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Abstract 

Background:  The increased availability of data on health outcomes and risk factors collected at fine geographical 
resolution is one of the main reasons for the rising popularity of epidemiological analyses conducted at small-area 
level. However, this rich data setting poses important methodological issues related to modelling complexities and 
computational demands, as well as the linkage and harmonisation of data collected at different geographical levels.

Methods:  This tutorial illustrated the extension of the case time series design, originally proposed for individual-level 
analyses on short-term associations with time-varying exposures, for applications using data aggregated over small 
geographical areas. The case time series design embeds the longitudinal structure of time series data within the self-
matched framework of case-only methods, offering a flexible and highly adaptable analytical tool. The methodology 
is well suited for modelling complex temporal relationships, and it provides an efficient computational scheme for 
large datasets including longitudinal measurements collected at a fine geographical level.

Results:  The application of the case time series for small-area analyses is demonstrated using a real-data case study 
to assess the mortality risks associated with high temperature in the summers of 2006 and 2013 in London, UK. The 
example makes use of information on individual deaths, temperature, and socio-economic characteristics collected 
at different geographical levels. The tutorial describes the various steps of the analysis, namely the definition of the 
case time series structure and the linkage of the data, as well as the estimation of the risk associations and the assess-
ment of vulnerability differences. R code and data are made available to fully reproduce the results and the graphical 
descriptions.

Conclusions:  The extension of the case time series for small-area analysis offers a valuable analytical tool that com-
bines modelling flexibility and computational efficiency. The increasing availability of data collected at fine geographi-
cal scales provides opportunities for its application to address a wide range of epidemiological questions.
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Introduction
The field of epidemiology has experienced profound 
changes in the last decade, with the fast development of 
data science methods and technologies. Modern moni-
toring devices, for instance remote sensing instruments 

or mobile wearables [1], provide real-time measure-
ments of a variety of risk factors with unparalleled cov-
erage, quantity, and precision. Similarly, advancements 
in linkage procedures [2], together with improved com-
putational capabilities, storage, and accessibility [3], offer 
epidemiologists rich and high-quality data to investigate 
health risks.

The availability of data on health outcomes and expo-
sures with increased resolution is the main driver of the 
rising popularity of epidemiological analyses at small-
area level [4]. Originally developed in spatial analysis, 
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small-area methods have been then extended for spa-
tio-temporal data to analyse observations collected lon-
gitudinally [5, 6]. Similarly to traditional studies based 
on aggregated data, these investigations often make use 
of administratively collected information, usually more 
available to researchers and less sensitive to confidenti-
ality restrictions. Nonetheless, these studies provide a 
richer data framework, merging information gathered 
from various sources at multiple geographical levels. 
The aggregation of information at finer spatial scales 
makes small-area studies less prone to ecological falla-
cies affecting traditional investigations using large-scale 
aggregations, and the availability of more detailed data 
can inform about more complex epidemiological mecha-
nisms. Still, this context poses non-trivial practical and 
methodological problems, for instance high computa-
tional requirements related to the size of the data, and 
modelling issues due to their complexity [7].

The case time series (CTS) design is a methodol-
ogy recently proposed for epidemiological analyses of 
short-term risks associated with time-varying expo-
sures [8]. The design combines the modelling flexibility 
of time series models with the self-matched structure of 
case-only methods [9], providing a suitable framework 
for complex longitudinal data. Originally illustrated in 
individual-level analyses, the CTS design can be eas-
ily adapted for studies using data aggregated over small 
areas. This extension makes available a flexible methodol-
ogy applicable for a wide range of research topics.

In this contribution, we provide a tutorial on the appli-
cation of the CTS design for the analysis of small-area 
data. The tutorial describes several steps, including data 
gathering and linkage, modelling of epidemiological asso-
ciations, and definition of effect summaries and outputs. 
The associated with non-optimal temperature in London, 
United Kingdom. The example is fully reproducible, with 
data and code in the R software available in a GitHub 
repository.

The case time series data structure
The real-data example is based on a dataset published 
by the Office of National Statistics (ONS), reporting the 
deaths that occurred in London in the summer period 
(June to August) of two years, 2006 and 2013. The data 
are aggregated by day of occurrence across 983 middle 
layer super output areas (MSOAs), small census-based 
aggregations with approximately 7,200 residents each. 
The dataset includes the death counts for both the age 
group 0–74 and 75 and older, which are combined in 
total numbers of daily deaths for this analysis. The para-
graph below describes how these data must be formatted 
in a CTS structure.

