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Abstract

Motivation: RNA viruses exhibit a high mutation rate and thus they exist in infected cells as a population
of closely related strains called viral quasispecies. The viral quasispecies assembly problem asks to
characterise the quasispecies present in a sample from high-throughput sequencing data. We study the
de novo version of the problem, where reference sequences of the quasispecies are not available. Current
methods for assembling viral quasispecies are either based on overlap graphs or on de Bruijn graphs.
Overlap graph based methods tend to be accurate but slow, whereas de Bruijn graph based methods are
fast but less accurate.
Results: We present viaDBG, which is a fast and accurate de Bruijn graph based tool for de novo assembly
of viral quasispecies. We first iteratively correct sequencing errors in the reads, which allows us to use
large k-mers in the de Bruijn graph. To incorporate the paired-end information in the graph, we also adapt
the paired de Bruijn graph for viral quasispecies assembly. These features enable the use of long range
information in contig construction without compromising the speed of de Bruijn graph based approaches.
Our experimental results show that viaDBG is both accurate and fast, whereas previous methods are either
fast or accurate but not both. In particular, viaDBG has comparable or better accuracy than SAVAGE, while
being at least nine times faster. Furthermore, the speed of viaDBG is comparable to PEHaplo but viaDBG
is able to retrieve also low abundance quasispecies, which are often missed by PEHaplo.
Availability: viaDBG is implemented in C++ and it is publicly available at https://bitbucket.org/
bfreirec1/viadbg. All data sets used in this article are publicly available at https://bitbucket.
org/bfreirec1/data-viadbg/.
Contact: jose.parama@udc.es
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
RNA viruses such as the human immunodeficiency virus (HIV), the Zika
virus, and the hepatitis C virus (HCV) exhibit a high mutation rate (Duffy
et al., 2008). Thus their populations in a host organism consist of a number
of different strains which are differentiated from each other by mutations
in the genome. In the context of viruses, the collection of these strains is
called a viral quasispecies (Domingo et al., 2012; Holmes, 2009). Each of
the strains in the viral quasispecies can be characterised by its haplotypic
sequence. When studying a viral sample, it is important to capture all
strains present in the sample, because different viral strains may have a
different response to the available treatments and drugs (Domingo et al.,
2012).

High-throughput sequencing has provided a way to investigate viral
samples in detail to characterise the different strains present in the sample
and their abundances. However, although viral genomes are short, there
are challenges that are specific to the analysis of viral quasispecies data.
First, the presence of similar strains in the data makes it difficult to
assign the reads to different haplotypic sequences. Secondly, viral samples
are typically sequenced to a much deeper coverage than e.g samples
for genomic or metagenomic sequencing. This presents a challenge for
developing computationally efficient tools for reads that frequently overlap
each other. Therefore on viral samples, standard tools for genome assembly
or metagenomics produce fragmented assemblies that do not properly
capture all strains present in the sample (see e.g. Baaijens et al. (2017)).

Methods for assembling viral quasispecies from high-throughput
sequencing data are classified into two approaches, referenced based
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and de novo approaches (Posada-Cespedes et al., 2017). The reference
based approaches first align the reads to the reference sequence. Many
of these approaches then cluster the reads to haplotypes by enumerating
maximum cliques (Töpfer et al., 2014), assembling the reads (Jayasundara
et al., 2015), using Hidden Markov Models (Töpfer et al., 2013), or
using probabilistic modelling (Prabhakaran et al., 2014; Zagordi et al.,
2011; Ahn and Vikalo, 2018; Barik et al., 2018). Instead of clustering
reads, Knyazev et al. (2019) cluster the observed variants to haplotypes.
Prosperi and Salemi (2011) divide the reference into overlapping intervals,
construct local haplotypes for each interval, and finally merge them to
global haplotypes. These reference-based approaches can be effective if a
good quality reference is available. However, it has been shown that using
reference genomes can bias the reconstruction significantly (Baaijens et al.,
2017; Töpfer et al., 2014). Thus a number of de novo viral quasispecies
assemblers, which do not need a reference sequence, have been developed.
We are aware of three tools fitting this category, MLEHaplo (Malhotra
et al., 2015), SAVAGE (Baaijens et al., 2017), and PEHaplo (Chen et al.,
2018). The de novo assemblers typically cannot assemble each strain into a
single haplotype but instead produce a set of contigs. Baaijens et al. (2019)
have recently proposed a method that takes as input contigs produced by
a de novo viral quasispecies assembler and uses frequency information to
further merge these into global haplotypes. In this work, we focus on the
de novo contig assembly of viral quasispecies data.

Similar to the most successful genome assemblers for bacterial and
eukaryotic genomes, de novo viral quasispecies assemblers use either an
overlap graph or a de Bruijn graph to represent the sequencing data. See
e.g. Nagarajan and Pop (2013) for a discussion on genome assembly
approaches. An overlap graph is constructed by finding all pairwise
overlaps between the sequencing reads. Given the deep sequencing of
viral data, the number of actual overlaps between the reads approaches
the quadratic worst case limit, and thus this step could be computationally
expensive. On the other hand, methods based on overlap graphs such as
SAVAGE produce very accurate assemblies, because the overlap graph
captures well the long range similarities between the reads. PEHaplo
introduces a different trade-off for overlap graph based approaches by
introducing a technique to reduce the number of reads. It is thus much
faster, but unfortunately also less accurate. The de Bruijn graph based
methods such as MLEHaplo do not need to perform computationally
intensive overlap computations between the reads. Instead they decompose
the reads into k-mers and construct a de Bruijn graph where the k − 1-
mers are the nodes of the graph and an edge is added between two nodes
if the corresponding k-mer is present in the read set. Because k-mers
can be extracted by a linear scan over the reads, these approaches are
computationally efficient. However, they are not able to optimally use long
range information available in full length reads and thus the assemblies
they produce tend to be more fragmented and less accurate.

High-throughput sequencing reads such as Illumina reads are typically
paired-end reads. Many of the viral quasispecies assemblers use heuristics
to incorporate the paired-end information. SAVAGE merges read pairs
when the pairs overlap each other and it accepts overlaps involving paired-
end reads only if both pairs are involved in the overlap and their orientation
in the overlap is the same. PEHaplo uses heuristics to prune the overlap
graph based on paired-end information and it uses paired-end information
as a guidance for finding paths in the overlap graph. PEHaplo also
includes a post assembly step where contigs are split based on paired-
end alignments. MLEHaplo formulates the viral quasispecies assembly
problem as finding a path cover with maximum score from paired-end
reads in a de Bruijn graph. This problem is shown to be NP-hard and thus
MLEHaplo implements a heuristic path finding algorithm for this problem.

We present viaDBG (viral assembly with paired de Bruijn Graph), a
fast and accurate tool for viral quasispecies assembly. Our method is based
on de Bruijn graphs (DBGs), which we augment with several techniques to

improve the accuracy of the reconstructed haplotypic sequences. First we
employ an iterative error correction method with increasing k-mer sizes.
This allows us to use large k-mers in the final assembly enabling the use of
long range information in the de Bruijn graph. Furthermore, we adapt the
approximate paired de Bruijn graph (APDB) (Medvedev et al., 2011) to
viral quasispecies assembly. Whereas almost every assembler nowadays
applies paired-end information in the post-processing phase, where contigs
are merged and/or topologically sorted to create scaffolds, in the APDB
the paired-end information is added to the DBG.

Our experiments show that on both synthetic and real data viaDBG is
among both the most accurate methods and the fastest methods, whereas
previous tools are either accurate or fast but not both. For example, viaDBG
is up to 43 times faster than SAVAGE and produces assemblies with
comparable accuracy. Furthermore, viaDBG is able to recover also low
abundance strains which are lost or inaccurately assembled by PEHaplo,
while matching the speed of PEHaplo. On real sequencing data, viaDBG
produces assemblies with three times as high N50 values as SAVAGE
while being nine times faster. The speed of viaDBG is comparable to
PEHaplo on this data set but depending on whether we look at polished or
unpolished contigs, PEHaplo either mixes the strains or produces a 30%
lower N50 value than viaDBG, while viaDBG produces accurate results.
The de Bruijn graph based approach makes viaDBG efficient, whereas the
accuracy of viaDBG is due to using a large k in the de Bruijn graph and
the systematic use of paired-end information.

2 Methods

2.1 Background

2.1.1 Error correction by LoRDEC
LoRDEC (Salmela and Rivals, 2014) is a hybrid error correction method
for correcting sequencing errors in Third Generation Sequencing reads
with the help of accurate short reads. LoRDEC defines a k-mer as solid
if it occurs at least t times in the short read data where t is the abundance
threshold. The solid k-mers are then used to build a DBG. The third
generation sequencing reads are then processed one at a time. First, solid
k-mers in the read are identified and the regions between solid k-mers
are called weak. Then for each weak region between two solid k-mers,
LoRDEC finds the best matching path in the DBG between the two solid
k-mers. This path is used to correct the weak region in the read. Finally, the
weak ends of the read are aligned to the DBG starting from the extremal
solid k-mer and the weak ends are corrected according to the found paths.
To limit the runtime of the method, LoRDEC abandons the search for the
best alignment if there are too many branches in the DBG.

2.1.2 Approximate paired de Bruijn graph
Medvedev et al. (2011) presented the approximate paired de Bruijn graph
(APDB) to leverage paired-end information directly in contig assembly.
To build the APDB, they first extract all bilabels from the paired-end reads.
A bilabel is a pair of k-mers (A,B) such that A occurs in position p in a
left-hand read and B occurs in position p in the corresponding right-hand
read. Two bilabels (A,B) and (C,D) are merged if A = C and B is
reachable from D or vice versa. The merged bilabels form the edges of the
APDB and thus the edges have the form (A,S) whereA is ak-mer andS is
a set of k-mers. An edge (A,S) connects two nodes, (pref(A), pref(S))

and (suf(A), suf(S)), where pref(A) (suf(A)) is the k−1 length prefix
(suffix) of the k-mer A and pref(S) (suf(S)) is the set of k − 1 length
prefixes (suffixes) of all the k-mers in the set S.

