strict semantics, locality fails for propositional inclusion logic CPL(⊆), as well as CPL(�) and CPL(Υ)
too. We also discuss a subtle connection between locality and interpolation. It follows from the work of 
D’Agostino [8] in the modal team logics context that all expressively complete union closed team logics 
enjoy uniform interpolation. We highlight the subtle and crucial role that locality plays in the poof of [8], 
and also give an example to illustrate the failure of Craig’s interpolation in a fragment of CPL(�) under 
strict semantics that does not satisfy the locality property.

This paper is organized as follows. In Section 2, we recall the basics of team semantics and define the 
propositional union closed team logics we consider in the paper. In Section 3, we show that these logics are 
expressively complete (some of the proofs are already known), and obtain a disjunctive normal form for 
the logics. Making essential use of this disjunctive normal form, in Section 4, we axiomatize CPL(�) and 
CPL(⊆) as well as a fragment CPL(⊆0) of CPL(⊆). In Section 5, we revisit the property of locality, and 
highlight its connection with interpolation. We conclude and discuss further directions in Section 6.

2. Preliminaries

All of the logics we consider in this paper are extensions of classical propositional logic, defined in the 
team semantics setting. Let us now start by recalling the syntax for classical propositional logic (CPL). Fix 
a set Prop of propositional variables. The set of well-formed formulas of CPL (called classical formulas) are 
given by the grammar:

α ::= p | ⊥ | � | ¬α | (α ∧ α) | (α ∨ α)

where p ∈ Prop, and ⊥ and � are two constants, called falsum and versum, respectively. Throughout the 
paper we reserve the first Greek letters α, β, γ, ... for classical formulas. As usual, we write α → β := ¬α∨β
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Table 1
A team X with dom(X) = {p, q}.

p q

v1 0 1
v2 1 0
v3 1 1

and α ↔ β := (α → β) ∧ (β → α). We write Prop(α) for the set of propositional variables occurring in 
α. We also use the notation α(N) (with N ⊆ Prop a set of propositional variables) to indicate that the 
propositional variables occurring in α are among N.

Let N = {p1, . . . , pn} ⊆ Prop be a set of propositional variables. In the standard semantics for CPL, a 
classical formula α(N) is evaluated under valuations, which are functions v : N ∪ {⊥, �} → {0, 1} such that 
v(⊥) = 0 and v(�) = 1. Recall that a valuation v extends naturally to all formulas α of CPL, and we write 
v |= α if v(α) = 1. In this paper, we adopt team semantics for classical formulas, in which a classical formula 
is evaluated under teams. An (N-)team X is a set of valuations v : N ∪ {⊥, �} → {0, 1} with v(⊥) = 0 and 
v(�) = 1. The set N is called the domain of the team X, denoted as dom(X). In particular, the empty set 
∅ is a team (of an arbitrary domain). We often represent a team as a table. For example, Table 1 represents 
a team X = {v1, v2} with dom(X) = {p, q} consisting of two valuations v1 and v2, defined as

v1(p) = 0, v1(q) = 1, v2(p) = 1, v2(q) = 0, and v3(p) = v3(q) = 1.

The notion of a classical formula α being true on a team X with dom(X) ⊇ Prop(α), denoted by X |= α, 
is defined inductively as follows:

• X |= p iff for all v ∈ X, v(p) = 1.
• X |= ⊥ iff X = ∅.
• X |= � always holds.
• X |= ¬α iff for all v ∈ X, {v} �|= α.
• X |= α ∧ β iff X |= α and X |= β.
• X |= α ∨ β iff there exist subteams Y, Z ⊆ X such that X = Y ∪ Z, Y |= α and Z |= β.

For any set Γ ∪{α} of formulas, we write Γ |= α if for all teams X with dom(X) ⊇
⋃

γ∈Γ Prop(γ) ∪Prop(α), 
X |= γ for all γ ∈ Γ implies X |= α. We write simply α |= β for {α} |= β. If both α |= β and β |= α, we 
write α ≡ β and say that α and β are semantically equivalent.

It is easy to verify (by a straightforward induction) that CPL-formulas have the locality property, empty 
team property, union closure property and downwards closure property, that is, for any CPL-formula α, the 
following holds:

Empty Team Property: ∅ |= α holds;
Union Closure: X |= α and Y |= α imply X ∪ Y |= α;
Downwards Closure: X |= α and Y ⊆ X imply Y |= α.

These three properties together are (easily shown to be) equivalent to the flatness property:

Flatness: X |= α if and only if {v} |= α for all v ∈ X.

Fact 2.1. A formula is flat if and only it satisfies the empty team property and is both union closed and 
downwards closed.
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Moreover, an easy inductive proof shows that the truth of a classical formula α on singleton teams {v}
coincides with its truth on the single valuations v in the usual sense, namely,

{v} |= α if and only if v |= α. (1)

Putting these observations together, we obtain the following fact, which will also serve as our working team 
semantics for classical formulas:

Fact 2.2. For any classical formula α, any team X with dom(X) ⊇ Prop(α),

X |= α iff v |= α for all v ∈ X.

Intuitively, the above fact (or essentially the flatness of classical formulas) means that the team semantics 
for classical formulas collapses to the usual (single-valuation) semantics. In this sense, team semantics is 
conservative over classical formulas. Such a conservativity as reflected in Fact 2.2 also justifies our definition 
of the team semantics for classical formulas. For instance, our semantic clause “X |= α∨β” for a disjunction 
being true on the team level states that the team X can be split into two subteams Y and Z such that each 
disjunct is true in one of the two subteams. This (by Fact 2.2) is the same as stating that the disjunction 
α ∨ β is true locally under every valuation v in X, that is, every valuation v in X satisfies at least one of 
the disjuncts, resulting in a natural split of the team X into two subteams Y and Z with every element in 
Y making α true and every element in Z making β true. By Fact 2.2 again, this means that α is true at Y
on the team level, and β is true at Z on the team level.

Recall that for classical formulas under the usual (single-valuation) semantics, when a formula α is 
evaluated on a valuation v, the truth of α depends only on how the valuation v evaluates the propositional 
variables that actually occurs in α, and it is independent of how the other propositional variables are 
evaluated. That is, for any formula α(N), if v and u are two valuations with v � N = u � N, then v |= α iff 
u |= α. This is called the locality property. While this property is often taken for granted for most logics with 
the usual semantics, as we will discuss in this paper, in the team semantics setting, the locality property is 
a nontrivial property. We now give the definition of the property in the team semantics setting.

Definition 2.3. Let N ⊆ Prop be a set of propositional variables. A formula φ(N) is said to satisfy the locality 
property if for any teams X and Y such that dom(X), dom(Y ) ⊇ N and X � N = Y � N, it holds that

X |= φ(N) ⇐⇒ Y |= φ(N),

where for any team Z with dom(Z) ⊇ N, we write Z � N = {v � N | v ∈ Z}.

Thanks to the flatness of classical formulas, we can, nevertheless, obtain the locality property for classical 
formulas as an immediate corollary of Fact 2.2.

Proposition 2.4. Classical formulas satisfy the locality property.

Proof. Let α(N) be a classical formula. For any teams X and Y with dom(X), dom(Y ) ⊇ N and X � N = Y �
N, by Fact 2.2 and the locality property of classical formulas under the usual (single-valuation) semantics, 
we have that

X |= α ⇐⇒ ∀v ∈ X : v |= α(N) ⇐⇒ ∀u ∈ Y : u |= α(N) ⇐⇒ Y |= α. �
We now extend CPL to three non-flat but union closed team-based logics. Consider a new disjunction 

�, called relevant disjunction, and atomic formulas of the form a1 . . . ak ⊆ b1 . . . bk with each ai, bi ∈
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Prop ∪ {⊥, �}, called inclusion atoms, and of the form p1 . . . pkΥq1 . . . qm with each pi, qj ∈ Prop, called 
anonymity atoms. Inclusion and anonymity atoms are often represented as a ⊆ b and pΥq with letters 
a, b, p, q in serif font standing for sequences of propositional variables or constants of certain lengths. Define 
the logic CPL(�) as the extension of CPL by adding relevant disjunction �, and negation ¬ is allowed to 
occur only in front of classical formulas, that is, formulas of CPL(�) are formed by the grammar:

φ ::= p | ⊥ | � | ¬α | (φ ∧ φ) | (φ ∨ φ) | (φ�φ)

where α stands for an arbitrary classical formula. Similarly for the extensions CPL(⊆) and CPL(Υ) of 
CPL obtained by adding the inclusion atoms a ⊆ b and anonymity atoms pΥq, respectively, where, again, 
negation ¬ is allowed to occur only in front of classical formulas.

Define the team semantics of the new connective and atoms as follows:

• X |= φ �ψ iff X = ∅ or there exist nonempty subteams Y, Z ⊆ X such that X = Y ∪ Z, Y |= φ and 
Z |= ψ.

• X |= a ⊆ b iff for all v ∈ X, there exists u ∈ X such that v(a) = u(b).
• X |= pΥq iff for all v ∈ X, there exists u ∈ X such that v(p) = u(p) and v(q) �= u(q).

It is easy to see that formulas in CPL(�), CPL(⊆) and CPL(Υ) are not necessarily downwards closed, 
and thus not necessarily flat. For instance, for the team X from Table 1, we have that X |= p � q. However, 
for the subteam Y = {v2} of X, we have that Y �|= p � q, since no nonempty subteam of Y makes q true. 
The reader can also easily verify that for the team Z = {v2, v3}, we have Z |= p ⊆ q and Z |= pΥq, whereas 
for the subteam Y = {v2} of Z, we have Y �|= p ⊆ q and Y �|= pΥq. On the other hand, formulas in all these 
three logics satisfy the union closure property, as well as the empty team property and the locality property.

Lemma 2.5. Formulas in the logics CPL(�), CPL(⊆) and CPL(Υ) satisfy the empty team property, the 
union closure property and the locality property.

Proof. The lemma is proved by a straightforward induction on the complexity of formulas φ in the logics. 
We only give the proof details for the logic CPL(�) and for the case φ = ψ �χ. By definition, ∅ |= ψ �χ

trivially holds. For union closure, suppose X |= ψ �χ and Y |= ψ �χ. If X = ∅ or Y = ∅, then X∪Y |= ψ �χ

trivially holds. Assume now X, Y �= ∅. Then there are nonempty teams X0, X1 ⊆ X and Y0, Y1 ⊆ Y such 
that X = X0 ∪ X1, Y = Y0 ∪ Y1, X0 |= ψ, Y0 |= ψ, X1 |= χ and Y1 |= χ. By induction hypothesis, we 
obtain X0 ∪ Y0 |= ψ and X1 ∪ Y1 |= χ. Clearly, X0 ∪ Y0, X1 ∪ Y1 �= ∅ and X ∪ Y = (X0 ∪X1) ∪ (Y0 ∪ Y1) =
(X0 ∪ Y0) ∪ (X1 ∪ Y1). Hence, we conclude that X ∪ Y |= ψ �χ.

Lastly, we verify the locality property for φ(N) = ψ �χ. Suppose X, Y are teams with dom(X), dom(Y ) ⊇
N and X � N = Y � N. If X = ∅, then Y = ∅, and we have X |= ψ �χ iff Y |= ψ �χ by the empty team 
property. Now assume that X �= ∅, and thus Y �= ∅. If X |= ψ �χ, then there exist nonempty teams 
X0, X1 ⊆ X such that X = X0 ∪X1, X0 |= ψ and X1 |= χ. Consider

Y0 = {v ∈ Y | v � N ∈ X0 � N} and Y1 = {v ∈ Y | v � N ∈ X1 � N}.

Since X0, X1 �= ∅ and X � N = Y � N, we must have that Y0, Y1 �= ∅. It is also not hard to verify that

Y0 � N = X0 � N, Y1 � N = X1 � N, and Y0 ∪ Y1 = Y. (2)

Now, by induction hypothesis and the first two equations of (2), we obtain Y0 |= ψ(N) and Y1 |= χ(N). 
Finally, the last equation of (2) then gives Y |= ψ �χ. �
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Note the similarity and difference between the semantic clauses of ∨ and �: They both state that the team 
in question can be split into two subteams, each satisfying one of the disjuncts. The relevant disjunction �
requires in addition that the two subteams must be nonempty, as long as the starting team is nonempty. In 
particular, when applied to classical formulas, a (flat) disjunction α∨β being true on a team X means that 
either disjunct is true on each valuation v in the team X locally, while a relevant disjunction α�β being 
true on the same team X requires, in addition to the local truth of the disjuncts, also that each disjunct 
is actually true on some valuations (and thus both disjuncts are considered “relevant” for the truth of the 
disjunction). For an illustration of the two different disjunctions, consider the following two sentences in 
natural language:

(a) The coin lands heads or tails.
(b) Either the moon is made of green cheese or it rained today.

Consider also the team Xa of the records of certain times of coin tossing, and the team Xb of the meteoro-
logical and astronomical reports of a certain year. If we interpret the two disjunctions in (a) and (b) using 
the disjunction ∨ from classical logic (i.e., (a) is understood as h ∨ t and (b) as m ∨ r), the two sentences are 
then both true in the relevant teams Xa and Xb. If we interpret (a) and (b) using the relevant disjunction, 
as h � t and m � r instead, then m � r will fail in the team Xb, and h � t is possible to fail in the team Xa if 
the coin is a bias one.

Closely related is another disjunction that we shall call the global disjunction � (also known in the 
literature by the name intuitionistic disjunction or Boolean disjunction or classical disjunction), defined as

• X |= φ 

�

ψ iff X |= φ or X |= ψ.

The global disjunction states that either disjunct is true globally in the team in question. It is easy to verify 
that φ ∨ ψ ≡ φ 

�

ψ
� (φ �ψ). The global disjunction does not, however, preserves union closure, as e.g., 

p 

�

q is clearly not closed under unions. We thus do not consider the global disjunction in this paper.
Another related logical constant is the unary operator �, called the might modality, whose team semantics 

is defined as

• X |= �φ iff X = ∅ or there exists a nonempty subteam Y ⊆ X such that Y |= φ.

