
Title: The importance of local context in COVID-19 models

Authors: Rosalind M Eggo1*, Jeanette Dawa2,3, Adam J Kucharski1, Zulma M Cucunuba4,5

Affiliations:
1 Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine,
London. WC1E 7HT
2 College of Health Sciences, University of Nairobi, Nairobi, Kenya
3 Washington State University, Global Health Programs, Nairobi, Kenya
4 MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, UK
5 Faculty of Medicine, Pontificia Universidad Javeriana, Colombia

Text

Introduction
Infectious disease models are an integral part of public health decision making, and have been crucial tools
throughout the COVID-19 pandemic. In early 2020, models estimated the extent of COVID-19 in Wuhan and
regional patterns of importations, made projections of potential epidemics and healthcare needs, and provided
short term predictions of case numbers in newly unfolding outbreaks. As countries considered control and
mitigation measures, models helped assess likely effects of proposed interventions and determine
“counterfactuals”, i.e. expected epidemic trajectories if an intervention was not implemented. However, the
quality of such projections depends on within- and between-country variation in transmission, control and
burden.

Transmission
The dynamics of directly-transmitted respiratory infections depend on multiple factors, including population
demography: variation in age and spatial distribution; size and composition of households, schools, and
workplaces; and population behaviour, often measured as contact rates between age groups and in different
settings. Early COVID-19 projections relied on parameter values relating to transmission and disease severity
drawn mostly from China – where the epidemic was most advanced and hence most evidence was available –
and extrapolated to other cities and countries. Certain factors could be and were modified in projections – for
example, by changing modelled age distributions to match country demography,1 and using age-specific mixing
rates for the projected country2 – but other regional or country-level differences are very difficult to
extrapolate, an effect compounded by the uncertainties of a new virus and unknown health outcomes.

One example is an epidemic with multiple peaks. These can result if there are strong subdivisions within a
population so that each sub-community has a separate epidemic,3 caused by structure within a city,4 by
geographics,5 or other factors. National or regional differences in extent or type of community structure may
impact projections, and multi-peaked epidemics can also result from interventions. These effects are especially
difficult to predict for new pathogens.

Another factor is the frequency and characteristics of different settings that drive transmission.6 For COVID-19,
information has emerged about high-risk settings, such as households, hospitals, congregate settings including
long-term care facilities, and overcrowded communities. However, incorporating this level of complexity into
transmission models before this information becomes available is challenging. As a result, the dynamics of very
detailed models will likely reflect strong underlying assumptions rather than genuine patterns in (as yet
unknown) data. Nevertheless, understanding these heterogeneities, and incorporating them as data become
available, is a critical part of improving and updating models, both for understanding differences in epidemic
dynamics to date and for future planning.

Severity and impact
To project the extent and impact of COVID-19 in other countries, estimates of severity (e.g. age-specific
hospitalisation and mortality rates) were drawn from early data reported in East Asia.7 Incorporating these
estimates into epidemic models, adjusting for key aspects of demography, these severity estimates have
matched experiences in Latin American countries, but there have been settings where to date there is less
correspondence between predicted and reported impact, for example in many African countries.8 A key
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uncertainty in understanding burden is the extent to which deaths are reported, the prevalence of
comorbidities, and how healthcare operates and is utilised. For example, in places where health systems
become overwhelmed, higher mortality may result from reduced hospital capacity and quality of care.9 Such
effects could vary from country-to-country and even regionally within countries.

Excess mortality data can be useful to better understand deaths and pandemic impacts.10 However, when using
excess or all-cause mortality data, care is needed to understand the context, because interventions such as
social distancing and stay-at-home orders could have decreased prevalence of other infectious diseases and
thus decreased mortality, and could also have reduced deaths due to other causes (e.g. road traffic accidents).
Conversely, large epidemics or intensive interventions can disrupt care for non-COVID-19 causes, leading to
increased morbidity and mortality that can lag the epidemic or interventions by a considerable period of time,
as with deaths from diseases like cancer.

Control
Early responses to SARS-CoV-2 outbreaks varied globally, with many countries implementing “lockdown”-type
interventions, including varying levels of school, work and business closures, stay-at-home orders, curfews and
quarantines. In addition, test-trace-isolate strategies and individual-level measures like hand-washing and
mask-wearing were promoted to varying extents. Although these interventions appear superficially similar,
details of implementation – and the populations they were implemented in – are critical to understanding their
effect on transmission and why this differs between countries. In some locations, economic support allowed
people to remain at home, while elsewhere, larger informal economies and less support meant more people
had to continue working.11 There have been notable differences across economic strata in ability to adhere to
measures like isolation and quarantine across the world, exacerbating health inequalities, as well as creating a
more complex epidemiological picture that models may need to include.12 Even within countries, interventions
have been implemented unevenly between regions, further complicating our understanding of the
transmission dynamics.