Unfortunately, APDB is not directly applicable to viral quasispecies
assembly. Consider a case where the left hand reads derive from a region
of the genome where two strains are equal and the right hand reads derive
from a region where the strains differ by a single SNP. When we extract
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a) Obtain solid k-mers b) Apply LoRDEC 

1.- Error Correction 

2.- Haplotype Inference 
a) Build DBG 
b) Obtain unitigs and 

representative k-
mers 

c) Add paired-end 
information to k-
mers in DBG 

d) Polish paired-end 
information 

e) Create a modified DBG’, initially empty 
f) For each pair of adjacent nodes in DBG 

i. Build Cliques Paired DBG 
ii. Find Cliques 
iii. Polish Cliques 
iv. For each Clique create new nodes in the DBG’ 

g) Obtain unitigs in DBG’ 

Obtain the haplotypes 

Fig. 1. Overview of viaDBG. Our method has two main steps, error correction and haplotype inference. The error correction step aims to correct the sequencing errors in the reads by first
identifying solid k-mers in the reads and then applying the LoRDEC algorithm. The haplotype inference step starts by building a DBG and obtaining unitigs. The paired-end information is
then added to the DBG and some heuristics are used to polish the paired-end information. Finally, the haplotypes are obtained by splitting the DBG nodes based on the paired-end information
and obtaining unitigs from this modified DBG.

bilabels from these reads, the left k-mers will be the same in both strains
but the extracted right k-mers can be the same or different depending on
whether they cover the SNP or not. Let us suppose that we have extracted
bilabels (A,B), (A,B′), and (A,C) from the reads whereB andC occur
in the first strain andB′ andC in the second strain. BecauseB is reachable
from C and B′ is reachable from C, all these bilabels are merged into a
single edge in APDB. This is acceptable if the goal is to construct a single
genomic sequence but not for viral quasispecies assembly where we need
to construct all the strains. Here we have devised a method to differentiate
such bilabels correctly. The key idea is to merge a set of bilabels only if
all right-hand k-mers are pairwise reachable from each other.

2.2 Overview of our method

Figure 1 shows the main steps followed by viaDBG. The main difference
with respect to typical assembly methods based on de Bruijn graphs is
the use of paired-end information in an early stage. Paired-end reads are
composed by two reads, which are the two extremes (left- and right-hand)
of a sequencing fragment. The insert size is the number of base pairs
between the two reads. We will use ∆ to denote the maximum error in the
insert size.

2.3 Error correction

The error rate of paired-end short reads is low, which makes them suitable
for assembly methods based on the DBG. It has been shown that longer
k-mers lead to better assembly, but the probability of getting erroneous
k-mers also increases. Therefore, we devote the first step to remove
sequencing errors from reads, to obtain longer correct k-mers, and thus
reducing the erroneous information that would lead to shorter contigs,
lower genome fraction recovered and/or more misassemblies.

The error correction involves two steps: I) selection and classification
of solid k-mers that, as in the case of LoRDEC, are the k-mers whose
abundance in the reads is higher than a threshold, and II) reads correction.

2.3.1 Selection of solid k-mers
A k-mer is genomic if it appears in at least one strain and a non-genomic
k-mer does not appear in any of the strains in the sample. As in LoRDEC
we select solid k-mers based on their frequency of appearance, assuming
that genomic k-mers are more frequent than the non-genomic ones. Then,
the whole read set is traversed and each k-mer is classified as solid or not
solid. Because of the conservative selection of the threshold, we expect
the non-solid regions to be compounded with erroneous information. This
is simple, but the problem is to determine the threshold.

In our work, the search of that value is based on the following idea.
Let us first consider the histogram of the number of different k-mers that
occur at each frequency, that is, for each frequency fi, we plot n(fi),
which is the number of different k-mers occurring fi times. Then, we
expect to find a change in the trend in the histogram among the number of
different k-mers having low frequencies (non-genomic k-mers) and those

having higher frequencies (genomic k-mers). On one hand, the number
of different non-genomic k-mers decreases as the frequency increases. On
the other hand, the number of different genomick-mers, which have higher
frequencies, starts outnumbering the number of different non-genomic k-
mers. Thus, we will use the starting position of that change of trend in the
histogram as the threshold to detect solid k-mers.

More concretely, we will search for a region in the histogram where
there is a frequency whose count is lower than most of the counters for the
frequencies in the succeeding zone. We make use of a fixed window size
N to find the frequency ft where that change of trend starts. We define t

as the smallest i such that fi ≥ 1 and

|{fj |fi ≤ fj ≤ fi+N and n(fj) > n(fi)}| ≥ N/2.

In the Supplementary Material we show that the choice of N is easy,
by showing that with a wide range of different window values, the
performance of viaDBG does not differ significantly. By default we use
N = 16.

2.3.2 Error correction algorithm
To correct sequencing errors in the read, we adapted the LoRDEC
algorithm (Salmela and Rivals, 2014) for viral quasispecies data. We use
the solid k-mers identified above to build a DBG and then align all the
reads to the DBG to correct them. If the abundance of a strain is such that
the corresponding k-mers are solid, the strain is present as a path in the
DBG. The reads are corrected by aligning them to this graph and choosing
the alignment with the smallest edit distance between the read and path in
the graph. The reads are expected to align best against the path representing
the strain they derive from and thus most of them are corrected towards
the correct haplotypic sequence. Therefore this algorithm is well suited
for correction of viral quasispecies data.

We made three further changes to better adapt the algorithm for viral
quasispecies data. First, after building the DBG using the solid k-mers, we
polish it by removing short tips, i.e. short paths where the first node has
outdegree larger than one and the last node has outdegree zero. Secondly,
we only correct the part of the reads between the leftmost and rightmost
solid k-mer because the algorithm is less accurate on the read ends when
only one end of the alignment is anchored on solid k-mers. Third, in
viral quasispecies data it is not necessary to abandon the search for best
alignment if there are too many branches in the DBG because the genomes
are smaller and the DBG is less tangled. Therefore this limitation was
removed from the algorithm.

Once reads have been corrected, the k-mer size is doubled and the
reads are corrected again. This process is repeated three times. In the
first iteration when k is small, the set of solid k-mers contains most
genomic k-mers and some non-genomic k-mers that are caused by the
same sequencing error occurring in the same locus in several reads. Still
our method can correct most errors already at this stage because most k-
mers including an error are unique even for a small k. Once most errors
have been corrected in the first iteration, we can increase k because longer
k-mers are now expected to be correct. Because longer k-mers span more
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Fig. 2. Example of the different steps of haplotype inference. (a) First we build a DBG using all solid k-mers in the reads. Unitigs are then identified and a representative k-mer is assigned
to each unitig. (b) Next we augment the graph with the paired-end information. P , S, and X are representative k-mers of unitigs not shown in the figure. (c) A Cliques Paired DBG (CPBG)
is built for each adjacent pair of k-mers in the DBG. Nodes of CPBG are the paired k-mers of the adjacent pair of k-mers and edges between the nodes are added if there is a path between
the corresponding k-mers in the DBG. (d) Finally for each CPBG we find cliques and each clique is used to split the nodes of the DBG.

variants, k-mers originating from different strains are separated better from
each other. Thus also the abundance of erroneous k-mers becomes lower
and now less of the erroneous k-mers are classified as solid. This allows
us to further correct some sequencing errors in the next iterations.

2.4 Haplotype inference using paired-end reads

As seen in Figure 1, the haplotype inference is applied in several steps. To
illustrate them, Figure 2 shows an example workflow.

First, a regular DBG is built with the solid k-mers obtained in the
previous step. Then, we retrieve the unitigs of the DBG, and for each
unitig, we assign a representative k-mer, which will be used later in the
process. Next, each k-mer is associated with a set of paired k-mers. Given
a k-mer A and a paired-end read where A appears at position p of the
left-hand read, B is a paired k-mer of A if B occurs at position p of the
right-hand read. Next, we polish the paired-end information, and finally
we modify the DBG. If all occurrences of the k-mer A are from the same
strain, then all paired k-mers of A occur along some path in the DBG.
Thus they are all reachable from each other. On the other hand, if the
k-mer A occurs in several strains, then the paired k-mers are likely to
span some site containing a mutation. Note that the paired k-mers span
an area larger than k in the haplotypic sequences. Therefore, they are
not all reachable from each other but it still holds that the paired k-mers
originating from the same strain are all reachable from each other. We
will use this reachability information to split the DBG nodes into different
strains. Finally, the contigs are retrieved from this new DBG. Next we
explain each of these steps in detail.

2.4.1 Getting unitigs and representative k-mers
A unitig is a unary path in the de Bruijn graph, that is, a path where all
nodes have in-degree and out-degree equal to one except for the first and
last nodes. Unitigs always belong to the final genome/s. Therefore, some
assemblers, such as SPAdes (Bankevich et al., 2012), condense unitigs
into single nodes to compact the graph without losing information.

In our case, for each unitig, we extract three elements: first, middle
and last k-mers. The middle k-mer serves as a representative of the unitig,
whereas the first and last k-mers are used to determine if there is a path
from one unitig to another.

Figure 2(a) shows the DBG of our running example where unitigs are
delimited by a brace. The representative k-mer and the first and last k-mers
are also displayed in a grey box.

L(rx) R(rx)…………..
j .   .   .   .   .   j+k

A M
j .   .   .   .   .   j+k

L(ry) R(ry)…………..
u.   .   .   .   .   u+k

A
u.   .   .   .   .   u+k

L

Fig. 3. Extracting paired k-mers from paired-end reads. P(A)=(M,L).