It is easy to verify that the might modality preserves union closure. It was also observed in [25] that the 
relevant disjunction � and the might operator � are inter-definable, as �φ ≡ φ �� and φ �ψ ≡ (φ ∨ ψ) ∧
�φ ∧ �ψ. We say that a team-based logic L1 is expressively weaker than another team-based logic L2, 
denoted as L1 ≤ L2, if for every L1-formula φ, there exists an L2-formula ψ such that φ ≡ ψ. If both 
L1 ≤ L2 and L2 ≤ L1, then we write L1 ≡ L2 and say that L1 and L2 are expressively equivalent. Clearly, 
CPL(�) ≡ CPL(�) for the extension CPL(�) of CPL with the unary might modality �. In this paper we 
are more interested in binary connectives and atoms; the might modality is left for future research.

An inclusion atom a ⊆ b as we defined can take the two atoms ⊥ and � as arguments. It thus has a more 
relaxed syntax than the standard one in the literature where the arguments ai, bi can only be propositional 
variables. Let us point out that the standard version of inclusion logic CPL(⊆) with this standard syntax of 
inclusion atoms is strictly weaker in expressive power than our version of CPL(⊆). To see why, consider our 
inclusion atom � ⊆ p in one variable. To express this inclusion atom in the standard version of CPL(⊆), 
by the locality property, it is sufficient to consider formulas in the only variable p. Modulo equivalence, 
the only such classical formulas are �, ⊥, p, ¬p, and the only inclusion atom with merely the propositional 
variable p is p ⊆ p, which is equivalent to �. All these formulas are flat, and thus are not equivalent to 
the non-flat inclusion atom � ⊆ p. We will show in this paper that our version of CPL(⊆) is actually 
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expressively complete. Our proof applies essentially the same argument as in [25] in the context of modal 
inclusion logic, which has an even more relaxed syntax for inclusion atoms a ⊆ b, for which the arguments 
ai, bi are allowed to be arbitrary classical formulas. Such inclusion atoms are known in the literature as 
the extended inclusion atom. It follows from [25] that propositional inclusion logic CPL(⊆) with extended 
inclusion atoms is expressively complete, and is thus expressively equivalent to our version of CPL(⊆) with 
the relatively less general inclusion atoms as we defined. Our choice of the syntax of CPL(⊆), or of inclusion 
atoms, thus enables us to obtain an expressively complete logic with minimal modification to the standard 
syntax of CPL(⊆).

The anonymity atom pΥq, also known as non-dependence atom, states an extreme case of the negation 
of the functional dependence between p and q: For every valuation v in the team X in question, there is 
a witness u in X with respect to v that witnesses the failure of the said functional dependence. Recently 
Väänänen [35] also used this atom to express the property “p is anonymized with respect to q”, and hence the 
name. Such defined anonymity atoms pΥq also correspond exactly to the afunctional dependencies studied 
in database theory (see e.g., [3,4]). We write �=(p) for the anonymity atom 〈〉Υp whose left component is the 
empty sequence 〈〉, and call such an atom inconstancy atom. Clearly, the semantics clause of the inconstancy 
atom �=(p) reduces to

• X |= �=(p) iff either X = ∅ or there exist v, u ∈ X such that v(p) �= u(p).

Intuitively, �=(p) states that the sequence p of propositional variables does not have a constant value in the 
team in question. It is easy to verify that inconstancy atoms with multiple arguments are definable in terms 
of those with single arguments:

�=(p1 . . . pn) ≡ �=(p1) ∨ · · · ∨ �=(pn).

In addition, inconstancy atoms with single arguments are easily definable in terms of relevant disjunction: 
�=(p) ≡ p �¬p.

Recall that an atom of a dual flavor is the constancy atom =(p) which states that p has a constant value 
in the team:

• X |= =(p) iff for all v, u ∈ X, v(p) = u(p).

Constancy atoms are clearly downwards closed. Dually, inconstancy atoms λ are clearly upwards closed, 
meaning that X |= λ and Y ⊇ X imply Y |= λ. Upwards closure clearly implies union closure.

We call the inclusion atoms x ⊆ a with xi ∈ {⊥, �} for each i primitive inclusion atoms. For instance, 
�⊥ ⊆ pq and ⊥� ⊆ �p are primitive inclusion atoms, whereas p ⊆ q, q ⊆ � are not. Interestingly, primitive 
inclusion atoms are also upwards closed. Denote by CPL(�=(·)) and CPL(⊆0) the logics extended from CPL
by adding, respectively, inconstancy atoms with single arguments and primitive inclusion atoms. Arbitrary 
formulas in these sublogics of CPL(⊆) and CPL(Υ) are, however, not in general upwards closed, as, e.g., 
already the propositional variable p is not upward closed.

3. Expressive completeness and normal form

In this section, we study the expressive power of the logics CPL(�), CPL(⊆), CPL(⊆0), CPL(Υ) and 
CPL(�=(·)) we introduced. The logic CPL(�) was proved in [38] to be expressively complete. Building on 
this result, we show that the logics CPL(�=(·)) and CPL(Υ) are also expressively complete. It was proved 
in [25] that modal inclusion logic with extended inclusion atoms (which allow arbitrary classical formulas to 
occur as arguments) is expressively complete, from which it follows essentially that propositional inclusion 
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logic CPL(⊆) and its variant CPL(⊆0) are also expressively complete. We recast here the argument of 
[25] in our propositional setting to give a detailed proof of the expressive completeness of CPL(⊆0) and 
CPL(⊆). As an immediate corollary, all these five logics are thus expressively equivalent. From the proof 
of these expressive completeness results, we will also obtain normal forms for formulas in these logics. 
The (disjunctive) normal form of CPL(�) has already been introduced in [38]. We will discuss the normal 
forms for the other logics, as well as normal forms for inclusion atoms and anonymity atoms. The normal 
forms of these logics will play a crucial role in the axiomatization of the logics in Section 4. The expressive 
completeness is also required for obtaining the interpolation theorem to be discussed in Section 5.

Let us start by giving formal definitions of the relevant terminologies. A team property P is a set of teams 
over certain domain N ⊆ Prop. For any formula φ(N) in the language of any of the above logics, the set

�φ�N = {X ⊆ 2N : X |= φ}

of N-teams that satisfy φ(N) is a team property (over N), where 2N stands for the set of all valuations 
v : N ∪ {⊥, �} → 2 = {0, 1}. Clearly, by locality, for any two formulas φ(N) and ψ(N), �φ�N = �ψ�N
implies φ ≡ ψ. For any formula φ in any of the five union closed logics we consider (i.e., CPL(�), CPL(⊆), 
CPL(⊆0), CPL(Υ) and CPL(�=(·))), the set �φ�N clearly contains the empty team ∅, and is closed under 
unions, i.e., X, Y ∈ �φ�N implies X ∪Y ∈ �φ�N. Let P be a collection of team properties over some domains. 
For N ⊆ Prop, we write

PN = {P ∈ P : P is a set of N-teams}

for the class of team properties over N that are in P . We are now ready to give the definition for the notion 
of expressive completeness.

Definition 3.1 (expressive completeness). We say that a team-based logic L characterizes P , or L is expres-
sively complete in P , if for every set N ⊆ Prop of propositional variables,

PN = {�φ�N : φ is an L-formula with Prop(φ) = N}.

That is, if L is expressively complete in P , then for every N, every L-formula φ(N) defines a team property 
�φ�N that belongs to PN ⊆ P , and conversely, every team property P ∈ PN is definable by some formula φ(N)
in L. Clearly, if both L1 and L2 are expressively complete in some class P , then L1 and L2 are expressively 
equivalent, i.e., L1 ≡ L2, since for every L1-formula φ(N), the team property �φ�N ∈ PN is definable by some 
L2-formula ψ(N), namely �φ�N = �ψ�N or φ ≡ ψ; and vice versa.

Let F denote the collection of all flat team properties (i.e., properties P satisfying X ∈ P iff {v} ∈ P for 
all v ∈ X). It was proved in [38] that classical propositional logic CPL is expressively complete in F . We 
now recall briefly also the proof of this fact from [38], as a crucial formula ΘX used in this proof will play 
an important role in the main theorem (Theorem 3.7) in this section.

Theorem 3.2 ([38]). CPL is expressively complete in F .

Proof. We only give a sketch of the proof. For any CPL-formula α(N), since α is flat, we have �α�N ∈ F . 
Conversely, for any N-team property P ∈ FN, putting X =

⋃
P, we show that �ΘX�N = P, where

ΘX :=
∨
v∈X

(pv(1)1 ∧ · · · ∧ pv(n)
n )

with v(i) short for v(pi), p1
i := pi, p0

i = ¬pi and 
∨
∅ := ⊥. Indeed, each disjunct in the formula ΘX clearly 

defines a valuation v in the team X, in the sense that for any N-team Y ,
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Y |= p
v(1)
1 ∧ · · · ∧ pv(n)

n ⇐⇒ Y ⊆ {v}. (3)

It then follows that for any N-team Y ,

Y |= ΘX ⇐⇒ Y =
⋃
v∈X

Yv for some Yv ⊆ {v} ⇐⇒ Y ⊆ X. (4)

Thus, since P is flat, we have Y |= ΘX iff Y ⊆ X =
⋃

P ∈ P iff Y ∈ P. �
The expressive completeness of CPL immediately implies the following characterization of classical for-

mulas in the logics we consider in this paper.

Corollary 3.3. A formula of any of the logics CPL(�), CPL(⊆), CPL(⊆0), CPL(Υ) and CPL(�=(·)) is 
flat iff it is equivalent to a classical formula.

Proof. The right to left direction is obvious. For the other direction, let φ(N) be a flat formula in any of 
the five logics. The team property �φ�N is clearly also flat. Then, by the expressive completeness of CPL, 
there is a classical formula α(N) such that �φ�N = �α�N, which implies φ ≡ α by locality. �

Denote by P ∪̇ the collection of all union closed team properties which contain the empty team. Clearly, 
for any formula φ(N) in the union closed team logics we introduced, �φ�N ∈ P ∪̇. We will see in this section 
that the other direction holds for all five union closed team logics we consider in the paper. First, let us 
recall that this result was proved for CPL(�) already in [38].

Theorem 3.4 ([38]). CPL(�) is expressively complete in P ∪̇

Proof. See [38] for the detailed proof. We now give a sketch of the proof. It suffices to show that for every 
team property P ∈ P ∪̇

N , we can find a CPL(�) formula φ(N) such that P = �φ�N. For any team X (i.e., a 
set of valuations v) with dom(X) = N = {p1, . . . , pn}, define a CPL(�)-formula

ΨX := ·
∨
v∈X

(pv(1)1 ∧ · · · ∧ pv(n)
n ), (5)

where, again, v(i) is short for v(pi), p1
i := pi, p0

i = ¬pi and ·
∨
∅ := ⊥. Since (3) holds for each �-disjunct in 

the formula ΨX , the formula ΨX characterizes the team X modulo the empty team, in the sense that for 
any N-team Y

Y |= ΨX ⇐⇒ Y = ∅, or Y =
⋃
v∈X

Yv and Yv = {v} ⇐⇒ Y = ∅ or Y = X. (6)

Finally, we show P = �
∨

X∈P ΨX�N. The inclusion “⊆” is immediate. For the other inclusion “⊇”, for any 
N-team Y , if Y |=

∨
X∈P ΨX , then Y =

⋃
X∈P YX for some YX satisfying YX |= ΨX . It follows from (6) that 

each YX = X or YX = ∅. Thus, Y =
⋃

P′ for some (possibly empty) subclass P′ ⊆ P. Now, Y ∈ P follows 
from the fact that P contains the empty team ∅ and is closed under unions. �

The proof of the above theorem gives rise to a disjunctive normal form for formulas in CPL(�).

Corollary 3.5 ([38], Normal Form). Every CPL(�) formula φ(N) is equivalent to a formula for the form ∨
ΨX for some collection X of N-teams.
X∈X
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Proof. Put P = �φ�N. Since P ∈ P ∪̇
N , by the proof of Theorem 3.4, we have �φ�N = P = �

∨
X∈P ΨX�N, and 

thus φ ≡
∨

X∈P ΨX follows from locality. �
Another immediate corollary of the expressive completeness of CPL(�) (in P ∪̇) is that all union 

closed team logics with the empty team property (including CPL(�), CPL(⊆), CPL(⊆0), CPL(Υ) and 
CPL(�=(·))) are compact, as CPL(�) was shown in [38] to be compact.

Corollary 3.6 (Compactness). Let L be a team-based logic that is closed under unions and has the empty 
team property. Then L is compact, that is, for any set Γ ∪ {φ} of L-formulas, if Γ |= φ, then there exists a 
finite set Γ0 ⊆ Γ such that Γ0 |= φ. In particular, CPL(�), CPL(⊆), CPL(⊆0), CPL(Υ) and CPL(�=(·))
are compact.

Proof. Since L is closed under unions and has the empty team property, for every L-formula ψ(N) ∈ Γ ∪{φ}, 
the N-team property �ψ�N that ψ defines belongs to P ∪̇

N . Since CPL(�) is expressively complete in P ∪̇, there 
exists a CPL(�)-formula ψ∗(N) such that �ψ∗�N = �ψ�N and thus ψ ≡ ψ∗. Since Γ |= φ, we have Γ∗ |= φ∗, 
where Γ∗ = {γ∗ | γ ∈ Γ}. Now, since CPL(�) is compact (by [38]), there exists a finite set Γ0 ⊆ Γ such 
that Γ∗

0 |= φ∗, which then gives Γ0 |= φ. �
Building on Theorem 3.4 and its proof, we now show that all the other union closed team logics CPL(⊆0), 

CPL(⊆), CPL(�=(·)) and CPL(Υ) are also expressively complete in P ∪̇. The proofs below for the expressive 
completeness of CPL(⊆0) and CPL(⊆) are essentially an adaptation of a similar one for the expressive 
completeness of modal inclusion logic given in [25].