The CTS design is based on the definition of cases, 
representing observational units for which data are lon-
gitudinally collected. The design involves the definition 
of case-specific series of continuous sequential observa-
tions. In the applications of the original article presenting 
the methodology [8], cases were represented by subjects, 
but the design can be extended by defining the observa-
tional units as small geographical areas. In this example, 
the process implies the aggregation of the mortality data 
in MSOA-specific daily series of mortality counts, includ-
ing days with no death. It is worth noting that the design 
is similarly applicable with different types of health out-
comes, for instance continuous variables obtained by 
averaging measurements within each area.

The mortality series derived for five of the 983 MSOAs 
in the summer of 2006 are displayed in Fig. 1 (top panel). 
Each MSOA is characterised by no more than one or a 
few daily deaths, with most of the days totalling none. 
The data can be then aggregated further by summing 
across all MSOAs, thus defining a single daily mortality 
series for the whole area of London, shown in Fig. 1 (bot-
tom panel). These fully aggregated data will be used later 
to compare the results of the CTS methodology with a 
traditional time series analysis.

The definition of the geographical units depends 
both on the research question and practical considera-
tions. The areas should be representative of exposure 
and health risk processes, in addition to being consist-
ent with the resolution of the available data. Choosing 
finely aggregated areas can better capture underlying 
associations in the presence of small-scale dependen-
cies, but would pointlessly inflate the computational 
demand in the presence of low-resolution exposure 
data or risk mechanisms acting at wider spatial scales.

Linking high‑resolution exposure data
In this setting, one of the important advantages of 
the CTS design is the use of exposure measurements 
assigned to small areas (each of them representing a 
case), rather than averaging their values across large 
regions. The same applies to potential co-exposures or 
time-varying factors acting as confounders, that can be 
collected at the same small-area scale. Researchers have 
nowadays access to a variety of resources to retrieve 
high-resolution measurements of a multitude of risk fac-
tors across large populations. These resources include 
clinical and health databases, census and administrative 
data, consumer and marketing company data, and meas-
urement networks, among others [3].

Environmental studies, for instance, can now rely on 
climate re-analysis and atmospheric emission-dispersion 
models that offer full coverage and high-resolution meas-
ures for a number of environmental stressors. In this case 
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Fig. 1  Daily series of deaths for all causes in the period June–August 2006 in five random MSOAs (top panel) and aggregated across all the 983 
MSOAs of London (bottom panel)
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study, we extracted temperature data from the HadUK-
Grid product developed by the Met Office [10]. This 
database includes daily values of minimum and maxi-
mum temperature on a 1 × 1 km grid across the United 
Kingdom. These data were averaged to derive mean daily 
temperature values and linked with the mortality series.

The linkage process consists in spatially aligning the 
two sources of information, namely the polygons defin-
ing the 983 MSOAs and the intersecting grid cells with 
corresponding temperature data. Figure  2 displays the 
two spatial structures, with the average summer temper-
ature in the two years in each of the grid cells overlayed 
by the MSOA boundaries. The maps show the spatial dif-
ferences in temperature within the areas of London, with 
higher values in more densely urbanised zones.

The alignment procedure is carried out using GIS tech-
niques to compute the area-weighted average of the cells 
intersecting each MSOA, with weights proportional to 

the intersection areas. This step creates MSOA-specific 
daily series of temperatures that can be linked with the 
mortality data. The results are illustrated in Fig. 3, which 
show the temperature distribution in three consecutive 
days in July 2006, demonstrating the differential temporal 
changes of temperature across areas of the city. The same 
linkage process can be applied to other exposures or con-
founders, each potentially defined over different spatial 
boundaries.

An important advantage of the CTS design is the pos-
sibility to use data disaggregated at smaller scales, thus 
capturing differential changes in exposure across space 
and time, compared to traditional analyses using a sin-
gle aggregated series that rely entirely on temporal con-
trasts. Even in the absence of measurement errors in 
both disaggregated and aggregated analysis, the former 
is therefore expected to result in more precise estimates. 
In this specific example, though, the gain in precision 

Fig. 2  Average summer temperature (°C) in 2006 (left) and 2013 (right) in a 1 × 1 km grid of the London area, with superimposed the boundaries of 
the 983 MSOAs

Fig. 3  Mean temperature in three consecutive days (13–15 July 2006) across the 983 MSOAs of London
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can be limited, as Fig. 3 indicates that the temporal vari-
ation seems to dominate compared to spatial differences. 
The two components of variation can be quantified by 
the average between-day and between-MSOA standard 
deviations in temperature, respectively. Results confirm 
the visual impression, with a temporal deviation of 3.0 °C 
compared to 0.4 °C of the spatial one.