2.4.2 Adding paired-end information for each k-mer
One of the key features of our method is the use of the paired-end
information, as it provides additional clues of the actual strains during
the traversal of the DBG.

Let U be the set of paired-end reads. Given a read r ∈ U ,
L(r) is the left-hand, R(r) is the right-hand read, and L(r)[l . . .m]

(R(r)[l . . .m]) are the base pairs at positions l . . .m of L(r) (R(r)).
For each k-mer A, our method needs to compute its set of paired k-mers
P (A) = {M |M is a solid k-mer and, ∃ rx ∈ U and a position j such
that L(rx)[j . . . j + k − 1] = A and R(rx)[j . . . j + k − 1] = M}.

Figure 3 shows an example where the k-mer A appears in the left-
hand part in two reads (rx and ry). Then the solid k-mers M and L,
which appear in the same positions of the right-hand parts, form P (A).

To avoid excessive memory usage, we do not store all paired k-mers.
Instead, for each k-mer in P (A), we find the unitig to which it belongs
and replace that k-mer with the representative k-mer of the unitig.

Observe in Figure 2(b), for example, that k-mer A has two paired k-
mers H and N , which are the representative k-mers of the unitigs GHI

and MNO, respectively.

2.4.3 Polishing paired-end information
In this step, for each solid k-mer A, its P (A) is polished. This is needed
since sometimes the variance of the insert size can be larger than the used
∆, as the insert size distribution can be modelled with a normal distribution.
Therefore, we design a paired-end polishing method that removes outliers
with large variance in the insert size, while avoiding the removal of low
abundance strains.

Let freq(A,M) be the frequency of the appearance of the k-mer pair
(A,M) in paired-end reads r ∈ U such that M ∈ P (A). Because the
insert size is normally distributed, the frequency of a k-mer pair with
insert size close to the mean is expected to have a high frequency, whereas
a k-mer pair with insert size far from the mean is expected to have a low
frequency. Furthermore, if the insert size of a k-mer pair (A,M) is close
to the mean, then within a short distance from the node corresponding to
M in the DBG, we expect to see many other k-mers L that are also in
P (A) and have a frequency freq(A,L) ≥ 1. Again, this is not expected
for a k-mer pair whose insert size is far from the mean. We combine these
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two effects into a smoothed frequency freq′(A,M), which is defined as
follows:

freq′(A,M) = min


freq(A,M)+ |{L | freq(A,L) ≥ 1

and d(M,L) < max-path-len}|
max-threshold

where d(M,L) denotes the distance betweenM andL in the DBG and we
set max-threshold to 40 and max-path-len to 20. Finally, we keep only those
paired k-mers whose frequency is within top 85%. We experimentally
found that those values work well in practice for all cases.

We limit the smoothed frequency by max-threshold to preserve low
abundance haplotypes. Without such limit, the frequency of paired k-mers
of high abundance strains with higher divergence from the mean insert size
often gets higher than the frequency of paired k-mers of low abundance
strains with insert size close to the mean value. This is especially important
when relative abundances are around 1–2%.

Currently, this step is the bottleneck of the algorithm. We need to
compute the distance between n(n−1)

2
pairs per node, where n is the

number of pairs in the list of paired k-mers of a given k-mer.

2.4.4 Obtaining the haplotypes
This subsection describes in detail the third block of Step 2 of Figure
1 (steps labelled 2.(e), 2.(f), and 2.(g)). The haplotypes are obtained by
splitting the nodes of the DBG built in Step 2.(a), based on the paired-end
information and obtaining unitigs from this modified DBG. Therefore, the
Step 2.(e) starts by creating a new empty DBG’.

• Step 2.(f) i: For each pair of adjacent nodes (A,B) of the DBG, a
Cliques Paired de Bruijn Graph (CPBG) graph is built. CPBG(A,B) is
an undirected graph. The paired k-mers of A and B are the nodes of
CPBG(A,B), i.e. the set of nodes is P (A) ∪ P (B). There is an edge
between two nodes U, V in the CPBG(A,B) if there is a path of length
≤ 2∆ in the DBG from last(U) to first(V ) or from last(V ) to
first(U).1

Observe that we are computing the CPBG of k-mers A and B that
are adjacent in the DBG. Therefore their pairedk-mers (separated from
A and B, on average, by the insert size) would also be neighbours in
the DBG since they ideally differ by 1 base pair as well, or they would
be very close to each other, due to the insert size error, forward and
backward, that is, 2∆. Therefore, in CPBG(A,B), we link the paired
k-mers of A and B that are connected by a path of the DBG of size at
most 2∆.

Figure 2(c) shows the CPBG of all pairs of adjacent nodes in the
DBG of our example. For example, observe in CPBG(A,B) that the
nodes are the paired k-mers of A and B, which are H and N in both
cases. However, there is no path in the DBG connecting H and N ,
and thus, in the CPBG there is not an edge linking them. In the case of
CPBG(C,G), there is an edge between H and P , since there is a path
of length at most 2∆ in the DBG that connects them (not shown in the
DBG of Figure 2 to avoid cluttering the figure). Similarly, there is an
edge connecting N and P .

Here we can see the other important benefit of using
representatives. Observe that in order to determine whether there is an
edge connecting a pair of nodesU andV of a CPBG, the algorithm has
to find paths in the DBG, between the unitigs of the DBG corresponding
to U and V . Therefore, decreasing the number of nodes of the CPBG
speeds up this process.

• Step 2.(f) ii: For each CPBG, we obtain all its maximal cliques. A
clique is a set of nodes of the graph where all nodes are connected to
each other.

1 first(K) is the firstk-mer of the unitig of whichK is the representative,
while last(K) is the last k-mer.

In Figure 2(c), observe the CPBG(C,G). There are two cliques; the
first one is formed by H and P , and the other by N and P .

Conceptually, cliques are sets of k-mers that belong to the same
haplotypic sequence. Since all the paired-end k-mers in the clique
reach or are reached by others in the DBG, it means that there is one
strain that gathers them together.

However, when the graph is tangled, it is possible to find paths
in the DBG for two k-mers that do not belong to the same strain,
and this may produce fake cliques. Therefore, we select the cliques
that are supported by the frequency of appearance of their k-mers,
more precisely, we select those cliques whose nodes appear in more
reads and are more linked to other nodes in the DBG. Full details
of this process are given in Section 2 in the Supplementary Material.
Choosing a large value of k makes the graph less tangled and thus
alleviates this problem. Also using a small ∆ helps because even in a
tangled graph, shorter paths are less likely to be incorrect.

We obtain another benefit by using representative k-mers, since
the CPBG is not a large graph, maximal cliques can be found with
lower computational cost than in the case of using all k-mers.

• Step 2.(f) iii: Because of errors in reads, repetitive sections and shared
strain regions, wrong cliques can be created. We use several heuristics
to polish the cliques.

– We remove small cliques because they often rise from erroneous
k-mers.

– Shared strain regions produce cliques where all k-mers are paired
with A while a subset of them is also paired with B, that is, all nodes
of the clique are in P (A), and some nodes, but not all, are in P (B).
To keep strains with shared regions separate, we also remove these
cliques.

– Let SC be the set of all cliques found so far. When two cliques
C`x, C`y ∈ SC are almost the same, we remove the smallest
one because such cliques can arise from sequencing errors. More
precisely two cliques are considered almost the same when |(C`x ∩
C`y)| ≥ R ∗min(|C`x|, |C`y |), where R is a threshold value. By
default we use R = 90%.

• Step 2.(f) iv: For each pair of adjacent nodes A and B in DBG, we take
the set of cliques SCCPBG(A,B) of CPBG(A,B) and, for each clique
C`x ∈ SCCPBG(A,B): If C`x has nodes of P (A) and P (B), then
the nodes APA∩C`x and BPB∩C`x are added to DBG’, unless they
are already in DBG’. APA∩C`x is a node corresponding to the k-mer
A having paired-end information PA ∩C`x, similarly BPB∩C`x is a
node corresponding to B having paired-end information PB ∩ C`x.

In the case of nodes C and G of the example of Figure 2, their
CPBG(C,G) has two cliques C`1 = {H,P} and C`2 = {N,P}.
Then, a new nodeC′ is created due to the existence of C`1, with paired
information P (C) ∩ C`1 = {H,N} ∩ {H,P} = {H}, as seen in
Figure 2(d). C′′ is derived from the clique C`2, thus this new node has
as paired information P (C) ∩ C`2 = {H,N} ∩ {N,P} = {N}.
Next G is processed accordingly, producing only one version with
paired info P . These nodes are added to DBG’.

Observe that, in DBG’, C′ and C′′ correspond to the same k-mer
but those nodes have different paired information, which means that
they correspond to different strains.

• Step 2.(g): The last step of the algorithm enumerates the unitigs in the
new DBG’. As a result of the adaptations based on the CPBG analysis,
unitigs are expected to be much longer than in the previous DBG.



i
i

“output” — 2021/6/21 — 11:43 — page 6 — #6 i
i

i
i

i
i

6 Freire et al.

Table 1. Main characteristics for the data sets with ground truth available.

Virus Genome Average Num. Abun- Diver-
Type Length (bp) Coverage Strains dance gence

HIV-real HIV-1 9487–9719 20000x 5 10–30% 1–6%

HIV-5 HIV-1 9487–9719 20000x 5 5–28% 1–6%

ZIKV-3 ZIKV 10251–10269 20000x 3 16–60% 3–10%

ZIKV-15 ZIKV 10251–10269 20000x 15 1–13% 1–12%

HCV-10 HCV-1a 9273–9311 20000x 10 5–19% 6–9%

3 Results
We compare viaDBG with previous methods for de novo viral quasispecies
assembly. We also include SPAdes (Bankevich et al., 2012) and
metaSPAdes (Nurk et al., 2017) in the comparison to show that viaDBG
improves upon general approaches for genome assembly and metagenomic
assembly in the case of viral data. We omit some comparisons, such as
the reference-based approaches PredictHaplo (Prabhakaran et al., 2014)
and ShoRAH (Zagordi et al., 2011), as Baaijens et al. (2017) have shown
that SAVAGE outperforms both of them. We perform experiments both on
simulated and real Illumina MiSeq data.