Theorem 3.7. The logics CPL(⊆0), CPL(⊆), CPL(�=(·)) and CPL(Υ) are all expressively complete in P ∪̇. 
In particular, CPL(�) ≡ CPL(⊆0) ≡ CPL(⊆) ≡ CPL(�=(·)) ≡ CPL(Υ).

Proof. Since CPL(⊆0) and CPL(�=(·)) are sublogics of CPL(⊆) and CPL(Υ), respectively, we only need 
to show that CPL(⊆0) and CPL(�=(·)) are expressively complete in P ∪̇. That is to show that for every set 
N of propositional variables, for every N-team property P ∈ P ∪̇, there is a formula φ(N) in CPL(⊆0) and in 
CPL(�=(·)) such that P = �φ�N. Now, by the proof of Theorem 3.4, we know that P = �

∨
X∈P ΨX�N, where 

each ΨX is a CPL(�)-formula. We would thus be done if for every N-team X ∈ P, we can find a CPL(⊆0)
formula η(N) and a CPL(�=(·))-formula ψX(N) such that ηX ≡ ΨX ≡ ψX .

We first construct for every N-team X, the formula ηX(N) in CPL(⊆0) such that ψX ≡ ΨX . If X = ∅, 
then by definition, ΨX = ⊥ and we can take ηX = ⊥. Now, assume that X �= ∅. First, consider the formula

ΦX :=
∧
v∈X

v(1) . . . v(n) ⊆ p1 . . . pn,

where, once again, v(i) is short for v(pi), 0 := ⊥ and 1 := �. Each conjunct in ΦX ensures (modulo the 
empty team) that the valuation v must belong to the team Y in question, in the sense that for any N-team 
Y ,

Y |= v(1) . . . v(n) ⊆ p1 . . . pn ⇐⇒ Y = ∅ or v ∈ Y. (7)

To see why (7) holds, note that if Y = ∅, then Y |= v(1) . . . v(n) ⊆ p1 . . . pn. If Y �= ∅, then Y |=
v(1) . . . v(n) ⊆ p1 . . . pn, iff there exists u ∈ Y such that

u(pi) = u(v(i)) = v(pi) for all 1 ≤ i ≤ n,
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iff v ∈ Y . Now, by (7), we obtain that

Y |= ΦX ⇐⇒ Y = ∅, or v ∈ Y for all v ∈ X ⇐⇒ Y = ∅ or X ⊆ Y. (8)

Recall that we have defined a formula ΘX in the proof of Theorem 3.2, and the equivalence (4) holds for 
the formula ΘX . Define now ηX = ΘX ∧ ΦX .1 By (4) and (8), we obtain that for any N-team Y ,

Y |= ψX ⇐⇒ Y ⊆ X, and Y = ∅ or X ⊆ Y ⇐⇒ Y = ∅ or Y = X.

By (6) and locality, this implies that ηX ≡ ΨX , as we wanted.

Next, for every N-team X, we define a formula ψX in CPL(�=(·)) such that ψX ≡ ΨX . Let N =
{p1, . . . , pn}. We will define, inductively, for each subset K = {p1, . . . , pk} (k ≤ n) of propositional vari-
ables from N a CPL(�=(·))-formula ψK

X(K) such that ψK
X ≡ ΨK

X , where

ΨK
X = ·

∨
v∈X

(pv(1)1 ∧ · · · ∧ p
v(k)
k ).

The above formula ΨK
X can be viewed as an approximation of the formula ΨX , and obviously ΨX = ΨN

X . 
The required formula ψX can thus be defined as ψX = ψN

X . We now give the definition of ψK
X for every 

N-team X by induction on |K|.
If K = {p1}, we have

ΨK
X =

(
·
∨

v∈X+

p1
)
�

(
·
∨

v∈X−

¬p1
)
,

where X+ = {v ∈ X | v(p1) = 1} and X− = {v ∈ X | v(p1) = 0}. If X+ = ∅, then ΨK
X = ·

∨
v∈X− ¬p1 ≡ ¬p1, 

and we define ψK
X = ¬p1. If X− = ∅, then ΨK

X ≡ p1 and we define ψK
X = p1. If X+, X− �= ∅, then 

ΨK
X = p1 �¬p1 ≡ (p1 ∨ ¬p1) ∧ �=(p1), and we define ψK

X = (p1 ∨ ¬p1) ∧ �=(p1).
If K = {p1, . . . , pm+1} = K0 ∪ {pm+1}, let X+ = {v ∈ X | v(pm+1) = 1} and X− = {v ∈ X | v(pm+1) =

0}. If X+ = ∅, then

ΨK
X = ·

∨
v∈X−

(pv(1)1 ∧ · · · ∧ pv(m)
m ∧ ¬pm+1)

≡
(

·
∨

v∈X−

(pv(1)1 ∧ · · · ∧ pv(m)
m )

)
∧ ¬pm+1

≡ ψK0
X− ∧ ¬pm+1, (by induction hypothesis)

and we define ψK
X = ψK0

X− ∧ ¬pm+1. Similarly, if X− = ∅, then ΨK
X ≡ ψK0

X+ ∧ pm+1, and we define ψK
X =

ψK0
X+ ∧ pm+1. If X+, X− �= ∅, by induction hypothesis we have that

ΨK
X ≡ (ψK0

X+ ∧ pm+1)�(ψK0
X− ∧ ¬pm+1) ≡

(
(ψK0

X+ ∧ pm+1) ∨ (ψK0
X− ∧ ¬pm+1)

)
∧ �=(pm+1).

Then, we define ψK
X =

(
(ψK0

X+ ∧ pm+1) ∨ (ψK0
X− ∧ ¬pm+1)

)
∧ �=(pm+1). �

The above expressive completeness proof gives rise to normal forms of formulas in the logics CPL(⊆0), 
CPL(⊆), CPL(�=(·)) and CPL(Υ).

1 This CPL(⊆0)-formula is essentially adapted from a very similar and slightly more complex modal formula in [25], which uses 
the more general extended inclusion atoms.
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Corollary 3.8 (Normal form).

(i) Every formula φ(N) in CPL(⊆0) and CPL(⊆) is equivalent to a formula of the form 
∨

X∈X (ΘX ∧ΦX)
for some collection X of N-teams.

(ii) Every formula φ(N) in CPL(�=(·)) and CPL(Υ) is equivalent to a formula of the form 
∨

X∈X ψX for 
some collection X of N-teams.

Let us end this section with some further discussion on the normal forms of the logics CPL(⊆) and 
CPL(Υ), or the normal forms of inclusion atoms and anonymity atoms in the logics in particular. First, 
note that CPL(⊆)-formulas in the normal form 

∨
X∈X (ΘX ∧ ΦX) contain primitive inclusion atoms x ⊆ p

only Similarly, CPL(Υ)-formulas in the normal form 
∨

X∈X ψX contain inconstancy atoms �=(p) with single 
arguments only. It then follows that arbitrary (nontrivial) inclusion atoms b ⊆ c and anonymity atoms pΥq
are definable in terms of regular primitive inclusion atoms x ⊆ p and inconstancy atoms �=(p) with single 
arguments, respectively. We provide direct definitions for these atoms in terms of the corresponding simpler 
atoms in the following.

To simplify notations, we write v(i) for v(pi). The notation p1 or p� stand for p, and p0 or p⊥ stand 
for ¬p; similarly, �⊥ and ⊥� both stand for ⊥. Hereafter, we reserve the letters p, q, r, . . . with or without 
subscripts for propositional variables, the letters x, y, z, . . . with or without subscripts for the constants ⊥
and �, and the letters a, b, c, . . . with or without subscripts for either propositional variables or ⊥ or �. 
The serif font letters p, q, . . . will stand for sequences of propositional variables of certain lengths; similarly 
for x, y, . . . in serif font, and a, b, c, . . . in serif font. We write |a| for the length of the sequence a. For two 
sequences a = 〈a1, . . . , an〉 and x = 〈x1, . . . , xn〉 with each ai ∈ Prop ∪ {�, ⊥} and xi ∈ {�, ⊥}, we write ax

for ax1
1 ∧ · · · ∧ axn

n .

Proposition 3.9.

(i) pΥq1 . . . qm ≡ pΥq1 ∨ · · · ∨ pΥqm and pΥ〈〉 ≡ ⊥,
(ii) p1 . . . pkΥq ≡

∨
v∈2K

(pv(1)1 ∧ · · · ∧ p
v(k)
k ∧ �=(q)), where K = {p1, . . . , pk},

(iii) pΥ〈〉 � ⊥

Proof. Easy. �
Proposition 3.10.

(i)
∧

x∈{�,⊥}|a|

(
ax → x ⊆ b

)
≡ a ⊆ b.

(ii) If |a| = |c| and |b| = |d|, then a ⊆ a ≡ �,

a�b ⊆ c�d ≡ ab ⊆ cd ≡ a⊥b ⊆ c⊥d and a�b ⊆ c⊥d ≡ ⊥ ≡ a⊥b ⊆ c�d.

Proof. Item (ii) is easy to prove. We only give the detailed proof for item (i). For the left to right direction, 
suppose X |= ¬ax ∨ x ⊆ b for all x ∈ {�, ⊥}|a|. Let v ∈ X and let x ∈ {�, ⊥}|a| be such that v(x) = v(a). 
By assumption, there exist Y, Z ⊆ X such that X = Y ∪Z, Y |= ¬ax and Z |= x ⊆ b. Clearly, v /∈ Y , which 
means v ∈ Z. Then, there exists u ∈ Z such that u(b) = v(x) = v(a). Hence, X |= a ⊆ b.

Conversely, suppose X |= a ⊆ b. We show that X |= ax → x ⊆ b for any x ∈ {�, ⊥}|a|. Let

Xx = {v ∈ X | v(a) �= v(x)}.
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Clearly, Xx |= ¬ax. If Xx = X, then X |= ¬ax and thus X |= ¬ax ∨x ⊆ b as required. Otherwise, X \Xx �= ∅. 
We show that X |= x ⊆ b, which would suffice. Let u ∈ X and pick any v ∈ X \ Xx. We have that 
u(x) = v(x) = v(a). Since X |= a ⊆ b, there exists w ∈ X such that w(b) = v(a) = u(x), as required. �

Moreover, we show that primitive inclusion atoms can actually be defined in terms of such atoms of arity 
1, i.e., inclusion atoms of the form � ⊆ p or ⊥ ⊆ q.

Proposition 3.11. xy ⊆ pq ≡ x ⊆ p ∧
(
(y ⊆ q ∧ px) ∨ ¬px).

Proof. For the left to right direction, suppose X |= xy ⊆ pq. Then clearly X |= x ⊆ p as well. It remains to 
show X |= (y ⊆ q ∧ px) ∨ ¬px. Define

Y = {v ∈ X | v(p) = v(x)}

and Z = X \ Z. Clearly, Y ∪ Z = X, Y |= px and Z |= ¬px. We now show that Y |= y ⊆ q. For any v ∈ Y , 
we have v(p) = v(x) by definition. Also, since Y ⊆ X |= xy ⊆ pq, there exists u ∈ X such that v(x) = u(p)
and v(y) = u(q). From u(p) = v(x) = u(x), we conclude that u ∈ Y . Hence, Y |= y ⊆ q.

Conversely, suppose X |= x ⊆ p ∧
(
(y ⊆ q ∧ px) ∨ ¬px). For any v ∈ X, since X |= x ⊆ p, there exists 

u ∈ X such that u(p) = v(x) = u(x). On the other hand, since X |= (y ⊆ q∧ px) ∨¬px, there exist Y, Z ⊆ X

such that X = Y ∪Z, Y |= y ⊆ q∧px and Z |= ¬px. Clearly, u /∈ Z and so u ∈ Y �= ∅. Now, since Y |= y ⊆ q, 
there exists w ∈ Y such that w(q) = u(y) = v(y). From Y |= px, we also conclude that w(p) = w(x) = v(x). 
Hence X |= xy ⊆ pq. �

Putting these results together, we obtain that an arbitrary nontrivial inclusion atom a ⊆ b can be 
decomposed into very simple inclusion atoms of the form ⊥ ⊆ p and � ⊆ p.

Corollary 3.12. An arbitrary inclusion atom a ⊆ b is either equivalent to ⊥ or �, or it can be expressed in 
terms of primitive inclusion atoms of arity 1.

Proof. Given an arbitrary inclusion atom a ⊆ b, by applying Proposition 3.10(i), we obtain an equivalent 
formula φ in which all inclusion atoms are primitive and of the form x ⊆ b. Next, apply Proposition 3.10(ii)
to remove the constants ⊥ and � from the sequence b on the right-hand side of all inclusion atoms x ⊆ b. 
Some of the resulting formulas are equivalent to ⊥ or �. Finally, we apply Proposition 3.11 exhaustedly to 
turn every primitive inclusion atom x ⊆ p obtained in the previous step into an equivalent formula in which 
inclusion atoms are all of arity 1. �

It is interesting to note that Corollary 3.12 also gives rise to a direct definition of inclusion atoms a ⊆ b in 
terms of relevant disjunction �: First transform a ⊆ b to a formula that contains primitive inclusion atoms 
⊥ ⊆ p or � ⊆ p of arity 1. Then observe that ⊥ ⊆ p ≡ ¬p �� and � ⊆ p ≡ p ��.

4. Axiomatizations

In this section, we axiomatize the union closed team logics CPL(�) and CPL(⊆) as well as CPL(⊆0). We 
define systems of natural deduction for these logics and prove the completeness theorem for these systems. 
Our argument for the completeness proof makes heavy and essential use of the disjunctive normal form of the 
logics given in Corollary 3.5 and Corollary 3.8 from the previous section. Such a technique is a generalization 
of the similar ones developed in [37,38] for propositional team logics. As seen in Corollary 3.8(ii), the 
disjunctive normal form for the logic CPL(Υ) is substantially more complex, our approach thus does not 
suit well for CPL(Υ). We leave the axiomatization for CPL(Υ) for future work.
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Table 2
Rules for constants and classical connectives.