A major source of uncertainty in modelling, and especially for one-in-a-century pandemics, is understanding
specific behavioural responses both to the epidemic and to public health interventions. As awareness of an
epidemic rises, and information (and disinformation) spreads, people will inevitably change their normal
patterns, for example by decreasing contacts, reducing non-essential travel, and increasing hand-washing,
mask-wearing, and other hygienic measures. Public health interventions may also be imposed or lifted, and
adherence to restrictions can change over the course of the epidemic. These kinds of “reactive” behavioural
responses, especially coupled with intermittent interventions, can give rise to epidemics with multiple peaks.
Some early models used different types of interventions introduced at varying times to demonstrate the effect
on projected epidemic profiles, but behavioural responses and adherence tend to be very context-specific,
limiting generalisability from one area to another. Further, incorporating reactive responses into models is
challenging13 because their magnitude is unknown, difficult to predict, and behaviours may not track
information about underlying infection level, but rather news sources, and responses may grow and wane over
time.

Surveillance data
Judging model predictions against observed surveillance data relies on being able to accurately measure
infection outcomes in a population. For all infections there will be under-reporting, and for a new virus this
could be considerably worse, resulting from variable case definitions, testing quality and capacity, and testing
behaviours. The percentage of cases that are detected (i.e. the ascertainment ratio) varies as testing changes,
but also is subject to time-dependent and location-dependent variation. Testing may be used for a variety of
purposes: to confirm recovery among previously infected individuals; for diagnosis among those acutely ill; as
part of routine hospital surveillance; or as part of screening protocols for essential workers or other individuals
in the community. Depending on the extent, timing and duration of each approach, a testing strategy could
substantially change the ascertainment ratio, and this would need to be incorporated into country-specific
models. In the UK, for example, positive COVID-19 cases were initially detected at hospitalisation, but in Kenya,
long distance truck drivers were initially prioritised for screening, before community testing was scaled up in
both countries. In Latin American countries, a variety of molecular, immunological and rapid antigen tests are
used, making comparisons difficult. Moreover, low- and middle-income countries have low access to
widespread diagnostic testing.14 Models can include an explicit “observation model” which allows changes in
case ascertainment through time and can allow incorporation of multiple data streams with different
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ascertainment ratios. Fitting models to incomplete or unrepresentative data streams is very challenging, and
can result in wide uncertainty bounds if it can be achieved at all. Issues with data availability as well as
ascertainment may mean it is difficult to rigorously evaluate forecasts. Population-based seroprevalence
studies can overcome some of these difficulties, validate models and make more realistic impact evaluations
and projections.

Novel data sources
SARS-CoV-2 emerged into a world more connected and technologically advanced than previous epidemics.
New sources of information have been used since early 2020, such as when Baidu made within-China travel
volumes live and publicly available15 to help link human mobility data to control efforts. Similar datasets are
available in many countries from apps (Facebook, Uber, Google), mobile phones, traffic and pedestrian
measurements, amongst others.16 There are also a range of self-reported monitoring methods, from
questionnaires, symptom reporting apps, and even “smart” thermometers that can try to provide real time
monitoring.17 However, technological data, especially those requiring smartphones or personal devices,
frequently only measure a non-random segment of the population, often under-representing certain age or
socioeconomic groups.18 In interpreting these data and incorporating them into models, scientists must address
this differential representativeness.

These biases are not only an issue for passively collected data, but also for intervention systems that use
smartphones, such as digital contact tracing. There is widely differential take up of these apps even where they
are available, either due to trust and privacy concerns about use of the data, or due to the technical
requirements for devices that can support them. Therefore the utility of these data for analysis or epidemic
mitigation may be limited, particularly in low-middle income countries, where smartphone data may be
particularly unrepresentative of the overall population. Despite these limitations, there are some examples of
integration between smartphone data and epidemiological models that have provided insights into social
heterogeneities in infection and potential ways to address risk disparities.19

Conclusions
The factors described illustrate the heterogeneities and data sources that modellers must try and synthesise
when developing models, whether to understand more about transmission, to help design interventions, or to
make projections. Developing, refining and using models in real-time during a pandemic can also reveal key
areas of uncertainty about specific aspects of transmission, providing additional understanding about which
assumptions need revisiting, or locations or time periods within which projections are poor.

It is unrealistic to expect that models will be able to include a range of setting-specific intricacies and
complexities at the start of a pandemic of a newly-emerged virus. What models are most useful for and what
insights they can provide changes as an epidemic proceeds: early projections may need to be a “reasonable
worst case scenario”, for which broad conclusions are most important, and later, as policy questions or needs
become more specific, precise mechanisms can be added when there are data to support it. Modellers should
strive to convey the uncertainties and to understand and explain how variable the outputs may be when as-yet
unestablished parameters of the model are changed.

It is crucial that modelling groups continue to refine their models using the most up-to-date data from
observational and interventional studies given the likely duration of the COVID-19 pandemic, potential for
further interventions, and the need to plan for vaccines. It is important to tailor models to the population and
context under study – as much as is possible and feasible given the aim of the model – in order to provide more
accurate and relevant local estimates, both for this pandemic, and for those in the future.
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