In the case of de novo viral quasispecies assemblers, we compared
viaDBG with SAVAGE (Baaijens et al., 2017), which has proven to be
the most precise tool among the whole de novo assemblers for viral
quasispecies, and with PEHaplo (Chen et al., 2018), which is the last
released state of the art tool. Real data was trimmed using CutAdapt
(Martin, 2011), removing primers, low quality and extremely short reads.
In the case of SAVAGE, whose authors highly encourage the usage of
PEAR (Zhang et al., 2014), it was only applied to the data set HIV-real
described in Section 3.1.1 and to the data set HCV-10 described in Section
3.1.2, since for the rest of the data sets, SAVAGE could not complete the
assembly - due to memory crash - when running on the result of applying
PEAR. In the case of PEHaplo, PEAR was not applied since their authors
discourage its usage. PEAR was not applied on synthetic data sets for
viaDBG. However, we used PEAR on the real data sets (HIV-real and the
real ZIKV and HCV samples) for viaDBG because the reads were shorter
in these data sets and using PEAR ensured that we could use a large k for
constructing the DBG.

3.1 Benchmarking data

In our experimental evaluation, we used both simulated and real MiSeq
sequenced data. We have followed the methodology and data sets used by
Baaijens et al. (2017), which are described next.

3.1.1 Real data with ground truth
We used a gold standard benchmark for viral assembly (Giallonardo et al.,
2014). The reads were produced from 5 HIV strains using Illumina MiSeq
(2x250 bp with error around 0.3% and mean insert size 371 bp) with
20000x coverage. As the five strains contained in the sample are known,
it is possible to validate the achieved results. Table 1 includes the main
characteristics of this data set (HIV-real).

3.1.2 Synthetic benchmarks
Five different simulated data sets were used, consisting of 2x250
bp Illumina reads from different virus strains, namely human
immunodeficiency virus (HIV), hepatitis C virus (HCV) and Zika virus
(ZIKV). The HIV-5, ZIKV-3, and HCV-10 data sets are the data sets
generated by Baaijens et al. (2017). The read length in these data sets
is 2x250 bp and the insert size is 450 bp. The ZIKV-15 data set was
regenerated by us using SimSeq with default configuration for Illumina
MiSeq reads (read length 2x250 bp and insert size 500 bp). Table 1 also
shows the main characteristics of these data sets.

3.1.3 Divergence ratio and relative abundance benchmarks
We used synthetic data sets for measuring the algorithm bounds. To analyse
when the algorithm loses its effectiveness, we used data sets with extreme
properties that differ from the real data or the synthetic data sets used in
usual experiments, which are generally simulated using realistic properties.
Thus, we used 36 data sets from HIV-86.9 strain, varying the divergence
ratio (0.5%, 0.75%, 1%, 2.5%, 5%, and 10%) and the relative abundance
(1:1, 1:2, 1:5, 1:10, 1:50, and 1:100) of each haplotype. These data sets
also correspond to the data sets used by Baaijens et al. (2017), in an effort
to avoid any bias in the experiments.

3.1.4 Real data without ground truth
We have included two real patient samples. More concretely, i) Zika virus
sample: an Asian-lineage ZIKV sample consisting of Illumina MiSeq
2x300 bp reads with approximately 30000x coverage sequenced from a
rhesus macaque after 4 days of infection (Dudley et al., 2016) and publicly
available in NCBI under the accession code SRR3332513, and ii) Hepatitis
C virus sample: an HCV sample consisting of Illumina MiSeq reads with
approximately 80000x coverage, sequenced from an Australian human
patient after 135 days of infection, publicly available in NCBI under the
accession code SRR1056035.

3.2 Evaluation scenarios

We ran several experiments under different scenarios. First, we analysed
the behaviour of our method when the target genome is known, such that we
can evaluate the obtained results. More concretely, we used the evaluator
MetaQUAST (Mikheenko et al., 2016) with the option "-unique-mapping",
which allows us to assay metagenomic results getting the best unique
alignment for each contig to the objective genomes, avoiding one contig
to cover more than one genome fragment. We obtained several statistics,
such as the largest contig, mismatches/indels/N-Rate, misassemblies, N50,
genome fraction, etc. Furthermore, we measured the time spent and the
memory used during the whole assembly process. As in previous work
(Baaijens et al., 2017), we only considered contigs above 500 bp.

To further analyse the performance of our method, we ran some
experiments to check the algorithm bounds. We used the synthetic data
with different abundance and divergence ratios, and compared the obtained
results in terms of percentage of genome retrieved and percentage of
mismatches.

Finally, we ran some experiments over those data sets with no available
ground truth. This is the case for real virus sample HCV and ZIKV, which
may have mixed data of other organisms different from the considered
virus, making the discovery even more challenging.

3.3 Results comparison - overall performance

Table 2 shows a summary of the results obtained when applying each
assembler over the benchmarking data sets. The complete table, including
also the results for the data sets ZIKV-3 and HCV-10, and the additional
values of number of contigs larger than 500 bp, length of the largest contig,
percentage of indels, N-rate and total user CPU time, can be seen in the
Supplementary Material.

Overall, the results show, as expected, that tools specifically designed
for viral quasispecies inference obtain the best results in genome fraction
and largest alignment for all data sets. SAVAGE, PEHaplo, and viaDBG
show a good performance on the average length of the retrieved contigs.
SAVAGE generally retrieves a higher genome fraction and obtains larger
contigs than viaDBG and PEHaplo. When the data sets are more complex,
namely large differences in genome abundances or high number of strains,
PEHaplo fails. For example, we could not get meaningful results for
PEHaplo on the ZIKV-15 data set and thus these are missing in Table 2.
After correcting the reads, PEHaplo removes all of those that do not have
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Table 2. Assembly results per method on the benchmarking data sets when
ground truth is known. viaDGB* omits the correction step and PEHaplo**
omits the polishing step.

% misass- % mis- elap time memory
data set method genome N50 emblies matches (min) (GB)

HIV-real

viaDBG* 87.25% 1813 0 0.197 4.48 3.74
viaDBG 89.53% 1986 0 0.204 20.01 3.74
SAVAGE 91.79% 611 0 0.684 218.30 49.12
PEHaplo 87.96% 2995 0 3.521 12.74 3.48
PEHaplo** 91.43% 1262 0 0.074 7.56 3.48
SPAdes 20.15% 660 1 2.091 12.74 5.52
metaSPAdes 83.10% 1432 3 9.291 9.06 4.29

HIV-5

viaDBG 97.50% 8046 2 0.151 5.01 2.89
SAVAGE 98.22% 6001 3 0.014 204.40 26.11
PEHaplo 78.59% 9328 2 0.690 23.93 4.86
SPAdes 90.91% 5097 2 0.051 3.31 4.12
metaSPAdes 35.87% 6385 6 5.322 3.86 2.99

ZIKV-15

viaDBG 86.06% 1759 0 0.002 18.26 3.71
SAVAGE 82.72% 1632 0 0.002 352.98 9.03
PEHaplo - - - - - -
SPAdes 38.97% 2063 0 0.147 6.17 4.42
metaSPAdes 16.03% 3863 0 2.273 4.49 3.19

a large enough number of duplications or substrings. Ideally, when the
data set has high coverage (around 20000x), every position of the genome
will have a significant number of reads starting on it. However, when
the number of strains is high, the coverage for each strain is reduced.
Furthermore, if abundance for each strain is large, then the impact over the
coverage for each strain is even higher. On the other hand, in accordance
with the results reported by Baaijens et al. (2017), SPAdes gets results
comparable with tools specifically designed for viral assembly on some
of the simulated data sets, such as HIV-5, but poor performance over the
real data set (HIV-real). Exactly the opposite happens with metaSPAdes,
which obtains low genome fractions, large number of mismatches and
low N50 values for simulated data, whereas it improves the genome
fraction retrieved for HIV-real (while keeping high rates of mismatches
and misassemblies).

Table 2 also shows that SPAdes’ performance decreases when the
number of strains increases, the relative abundance decreases, and
similarity ratio increases. This is due to the fact that SPAdes does not
implement any strategy to deal with this situation. As commented before,
PEHaplo also encounters problems when the number of strains increases.
In contrast, viaDBG and SAVAGE obtain similar performance, SAVAGE
being more sensitive to the strain relative abundance.

On the HIV-real and HIV-5 data sets PEHaplo achieves the highest
N50 but the contigs reported have much more errors than viaDBG (four
times more mismatches on HIV-5 and 17 times more mismatches on HIV-
real than the contigs produced by viaDBG). This indicates that some of
the strains have been mixed in the contigs produced by PEHaplo. For
the HIV-real data set we also report the results of PEHaplo without the
polishing step (PEHaplo** in the table) and see that the mismatch rate is
much lower without the polishing step but also the N50 drops below the
N50 of viaDBG.

Focusing in the case of the real data set (HIV-real in Table 2), viaDBG
has the overall best performance. Although the genome fraction retrieved
is slightly lower than SAVAGE (2.26 percentage points), viaDBG is
able to get the largest contig, a longer average contig, and a lower
number of mismatches. Moreover, using the standard pipeline of PEHaplo,
viaDBG obtains a larger genome fraction retrieved and a lower number
of mismatches and indels. The high number of mismatches and indels
obtained by the standard PEHaplo pipeline indicates that some of the
haplotypes have been mixed. With this data set, PEHaplo obtains higher
genome fraction and lower number of mismatches and indels, but also
a lower N50 and shorter largest contig, if the polishing step is omitted
(indicated as PEHaplo** in the table).
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Fig. 4. Comparison between the four tools and the ZIKV-15 strains data set.