�I�

[α]
D

⊥ ¬I (1)¬α

D0
α

D1
¬α ¬E

φ

[¬α]
D

⊥ RAA (1)α

D0

φ

D1

ψ
∧I

φ ∧ ψ

D
φ ∧ ψ

∧E
φ

D
φ ∧ ψ

∧E
ψ

D
φ

∨I
φ ∨ ψ

D
φ

∨I
ψ ∨ φ

D
φ ∨ ψ

[φ]
D0
χ

[ψ]
D1
χ

∨E (2)χ

(1) The undischarged assumptionsa in the derivation D contain classical formulas only.

(2) The undischarged assumptions in the derivations D0 and D1 contain classical formulas only.
a When this rule is applied, the (open) assumption α at the top of the branch of the derivation will 

be deemed as closed and thus discharged (from the set of open assumptions of the derivation). All 
the remaining assumptions in the derivation are regarded as “undischarged” assumptions.

Table 3
Rules for � and interactions.

D0

φ

D1

ψ
�I

φ �ψ D0

φ�ψ

[φ]
D1
χ
�Mon (1)

χ�ψ
D

φ �ψ
�Com

ψ �φ

D

φ�(ψ �χ)
�Ass

(φ�ψ)�χ

D
φ ∨ ψ

[φ]
D0
χ

[ψ]
D1
χ

[φ�ψ]
D2
χ

∨E�χ

D
φ�ψ

�∨Tr
φ ∨ ψ

D

φ�⊥
�⊥E

ψ

D

φ�(ψ ∨ χ)
Dstr �∨

(φ�ψ) ∨ (φ�χ)

(1) The undischarged assumptions in the derivation D1 contain classical formulas only.

4.1. CPL(�)

In this subsection, we define a system of natural deduction for CPL(�) and prove the completeness 
theorem.

Let us first present the system. We adopt the standard conventions of systems of natural deduction; 
readers who are not familiar with natural deduction systems are referred to, e.g., [33,9]. For example, the 
letter D (with or without subscripts) in the following definition stands for an arbitrary derivation.

Definition 4.1. The system of CPL(�) consists of all rules given in Tables 2 and 3, where α ranges over 
classical formulas only.

We write Γ �CPL(�) φ or simply Γ � φ if φ is derivable from the set Γ of formulas by applying the rules 
of the system of CPL(�). We write simply φ � ψ for {φ} � ψ. Two formulas φ and ψ are said to be provably 
equivalent, written φ �� ψ, if both φ � ψ and ψ � φ.

Our system does not admit uniform substitution, as, e.g., the rules for negation ¬ apply to classical 
formulas only. When restricted to classical formulas the system coincides with the system of classical propo-
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sitional logic. In particular, the disjunction ∨ and the negation ¬ admit the usual elimination rule ∨E, 
introduction rule ¬I and reductio ad absurdum rule RAA, respectively, under the condition that the undis-
charged assumptions in the derivations involved contain classical formulas only. It is interesting to note that 
the soundness of the disjunction elimination rule ∨E is a nontrivial feature of the union closed team logics, 
especially because this same rule is actually not sound for the propositional team logics with the downwards 
closure property or without any closure property (see [37,38]).

The rules for the relevant disjunction � are peculiar. Unsurprisingly, the usual introduction rule (φ/φ �ψ) 
is not sound for the relevant disjunction �, because, e.g., obviously φ �|= φ �⊥. While the relevant disjunction 
introduction rule �I we have in the system is considerably weak, the relevant disjunction � does admit the 
usual elimination rule under the same side condition as that for ∨E. We will show in the next proposition 
that such restricted elimination rule is derivable from the monotonicity rule of the relevant disjunction 
�Mon. The rules �Com and �Ass are added in the system also in order to compensate the weakness of 
the nonstandard introduction and elimination rule for �. The two rules ∨E� and �∨Tr together simulate 
the evident equivalence φ ∨ ψ ≡ φ 

�

ψ

� (φ �ψ) with ∨E� simulating the left to right direction and �∨Tr
simulating the right to left direction. The rule �⊥E characterizes the fact that each disjunct in a relevant 
disjunction has to be satisfied by a nonempty team (if the starting team is not empty). The distributive 
rule Dstr�∨ is actually invertible, as we will show in the next proposition that lists also some other useful 
clauses for our system.

Proposition 4.2.

(i) Let Δ be a set of classical formulas. If Δ, φ � χ and Δ, ψ � χ, then Δ, φ �ψ � χ.
(ii) φ �φ �� φ.
(iii) φ �(ψ ∨ χ) �� (φ �ψ) ∨ (φ �χ).
(iv) ⊥ � φ.
(v) φ �α, ¬α � ψ

Proof. For item (i), since Δ, φ � χ, we derive by �Mon that Δ, φ �ψ � χ �ψ. Similarly, from Δ, ψ � χ we 
derive Δ, χ �ψ � χ �χ. Thus, Δ, φ �ψ � χ �χ. By �∨Tr and ∨E we derive χ �χ � χ ∨ χ � χ. Hence we 
conclude Δ, φ �ψ � χ.

For item (ii), the left to right direction is a special case of item (i), and the right to left direction follows 
from � I.

For item (iii), the left to right direction follows from Dstr�∨. For the other direction, by ∨E it suffices 
to prove φ �ψ � φ �(ψ ∨ χ) and φ �χ � φ �(ψ ∨ χ). But these follow easily from ∨I and �Mon.

Item (iv) is proved by the usual argument by applying ¬I and ¬E.
For item (v), by ¬E, we have α, ¬α � ⊥, which gives φ �α, ¬α � φ �⊥ by �Mon. Furthermore, we have 

φ �⊥ � ψ by �⊥E. Hence φ �α, ¬α � ψ. �
Theorem 4.3 (Soundness). For any set Γ ∪ {φ} of CPL(�)-formulas, we have that Γ � φ =⇒ Γ |= φ.

Proof. The soundness of the rules in Table 2 and the first four rules in Table 3 are easy to verify. The 
soundness of ∨E� and �∨Tr follow from the fact that X |= φ ∨ ψ if and only if X |= φ or X |= ψ or 
X |= φ �ψ. The rule �⊥E is also clearly sound, since the assumption φ �⊥ is satisfied only by the empty 
team, which satisfies every formula ψ. We only verify the soundness of the rule Dstr�∨.

Assuming that X |= φ �(ψ ∨ χ) for some nonempty team X we show that X |= (φ �ψ) ∨ (φ �χ). By the 
assumption, there are nonempty teams Y, Z ⊆ X such that X = Y ∪ Z, Y |= φ and Z |= ψ ∨ χ. The latter 
implies that there are subteams W, U ⊆ Z such that Z = W ∪U , W |= ψ and U |= χ. If W = ∅, then U �= ∅
as Z �= ∅. In this case X = Y ∪ U |= φ �χ and thus X |= (φ �ψ) ∨ (φ �χ). Symmetrically, if U = ∅, then 
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W �= ∅ and X |= (φ �ψ) ∨ (φ �χ) as well. Lastly, if W, U �= ∅, then Y ∪ W |= φ �ψ and Y ∪ U |= φ �χ. 
Thus, we have that (Y ∪W ) ∪ (Y ∪ U) = X |= (φ �ψ) ∨ (φ �χ). �

The rest of this section is devoted to the proof of the completeness theorem of our system. We will show 
that every CPL(�)-formula is provably equivalent to a formula in the normal form 

∨
X∈X ΨX given by 

Corollary 3.5.

Lemma 4.4. Let N = {p1, . . . , pn}. Every CPL(�)-formula φ(N) is provably equivalent to a formula of the 
form

∨
X∈X

ΨX , where ΨX = ·
∨
v∈X

(pv(1)1 ∧ · · · ∧ pv(n)
n ), (9)

and X is a finite set of N-teams.

We shall postpone the technical proof of this above lemma till the end of this section. The completeness 
then follows from some derivations in the system that uses the specific syntactic shape of the normal form. 
One important step in this proof is to obtain from the semantic side that the entailment 

∨
X∈X ΨX |=∨

Y ∈Y ΨY of two formulas in the disjunctive normal form implies that each team X in X is identical to the 
union of all teams from a subcollection of Y. We now prove this last semantic property and also its converse 
direction.

Lemma 4.5. For any nonempty finite sets X and Y of N-teams, the following are equivalent:

(i)
∨

X∈X
ΨX |=

∨
Y ∈Y

ΨY .

(ii) For each X ∈ X , there exists YX ⊆ Y such that X =
⋃

YX .

Proof. (i)=⇒(ii): For each X0 ∈ X , we have X0 |= ΨX0 by Equation (6). Thus X0 |=
∨

X∈X ΨX , which 
by (i) implies that X0 |=

∨
Y ∈Y ΨY . This means that for each Y ∈ Y, there exists ZY ⊆ X0 such that 

X0 =
⋃

Y ∈Y ZY and each ZY |= ΨY . The latter implies, by Equation (6) again, that ZY = Y or ZY = ∅. 
Thus we obtain X0 =

⋃
Y ∈YX

Y for some YX ⊆ Y.
(ii)=⇒(i): Suppose Z is any N-team satisfying Z |=

∨
X∈X ΨX . Then, by Equation (6), there exists 

X ′ ⊆ X such that Z =
⋃

X∈X ′ X. By (ii), for each X ∈ X ′, there exists YX ⊆ Y such that X =
⋃

YX . Thus, 
we have that Z =

⋃
X∈X ′

⋃
YX =

⋃
Y ′, where Y ′ =

⋃
X∈X ′ YX ⊆ Y. Hence, Z |=

∨
Y ∈Y′ ΨY by Eqaution 

(6) again, thereby Z |=
∨

Y ∈Y ΨY . �
Next, we prove a technical lemma that concerns an interesting interaction between the two disjunctions 

∨ and �.

Lemma 4.6. Let Y be a finite set with each Y ∈ Y being a finite set of indices. Then

·
∨
i∈

⋃
Y
φi �

∨
Y ∈Y

·
∨
i∈Y

φi.

Proof. Note that elements in Y are not necessarily disjoint. We thus first derive by applying � I, �Ass and 
�Com that

·
∨
⋃

φi � ·
∨

·
∨

φi.

i∈ Y Y ∈Y i∈Y
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Next, by repeatedly applying �∨Tr and ∨E, we derive that

·
∨
Y ∈Y

·
∨
i∈Y

φi �
∨
Y ∈Y

·
∨
i∈Y

φi,

which then implies the desired clause. �
Now, we give the proof of the completeness theorem of our system.

Theorem 4.7 (Completeness). For any set Γ ∪ {φ} of CPL(�)-formulas, we have that Γ |= φ ⇐⇒ Γ � φ.

Proof. It suffices to prove the left to right direction. Suppose Γ |= φ. By the compactness theorem (Corol-
lary 3.6) we may assume that Γ is a finite set. Let ψ =

∧
Γ, and suppose φ, ψ are formulas in N = {p1, . . . , pn}. 

By Lemma 4.4,

ψ ��
∨

X∈X
ΨX and φ ��

∨
Y ∈Y

ΨY

for some finite sets X and Y of N-teams. The soundness theorem implies that

∨
X∈X

ΨX |=
∨
Y ∈Y

ΨY . (10)

If X = ∅, then ψ �� ⊥, and we derive ψ � φ by Proposition 4.2(iv). If Y = ∅, then φ �� ⊥. In view of 
(10), it must be that X = ∅ as well. Thus ψ �� ⊥ giving that ψ � φ.

If X , Y �= ∅, then by Lemma 4.5, for each X ∈ X we have that X =
⋃

YX for some YX ⊆ Y. Thus, we 
derive ΨX �

∨
Y ∈YX

ΨY �
∨

Y ∈Y ΨY by Lemma 4.6 and ∨I. Finally, we obtain 
∨

X∈X ΨX �
∨

Y ∈Y ΨY by 
∨E, thereby ψ � φ. �

Before we supply the proof of Lemma 4.4, let us first give an example of the applications of our system 
of CPL(�), in the context of the implication problem of anonymity atoms (or afunctional dependencies). 
Anonymity atoms pΥq are definable in CPL(�), and recall from Proposition 3.9 the concrete definitions. 
The implication problem of anonymity atoms (i.e., the problem of whether Γ |= φ for a set Γ ∪ {φ} of 
anonymity atoms) is shown in [35] to be completely axiomatized by the rules listed in the next example 
(read the clauses in the example as rules). We now show that these rules are derivable in the system of 
CPL(�) (via the translation given in Proposition 3.9).

Example 4.8. Let p, q, r, s, p′, q′, r′ be sequences of propositional variables.

(i) pqrΥp′q′r′ � qprΥp′q′r′ ∧ pqrΥq′p′r′ (permutation)
(ii) pqΥr � pΥrs (monotonicity)
(iii) pqΥrq � pqΥr (weakening)
(iv) pΥ〈〉 � ⊥

Proof. Items (i) and (iv) are clear. For item (ii), noting that pΥrs := pΥr ∨ pΥs, by ∨I it suffices to show 
pqΥr � pΥr. Let r = 〈r1 . . . rn〉. By ∨E and ∨I, it further suffices to show that for each 1 ≤ i ≤ n, 
pqΥri � pΥri, which is

∨
K M

(pv(1)1 ∧ · · · ∧ p
v(k)
k ∧ q

u(1)
1 ∧ · · · ∧ qu(m)

m ∧ Υri) �
∨

K

(pv(1)1 ∧ · · · ∧ p
v(k)
k ∧ Υri),
v∈2 ,u∈2 v∈2
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where K = {p1, . . . , pk} and M = {q1, . . . , qm}. But this follows easily from ∧E.
For item (iii), we show pqΥr ∨ pqΥq � pqΥr. By ∨E and Proposition 4.2(iv), it suffices to show that 

pqΥq � ⊥. Since pqΥq = pqΥq1 ∨ · · · ∨ pqΥqm, it suffices to show that pqΥqi � ⊥ for each 1 ≤ i ≤ m, i.e.,
∨

v∈2K,u∈2M

(pv(1)1 ∧ · · · ∧ p
v(k)
k ∧ q

u(1)
1 ∧ · · · ∧ qu(m)

m ∧ (qi �¬qi)) � ⊥. (11)

Now, by Proposition 4.2(v) we have that qu(i)
i ∧ (qi �¬qi) � ⊥ for each u ∈ 2M. Thus, in (11) each disjunct 

of the formula on the left-hand-side of the turnstile implies ⊥, from which we conclude that (11) holds by 
∨E. �

Finally, we give the proof of the normal form lemma, Lemma 4.4, which requires a few further lemmas. 
The first one shows that a generalized version of the rule ∨E� with disjunctions of multiple formulas is 
derivable in our system.