Main analysis
The CTS design allows the application of flexible mod-
elling techniques developed for time series analysis, but 
without requiring the aggregation of the data in a single 
series. The modelling framework is based on regression 
models with the following general form:

The model in Eq.  1  has a classical time series form, 
with outcomes yit collected along time t modelled 
through multiple regression terms [11]. Specific func-
tions can be used to define the association with the 
exposure of interest x , potentially including delayed 
effects through the inclusion of lagged values xt−ℓ

 along 
lag period ℓ = 0, . . . , L . Other terms can be represented 
by functions modelling the underlying temporal trends 
using multiple transformations of t , and potential time-
varying predictors z . The main difference from tradi-
tional time series models is in the presence of multiple 
series for cases represented by the index i . In particular, 
cases define matched risk sets, with intercepts ξi express-
ing baseline risks varying across observational units. The 
risk sets can be stratified further by defining different 

(1)

g[E(yit)] = ξi(k) + f (xit , ℓ)+

j
∑

j=1

sj(t)+

p
∑

p=1

hp
(

zipt
)

intercepts ξi(k) for each time stratum k , thus modelling 
within-case variations in risk. The regression is efficiently 
performed using fixed-effects estimators available for dif-
ferent outcome families [12, 13].

In our illustrative example, yit represents daily death 
counts for each of the i = 1, . . . , 983 MSOAs. The risk 
association with temperature x is modelled through a 
distributed lag non-linear model (DLNM) with a cross-
basis term [14]. This bi-dimensional parametrisation is 
obtained using natural cubic splines defining the expo-
sure–response (two knots at the 50th and 90th tempera-
ture percentiles) and lag-response (one knot at lag 1 over 
lag period 0–3) relationships. The other terms are two 
functions of time t , specifically natural cubic splines of 
day of the year with 3 degrees of freedom and an inter-
action with year indicators to model differential seasonal 
effects in 2006 and 2013, plus indicators for day of the 
week. Risk sets are defined by MSOA/year/month strata 
indicators ξi(k) , allowing within-MSOA variation in base-
line risks in addition to common trends captured by the 
temporal terms in Eq. 1 above. The model is fitted using a 
fixed-effects regression model with a quasi-Poisson fam-
ily to account for overdispersion.

Results are displayed in Fig.  4, which shows the over-
all cumulative exposure–response curve (dark gold) 
expressing the temperature-mortality association. The 
curve indicates an increase in mortality risks above 16 ◦ 
C, the optimal value corresponding minimum mortality 
temperature (MMT). The left tail of the curve suggests an 
increased risk also for relatively cold temperatures expe-
rienced during the summer period.

The CTS model can be compared to a standard time 
series analysis performed by aggregating the data in 

Fig. 4  Exposure–response relationships representing the temperature-mortality risk cumulated within lag 0–3 estimated using the CTS model on 
data disaggregated by MSOAs (dark gold) and from the standard time series model with the aggregated data (green)
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single mortality (Fig.  1, bottom panel) and temperature 
series, the latter obtained by averaging the daily values 
across MSOAs. The model is specified using the same 
terms and parameterisation as above. The estimated rela-
tionship is added to Fig. 4 (green curve). The aggregated 
analysis reports the association over a narrower range, as 
local extreme temperatures are averaged out (see Fig. 3), 
and indicates slightly lower risks, in particular failing to 
capture the residual cold effects. As anticipated, there 
seems to be little gain in statistical precision from the 
CTS model, given that in this example the temperature 
variation is mainly driven by day-to-day variation more 
than by spatial differences.

Assessing differentials in vulnerability
The analysis can be extended by introducing additional 
terms in the model of Eq.  1, for instance to control for 
confounders or investigate effect modifications. Asso-
ciations with time-varying factors can be specified in the 
usual way through main and interaction terms included 
directly in the model. In contrast, the conditional frame-
work of fixed-effects regression removes effects associ-
ated with time-invariant factors, which are absorbed in 
the intercepts ξi(k) [12]. This ensures that potential con-
founding from such terms is controlled for by design, but 
has the drawback that their main effects cannot be esti-
mated. Still, interactions with time-invariant terms can 
be specified to model differential health risks across small 
areas. In our case study, we apply this method to investi-
gate vulnerability to extreme temperature depending on 
socio-economic status, represented by the index of multi-
ple deprivation (IMD).

As mentioned above, small-area studies can rely on 
information collected at different geographical levels, 
but this requires all the variables to be re-aligned over 
the same spatial structure, as shown for mortality and 
temperature above. In this example. IMD scores (defined 
from 0 as the most deprived to 1 as the least deprived) 
were originally collected at the smallest census level, 
the lower super-output areas (LSOAs). Therefore, this 
information is first re-aligned by averaging the values by 
MSOA.

The model is then extended by specifying a linear inter-
action between the cross-basis of temperature and the 
IMD score. The results are shown in Fig.  5, which dis-
plays the overall cumulative exposure–response curves 
predicted for low (in blue) and high (red) IMD scores, 
with values set at the inter-quartile range. The graph 
suggests little evidence of differential risks by depriva-
tion, as confirmed by the likelihood ratio test (account-
ing for overdispersion) that returns a p-value of 0.73. It is 
worth noting, however, that this lack of evidence can be 
explained by the limited statistical power due to the short 
study period (two summers).