We will closely compare the behaviour of each method by taking into
account the results for ZIKV-15 data sets, which can be considered the most
challenging simulated data set. We omit PEHaplo from the comparison,
as we were not able to run this tool and produce reliable results for this
data set. Figure 4 shows the percentage of genome recovered for each
strain of the ZIKV-15 data set. Table 2 shows that viaDBG and SAVAGE
have a similar overall performance. However, a deeper comparison reveals
that the behaviour of each method is rather different. SAVAGE retrieves
the highest percentage of genome for most of the strains. This can be
caused by the fact that viaDBG systematically removes the beginning
and the end of the genomes due to lack of coverage in these regions.
Despite SAVAGE outperforming viaDBG in most cases, SAVAGE fails at
assembling the genome for two strains. This is not happening with viaDBG,
which retrieves a significant portion of the genome in all cases, being close
to SAVAGE in most cases, and even sometimes outperforming its results.
More concretely, one of the genomes lost by SAVAGE, HQ234501.1
(Mutant 1%) (Abundance 6%), is almost fully recovered by viaDBG.
The performance of metaSPAdes and SPAdes in this particular example
was quite bad: they could only recover one of the 15 strains completely.
Moreover, metaSPAdes did not retrieve any portion from 11 of them.

3.4 Efficiency analysis

We measured the runtime and peak memory usage required by all
the algorithms when applied to each data set. All algorithms were
given access to 32 cores in all experiments. Error correction, adding
paired-end information, and polishing the paired-end information have
been parallelised in viaDBG. The Supplementary Material includes an
experiment evaluation of the effects of the number of cores used by each
of the tools.

As shown in Table 2, SAVAGE needs much more time than the rest
of the methods, ranging from 204.40 minutes in the fastest case to 352.98
minutes in the slowest one. This is caused by the computations made
by SAVAGE during the overlap graph construction, which requires the
enumeration of all approximate suffix-prefix overlaps among the reads.
PEHaplo, despite following also an overlap graph approach, obtains much
better execution times, as it removes a high percentage of repeated reads,
thus, alleviating the construction of the graph. On the other hand, the time
performance of the methods based on the de Bruijn graph is better: SPAdes
and metaSPAdes were around 1.5 times faster than viaDBG. However,
when the correction step is omitted, viaDBG outperforms both of them
on the real data set, HIV-real. Results show that viaDBG worsens its time
efficiency when including the error correction step, as the CPU times
are around 4.5 times higher. This is an expected result, since the time
complexity of the error correction performed by viaDBG is O(n ∗ m)

where n is the number of reads and m is the maximum length of the reads.
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PEHaplo is faster than viaDGB with correction step for HIV-real data set,
but viaDBG obtains more accurate results. In the Supplementary Material
we can also see that PEHaplo obtains slightly better time efficiency and
also better accuracy than viaDBG for HCV-10.

We also measured the peak memory required by each tool. Among the
de Bruijn methods, SPAdes and metaSPAdes require the highest memory
resources, reaching 5.52 GB, whereas viaDBG requires at most 3.74 GB
per execution. Only for ZIKV-15 data set, metaSPADES obtains lower
memory consumption, but also much lower accuracy. On the other hand,
if we consider the overlap methods, the memory requirements of SAVAGE
are much higher, from 9.03 GB to 49.12 GB, depending on the file size,
whereas PEHaplo requires for their worst tested case, HIV-5, 4.86 GB
(8.99 GB if we consider HCV-10, as seen in the Supplementary Material).

3.5 Testing viaDBG limits

In this section, we will explore the algorithm bounds. We will follow the
methodology used in the experimental evaluation of Baaijens et al. (2017),
using 36 simulated data sets that vary their abundance and divergence.

Figure 5 shows the results obtained by viaDGB, SAVAGE and PEHaplo
for each of these data sets in terms of percentage of retrieved genome and
percentage of mismatches. In this experiment, in the case of SAVAGE,
PEAR was applied over the input data sets. As we can see, viaDBG has a
surprising behaviour with 10%, 5% and 2.5%, as it is able to retrieve almost
the complete genome until the 1:50 abundance relation. Furthermore, on
1:50 relation, it is able to retrieve around 60% of the genome for the
minor strain. Comparing our results with those achieved by SAVAGE and
PEHaplo, we can see that viaDBG behaves better than either of them in
these scenarios with higher differences of abundance rates. For example
in the 1:50 case, neither SAVAGE nor PEHaplo are able to retrieve more
than 10–20% of the minor strain, and in most cases they retrieve 0% of
the minor strain. On the divergence bound behaviour, viaDBG’s results
decrease in comparison to SAVAGE, retrieving a bit less genome fraction
when divergence is below 1%. A possible reason for this is the length of
the processed k-mers. SAVAGE uses the full-length reads (>200 bp) and
extends them, which produces much longer reads, thus more accuracy. On
the other hand, viaDBG uses fixed k-mer length, which produces a slight
loss in accuracy when divergence is below 1%. Nevertheless, it seems that
both SAVAGE and viaDBG have a more robust behaviour than PEHaplo,
which suffers when divergence is below 0.75%. In conclusion, viaDBG
can properly handle different ranges of divergence levels and of relative
abundances, especially for extreme differences in the abundance ratio.

3.6 Real data sets with unknown target genome

In this section, we show the results obtained for a real virus sample from
patients infected by the Asian lineage Zika virus. To evaluate the results,
we use as references the complete genome sequence of the Asian lineage
Zika virus (KU681081.3). The result for the Hepatitis C virus can be found
in the Supplementary Material.

We obtain 10 contigs above 1000 bp covering 9578 out of 10677 bases,
with a N50 of 1975 bp and a largest contig of 2445 bp. Additionally,
17809 bases were aligned, thus it is obvious that more than one strain is
contained in the sample. According to these results, it seems that there
are two different, but highly similar strains, in the sample. Besides, in our
analysis, we have not discovered any local misassembly, which means that
there is no contig that does not align with the reference at some point.

4 Conclusion
We present viaDBG, a time- and memory-efficient de novo multi-
assembler for viral quasispecies. Viral samples generally contain several

haplotypes which have evolved from the same genome through multiple
mutations and recombination events. Additionally, not all viral genomes
within the sample have exactly the same frequency, namely each viral
genome has its own level of abundance. Experimental results have shown
that general purpose and metagenomic assemblers, such as SPAdes and
metaSPAdes, are not able to retrieve the viral genomes in the sample. This
motivates the research on new specific tools that can overcome all these
limitations.

Our experimental evaluation shows that viaDBG is able to get
competitive, sometimes even better, results in comparison to state-of-the-
art de novo viral quasispecies assemblers, such as SAVAGE and PEHaplo.
Furthermore, the runtime of viaDBG is much lower than SAVAGE and
also to PEHaplo in most cases, and its memory usage is also lower than its
counterparts, making viaDBG an attractive alternative. One of the main
drawbacks of PEHaplo is that its behaviour is highly dependent on the
parameter configuration, which is not easy to determine for each particular
data set. Furthermore, in some extremely complex cases, such as 15 ZIKV
strains where genomes are extremely close and abundance is extremely
low, viaDBG is able to retrieve information for the whole set of strains and
the overall genome fraction is higher than for other tools. Despite of these
successful results, our method shows a weaker behaviour than SAVAGE
for data sets with extreme divergence ratios.

The main reasons for the good performance of viaDBG are the error
correction step and the systematic use of the paired-end information. On
the one hand, error correction enables the usage of extremely large k-mers
(120-mers), as the veracity of the k-mers is improved due to the adjustment
of their frequency distribution. Additionally, a side effect of the correction
is that it reduces the possibility of having wrong pairs for genomic k-mers
and vice versa. On the other hand, the cliques retrieved by using the paired-
end information for every pair of k-mers allow us to change the original de
Bruijn graph into a much less tangled graph. Applying paired information
as a post-processing step is more restrictive than adding the information
directly in the graph. When used during the post-processing step, only
reads that align entirely with one contig are going to be used, whereas
all reads with genomic information can improve the results when they
are considered during the graph construction. Therefore, there is always
more information when using paired k-mers than when using the overlap
between reads and contigs.

The main advantage of viaDBG is its efficiency, both in terms of
execution time and memory usage. Our method benefits from the better
efficiency of de Bruijn graph approaches, which avoids computing overlaps
between all reads. Despite the computations of the paired information,
viaDBG has proven to be much faster than overlap based methods.