Lemma 4.9. For any nonempty index set I, we have that

Γ,
∨
i∈I

φi � χ ⇐⇒ Γ, ·
∨
i∈I0

φi � χ for all nonempty sets I0 ⊆ I.

Proof. The direction from left to right follows easily from �∨Tr and ∨I. We prove the other direction by 
induction on |I|. The case |I| = 1 is trivial. Now, if I = J ∪ {k}, then we have that

∀I0 ⊆ I, I0 �= ∅ : Γ, ·
∨
i∈I0

φi � χ

=⇒ ∀J0 ⊆ J, J0 �= ∅ : Γ, ·
∨
i∈J0

φi � χ & Γ, φk � χ & ∀J1 ⊆ J, J1 �= ∅ : Γ, φk � ·
∨
j∈J1

φj � χ

=⇒ ∀J0 ⊆ J, J0 �= ∅ : Γ, ·
∨
i∈J0

φi � χ & Γ, φk � χ & ∀J1 ⊆ J, J1 �= ∅ : Γ, ·
∨
j∈J1

(φk �φj) � χ

(since ·
∨
j∈J1

(φk �φj) � φk � ·
∨
j∈J1

φj by � Ass, � Com and Proposition 4.2(ii))

=⇒ Γ,
∨
i∈J

φi � χ & Γ, φk � χ & Γ,
∨
j∈J

(φj �φk) � χ (induction hypothesis)

=⇒ Γ,
∨
i∈J

φi � χ & Γ, φk � χ & Γ, (
∨
j∈J

φj)�φk � χ (Dstr � ∨)

=⇒ Γ, (
∨
i∈J

φi) ∨ φk � χ (∨ E�)

=⇒ Γ,
∨
i∈I

φi � χ. � (since I = J ∪ {k})

Recall that the formula ΨX in the normal form defines the team X modulo the empty team in the sense 
of Equation (6) from the proof of Theorem 3.4 in Section 3. Therefore for distinct teams X and Y , the two 
formulas ΨX and ΨY are contradictory to each other. We now prove this fact in our system, and the proof 
of Lemma 4.4 follows.

Lemma 4.10. If X and Y are two distinct N-teams, then ΨX , ΨY � φ.

Proof. Let N = {p1, . . . , pn}. If X = ∅ or Y = ∅, then ΨX = ⊥ or ΨY = ⊥, and ⊥ � φ follows from 
Proposition 4.2(iv). Now assume that X, Y �= ∅. Since X �= Y , there exists (w.l.o.g.) some v ∈ X \ Y . 
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By Proposition 4.2(v), we have Ψ{v} �ΨX\{v}, ¬Ψ{v} � φ, i.e., ΨX , ¬Ψ{v} � φ. To derive ΨX , ΨY � φ it 
then suffices to derive ΨY � ¬Ψ{v}. By Proposition 4.2(i), this reduces to showing that for each u ∈ Y , 
Ψ{u} � ¬Ψ{v}, which is equivalent (by the usual rules for classical formulas) to

p
u(1)
1 , . . . , pu(n)

n � ¬pv(1)1 ∨ · · · ∨ ¬pv(n)
n .

We have u �= v by the assumption, thus pu(i)
i = ¬pv(i)i for some 1 ≤ i ≤ n, from which and ∨I the above 

clause follows. �
Proof of Lemma 4.4. We prove the lemma by induction on the complexity of φ. If φ(p1, . . . , pn) = pi, then 
we can prove by the usual rules of classical formulas (which are all present or derivable in our system) that

pi ��
∨

v∈2N\{pi}

(pv(1)1 ∧ · · · ∧ p
v(i−1)
i−1 ∧ pi ∧ p

v(i+1)
i+1 ∧ · · · ∧ pv(n)

n )

��
∨

{u}∈Xi

Ψ{u}, where Xi = {{u} | u ∈ 2N, u(i) = 1}.

If φ = ⊥, then trivially ⊥ ��
∨
∅ = ⊥. If φ = �, we derive similarly by the rules of classical formulas that

� ��
∨
v∈2N

(pv(1)1 ∧ · · · ∧ pv(n)
n ) ��

∨
{v}∈X�

Ψ{v}, where X� = {{v} | v ∈ 2N}.

Suppose α(N) is a classical formula, and α ��
∨

X∈X ΨX . We show that ¬α ��
∨

v∈2N\
⋃

X Ψ{v}. It is 
sufficient to prove that 

∨
X∈X ΨX ��

∨
v∈

⋃
X Ψ{v}, which then implies, by the rules of negation ¬ and other 

usual rules of classical formulas, that ¬α �� ¬ 
∨

v∈
⋃

X Ψ{v} ��
∨

v∈2N\
⋃

X Ψ{v}. Now, we first have by the 
soundness theorem that α ��

∨
X∈X ΨX implies that α ≡

∨
X∈X ΨX . Then, observe that for each v ∈

⋃
X , 

{v} ∈ X . Indeed, by Equation (6) in Section 3, it is easy to see that 
⋃

X |=
∨

X∈X ΨX . Since the classical 
formula α is flat, we further have that {v} |=

∨
X∈X ΨX , which by Equation (6) again implies that {v} = X0

for some X0 ∈ X , namely {v} ∈ X .
Thus, we derive Ψ{v} �

∨
X∈X ΨX by ∨I. Hence we obtain 

∨
v∈

⋃
X Ψ{v} �

∨
X∈X ΨX by ∨E. To prove 

the other direction, for each X ∈ X , since X ⊆
⋃

X , we derive by applying �∨Tr and ∨I that

ΨX = ·
∨
u∈X

Ψ{u} �
∨
u∈X

Ψ{u} �
∨

v∈
⋃

X
Ψ{v}.

Thus, we conclude that 
∨

X∈X ΨX �
∨

v∈
⋃

X Ψ{v} by applying ∨E.

Suppose ψ(N) and χ(N) satisfy ψ ��
∨

X∈X ΨX and χ ��
∨

Y ∈Y ΨY , for some finite sets X and Y of 
N-teams. The case φ = ψ ∨ χ is clear. If φ = ψ �χ, and X = ∅ or Y = ∅, i.e., ψ �� ⊥ or χ �� ⊥, 
then we derive ψ �χ �� ⊥ =

∨
∅ by �Mon, �⊥E and Proposition 4.2(iv). If X , Y �= ∅, we show that 

ψ �χ ��
∨

X∈X ,Y ∈Y ΨX∪Y . For the left to right direction, we have that

ψ �χ �
( ∨

X∈X
ΨX

)
�

( ∨
Y ∈Y

ΨY

)
(by induction hypothesis and �Mon)

�
∨

X∈X

(
ΨX �

( ∨
Y ∈Y

ΨY

))
(Dstr�∨)

�
∨ ∨

(ΨX �ΨY ) (Dstr� vee)

X∈X Y ∈Y
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�
∨

X∈X ,Y ∈Y
ΨX∪Y . (apply Prop. 4.2(ii) and ∨E for the case X = Y )

The other direction is proved similarly using � I and Proposition 4.2(iii).

If φ = ψ ∧ χ, and X = ∅ or Y = ∅, i.e., ψ �� ⊥ or χ �� ⊥, then we derive ψ ∧ χ �� ⊥ =
∨

∅ by ∧E and 
Proposition 4.2(iv). If X , Y �= ∅, we show that ψ ∧ χ ��

∨
Z∈Z ΨZ , where

Z = {
⋃

X ′ | X ′ ⊆ X and
⋃

X ′ =
⋃

Y ′ for some Y ′ ⊆ Y}.

For the right to left direction, by ∨E it suffices to derive ΨZ � ψ ∧ χ for each Z =
⋃

X ′ =
⋃

Y ′ ∈ Z, where 
X ′ ⊆ X and Y ′ ⊆ Y. By Lemma 4.6, we have that ΨZ �

∨
X∈X ′ ΨX . Further, by ∨I and the induction 

hypothesis we derive 
∨

X∈X ′ ΨX �
∨

X∈X ΨX � ψ. Hence, ΨZ � ψ. The fact ΨZ � χ is proved similarly.
For the left to right direction, by induction hypothesis and Lemma 4.9 it suffices to prove that for each 

nonempty X ′ ⊆ X and Y ′ ⊆ Y,

·
∨
X∈X ′

ΨX , ·
∨
Y ∈Y′

ΨY �
∨
Z∈Z

ΨZ .

Note that elements in X ′ and in Y ′ may not be disjoint. So by Proposition 4.2(ii) we further reduce showing 
the above clause to showing Ψ⋃

X ′ , Ψ⋃
Y′ �

∨
Z∈Z ΨZ . But now, if 

⋃
X ′ �=

⋃
Y ′, the desired clause follows 

simply from Lemma 4.10. Otherwise, if 
⋃

X ′ =
⋃

Y ′ ∈ Z, then we have Ψ⋃
X ′ �

∨
Z∈Z ΨZ by ∨I. �

4.2. CPL(⊆0)

In this subsection, we axiomatize the sublogic CPL(⊆0) of CPL(⊆), by introducing a sound and complete 
system of natural deduction. Recall that CPL(⊆0) contains inclusion atoms of primitive form x ⊆ a with 
xi ∈ {�, ⊥} only. The system of CPL(⊆) will be introduced in the next subsection as an extension of the 
one for CPL(⊆0). The proof of the completeness theorem for the system of CPL(⊆0) applies essentially the 
same argument (via normal form) as that in the previous subsection for CPL(�). Since the normal form of 
CPL(⊆0) (given in Corollary 3.8(i)) is more complex, the proofs in this subsection will involve more steps. 
Let us start, again, by presenting the deduction system.

Definition 4.11. The system of CPL(⊆0) consists of the rules for constants and connectives in Table 2 and 
the rules for inclusion atoms in Table 4, where α ranges over classical formulas only, a, b, c, . . . (with or 
without subscripts) are arbitrary (and possibly empty) sequences of elements in Prop ∪ {�, ⊥}, x (with or 
without subscripts) stands for an arbitrary sequence of constants � and ⊥, and the notation α(a) indicates 
that the propositional variables and constants occurring in α are among a.

All the rules except for the last two in Table 4 are actually sound also for arbitrary inclusion atoms (that 
are not necessarily primitive). It was proved in [5] that the implication problem of inclusion dependencies 
is completely axiomatized by the rules ⊆ Id and ⊆Trs together with the following projection rule:

a1 . . . ak ⊆ b1 . . . bk ⊆Proj
ai1 . . . aim ⊆ bi1 . . . bim

(i1, . . . , im ∈ {1, . . . , k}).

This rule ⊆Proj is easily shown to be equivalent to the three rules ⊆Exc, ⊆Ctr, and ⊆ Wk together in our 
system.

The inclusion atom compression rule ⊆Cmp is a natural generalization of a similar rule introduced in [19]
for first-order inclusion atoms. The primitive inclusion atom extension rule ⊆0Ext in four different forms is
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Table 4
Rules for (primitive) inclusion atoms.

evidently sound. Note however that a stronger form of the extension rule a ⊆ b/pa ⊆ pb is easily seen to be 
not sound.

The rule ∨⊆0E simulates the entailment

(φ ∧ x ⊆ a) ∨ ψ |= (φ ∧ x ⊆ a) �

ψ

� ((φ ∨ ψ) ∧ x ⊆ a), (12)

which highlights the fact that in a team X satisfying the formula (φ ∧ x ⊆ a) ∨ ψ, if the left disjunct of the 
formula is satisfied by a nonempty subteam of X, then the primitive inclusion atom x ⊆ a (being upward 
closed) is true actually in the whole team X. Note that the converse direction of the entailment (12) does 
not hold, because the third disjunct (φ ∨ψ) ∧x ⊆ a of the formula on the right-hand-side does not necessarily 
imply (φ ∧ x ⊆ a) ∨ψ. Instead, the formula (φ ∨ψ) ∧ x ⊆ a implies ((φ ∨ ax) ∧ x ⊆ a) ∨ψ, as the rule ⊆0 Dst
states.

Theorem 4.12 (Soundness). For any set Γ ∪ {φ} of CPL(⊆0)-formulas, we have that Γ � φ =⇒ Γ |= φ.

Proof. The soundness of the rule ∨⊆0E follows from the entailment (12), which can be easily checked. We 
now verify the soundness of the rules ⊆Cmp and ⊆0Dst. The other rules are easily seen to be sound (for 
primitive and also arbitrary inclusion atoms).

For ⊆Cmp, we will verify its soundness for arbitrary inclusion atoms (that are not necessarily primitive). 
Suppose X |= a ⊆ b and X |= α(b). By Fact 2.2, to show that X |= α(a) it suffices to show v |= α(a)
for any v ∈ X. By the assumption, there exists u ∈ X such that u(b) = v(a). Since X |= α(b) and α(b)
is flat, we have that u |= α(b). Now, if all elements in the sequences a, b are propositional variables, then 
v |= α(a) follows from locality. In case some elements in a, b are constants � or ⊥, replace these elements 
with fresh propositional variables to obtain two new sequences a′, b′ of propositional variables. Let v′, u′ be 
valuations for a′, b′ that agree with v, u respectively on all propositional variables from a, b, and map the 
fresh propositional variable corresponding to � to 1 and the fresh propositional variable corresponding to 
⊥ to 0. Clearly, u′(b′) = u(b) = v(a) = v′(a′). Thus, by properties of classical propositional logic, we have 
that
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v |= α(a) iff v′ |= α(a′), and u |= α(b) iff u′ |= α(b′).

