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Abstract 

Background:  Culex mosquitoes cause considerable biting nuisance and sporadic transmission of arboviral and filarial 
diseases.

Methods:  Using standard World Health Organization procedures, insecticide resistance profiles and underlying 
mechanisms were investigated during dry and wet seasons of 2015 and 2016 in Culex pipiens complex from three 
neighbouring administrative wards in Ulanga District, Tanzania. Synergist tests with piperonyl butoxide, diethyl 
maleate, and triphenyl phosphate, were employed to investigate mechanisms of the observed resistance phenotypes. 
Proportional biting densities of Culex species, relative to other taxa, were determined from indoor surveillance data 
collected in 2012, 2013, and 2015.

Results:  Insecticide resistance varied significantly between wards and seasons. For example, female mosquitoes in 
one ward were susceptible to bendiocarb and fenitrothion in the wet season, but resistant during the dry season, 
while in neighbouring ward, the mosquitoes were fully susceptible to these pesticides in both seasons. Similar vari-
ations occurred against bendiocarb, DDT, deltamethrin, and lambda-cyhalothrin. Surprisingly, with the exception of 
one ward in the wet season, the Culex populations were susceptible to permethrin, commonly used on bednets in 
the area. No insecticide resistance was observed against the organophosphates, pirimiphos-methyl and malathion, 
except for one incident of reduced susceptibility in the dry season. Synergist assays revealed possible involvement 
of monooxygenases, esterases, and glutathione S-transferase in pyrethroid and DDT resistance. Morphology-based 
identification and molecular assays of adult Culex revealed that 94% were Cx. pipiens complex, of which 81% were Cx. 
quinquefasciatus, 2% Cx. pipiens, and 3% hybrids. About 14% of the specimens were non-amplified during molecular 
identifications. Female adults collected indoors were 100% Cx. pipiens complex, and constituted 79% of the overall 
biting risk.

Conclusions:  The Cx. pipiens complex constituted the greatest biting nuisance inside people’s houses, and showed 
resistance to most public health insecticides possible. Resistance varied at a fine geographical scale, between adja-
cent wards, and seasons, which warrants some modifications to current insecticide resistance monitoring strate-
gies. Resistance phenotypes are partly mediated by metabolic mechanisms, but require further evaluation through 
biochemical and molecular techniques. The high densities and resistance in Culex could negatively influence the 
acceptability of other interventions such as those used against malaria mosquitoes.
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Background
Culicine mosquitoes, including Aedes, Mansonia, and 
members of the Culex pipiens and Cx. univittatus com-
plexes, are common across East Africa [1–4]. Of par-
ticular importance is the Cx. pipiens complex, generally 
referred to as the “house mosquito” [5]. It is not only a 
major cause of biting annoyance to humans but is also a 
primary vector of many arboviruses and filarial worms 
that affect more than 1 billion people globally [6–8]. 
The diseases of concern include Rift Valley fever, den-
gue, chikungunya, yellow fever, Sindbis, Wesselsbron, 
o’nyong-nyong, and West Nile arboviruses, filarial 
worms causing Bancroftian filariasis [6–8], and avian 
Plasmodium species [9]. Most of these pathogens are 
maintained in zoonotic cycles with humans being inci-
dental hosts [10]. Culicines are adapted and dominate 
human habitats, increasing their risks to act as bridge 
vectors in transmitting pathogens between humans and 
animals [9, 11, 12]. In Africa there have been several 
sporadic outbreaks of arbovirus infections such as Rift 
Valley fever in Kenya and Tanzania as well as dengue 
fever [13–15] and chikungunya [16, 17].

The World Health Organization (WHO) Global Vec-
tor Control Response strategy recognizes the need to 
integrate surveillance and control of pathogens trans-
mitted by different vector species [18]. Surveillance and 
management of insecticide resistance are two crucial 
components [18, 19] for effective decision-making on 
selection, allocation, and implementation of appropri-
ate integrated vector control interventions.