As a future work, we plan to reduce the memory footprint of viaDBG by
taking full advantage of compacted de Bruijn graphs. This will also allow
us to study the suitability of our approach for metagenomics assembling,
which is a more demanding task. Another line of improvement is to
enhance the current parallelisation of viaDBG by taking into account some
relevant issues such us disk accesses, thread synchronization, and data
interchanges. In parallel, we will consider the possibility of integrating our
approach with Virus-VG (Baaijens et al., 2019) to produce larger contigs.
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viaDBG - Genomes recovered (%) SAVAGE - Genomes recovered (%) PEHaplo - Genomes recovered (%)

Abundance ratio Abundance ratio Abundance ratio

1:1 1:2 1:5 1:10 1:50 1:100 1:1 1:2 1:5 1:10 1:50 1:100 1:1 1:2 1:5 1:10 1:50 1:100

D
iv

er
ge

nc
e

10% 99.94 99.52 99.73 99.35 79.02 49.99

D
iv

er
ge

nc
e

10% 99.60 99.51 99.32 99.01 52.61 49.91

D
iv

er
ge

nc
e

10% 99.85 99.62 64.36 90.82 49.96 49.96
5% 99.55 99.90 99.58 99.46 81.54 56.96 5% 99.64 99.49 99.31 98.25 57.78 49.90 5% 99.83 99.83 62.12 49.96 49.96 49.96

2.5% 98.87 98.52 98.02 95.85 80.82 56.82 2.5% 99.64 99.62 99.01 99.74 58.67 49.89 2.5% 99.93 99.92 98.70 49.96 49.96 49.96
1% 98.46 97.50 97.47 97.61 68.98 53.30 1% 99.64 99.60 99.35 98.76 55.47 49.91 1% 96.79 97.56 61.37 49.96 49.96 49.96

0.75% 96.87 97.10 91.43 87.73 49.34 48.98 0.75% 99.59 99.65 99.44 99.08 49.84 49.91 0.75% 92.19 91.96 54.49 49.12 49.12 49.12
0.5% 96.96 95.85 93.01 89.07 48.72 48.90 0.5% 98.95 99.63 92.71 87.58 49.88 49.91 0.5% 74.19 49.96 49.96 49.96 49.96 49.96

viaDBG - Mismatch rate (%) SAVAGE - Mismatch rate (%) PEHaplo - Mismatch rate (%)
Abundance ratio Abundance ratio Abundance ratio

1:1 1:2 1:5 1:10 1:50 1:100 1:1 1:2 1:5 1:10 1:50 1:100 1:1 1:2 1:5 1:10 1:50 1:100

D
iv

er
ge

nc
e

10% 0.010 0.025 0.000 0.000 0.013 0.010

D
iv

er
ge

nc
e

10% 0.000 0.000 0.000 0.000 0.000 0.000

D
iv

er
ge

nc
e

10% 0.094 0.109 0.010 0.062 0.010 0.020
5% 0.010 0.023 0.000 0.000 0.012 0.019 5% 0.000 0.000 0.000 0.000 0.000 0.000 5% 0.098 0.093 0.020 0.714 0.020 0.020

2.5% 0.010 0.038 0.025 0.010 0.015 0.091 2.5% 0.000 0.000 0.000 0.000 0.000 0.000 2.5% 0.067 0.041 0.057 0.000 0.020 0.020
1% 0.025 0.000 0.000 0.000 0.000 0.000 1% 0.000 0.000 0.000 0.000 0.000 0.000 1% 0.000 0.024 0.000 0.000 0.000 0.000

0.75% 0.000 0.000 0.000 0.000 0.000 0.000 0.75% 0.000 0.000 0.000 0.000 0.000 0.000 0.75% 0.000 0.000 0.000 0.000 0.000 0.000
0.5% 0.064 0.037 0.000 0.000 0.000 0.000 0.5% 0.000 0.000 0.000 0.000 0.000 0.000 0.5% 0.000 0.000 0.000 0.000 0.000 0.000

Fig. 5. Performance of viaDBG, SAVAGE, and PEHaplo for different divergence and abundance ratios.

References
Ahn, S. and Vikalo, H. (2018). aBayesQR: a bayesian method for

reconstruction of viral populations characterized by low diversity.
Journal of Computational Biology, 25(7), 637–648. PMID: 29480740.

Baaijens, J. A., Aabidine, A. Z. E., Rivals, E., and Schönhuth, A. (2017).
De novo assembly of viral quasispecies using overlap graphs. Genome
Research, 27, 835–848.

Baaijens, J. A., Van der Roest, B., Köster, J., Stougie, L., and Schönhuth,
A. (2019). Full-length de novo viral quasispecies assembly through
variation graph construction. Bioinformatics. btz443.

Bankevich, A., Nurk, S., Antipov, D., Gurevich, A., Dvorkin, M., Kulikov,
A., Lesin, V., Nikolenko, S., Pham, S., Prjibelski, A., Pyshkin, A.,
Sirotkin, A., Vyahhi, N., Tesler, G., Alekseyev, M., and Pevzner, P.
(2012). SPAdes: a new genome assembly algorithm and its applications
to single-cell sequencing. Journal of Computational Biology, 19(5),
455–477.

Barik, S., Das, S., and Vikalo, H. (2018). QSdpR: viral quasispecies
reconstruction via correlation clustering. Genomics, 110(6), 375 – 381.

Chen, J., Zhao, Y., and Sun, Y. (2018). De novo haplotype reconstruction
in viral quasispecies using paired-end read guided path finding.
Bioinformatics, 34(17), 2927–2935.

Domingo, E., Sheldon, J., and Perales, C. (2012). Viral quasispecies
evolution. Microbiology and Molecular Biology Reviews, 76(2), 159–
216.

Dudley, D. M. et al. (2016). A rhesus macaque model of Asian-lineage
Zika virus infection. Nature Communications, 7, 12204.

Duffy, S., Shackelton, L. A., and Holmes, E. C. (2008). Rates of
evolutionary change in viruses: patterns and determinants. Nature
Reviews Genetics, 9, 267–276.

Giallonardo, F. D., Töpfer, A., Rey, M., Prabhakaran, S., Duport, Y., C,
C. L., Schmutz, S., Campbell, N. K., Joos, B., Lecca, M. R., Patrignani,
A., Däumler, M., Beisel, C., Rusert, P., Trkola, A., Günthard, H. F., Roth,
V., Beerenwinkel, N., and Metzner, K. J. (2014). Full-length haplotype
reconstruction to infer the structure of heterogeneous virus populations.
Nucleic Acids Res, 42(14), e115.

Holmes, E. C. (2009). The Evolution and Emergence of RNA Viruses.
Oxford University Press.

Jayasundara, D., Saeed, I., Maheswararajah, S., Chang, B., Tang, S.-L.,
and Halgamuge, S. K. (2015). ViQuaS: an improved reconstruction
pipeline for viral quasispecies spectra generated by next-generation
sequencing. Bioinformatics, 31(6), 886–896.

Knyazev, S., Tsyvina, V., Melnyk, A., Artyomenko, A., Malygina,
T., Porozov, Y. B., Campbell, E., Switzer, W. M., Skums, P., and
Zelikovsky, A. (2019). CliqueSNV: scalable reconstruction of intra-host

viral populations from ngs reads. bioRxiv.
Malhotra, R., Wu, M. M. S., Rodrigo, A., Poss, M., and Acharya,

R. (2015). Maximum likelihood de novo reconstruction of viral
populations using paired end sequencing data. arXiv e-prints, page
arXiv:1502.04239.

Martin, M. (2011). Cutadapt removes adapter sequences from high-
throughput sequencing reads. EMBnet.journal, 17(1), 10–12.

Medvedev, P., Pham, S., Chaisson, M., Tesler, G., and Pevzner, P. (2011).
Paired de Bruijn graphs: a novel approach for incorporating mate pair
information into genome assemblers. Journal of Computational Biology,
18(11), 1625–1634.

Mikheenko, A., Saveliev, V., and Gurevich, A. (2016). MetaQUAST:
evaluation of metagenome assemblies. Bioinformatics, 32(7), 1088–
1090.

Nagarajan, N. and Pop, M. (2013). Sequence assembly demystified.
Nature Review Genetics, 14, 157–167.

Nurk, S., Meleshko, D., Korobeynikov, A., and Pevzner, P. (2017).
metaSPAdes: a new versatile metagenomic assembler. Genome
Research, 27, 824–834.

Posada-Cespedes, S., Seifert, D., and Beerenwinkel, N. (2017). Recent
advances in inferring viral diversity from high-throughput sequencing
data. Virus Research, 239, 17–32.

Prabhakaran, S., Rey, M., Zagordi, O., Beerenwinkel, N., and Roth, V.
(2014). HIV haplotype inference using a propagating Dirichlet process
mixture model. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 11(1), 182–191.

Prosperi, M. C. F. and Salemi, M. (2011). QuRe: software for
viral quasispecies reconstruction from next-generation sequencing data.
Bioinformatics, 28(1), 132–133.

Salmela, L. and Rivals, E. (2014). LoRDEC: accurate and efficient long
read error correction. Bioinformatics, 30(24), 3506–3514.

Töpfer, A., Zagordi, O., Prabhakaran, S., Roth, V., Halperin, E., and
Beerenwinkel, N. (2013). Probabilistic inference of viral quasispecies
subject to recombination. Journal of Computational Biology, 20(2),
113–123.

Töpfer, A., Marschall, T., Bull, R. A., Luciani, F., Schönhuth, A., and
Beerenwinkel, N. (2014). Viral quasispecies assembly via maximal
clique enumeration. PLOS Computational Biology, 10(3), e1003515.

Zagordi, O., Bhattacharya, A., Eriksson, N., and Beerenwinkel, N. (2011).
ShoRAH: estimating the genetic diversity of a mixed sample from next-
generation sequencing data. BMC Bioinformatics, 12, 119.

Zhang, J., Kobert, K., Flouri, T., and Stamatakis, A. (2014). PEAR: a fast
and accurate Illumina Paired-End reAd mergeR. Bioinformatics, 30(5),
614–620.



i
i

“output” — 2021/6/21 — 11:44 — page 1 — #1 i
i

i
i

i
i

viaDBG: Inference of viral quasispecies 1

Supplementary Material

A

B

C

… D E F J

G H I

K L M

N…

Fig. 1. DBG with the paired-end information.
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1 Algorithm for obtaining the haplotypes
Algorithm 1 shows the pseudocode of the algorithm for obtaining the
haplotypes, described in Section 2.4.4 of the main paper, that is, steps
2.(e), 2.(f), and 2.(g) of the Figure 1 of the main paper.

Figure 1 shows a portion of a DBG used to illustrate this process. Solid
black arrows are the edges of DBG, whereas the coloured dotted lines show
the pair-end information of each node. .

The algorithm receives as input the DBG obtained through the steps
2.(a) until 2.(d) of the Figure 1 of the main paper. In Line 4, for each pair of
adjacent nodes (A,B) of the DBG, a CPBG (CPBG(A,B)) is built. Lines
6 and 7 create the nodes of CPBG(A,B). Lines 8–10 add the edges of the
CPBG.