Now, the fact that u |= α(b) then implies u′ |= α(b′), which further implies, by locality, that v′ |= α(a′). 
Thus, v |= α(a) follows.

For ⊆0Dst, suppose that X |= φ ∨ ψ and X |= x1 ⊆ a1 ∧ · · · ∧ xk ⊆ ak. The latter implies that there 
are v1, . . . , vk ∈ X such that v1(a1) = v1(x1), . . . , vk(ak) = vk(xk). Thus, {v1} |= ax1

1 , . . . , {vk} |= axk
k . On 

the other hand, there are Y, Z ⊆ X such that X = Y ∪ Z, Y |= φ and Z |= ψ. Clearly, Y ∪ {v1, . . . , vk} |=
φ ∨ax1

1 ∨· · ·∨axk
k and Y ∪{v1, . . . , vk} |= x1 ⊆ a1∧· · ·∧xk ⊆ ak. Hence, we conclude that Y ∪{v1, . . . , vk} ∪Z =

X |=
(
(φ ∨ ax1

1 ∨ · · · ∨ axk
k ) ∧ x1 ⊆ a1 ∧ · · · ∧ xk ⊆ ak

)
∨ ψ. �

The proof of the completeness theorem uses a similar normal form argument to that in the previous 
subsection. The general structure and key ingredients of the proof are the same as in the completeness proof 
for the system of CPL(�). The crucial step is to show the following lemma that every formula in CPL(⊆0)
is provably equivalent to a formula in the normal form 

∨
X∈X (ΘX∧ΦX) (see also Corollary 3.8(i)). Since the 

normal form for CPL(⊆0) is more complex, the proof of this lemma involves more preparation steps. As in 
the previous section, we will only give the detailed proof of the lemma after we presented the completeness 
proof (in Theorem 4.15).

Lemma 4.13. Let N = {p1, . . . , pn}. Every CPL(⊆0)-formula φ(N) is provably equivalent to a formula of the 
form 

∨
X∈X

(ΘX ∧ ΦX), where X is a finite set of N-teams,

ΘX :=
∨
v∈X

(pv(1)1 ∧ · · · ∧ pv(n)
n ), and ΦX :=

∧
v∈X

v(1) . . . v(n) ⊆ p1 . . . pn, (13)

Recall from the proof of Theorem 3.7 that each disjunct ΘX ∧ΦX of the normal form 
∨

X∈X (ΘX ∧ΦX)
above is equivalent to the CPL(�)-formula ΨX . Thus, Lemma 4.5 from the previous subsection with respect 
to the formulas ΨX holds also with ΘX ∧ ΦX in place of ΨX .

Another key lemma for the completeness theorem is the following fact that corresponds to a specific case 
of Lemma 4.6 in the previous subsection.

Lemma 4.14. For any finite set Y of N-teams, Θ⋃
Y , Φ⋃

Y �
∨

Y ∈Y(ΘY ∧ ΦY ).

Proof. Let Y = {Y1, . . . , Yk}. We first derive that

ΘY1∪···∪Yk
,ΦY1 �

(
ΘY1 ∨ (ΘY2 ∨ · · · ∨ ΘYk

)
)
∧ ΦY1 (∨I)

�
(
(ΘY1 ∨ ΘY1) ∧ ΦY1

)
∨ (ΘY2 ∨ · · · ∨ ΘYk

) (⊆0 Dst)

� (ΘY1 ∧ ΦY1) ∨ (ΘY2 ∨ · · · ∨ ΘYk
) (∨E)

Similarly, we have that

(ΘY1 ∧ ΦY1) ∨ (ΘY2 ∨ · · · ∨ ΘYk
),ΦY2 � (ΘY2 ∧ ΦY2) ∨ ((ΘY1 ∧ ΦY1) ∨ ΘY3 ∨ · · · ∨ ΘYk

)

and so on. In the end, putting all these steps together, we obtain that

ΘY1∪···∪Yk
,ΦY1 , . . . ,ΦYk

� (ΘY1 ∧ ΦY1) ∨ · · · ∨ (ΘYk
∧ ΦYk

). �
Theorem 4.15 (Completeness). For any set Γ ∪{φ} of CPL(⊆0)-formulas, we have that Γ |= φ ⇐⇒ Γ � φ.
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Proof. The proof follows from the same argument as that for Theorem 4.7 with the CPL(�)-formula ΨX

now replaced with the CPL(⊆0)-formula ΘX ∧ ΦX . In the key steps, we now apply Lemma 4.13 and 
Lemma 4.5 for ΘX ∧ ΦX . Another crucial fact that ΘX ∧ ΦX �

∨
Y ∈YX

(ΘY ∧ ΦY ) in case X =
⋃

YX for 
some YX ⊆ Y is given by Lemma 4.14. �

The rest of this subsection is devoted to the proof of Lemma 4.13. We first prove the following technical 
lemma.

Proposition 4.16.

(i) ¬(ax1
1 ∧ · · · ∧ axn

n ), x1 . . . xn ⊆ a1 . . . an � ⊥.
(ii) px1

1 , . . . , pxn
n � x1 . . . xn ⊆ p1 . . . pn.

(iii) �
∨
v∈2N

(Θv ∧ Φv) for any N ⊆ Prop.

Proof. For item (i), we derive by ⊆ Cmp that

¬(ax1
1 ∧ · · · ∧ axn

n ), x1 . . . xn ⊆ a1 . . . an � ¬(xx1
1 ∧ · · · ∧ xxn

n ) � ¬(� ∧ · · · ∧ �) � ⊥.

For item (ii), we derive by applying ⊆0Ext and ⊆Ctr that

px1
1 ,� ⊆ � � x1� ⊆ p1� � x1 ⊆ p1.

Since � � ⊆ � by ⊆ Id, we conclude px1
1 � x1 ⊆ p1. By ⊆0Ext again, we derive px2

2 , x1 ⊆ p1 � x2x1 ⊆ p1p2, 
and thus px1

1 , px2
2 � x2x1 ⊆ p1p2. Proceed in the same way we obtain px1

1 , . . . , pxn
n � x1 . . . xn ⊆ p1 . . . pn in 

the end.
For item (iii), we first derive by rules of classical formulas that �

∨
v∈2N Θv. For each v ∈ 2N, by item (ii) 

we have that Θv � Φv � Θv ∧ Φv. Hence we conclude �
∨

v∈2N(Θv ∧ Φv) by applying ∨I and ∨E. �
Next, we show that the rule ∨⊆0E for single primitive inclusion atoms can be generalized to one with 

multiple primitive inclusion atoms, and further to one with multiple disjunctions.

Lemma 4.17.

(i) Let x1 ⊆ a1, . . . , xk ⊆ ak be primitive inclusion atoms. If

Γ, φ, x1 ⊆ a1, . . . , xk ⊆ ak � χ, Γ, ψ � χ, and Γ, φ ∨ ψ, x1 ⊆ a1, . . . , xk ⊆ ak � χ,

then Γ, (φ ∧ x1 ⊆ a1 ∧ · · · ∧ xk ⊆ ak) ∨ ψ � χ.
(ii) Let I be a nonempty finite index set. For each i ∈ I, let ιi be the conjunction of some finitely many 

primitive inclusion atoms. If for every nonempty J ⊆ I,

Γ,
∨
i∈J

φi,
∧
i∈J

ιi � χ, (14)

then Γ, 
∨

i∈I(φi ∧ ιi) � χ.

Proof. (i). To show that Γ, 
(
(φ ∧ x2 ⊆ a2 ∧ · · ·∧ xk ⊆ ak) ∧ x1 ⊆ a1

)
∨ψ � χ, by ∨⊆0E it suffices to show that

Γ, φ, x2 ⊆ a2, . . . , xk ⊆ ak, x1 ⊆ a1 � χ, Γ, ψ � χ, and Γ, (φ ∧ x2 ⊆ a2 ∧ · · · ∧ xk ⊆ ak) ∨ ψ, x1 ⊆ a1 � χ.
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The first two clauses are given already by the assumption. To prove the third clause, by ∨⊆0E again, it 
suffices to prove that

Γ, φ, x3 ⊆ a3, . . . , xk ⊆ ak, x1 ⊆ a1, x2 ⊆ a2 � χ, Γ, ψ, x1 ⊆ a1 � χ,

and Γ, (φ ∧ x3 ⊆ a3 ∧ · · · ∧ xk ⊆ ak) ∨ ψ, x1 ⊆ a1, x2 ⊆ a2 � χ.

Again, the first two clauses follow from the assumption, and the third clause can be reduced to simpler clauses 
by applying ∨⊆0E. Proceed this way, in the end it remains to show that Γ, φ ∨ ψ, x1 ⊆ a1, . . . , xk ⊆ ak � χ. 
But this is also given by the assumption, and we are then done.

(ii). Suppose (14) holds for all nonempty J ⊆ I. We first prove a lemma that for any disjoint K, L ⊆ I

with K �= ∅,

Γ,
∨
k∈K

φk ∨
∨
l∈L

(φl ∧ ιl),
∧
k∈K

ιk � χ. (15)

We proceed by induction on |L|. If L = ∅, then Γ, 
∨

k∈K φk, 
∧

k∈K ιk � χ is given by assumption (since 
K �= ∅). Suppose the claim holds for L. We show that

Γ,
∨
k∈K

φk ∨ (
∨
l∈L

(φl ∧ ιl)) ∨ (φ0 ∧ ι0),
∧
k∈K

ιk � χ.

By item (i), it suffices to show that

Γ, φ0, ι0,
∧
k∈K

ιk � χ, Γ,
∨
k∈K

φk ∨
∨
l∈L

(φl ∧ ιl),
∧
k∈K

ιk � χ

and Γ, φ0 ∨
∨
k∈K

φk ∨
∨
l∈L

(φl ∧ ιl),
∧
k∈K

ιk, ι0 � χ.

The first clause follows from the assumption that Γ, φ0, ι0 � χ. The last two clauses follow from the induction 
hypothesis.

Now we prove Γ, 
∨

i∈I(φi ∧ ιi) � χ by induction on |I|. If |I| = 1, the claim trivially holds. Suppose the 
claim holds for I. We show that the claim holds also for I ∪ {0}, that is Γ, (

∨
i∈I(φi ∧ ιi)) ∨ (φ0 ∧ ι0) � χ

holds, assuming that (14) holds for any J ⊆ I ∪ {0}. By item (i), it suffices to show that

Γ,
∨
i∈I

(φi ∧ ιi) � χ, Γ, φ0, ι0 � χ, Γ, (
∨
i∈I

(φi ∧ ιi)) ∨ φ0, ι0 � χ.

The second clause is given by the assumption. The first clause follows from the induction hypothesis, since 
for every subset J ⊆ I ⊆ I ∪ {0}, (14) holds by assumption. The third clause follows from (15). �

We call a primitive inclusion atom x ⊆ p regular if the p is a sequence of distinct propositional variables. 
For example, the primitive inclusion atoms ⊥�⊥ ⊆ ppq and �⊥⊥ ⊆ pq⊥ are not regular. We now show 
that every nontrivial primitive inclusion atom can be transformed to a regular one.

Lemma 4.18. Let x ⊆ a be a primitive inclusion atom. Either x ⊆ a �� �, or x ⊆ a �� ⊥, or x ⊆ a �� x0 ⊆ a0
for some regular primitive inclusion atom x0 ⊆ a0.

Proof. We first eliminate constants �, ⊥ one by one from the right side of a primitive inclusion atom x ⊆ a. 
Consider a constant v in a. By ⊆ Exc we may without loss of generality assume that v occurs at the last 
position of the sequence a, i.e., the inclusion atom x ⊆ a is yz ⊆ bv. If z = v, by ⊆Ctr and ⊆0Ext, we have 
that
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y� ⊆ b� �� y ⊆ b and y⊥ ⊆ b⊥ �� y ⊆ b.

For the special case when y and b are the empty sequence 〈〉, by ⊆ Id we have � 〈〉 ⊆ 〈〉. Then we derive 
that y� ⊆ b� �� � and y⊥ ⊆ b⊥ �� � by �I.

If z �= v, we show that

y� ⊆ b⊥ �� ⊥ and y⊥ ⊆ b� �� ⊥.

The right to left direction of the above two clauses follows from Proposition 4.2(iv) (which is true also for 
the system of CPL(⊆0)). For the other direction, we only give the proof for y� ⊆ b⊥ � ⊥, the other case 
being symmetric. By ⊆0Ext, we have that y� ⊆ b⊥ � y�⊥ ⊆ b⊥⊥. Since � ⊥ ↔ ⊥ by classical rules, we 
derive by ⊆Cmp that y� ⊆ b⊥ � � ↔ ⊥ � ⊥, as required.

Lastly, we remove repeated propositional variables from the right side of a primitive inclusion atom x ⊆ a. 
By ⊆Ctr and ⊆ Wk, we have that

y�� ⊆ bpp �� y� ⊆ bp and y⊥⊥ ⊆ bpp �� y⊥ ⊆ bp.

For the last case, we show that y�⊥ ⊆ bpp �� ⊥. The right to left direction follows from Proposition 4.2(iv). 
For the other direction, since � p ↔ p, by ⊆Cmp we derive that y�⊥ ⊆ bpp � � ↔ ⊥ � ⊥. �

Finally, we are ready give the proof the normal form lemma, Lemma 4.13.

Proof of Lemma 4.13. We prove the lemma by induction on φ. If φ(p1, . . . , pn) = pi, then

pi ��
∨

v∈2N\{pi}

(pv(1)1 ∧ · · · ∧ p
v(i−1)
i−1 ∧ pi ∧ p

v(i+1)
i+1 ∧ · · · ∧ pv(n)

n )

��
∨

v∈2N\{pi}

(Θ{v} ∧ pi ∧ v(1) . . . v(i− 1)�v(i + 1) . . . v(n) ⊆ p1 . . . pn) (Proposition 4.16(ii))

��
∨

{u}∈Xi

(Θ{u} ∧ Φ{u}) where Xi = {{u} | u ∈ 2N, u(i) = 1}.