Current vector control interventions in Africa are 
primarily designed to target malaria vectors, with lim-
ited efforts to control other mosquito-borne disease 
vectors. This is also true for insecticide resistance 
monitoring [20]. The current emphasis on malaria vec-
tors has resulted in knowledge gaps on species other 
than Anopheles and their resistance profiles to com-
mon insecticides used in public health [21, 22]. Yet 
these species contribute to the greatest human-biting 
densities. Culicine densities are usually high, because 
of the presence of numerous favourable aquatic breed-
ing sites that include man-made stagnant water bod-
ies (e.g. small multipurpose dams, rice paddies, etc.), 
waste disposal sites, open pit latrines and septic tanks, 
and flooded vegetation [3, 23, 24]. Lack of resources in 
many countries has limited expansion of surveillance to 
non-malaria vectors including the culicines.

Previous studies showed spatial and temporal dynam-
ics of insecticide resistance in mosquito vector popula-
tions, and influence of environmental contamiants such 
as agricultural pesticide residues, and such information 
has been used to plan resistance monitoring efforts 
[25–27]. In Tanzania, however, insecticide resistance 
monitoring is carried out at district level in selected 
sentinel sites in regions assumed to represent different 
eco-epidemiological settings [28]. Reports from these 
assessments provide essential data for country-level 
decision making. However, such a simplistic approach 
is inadequate for understanding insecticide resistance, 
which often varies geographically at finer scales other 
than at the unit of the district or country level [29].

Besides, data on insecticides resistance and associ-
ated mechanisms in Culex species are also lacking in 
Tanzania. Synergist assays have been deployed as a 
quick and simple method to assess metabolic resistance 
in mosquito vectors [30–33]. Synergists act by enhanc-
ing insecticides penetration into the mosquito body 
and inhibit the metabolic enzymes that would other-
wise digest the insecticides, hence partially/fully restor-
ing susceptibility [30–33].

In addition, data on insecticide resistance in male 
mosquito populations are limited inspite of both males 
and females being exposed to insecticides during vector 
control interventions. Male mosquito populations sub-
stantially contribute in the reproduction and increasing 
population density and their response to insecticides 
is also a crucial component. In addition, novel vector 
control interventions such as spraying of swarms [34] 
with insecticides directly target male mosquitoes. This 
suggests the need to monitor insecticide resistance on a 
regular basis in male mosquitoes.

We investigated the spatial and seasonal variations 
in susceptibility to insecticides of Cx. pipiens com-
plex mosquitoes from rural south-eastern Tanzanian 
villages where there is a high coverage of long-lasting 
insecticidal nets (LLINs) [35], and a regular usage of 
agricultural pesticides (Matowo et  al., unpublished 
data). The main objectives of the study were (i) to fill 
important knowledge gaps on insecticide resistance 
and species diversity of Culex mosquitoes in the study 
area; and (ii) to investigate fine-scale spatial and tem-
poral differences in resistance and resistance mecha-
nism in the Culex species.

Keywords:  Culex pipiens complex, Fine spatial scale and temporal differences, Insecticide resistance, Metabolic 
resistance, Tanzania



Page 3 of 13Matowo et al. Parasites Vectors          (2019) 12:413 

Methods
Study area
Three neighbouring wards, i.e. Minepa (8.271°S, 
36.677°E), Lupiro (8.385°S, 36.670°E), and Mavimba 
(8.312°S, 36.677°E), in Ulanga District, south-eastern 
Tanzania were selected (Fig. 1). These villages have high 

coverage of LLINs [35] and high agricultural pesticide 
use for crop protection (Matowo et  al., unpublished 
data). Minimum and maximum distances between the 
wards was ~ 4 km (Minepa to Mavimba) and ~ 9 km 
(Minepa to Lupiro). All three wards lie at an altitude 
between 120 m and 350 m above mean sea level. Average 