Figure 2(a) shows CPBG(A,B).1 It is composed of the nodes in
P(A)={D, E, F, G, H, I} and P(B)={M, D, F, J}. There is an edge between
two nodes if there is a path in the DBG of length smaller than 2∆. In this
case, function reachDBG(A,B) returns true.

Line 13 obtains the set of maximal cliques in the CPBG (denoted as
SC). This algorithm is shown in Section 2 of this Supplementary Material.

Figure 2 shows the four different CPBGs obtained for the DBG shown
in Figure 1. Each clique in the graphs is highlighted by its own color.

Line 14 polishes the cliques in SC. For example, in CPBG(A,B), the
yellow clique will be discarded because it only has nodes from P(A). This

1 We do not use representative k-mers to facilitate the understanding of
the example.
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Fig. 2. The four different clique graphs.

A’’ C G H I

A’ B D E F JK’

K’’

L M

N…

…

Fig. 3. The final form of the graph.

step avoids having short tips (1 bp) and having several contigs which lead
to exactly the same strain.

Lines 15–28 create the nodes of the new DBG. Line 15 is a loop that
processes all cliques of the treated pair. If the processed clique has nodes
of P (A) and P (B), then that pair is added to the new DBG, otherwise it
is discarded (Line 16).

In Figure 2(a), only C`0 passes the polish step. Therefore the pair
(A,B) is added to the output (see Figure 3): A with paired information
P (A)∩C`0 ={D, E, F} and B with paired information P (B)∩C`0 =

{D, F, J}.
Processing C`1 of CPBG(A,C) (see Figure 2(b)) produces the output

of A and C. However, that A is different2 from that obtained from
CPBG(A,B), and thus, to differentiate them, we use A′ for the one
obtained from CPBG(A,B) and A′′ for the one obtained from CPBG(A,C).
Continuing the process, we obtain the new DBG of Figure 3.

2 Obtaining the maximal cliques in the CPBG
Classic algorithms to find cliques in undirected graphs, such as those

of Johnson et al. (1988) or Tomita et al. (2006), have a considerable
computational cost, for example, O(3n/3) in the case of Tomita et al.

2 In the sense that they belong to different strains.
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Algorithm 1 Obtain Haplotypes (DBG)
1: let new_DBG be a DBG
2: let new_DBGnodes = ∅
3: let new_DBGedges = ∅
4: for all (A,B) a pair of adjacent nodes of the DBG do {Builds the CPBG}
5: let CPBG(A,B)edges = ∅
6: let CPBG(A,B)nodes = P (A) {Adds the representative k-mers in P(A)}
7: let CPBG(A,B)nodes = CPBG(A,B)nodes ∪ P (B) {Adds the representative k-mers in P(B)}
8: for all (U, V ) nodes in CPBG(A,B)nodes do
9: if reachDBG(U, V ) then
10: CPBG(A,B)edges = CPBG(A,B)edges ∪ {(U, V )}
11: end if
12: end for
13: let SC = {C`0, C`1, ..., C`n} the maximal cliques in CPBG(A,B)

14: polish (SC)
15: for all C`i ∈ SC do
16: if C`i ∩ P (A) 6= ∅ and C`i ∩ P (B) 6= ∅ then
17: let new_DBGnodes = new_DBGnodes ∪ {AP (A)∩C`i}{Adds version A with paired information P (A) ∩ C`i}
18: let new_DBGnodes = new_DBGnodes ∪ {BP (B)∩C`i} {Adds version B with paired information P (B) ∩ C`i}
19: let new_DBGedges = new_DBGedges ∪ {(AP (A)∩C`i , BP (B)∩C`i )} {Both nodes are connected}
20: end if
21: end for
22: end for
23: search unitigs in new_DBG

Algorithm 2 Obtain maximal Cliques (DBG, CPBG(A,B))

1: for all Node n in CPBG(A,B) do
2: for all Edge e of DBG that reaches n do
3: let n.weight =+ e.weight
4: end for
5: end for
6: for all Node n in CPBG(A,B) do
7: for all Node n′ in CPBG(A,B) adjacent to n do
8: let n.weight =+ n′.weight
9: end for
10: end for
11: let i = 0
12: let C`i = ∅
13: repeat
14: let=n be the node of CPBG(A,B) with the highest value of degree× n.weight
15: repeat
16: let C`i = C`i ∪ n

17: let nused = true
18: let n′ = n

19: let=n be the node of CPBG(A,B) adjacent to n′ and also connected to all nodes in ci with the highest value degree×n.weight and not in ci
20: until n = ∅
21: let lowest be the lowest weight of all nodes in ci
22: for all Node n in C`i do
23: let n.weight =- lowest

24: if n.weight==0 then
25: let n.weight = 1
26: end if
27: end for
28: let i=i+1
29: let C`i = ∅
30: until All nodes in CPBG(A,B) are used
31: return C`0, C`1, . . . , C`v

(2006). Therefore, instead, we use a faster heuristic method shown in
Algorithm 2, which is based on the work by Pattabiraman et al. (2015).

It receives as input the DBG and the CPBG of a given pair of nodes.
Observe in Figure 4, that the edges of the DBG corresponding to paired
information are now labeled with the number of paired reads that contain
the corresponding pair of k-mers. That frequency is used to determine
which cliques correspond to real strains.

The first loop of Lines 1–4 enriches the nodes of the CPBG with a
number which results from adding the weight of all edges which reach
that node in the DBG. Figure 5(a) shows the result of this process for the
CPBG(A,B) of our example in Figure 4. For example, observe the node D,
its weight (18) is obtained by adding the weight of the edge of the DBG
connecting A and D, with weight 10, and that connecting B and D, with
weight 8.
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The next loop in Lines 6–10 adds more weight to each node of the
CPBG, specifically, the weight of all its adjacent nodes. Figure 5(b) shows
the result. The weight of D is 45, resulting from adding its weight (18),
and those of its adjacent nodes (J (8), F (9), and E (10)).

The loop of Lines 13–29 is the main part of the algorithm. Line 14
selects the node with the highest value resulting from multiplying its degree
(number of adjacent nodes) and its weight. In our example, that node is F .

Then, the loop of Lines 15–20 builds the clique containing that node.
In our example, first F is added to the clique and marked as “used”. Then,
line 19 obtains the adjacent node of F with the highest value resulting
from multiplying its degree and its weight. In our example, all nodes are
adjacent to F , but E and J are those with the highest value (46 ∗ 4). So,
the process continues adding, let say, E and then J and marking them as
“used”. From J , the adjacent node with highest value is D, which is also
added to the clique. After processing D, all its adjacent nodes are already
in the clique, and thus the process ends.

Next, Lines 21–27 decrease the weight of all the nodes of the recently
created clique by subtracting the weight of the node of the clique with the
lowest value, except if the result of that subtraction is 0, which is changed
to 1. The resulting clique of this process is shown in Figure 5(c) highlighted
in yellow. Observe that its nodes remain now with a low weight, then it
is unlikely that these nodes will be part of subsequent cliques. The idea is
that we have concluded that those nodes correspond to a given strain, it is
unlikely that they would be part of another different strain.

The process continues until all nodes have been marked as “used”. In
our example, another clique is created, as shown in Figure 5(d), but this
clique is later removed by the polishing process, as explained in the main
manuscript.
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B
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… D E
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G H I…
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1
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Fig. 4. DBG with the frequency of appearance of paired k−mers.

3 Parameter selection
The most important parameters of our method are k-mer solid threshold
and the variance of the insert size which we denote by ∆. The ∆ value
can be configured using a higher value than needed without endangering
the assembly results. Nevertheless, if some further information is known,
then using a more precise ∆ will provide better results avoiding some false
cliques that may appear. On the other hand, the k-mer solid threshold is
automatically selected by using the histogram of the k-mers frequencies,
where a change in the trend of the frequency count intuitively means that
from there on k-mers having higher frequencies are genomic. For better
identifying this point of change, we use a window of size N .

We have conducted several experiments for analysing the effect of this
window size in the results. We obtained that the threshold selection for the
simulated data is quite stable, whereas it is much more variable for the real
data set HIV-real. A possible explanation is given by Figure 6, which shows
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Fig. 5. Obtaining the cliques of the CPBG(A,B) of the DBG of Figure 4.

two k-mer frequency histograms: one for the real data set HIV-real and
the other for the simulated data set HIV-5. Nevertheless, results in terms
of genome fraction retrieved have been consistent throughout the whole
evaluation. This information is provided in Figures 7 and 8. In Figure 7,
we can see that for HIV-real, the threshold suggested by our algorithm
increases when the windows size grows, whereas for the simulated data
sets, the threshold is practically stable. On the other hand, we can see
in Figure 8 that the windows size does not affect the percentage of the
retrieved genome for any data set.

4 Description of Zika virus simulated data sets
(ZIKV-3 and ZIKV-15)

SAVAGE was assayed by using a 15-strain ZIKV data set. Unfortunately,
ground truth criteria, namely reference, was not available. Therefore, we
simulated our own references and the data set.

Twelve extra references were produced from only 3 strains, all
of African lineage: one from Uganda (accession HQ234498), one
from Nigeria (accession HQ234500), and one from Senegal (accession
HQ234501). For each reference 4 extra sequences were build by inserting
1%, 1%, 2% and 2% mutations to the reference.

The data set was simulated by using the whole set of 15 references
with abundances from 1% to 13% at most.

5 Complete results comparison - overall
performance

We include here the complete results of the benchmarking performed in
Section 3 of the main paper. Thus, Table 1 contains the results for all the
data sets, included ZIKV-3 and HCV-10, which were omitted in Table 2
of the main paper. We also include the values for the number of contigs
larger than 500 bp, the length of the largest contig, the percentage of indels,
N-rate, and total user CPU time. We measured peak memory usage using
gnu time commnad (with option -v), and measured time performance using
perf profiler (command perf stat -d), which reports both total CPU user
time and elapsed time.