Discussion
This contribution presents a tutorial on the extension of 
the CTS design for the analysis of small-area data. The 
tutorial illustrates the analytical steps using a real-data 
example, and it discusses practical issues, for instance 
linkage procedures and data analysis, as well as meth-
odological aspects. The case study uses publicly available 
datasets with data and R code documented and made 
available in a GitHub repository. The example is there-
fore fully reproducible and can be easily adapted to other 

Fig. 5  Exposure–response relationships representing the temperature-mortality risk cumulated within lag 0–3 predicted for less (blue) and more 
(red) deprived areas, defined by the inter-quartile range of the IMD score
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settings for epidemiological analyses using small-area 
data.

The main feature of the CTS design is the embedment 
of flexible time series methods within a self-matched 
framework based on multiple observational units. This 
setting offers strong control for both time-invariant and 
time-varying confounding as well as the possibility to 
model complex temporal relationships using finely dis-
aggregated data. These aspects are demonstrated in the 
case study illustrated above. Specifically, the stratifica-
tion of the baseline risk removes structural differences 
between MSOAs, while allowing control for area-specific 
temporal variations on top of common trends mod-
elled through interactions between splines terms and 
year indicators. Likewise, the time series structure lends 
itself neatly to the application of distributed lag linear 
and non-linear models to define complex exposure-lag-
response relationships. Finally, the design can improve 
the characterisation of the association of interest by pro-
viding both spatial and temporal contrasts. This is dem-
onstrated in the case study example, where we show how 
the case time series framework can account for local 
exposure differences, for instance due to heat island 
effects, and allows investigating geographical variations 
in vulnerability.

The advantages of small-area studies, when compared 
to more traditional approaches based on largely aggre-
gated data, are obvious. First, measurements of health 
outcomes and risk factors at a small scale are expected 
to represent more appropriately risk association mecha-
nisms and to provide better control for confounding, thus 
reducing potential biases that affect ecological studies 
[7]. Even in the absence of classical measurement error, 
whereby the aggregated exposure value is a valid proxy 
of the true population average, small-area studies can 
reduce the Berkson-type error and therefore increase the 
statistical power [15]. As discussed in the example above, 
the gain in precision is proportional to the geographical 
differences in exposure across the study area relative to 
temporal variations.

The CTS design can be compared to other approaches 
previously used for epidemiological analyses using small-
area data. Traditionally, spatial and spatio-temporal anal-
yses are performed using Bayesian hierarchical models 
[6]. These methods provide a powerful framework that 
accounts for spatial correlations and allows geographi-
cally-varying risks, but they present high computational 
demands that pose limits in the analysis of large datasets 
and/or complex associations. In contrast, the CTS design 
offers a flexible and computationally efficient scheme to 
analyse temporal dependencies while removing entirely 
potential biases linked to between-area comparisons. As 

an alternative approach, other studies have replicated 
two-stage designs developed in multi-city investigations 
to small-area analyses [16, 17]. However, this method 
encounters estimation issues in the presence of sparse 
information due to finely disaggregated data, and for 
instance it would be unfeasible for the analysis of MSOAs 
in the illustrative example (see Fig.  1). Conversely, the 
CTS design sets no limit to data disaggregation, being 
applicable with the same structure to individual-level 
analyses. This aspect is shared by the case-crossover 
design, a popular methodology previously proposed in 
small-area analysis [18, 19]. In fact, the CTS methodol-
ogy can replicate exactly the matching structure of the 
case-crossover scheme [20], while allowing a more flex-
ible control for temporal trends and modelling of tempo-
ral relationships, as demonstrated in the illustrative case 
study.

Some limitations must be acknowledged. First, simi-
larly to traditional time series methods, the CTS design 
is only applicable to study short-term risk associations 
with time-varying exposures, and cannot be used to 
assess long-term health effects. Likewise, its application 
in small-area studies is still based on aggregated data and 
it essentially retains an ecological nature. However, the 
extreme stratification can prevent some of the associated 
biases, and it is worth noting that the CTS methodology 
can be seamlessly applied to individual-level data, when 
these are available. Finally, its time series structure is 
ideal for modelling complex temporal dependencies and 
trends, but presents limitations in capturing spatially cor-
related and varying risks.

In conclusion, the CTS methodology represents a 
valuable analytical tool analysis of small-area data. The 
framework is highly adaptable to various data settings, 
and it offers flexible features for modelling complex tem-
poral patterns while controlling for time-varying factors 
and trends. The availability of data collected at small-area 
level provides opportunities for its application in a vari-
ety of epidemiological investigations of risk associations.
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