Fig. 1  Locations of mosquito aquatic breeding sites in Minepa, Mavimba, and Lupiro, south-eastern Tanzania, where larvae sampling was 
conducted between June 2015 and June 2016
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annual precipitation ranges between 1200 mm and 1800 
mm, with the dry season between June and October, a 
short rainy season in November and December, and the 
wet season between January and May. Mean daily tem-
peratures over the year vary from 20  °C to 32  °C, while 
the relative humidity is 70–90%. Residents practice rice 
farming [36], which is irrigated during the dry season, 
so that the area is continuously favourable for mosquito 
breeding [37]. A national insecticide susceptibility survey 
in 2011 across 14 districts, including the nearby Kilomb-
ero District, reported widespread pyrethroid and DDT 
resistance in Anopheles mosquitoes [28], but no data on 
Culex were reported. Recent studies indicated that the 
two malaria vectors An. arabiensis and An. funestus are 
highly resistant to pyrethroids, bendiocarb, and DDT, 
thus compromising vector control efforts [29, 38, 39].

Mosquito sampling and larval rearing
Mosquito larvae were collected between June 2015 and 
June 2016, using a standard larval dipping method [40] 
in three wards, during the dry season (June to Decem-
ber 2015) and wet season (January to May 2016). In each 
instance, seven to nine randomly selected and georefer-
enced aquatic habitats were sampled. Larvae were sepa-
rated into anophelines and culicines to ensure easy adult 
morphological identification. To assess spatial variations 
in insecticide resistance, collected larvae were separated 
per collection site for WHO insecticide resistance assays.

Collected larvae were transferred to the medical ento-
mology laboratory, the “Vector Sphere”, at Ifakara Health 
Institute (IHI; Ifakara, Tanzania), and reared to adults 
at temperatures of 27 ± 2  °C and relative humidity of 
70–90%). Larvae were fed on mud and algae from their 
original habitats, supplemented with Tetramin fish food 
(Tetra; Melle, Germany). Emergent adults were separated 
by sex and taxa, and provided with 10% glucose solution.

Insecticide susceptibility tests
Phenotypic insecticide resistance in Culex species in 
the three study villages was assessed in the dry and wet 
seasons using standard WHO test kits (Vector Control 
Research Unit, School of Biological Sciences, Univer-
siti Sains Malaysia, Penang, Malaysia). Adult males and 
females (3–5 days-old) were exposed in batches of either 
20 or 25 individuals according to the discriminating doses 
of 0.05% lambda-cyhalothrin, 0.05% deltamethrin, 0.75% 
permethrin, 4% DDT, 4% dieldrin, 0.1% bendiocarb, 0.1% 
propoxur, 0.25% pirimiphos-methyl, and 5% malathion 
[41]. The same number of mosquitoes were exposed to 
oil-impregnated papers as controls. Due to unavailability 
of reference susceptible Culex mosquitoes, a susceptible 
colony of An. gambiae (s.s.) (Ifakara strain), was used to 
validate efficacy of test papers. Knockdown was recorded 

after 10, 15, 20, 30, 40, 50 and 60 min. After the 60 min 
exposure, mosquitoes were transferred to holding tubes 
and offered 10% glucose. Final mortality was recorded 
24 hours post-exposure [41], after which the mosquitoes 
were preserved in 1.5 ml Eppendorf tubes containing sil-
ica gel for further species identification, using polymer-
ase chain reaction (PCR) assays.

Synergist assays
Synergist assays were performed using 4% piperonyl 
butoxide (PBO), a known inhibitor of monooxygenase, 
20% diethyl maleate (DEM), an inhibitor of glutathione 
S-transferases (GSTs), and 20% triphenyl phosphate 
(TPP), an inhibitor of esterases, as a quick and sim-
ple method to assess whether the observed phenotypic 
resistance had a metabolic enzymes basis [30]. The bio-
efficacy of synergist papers was tested against a reference 
laboratory colony (An. funestus) with resistance pheno-
type mediated by monooxygenases and GSTs [42]. Due to 
resource limitations, the synergist tests were performed 
only on female mosquitoes in the dry season in Minepa 
and Mavimba wards. For each synergist, five cohorts of 
adults (n = 125) were used. The first group was exposed 
to a synergist (either 4% PBO, 20% DEM, or 20% TPP) for 
60 min, and thereafter immediately exposed to WHO test 
papers impregnated with either 0.75% permethrin, 0.05% 
deltamethrin, 0.05% lambda-cyhalothrin, or 4% DDT for 
another 60 min. The second group was exposed only to 
the respective WHO test papers, and the third group 
exposed to the synergist only. Fourth and fifth groups 
consisted of controls, i.e. filter papers treated with olive 
oil used to prepare the synergist papers (solvent control), 
and plain filter papers (environmental control).