If φ(p1, . . . , pn) = �, by Proposition 4.16(iii) we have that

�
∨

{v}∈X�

(Θ{v} ∧ Φ{v}), where X� = {{v} | v ∈ 2N}.

Then, by �I, we have � ��
∨

{v}∈X�
(Θ{v} ∧ Φ{v}). If φ(p1, . . . , pn) = ⊥, then trivially ⊥ ��

∨
∅ = ⊥.

If φ(p1, . . . , pn) is a primitive inclusion atom. By Lemma 4.18 and ⊆Exc, we may assume that φ = � or 
φ = ⊥ or φ = x1 . . . xk ⊆ p1 . . . pk (k ≤ n) is regular. The first two cases reduce to the previous cases. For 
the last case, we show that φ ��

∨
X∈X (ΘX ∧ ΦX) where

X = {X ⊆ 2N | ∃v ∈ X such that v(p1) = x1, . . . , v(pk) = xk}.

For the right to left direction, by ∨E it suffices to show that ΘX , ΦX � x1 . . . xk ⊆ p1 . . . pk for each X ∈ X . 
For the valuation v ∈ X such that v(p1) = x1, . . . , v(pk) = xk, we know that x1 . . . xkv(k + 1) . . . v(n) ⊆
p1 . . . pkpk+1 . . . pn is a conjunct in ΦX . Thus, we derive ΦX � x1 . . . xk ⊆ p1 . . . pk by ⊆Ctr.

Conversely, for the left to right direction, we first have by Proposition 4.16(iii) that �
∨

v∈2N(Θv ∧ Φv). 
Then it suffices to derive 

∨
v∈2N(Θv ∧Φv), x1 . . . xk ⊆ p1 . . . pk �

∨
X∈X (ΘX ∧ΦX), which by Lemma 4.17(ii)

reduces to derive that for each nonempty Y ⊆ 2N,
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ΘY ,ΦY , x1 . . . xk ⊆ p1 . . . pk �
∨

X∈X
(ΘX ∧ ΦX). (16)

Now, if Y ∈ X , then the above holds by ∨I. Otherwise, if Y /∈ X , then for each v ∈ Y , v(pi) �= xi for some 
1 ≤ i ≤ k. Thus,

Θv � p
v(1)
1 ∧ · · · ∧ p

v(k)
k � ¬(px1

1 ∧ · · · ∧ pxk

k ),

which implies ΘY � ¬(px1
1 ∧· · ·∧pxk

k ) by ∨E. By Proposition 4.16(i), we have that ¬(px1
1 ∧· · ·∧pxk

k ), x1 . . . xk ⊆
p1 . . . pk � ⊥. Hence, we obtain (16) by Proposition 4.2(iv).

Suppose α is a classical formula, and α ��
∨

X∈X (ΘX∧ΦX). We show that ¬α ��
∨

v∈2N\
⋃

X (Θ{v}∧Φ{v}). 
It is sufficient to prove that 

∨
X∈X (ΘX ∧ ΦX) ��

∨
v∈

⋃
X Θ{v}, since we will then have that

¬α �� ¬
∨

v∈
⋃

X
Θ{v} (by the standard rules for classical formulas)

��
∨

v∈2N\
⋃

X
Θ{v} (by the standard rules for classical formulas)

��
∨

v∈2N\
⋃

X
(Θ{v} ∧ Φ{v}) (Proposition 4.16(ii) and ∧E)

Now, by the same argument as that in the proof of Lemma 4.4, since α is flat, we have that for each 
v ∈

⋃
X , {v} ∈ X . Moreover, by Proposition 4.16(ii), Θ{v} � Θ{v}∧Φ{v}. Thus, the direction 

∨
v∈

⋃
X Θ{v} �∨

X∈X (ΘX ∧ ΦX) follows from ∨I and ∨E. For the other direction, for each X ∈ X , we derive by ∨I that

ΘX ∧ ΦX �
∨
u∈X

Θ{u} �
∨

v∈
⋃

X
Θ{v},

from which 
∨

X∈X (ΘX ∧ ΦX) �
∨

v∈
⋃

X Θ{v} follows by ∨E.

Suppose ψ(N) and χ(N) satisfy

ψ ��
∨

X∈X
(ΘX ∧ ΦX) and χ ��

∨
Y ∈Y

(ΘY ∧ ΦY ), (17)

for some finite sets X and Y of N-teams. The case φ = ψ∨χ follows from induction hypothesis. If φ = ψ∧χ, 
we show that ψ ∧ χ ��

∨
Z∈Z(ΘZ ∧ ΦZ), where

Z = {
⋃

X ′ | X ′ ⊆ X and
⋃

X ′ =
⋃

Y ′ for some Y ′ ⊆ Y}.

For the right to left direction, by ∨E it suffices to derive ΘZ , ΦZ � ψ∧χ for each Z =
⋃

X ′ =
⋃

Y ′ ∈ Z, where 
X ′ ⊆ X and Y ′ ⊆ Y. By Lemma 4.14 and ∨I, we have that ΘZ , ΦZ �

∨
X∈X ′(ΘX∧ΦX) �

∨
X∈X (ΘX∧ΦX) �

ψ. Similarly, ΘZ , ΦZ � χ.
For the left to right direction, by Lemma 4.17(ii) it suffices to prove that for each nonempty X ′ ⊆ X and 

Y ′ ⊆ Y,
∨

X∈X ′

ΘX ,
∧

X∈X ′

ΦX ,
∨

Y ∈Y′

ΘY ,
∧

Y ∈Y′

ΦY �
∨
Z∈Z

(ΘZ ∧ ΦZ),

which reduces to showing that
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Table 5
Rules for inclusion atoms.

D∧
x∈{�,⊥}|a|

(
ax → x ⊆ b

)

⊆Ext
a ⊆ b

D

a ⊆ b
⊆Rdt

ax → x ⊆ b

Θ⋃
X ′ ,Θ⋃

X ′ ,Θ⋃
Y′ ,Φ⋃

Y′ �
∨
Z∈Z

(ΘZ ∧ ΦZ) (18)

as elements in X ′ and Y ′ may not be disjoint. Now, if 
⋃
X ′ =

⋃
Y ′ ∈ Z, then the above clause follows 

easily from ∨I. Otherwise, if 
⋃

X ′ �=
⋃

Y ′, assume w.l.o.g. there exists some v ∈
⋃

X ′ \
⋃

Y ′. First, we 
derive Φv, ¬Θv �

∨
Z∈Z(ΘZ ∧ΦZ) by Proposition 4.16(i). Since v /∈

⋃
Y ′, by the standard rules for classical 

formulas, we have that Θ⋃
Y′ � ¬Θv. Putting these together, we obtain (18). �

4.3. CPL(⊆)

In this section, we extend the system of CPL(⊆0) to obtain a sound and complete system for propositional 
inclusion logic CPL(⊆) with arbitrary inclusion atoms. Recall from Proposition 3.10(i) that arbitrary 
inclusion atoms are definable in terms of primitive ones. Such an interaction between arbitrary and primitive 
inclusion atoms is characterized by the two rules we add to the system of CPL(⊆), inclusion atom extension 
⊆Ext and reduction ⊆Rdt rule.

Definition 4.19. The system of CPL(⊆) consists of all rules in the system of CPL(⊆0) together with the 
rules in Table 5, where a and b are arbitrary (and possibly empty) sequences of elements in Prop∪ {�, ⊥}, 
x stands for an arbitrary sequence of constants from {�, ⊥}, and |a| denotes the length of the sequence a.

By Proposition 3.10(i) the two new rules ⊆Ext and ⊆Rdt are clearly sound, and thus the system is sound. 
By applying ⊆Ext and ⊆Rdt, we can easily reduce an arbitrary inclusion atom to a formula with primitive 
inclusion atoms only:

a ⊆ b ��
∧

x∈{�,⊥}|a|

(
ax → x ⊆ b

)
.

From this the completeness of the system of CPL(⊆) follows.

Theorem 4.20 (Completeness). For any set Γ ∪ {φ} of CPL(⊆)-formulas, we have that Γ |= φ ⇐⇒ Γ � φ.

Let us end this section by illustrating the derivation of the replacement rule for inclusion atoms in the 
system of CPL(⊆).

Example 4.21.

(i) a ↔ b, ac ⊆ de � bc ⊆ de.
(ii) a ↔ b, de ⊆ ac � de ⊆ bc.

Proof. (i) By ⊆Ext it suffices to show a ↔ b, ac ⊆ de � bcxy → xy ⊆ de for all xy ∈ {�, ⊥}|y|+1. First, by 
⊆Rdt we have ac ⊆ de � acxy → xy ⊆ de. Next, since

a ↔ b,¬acxy � ¬bcxy � ¬bcxy ∨ xy ⊆ de
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and xy ⊆ de � ¬bcxy ∨ xy ⊆ de, we obtain by applying ∨E that

a ↔ b,¬acxy ∨ xy ⊆ de � ¬bcxy ∨ xc ⊆ de

i.e., a ↔ b, acxy → xy ⊆ de � bcxy → xc ⊆ de. Hence, we conclude that a ↔ b, ac ⊆ de � bcxy → xc ⊆ de as 
required.

(ii). By item (i) we derive that bc ⊆ bc, a ↔ b � ac ⊆ bc, which implies a ↔ b � ac ⊆ bc, since � bc ⊆ bc
by ⊆ Id. By ⊆Trs, we have that de ⊆ ac, ac ⊆ bc � de ⊆ bc. Thus, we conclude that a ↔ b, de ⊆ ac � de ⊆ bc, 
as required. �
5. Locality revisited and interpolation

Having studied the expressive power and proof theory for our union closed team logics in the previous 
two sections, let us in this section revisit the fundamental property of these logics, the locality property. 
The locality property states that the propositional variables not occurring in a formula are irrelevant for 
the evaluation of the formula (see Lemma 2.5). It was observed already in [13] in the context of first-order 
inclusion logic that such a basic property is in fact nontrivial in the team-based logics (especially in non-
downwards closed team logics) and thus cannot be taken for granted. In particular, a counterexample was 
given in [13] to show that first-order inclusion logic under the so-called strict semantics does not any more 
satisfy locality. In this section, we give counterexamples to show that locality fails for propositional inclusion 
logic CPL(⊆) and CPL(�) and CPL(Υ) as well if strict semantics is applied.

We also point out a subtle connection between locality and interpolation property, where the interpola-
tion property states that for any entailment φ |= ψ, there exists an interpolant θ in the common language 
of φ and ψ. It follows from recent work [8] by D’Agostino in the modal team logics setting that all of 
the expressively complete propositional team logics admit uniform interpolation (a stronger property than 
Craig’s interpolation requiring, in addition, that the interpolants are uniform). Therefore, the expressively 
complete union closed logics we consider in this paper (e.g., CPL(�), CPL(⊆) and CPL(Υ), see Theo-
rems 3.4 and 3.7) all admit uniform interpolation, demonstrating also that our logics have good meta-logical 
properties. The proof in [8] requires the assumption that the logics in question satisfy the locality property. 
We reformulate and elaborate this proof in our setting, so as to also highlight the crucial role that the 
locality property plays in this argument. It is thus natural to ask whether locality is actually a necessary 
condition or presupposition for interpolation. Roughly speaking, the locality property and the interpolation 
property both describe the redundant role of irrelevant variables. This similar flavor seems to suggest that 
these two properties may actually be connected. This problem is particularly relevant for union closed team 
logics, as locality may fail for these logics under the strict semantics. In line with this discussion, we give, 
in this section, an example of a non-local fragment of CPL(�) under strict semantics in which Craig’s 
interpolation actually fails.

As described above, the non-triviality of the locality property in the team semantics setting is (at least 
partly) due to the fact that there are alternative versions of the semantics. The team semantics we defined 
in Section 2 is known as the lax semantics. Another competing version is called the strict semantics, which 
is otherwise the same as lax semantics except that the semantics for the disjunction is subtly different. 
The strict semantics for the disjunctions ∨ and � require the team in question to be split into two disjoint 
subteams. More precisely, the satisfaction relation |=s for the disjunctions in strict semantics is defined as:

• X |=s φ ∨ ψ iff there exist Y, Z ⊆ X such that Y ∩ Z = ∅, X = Y ∪ Z, Y |=s φ and Z |=s ψ.
• X |=s φ �ψ iff X = ∅ or there exist nonempty subteams Y, Z ⊆ X such that Y ∩ Z = ∅, X = Y ∪ Z, 

Y |= φ and Z |= ψ.
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Clearly, the strict semantics for ∨ coincide with the lax semantics in downwards closed logics. The union 
closed logics we consider in this paper are, however, not downwards closed.

We now present our examples to illustrate that under strict semantics none of the logics CPL(�), CPL(⊆)
and CPL(Υ) satisfies the locality property.

Example 5.1. Consider the team X over domain {p, q, r, s} illustrated in the left table below:

X: 

p q r s

1 0 0 0
0 1 0 0
0 1 0 1
0 0 1 0

X � {p, q, r}: 

p q r

v1 1 0 0
v2 0 1 0
v3 0 0 1

Under strict semantics the CPL(�)-formula (p � q) ∨ (q � r) and the CPL(Υ)-formula (¬p ∧ �=(q)) ∨
(�=(q) ∧ ¬r) are both satisfied by X, because X can be split into two disjoint subteams (illustrated by two 
shaded table fragments of different tones) each satisfying one distinct ∨-disjunct from each formula. But 
both formulas fail in the restricted team X ′ = X � {p, q, r} under strict semantics, because the full team X ′

does not satisfy any of the four ∨-disjuncts in the two formulas, and {v1, v2} is the only nonempty subteam 
of X ′ that satisfies p � q and �=(q) ∧ ¬r, leaving the reminder subteam {v3} falsifying q � r and ¬p ∧ �=(q).