5.1 Analysis of the parallelisation

We conducted an experiment varying the number of cores available to the
methods to see how the number of cores affects the running times and the
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Fig. 6. HIV-real vs HIV-5 frequency histograms.

Table 1. Assembly results per method on the benchmarking data sets when ground truth is known.

contigs % largest mis- % mis- % % elapsed CPU user peak mem
data set method >500 genome N50 contig assemb. matches indels N-Rate time (min) time (min) (GB)

HIV-real

viaDBG - without correction 88 87.25% 1813 8596 0 0.197 0.285 0.000 4.48 17.24 3.74
viaDBG - with correction 57 89.53% 1986 8966 0 0.204 0.240 0.000 20.01 389.13 3.74
SAVAGE 459 91.79% 611 2511 0 0.684 0.149 0.104 218.30 4803.06 49.12
PEHaplo - with polishing 35 87.96% 2995 8674 0 3.521 0.245 0.000 12.74 101.89 3.74
PEHaplo - without polishing 31 91.43% 1262 6383 0 0.074 0.083 0.000 7.56 50.47 3.74
SPAdes 1 20.15% 660 2952 1 2.091 0.089 0.000 12.74 99.63 5.52
metaSPAdes 16 83.10% 1432 2986 3 9.291 0.405 0.000 9.06 111.43 4.29

HIV-5

viaDBG 45 97.50% 8046 9667 2 0.151 0.008 0.000 5.01 63.56 2.89
SAVAGE 18 97.69% 3305 9645 4 0.120 0.004 0.000 204.40 3618.10 26.11
PEHaplo 7 78.59% 9328 9656 2 0.690 0.037 0.000 23.93 68.58 4.86
SPAdes 22 90.91% 5097 9557 2 0.051 0.002 0.000 3.31 25.89 4.12
metaSPAdes 8 35.87% 6385 6561 6 5.322 0.104 0.000 3.86 51.52 2.99

ZIKV-3

viaDBG 10 99.76% 10203 10267 0 0.000 0.000 0.000 7.56 62.10 3.66
SAVAGE 3 99.77% 10243 10258 0 0.003 0.000 0.003 332.15 6527.90 42.37
PEHaplo 2 99.89% 10247 10269 0 0.000 0.000 0.000 20.11 68.19 4.40
SPAdes 3 99.56% 9851 10269 0 0.000 0.000 0.000 4.05 33.05 4.59
metaSPAdes 6 33.34% 2890 8675 0 1.919 0.009 0.000 4.96 58.69 3.33

ZIKV-15

viaDBG 185 86.06% 1759 9483 0 0.002 0.000 0.000 18.26 82.22 3.71
SAVAGE 231 82.72% 1632 10199 0 0.002 0.000 0.002 352.98 8329.14 9.03
PEHaplo - - - - - - - - - - -
SPAdes 247 38.97% 2063 10251 0 0.147 0.000 0.000 6.17 35.34 4.42
metaSPAdes 11 16.03% 3863 5261 0 2.273 0.264 0.000 4.49 57.98 3.19

HCV-10

viaDBG 27 97.72% 8934 9293 0 0.005 0.000 0.000 13.03 69.06 2.81
SAVAGE 20 99.33% 9204 9290 0 0.0975 0.000 1.043 50.01 451.63 26.13
PEHaplo 10 99.66% 9297 9311 0 0.032 0.000 0.000 29.01 64.79 8.99
SPAdes 26 90.59% 8690 9311 0 0.002 0.000 0.000 4.10 26.79 4.09
metaSPAdes 42 49.37% 2742 3475 0 4.534 0.000 0.000 3.73 49.86 2.97

memory usage. We used HIV-real data set with the same configuration for
each tool as the previous experiments. Table 2 shows that only SAVAGE
approaches an ideal speedup, as times are practically divided by 2 when
doubling the number of cores. In the case of viaDBG, using 16 cores
instead of 8 only implies an improvement of 2%, whereas the usage of 32
cores yields a speedup of 1.78. Still, that value is around the same as that
obtained by metaSPAdes and better than the rest, except for SAVAGE.

In Table 3, we can observe that memory usage grows for all methods
when increasing the number of cores. Again, viaDBG obtains similar
results using 8 and 16 cores, but the memory usage growth is worse for
32 cores. This increase in memory consumption is moderate in the case

of PEHaplo, which is the tool obtaining the best result for 32 cores, but
larger for metaSPAdes and SAVAGE.

From the results, we can see that SAVAGE is the tool that best takes
advantage of parallelisation, as its running time considerably decreases
with the number of cores, at the expense of greater memory requirements.
In any case, those time results are still much higher than those obtained by
the rest of the techniques. viaDBG parallelisation obtains a slight speedup
at the expense of a moderate growth in memory consumption.
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Fig. 7. Threshold value suggested by our approach, varying the windows size.

Fig. 8. Genome fraction retrieved, varying the windows size.

Table 2. Running times in minutes, varying the number of cores.

# of cores viaDBG SPAdes metaSPAdes PeHaplo SAVAGE
8 5.96 15.51 15.73 11.00 1255.91
16 5.82 12.83 9.72 11.18 468.58
32 3.34 12.74 9.06 7.56 218.30

Table 3. Memory usage in Gigabytes, varying the number of cores.

# of cores viaDBG SPAdes metaSPAdes PeHaplo SAVAGE
8 2.85 4.97 6.53 4.12 7.26
16 2.96 7.28 11.57 4.00 10.25
32 6.69 11.35 19.03 5.50 20.27

6 Assembly of real data sets with unknown target
genome

6.1 BAC clones in the Zika virus sample

Baaijens et al. (2017) discovered human BAC clones within the same
real Zika virus data set that we have also analysed. In our results we
did not find these. This could be caused by two possible explanations.
On the one hand, it is probable that BAC information was not complete,
creating several isolated connected components that were removed during
the polishing step of the graph. On the other hand, results can differ
due to the preprocessing step, which is not exactly the same as the one
used by SAVAGE. In fact, results obtained by SAVAGE method with our
preprocessing step did not show BAC clones either.

6.2 Hepatitis C Human Sample

Here, we show the results of the Australian human patient infected with
Hepatitis C virus. For ground truth, we will use the complete genome of
Hepatitis C virus (NC_004102.1).

Obviously, the results are much more non-specific than in the Zika
sample. This is probably because of the Australian warm environment, the
time that the virus spent in the carrier, plus the initial number of strains
was as well unknown.

7 Commands executed
We run the tools over the same data sets, but customising the configuration
with the best one for each data set. In the case of PEHaplo, and following
authors’ indications, input was only trimmed but PEAR was not used.

7.1 Specialized assembly tools

• viaDBG: Version 1.0
Current version of viaDBG only allows dsk as counter. Furthermore,
preprocessing included removing duplicated reads, as this boosts
efficiency with no accuracy impact.

• ./bin/viaDBG -p ../PairEndDir/ -o Output -u ../OutputUnitig -k 1...192
-c dsk -n -t 1 --postprocess

• ./bin/viaDBG -s SingleEndFile -p ../PairEndDir/ -o Output -u
../OutputUnitig -k 1...192 -c dsk -n -t 1 --postprocess

• SAVAGE: Version: 0.4.0
Although last version of SAVAGE has made the selection of minimum
overlap automatic, it is recommended to use the value 150.

• python savage.py -p1 forward.fastq -p2 reverse.fastq -t 32 --split 30
• python savage.py -s single-end.fastq -p1 forward.fastq -p2

reverse.fastq -t 32 --split 30

• PEHaplo: Version 1.0
Data sets for PEHaplo were modified to fit the software requirements:

• Reads ids must be all different.
• Reads names must end with /1.
• Only fasta format is allowed.

• python pehaplo.py -f1 forward.fasta -f2 reverse.fasta -l 210 -l1 220
-correct yes -n 3 -r 250 -F 450 -t 32

7.2 Generic assembly tools

• SPAdes: Version 3.13.1
SPAdes has automated the selection of multiple parameters such
as k-mer size. Therefore, we relied on SPAdes for the parameters
selection.

• python spades.py -s pear.assembled.fastq -1 forward.fastq -2
reverse.fastq -t 32

• metaSPAdes: Version 3.13.1
metaSPAdes has also automated the selection of multiple parameters
thus we again relied on metaSPAdes parameters selection.

• python metaspades.py -s assembled.pear.fastq -1 forward.fastq -2
reverse.fastq -t 32

7.3 PEAR

• ./pear -f forward.fasta -r reverse.fasta -o output_preffix
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6 Supplementary Material

7.4 Divergence-Abundance Comparison

• viaDBG: viaDBG needs to use longer k-mers when the divergence
ratio decreases. Abundance is not managed by any parameter.

• Divergence above 1%: ./bin/viaDBG -p exp_0.1_1/ ../OutputDir/ -u
../OutputUnitigs -k 120 -c dsk -n -t 32

• Divergence below 1%: ./bin/viaDBG -p exp_0.1_1/ ../OutputDir/ -u
../OutputUnitigs -k 180 -c dsk -n -t 32

• SAVAGE:

• python savage.py -p1 forward.fastq -p2 reverse.fastq -t 32 –split 1

• PEHaplo:

• Relative abundance 50%: python pehaplo.py -f1 forward.fasta -f2
read2.fasta -l 210 -l1 220 -correct yes -n 3 -r 250 -F 450 -t 32 -std
150

• Relative abundance 33%: python pehaplo.py -f1 forward.fasta -f2
read2.fasta -l 210 -l1 220 -correct yes -n 2 -r 250 -F 450 -t 32 -std
150

• Relative abundance below 10%: python pehaplo.py -f1 forward.fasta
-f2 read2.fasta -l 210 -l1 220 -correct yes -n 1 -r 250 -F 450 -t 32 -std
150

• Low divergence ratio: python pehaplo.py -f1 forward.fasta -f2
read2.fasta -l 170 -l1 200 -correct yes -n 1 -r 250 -F 450 -t 32 -std
150
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