Consider also the team Y over domain {p, q, r, s, t, u, v} defined below:

Y : 

p q r s t u v

0 0 1 1 0 1 0
1 1 0 0 1 0 1
1 1 0 0 1 0 0
0 1 1 0 0 0 0

Y ′: 

p q r s t u

w1 0 0 1 1 0 1
w2 1 1 0 0 1 0
w3 0 1 1 0 0 0

Under strict semantics the CPL(⊆)-formula pq ⊆ rs ∨ tu ⊆ rs is satisfied by the team Y , but falsified 
by the restricted team Y ′ = Y � {p, q, r, s, t, u}.

Let us remark that the above example actually only shows that formulas in the logics CPL(�), CPL(Υ)
and CPL(⊆) under strict semantics are not downwards local, where we say that a formula φ(N) is downwards 
local if for any teams X and Y with dom(X) ⊇ dom(Y ) ⊇ N and X � N = Y � N, it holds that

X |= φ =⇒ Y |= φ.

It is easy to verify that a formula φ is local iff it is both downwards and upwards local, where we say that 
φ(N) is upwards local if for any X and Y as above,

X |= φ =⇒ Y |= φ.

By a straightforward inductive argument (similar to the proof of Lemma 2.5), one can prove that the logics 
CPL(�), CPL(Υ) and CPL(⊆) under strict semantics are nevertheless upwards closed.

Remark 5.2. Consider again the teams X, Y and the three formulas in Example 5.1. It is easy to see that 
under strict semantics, the first two formulas are satisfied in both {v1, v2} and {v2, v3} but not in their 
union X ′; similarly, the third formula is satisfied in both {w1, w2} and {w2, w3} but not in their union Y ′. 
This shows that none of the three logics CPL(�), CPL(⊆) and CPL(Υ) is any more union closed when 
strict semantics is applied. This fact for propositional inclusion logic CPL(⊆) was observed already in [23]. 
CPL(⊆) behaves differently under strict and lax semantics also in terms of computational properties; the 
reader is referred to [23,24] for details.
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Remark 5.3. Given any union closed N-team property P ∈ P ∪̇ that contains the empty team. It is not hard 
to see that the CPL(�)-formula 

∨
X∈P ΨX under strict semantics still characterizes P. The corresponding 

formulas in CPL(⊆) and CPL(Υ) defined in Theorem 3.7 are still equivalent to 
∨

X∈P ΨX under strict 
semantics. Therefore under strict semantics all properties in P ∪̇ are still definable in the three logics CPL(�), 
CPL(⊆) and CPL(Υ). But as illustrated in Remark 5.2, under strict semantics these three logics can also 
define properties that are not union closed. Determining the expressive power of these logics under strict 
semantics is left as future work. It is worthwhile to mention that first-order inclusion logic is known to have 
the same expressive power as positive greatest fixed point logic under lax semantics [15], whereas under 
strict semantics it is so strictly stronger that it is equivalent to existential second-order logic [14].

Let us now define another key notion for this section, namely the (uniform) interpolation property.

Definition 5.4. We say that a logic L enjoys (Craig’s) interpolation property if for any pair of L-formulas 
φ(KN) and ψ(MN) with K, M, N pairwise disjoint sets of propositional variables, if φ |= ψ, then there exists 
an L-formula θ(N) in the common language N (called an interpolant) such that φ |= θ and θ |= ψ.

Depending on the formula ψ, the interpolant θ may be different. Uniform interpolation property requires 
the interpolant to be uniform for all such ψ.

Definition 5.5. We say that a logic L enjoys uniform interpolation property if for any L-formula φ(K) and 
any N ⊆ K, there is an L-formula θ(N) (called a uniform interpolant) such that φ |= θ, and for any L-formula 
ψ(M) with K ∩ M ⊆ N, we have that φ |= ψ implies θ |= ψ.

Clearly, uniform interpolation implies Craig’s interpolation. For more in-depth discussions on interpola-
tion, the reader is referred to, e.g., [11,29]. We now proceed to reformulate the result in [8] that given the 
locality property, any propositional team-based logic that is expressively complete in some forgetful class of 
team properties enjoys uniform interpolation, and thus all of the expressively complete union closed team 
logics from Theorems 3.4 and 3.7 enjoy uniform interpolation. We call a class P of team properties forgetful
if for any N-team property P ∈ P and any M ⊆ N, P �M∈ P , where P �M= {X � M : X ∈ P}. Intuitively, 
the notion is such termed as the team property P �M in the definition simply “forgets” the information 
concerning all propositional variables in the set N \ M. For example, the collection P ∪̇ of all union closed 
team properties which contain the empty team is forgetful, so are the collection F of all flat team proper-
ties, and the collection of all downwards closed team properties which contain the empty team (in which 
propositional dependence logic is expressively complete [37]), etc.

One important lemma in the argument of [8] (formulated in our setting) is the observation that team 
semantics has the amalgamation property in the following sense, where we write simply MN for the union 
M ∪ N of two domains M, N.

Lemma 5.6 (Amalgamation). For any K-team X and M-team Y such that X � (K ∩M) = Y � (K ∩M), there 
exists a KM-team Z such that Z � K = X and Z � M = Y .

Proof. Clearly the required KM-team Z can be defined as

Z = {v : KM ∪ {�,⊥} → {0, 1} | v � K ∈ X, v � M ∈ Y and v(�⊥) = 10}. �
Now, we are ready to give the proof of the uniform interpolation result for expressively complete propo-

sitional team logics that satisfy locality property. The argument is due to [8]. We provide here a detailed 
proof in which all the steps involving applications of the (upwards and downwards) locality property are 
explicitly spelled out.
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Theorem 5.7 (Uniform interpolation). Let L be a team-based propositional logic that has the locality property 
and is expressively complete in some forgetful class P of team properties. Then L enjoys uniform interpolation 
property.

Proof. Let φ(K) be an L-formula and N ⊆ K. Since L is expressively complete in P , �φ�K ∈ P . As P is 
forgetful, �φ�K�N∈ P as well. By the expressive completeness again, we find an L-formula θ(N) such that 
�θ�N = �φ�K�N. We show that θ is the required uniform interpolant.

To see that φ |= θ, suppose X |= φ with dom(X) ⊇ K. Since L is (downwards) local, we have also that 
X � K |= φ(K), i.e., X � K ∈ �φ�K. Thus

X � N = (X � K) � N ∈ �φ�K�N= �θ�N,

namely X � N |= θ. Then, since L is (upwards) local, we conclude that X |= θ.
Next, assuming that ψ(M) is an L-formula with K ∩M ⊆ N and φ |= ψ, we show that θ |= ψ. Suppose X |= θ

and dom(X) ⊇ MN. Since L is (downwards) local, we have X � N |= θ(N). Thus X � N ∈ �θ�N = �φ�K�N. It 
follows that there exists a K-team Y such that Y |= φ and Y � N = X � N.

Since N ⊆ K and K ∩ M ⊆ N, we have that

N ⊆ K ∩ MN = (K ∩ M) ∪ (K ∩ N) ⊆ N,

thus K ∩ MN = N. Now, by Lemma 5.6, there exists a KMN-team Z such that Z � K = Y and Z � MN =
X � MN. Since Y |= φ(K), we have Z � K |= φ, which by the (upwards) locality of L implies Z |= φ. It then 
follows from assumption φ |= ψ that Z |= ψ. Since L is (downwards) local, we obtain Z � MN |= ψ, which 
implies X � MN |= ψ. Hence, we conclude X |= ψ, as L is (upwards) local. �

It then follows from Theorems 3.4 and 3.7 that uniform interpolation holds for all the expressively 
complete union closed team logics we consider in this paper.

Corollary 5.8. The logics CPL(�), CPL(⊆), CPL(⊆0), CPL(Υ), and CPL(�=(·)) enjoy uniform interpola-
tion property and thus also Craig’s interpolation property.

Let us emphasize again that the proof of Theorem 5.7 makes essential use of the locality property (both 
upwards and downwards locality, to be more precise). It is not clear whether the locality property is actually 
a necessary condition for uniform interpolation. Yet let us now demonstrate that the interpolation property 
can fail for team-based logics without the locality property. Recall from Example 5.1 that CPL(�) with 
strict semantics is not local, and the counterexample can be built with four propositional variables. We shall 
consider the restricted language of CPL(�) with four propositional variables p, q, r, s and constants �, ⊥
only. This language, denoted as CPL(�)4, is clearly still not local under strict semantics. We now illustrate 
that CPL(�)4 does not admit (Craig’s) interpolation.

Example 5.9. Consider CPL(�)4 with strict semantics and consider the team X from Example 5.1 again. 
We claim that

ΨX′ ∧
(
(p� q) ∨ (q � r)

)
|=s s�¬s, (19)

where ΨX′ = (p ∧¬q∧¬r) �(¬p ∧q∧¬r) �(¬p ∧¬q∧r) is the formula that defines (under lax semantics) the 
team X ′ = X � {p, q, r} modulo the empty team in the sense of Equation (6) from Section 3. Now, observe 
that in the entailment (19) the common language of two formulas on two sides of the turnstile (|=) is empty. 
Hence there is no interpolant for the entailment (19) (the constants ⊥ and � are clearly not interpolants).
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To see why (19) holds, take any nonempty team Y over the domain {p, q, r, s} that satisfies both ΨX′ and 
(p � q) ∨ (q � r) under strict semantics. It is easy to see that Y |=s ΨX′ implies that Y � {p, q, r} = X ′. Now, 
similarly to what we have argued in Example 5.1, in order for the {p, q, r, s}-team Y to satisfy (p � q) ∨(q � r)
under strict semantics, the valuation v2 in X ′ must extend in Y to two distinct valuations v′2 and v′′2 . In 
the language CPL(�)4 with four propositional variables only, this can only be the case if v′2(s) = 0 and 
v′′2 (s) = 1. From this we must conclude that Y |=s s �¬s, as desired.

6. Conclusion and further directions

In this paper, we have studied the expressive power, axiomatization problem and locality property for 
several propositional union closed team logics. Building on the result in [38] that CPL(�) is expressively 
complete, we proved that CPL(⊆) and CPL(Υ) as well as their fragments CPL(⊆0) and CPL(�=(·)) are 
also expressively complete. It is interesting to note that our version of the propositional inclusion logic 
CPL(⊆) allows inclusion atoms a ⊆ b with the constants � and ⊥ in the arguments. As we illustrated, the 
original version of CPL(⊆), the version in which inclusion atoms p ⊆ q can only have propositional variables 
in the arguments, is actually strictly less expressive, and not expressively complete. Recall that first-order 
inclusion logic was shown in [15] to be not expressively complete either, since some of the union closed 
existential second-order team properties cannot be defined in the logic. While the union closed fragment of 
existential second-order logic was already characterized in [28] by using an involved fragment of inclusion-
exclusion logic, it is reasonable to ask whether it is possible to find a simpler expressively complete union 
closed first-order team-based logic, by extending first-order logic with certain more general inclusion atoms, 
as done in the present paper on the propositional level.

We have introduced sound and complete natural deduction systems for CPL(�) and CPL(⊆) as well 
as CPL(⊆0). How to axiomatize the logic CPL(Υ) is left as future work. The completeness proofs for 
the systems of CPL(�) and CPL(⊆) makes heavy use of the disjunctive normal form of the two logics. 
Since the normal form of CPL(Υ) (Corollary 3.8(i)) is substantially more involved, in order to obtain an 
elegant proof system for CPL(Υ), one may need to take a different approach, or at least to formulate a 
simpler normal form for the logic. Introducing (cut-free) sequent calculi for all these union closed logics and 
investigating their proof-theoretic properties are natural further directions. For propositional downwards 
closed logics, some first steps along this line were taken in [10,30].

We have also analyzed the locality property in union closed team logics. We stressed that this simple 
property should not be taken for granted in the context of team semantics. We gave examples to illustrate 
that the union closed team logics considered in this paper under strict semantics actually lack the locality 
property. We have also briefly discussed that the locality property can actually be decomposed into the 
upwards and downwards locality. While this distinction between upwards and downwards locality did not 
lead to new result in this paper, it is our hope that this distinction can inspire further research on locality. 
We have also discussed the connection between locality and interpolation. We reformulated the proof of the 
result in [8] that given locality, all expressively complete team-based propositional logics (in some forgetful 
class) enjoy uniform interpolation (Theorem 5.7). We highlighted the subtle but crucial role that the locality 
property play in the argument for this result. This then naturally raises the question whether locality is 
actually a presupposition for interpolation. The example we gave in Example 5.9 is at least consistent with 
this idea. A thorough investigation into the connection between locality and interpolation is left for future 
work.

We end by mentioning two other further directions. First is to find applications of union closure team 
logics in other fields. Propositional downwards closed team logics have natural interpretations in inquisitive 
semantics (see e.g., [6]). Developing similar connections for union closed team logics in natural language and 
other contexts would be an important further direction. Along this line, recent work by Aloni [1] used a union 
closed team-based modal logic with the atom NE to model free-choice inferences in natural language, where 
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NE states that the team in question is nonempty (and thus the resulting logic, studied in [2], does not satisfy 
the empty team property). Another interesting direction is to consider team-based (propositional) logics 
with other closure properties. The team-based logics considered in the literature are usually conservative 
extensions of classical logic. The characteristic property of classical propositional formulas is the flatness 
property (Corollary 3.3), which is equivalent to the combination of the empty team property, the union 
closure property and the downwards closure property. In this respect, the union closure and downwards 
closure property are natural closure properties for team-based logics. In contrast, for instance, the upwards 
closure property is not very natural, because, as we pointed out already, classical formulas (e.g., already the 
propositional variable p) are not upwards closed. Nevertheless, there may well be other meaningful ways 
to decompose the flatness property. For an obvious example, the flatness property is stated as a property 
of two directions, each of which corresponds to a closure property that has not yet been considered in the 
literature. The closure properties obtained from this and possibly other decompositions could give rise to 
other interesting logics.
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