Estimating relative densities of Culex mosquitoes 
and associated biting risk
The relative proportion of population densities of female 
Culex species, relative to other mosquito species, was 
estimated from indoor night collections in 2012, 2013, 
and 2015 at Minepa, Mavimba, and Kivukoni wards [43, 
44], using CDC light traps [45] in 96 randomly selected 
houses. The mosquitoes were segregated as Anopheles, 
Culex, Aedes, Mansonia, and other species. The propor-
tion of female Culex population density was used as a 
proxy for estimating human-biting risk.

Morphological identification of Culex species
A sub-sample of female Culex mosquitoes (n = 430) from 
the resistance bioassays and female Culex mosquitoes 
from indoor collections (n = 1053) were morphologi-
cally identified to determine composition of prevailing 
species and species complexes using the taxonomic keys 
of Edwards [46], under a stereo-zoom microscope 
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(SZM-LED2, digital Optika® Microscopes; Ponteranica, 
Italy). To improve identification, the mosquito images 
were enhanced using OptikalSview software version 
3.6.6, and captured using a digital camera (Optika®; Pon-
teranica, Italy) attached to the microscope.

The diagnostic features used for species identification 
were: (i) presence and number of mesepimeral bristles; 
(ii) presence or absence of a pale band on proboscis; (iii) 
presence or absence of white scales on abdomen; (iv) 
presence or absence of white scales on femur or tibia; and 
(v) presence or absence of pale-ringed tarsi. To complete 
the assessment, we first adapted the 1941 morphological 
keys [46] to focus on just the general diagnostic features 
and specific features known to occur in Tanzania Culex 
mosquitoes (Table 1).

Molecular identification of sibling species in the Cx. pipiens 
complex
Morphological identification showed that the Cx. pipi-
ens complex was the most common of all Culex species 
in the study area. Further molecular identification was 
conducted using PCR amplification to differentiate two 
members of the Cx. pipiens complex (i.e. Cx. pipiens 
pipiens and Cx. quinquefasciatus). This PCR targets the 
acetyl-cholinesterase-2 locus (ace-2). The ace-2 locus was 
amplified using primers B126, ACEquin, and ACEpip as 
previously described by Smith & Fonseca [47].

DNA was extracted from 280 specimens, randomly 
selected from the morphologically identified Cx. pipiens 

complex. A total of 5 µl of extracted genomic DNA per 
sample was amplified in a 20 µl reaction mix containing 
1× PCR buffer, 250 µM dNTP, 2 mM MgCl2, 0.4 µM of 
universal primer and ACEquin, 0.2 µM of ACEpip, and 
1 unit of Taq DNA polymerase overlaid by a drop of 
mineral oil. After PCR amplification, 10 µl of the DNA 
fragments were separated by electrophoresis on a 2.5% 
agarose gel stained with 0.5 µg/ml ethidium bromide and 
compared against a 100-bp DNA marker included in the 
gel. Separated DNA fragments were photographed under 
ultraviolet light using Kodak Gel Logic 100 imaging sys-
tem and scored as Cx. pipiens pipiens (610 bp) or Cx. 
quinquefasciatus (274 bp).

Statistical analysis
The data on susceptibility to insecticides were interpreted 
following the WHO thresholds established in 2016 [41], 
where: (i) mean mortality ranging between 98% and 100% 
indicates susceptibility; (ii) mean mortality between 
90% and 97% indicate possible resistance or presence of 
resistant genes in the vector populations, but requiring 
confirmation by repeat bioassays or by a molecular assay; 
and (iii) mean mortality less than 90%, indicates confir-
mation of resistance in the test populations. Percentage 
mean mortality for controls were also calculated, and 
any tests with mortality greater than 5%, but less than 
20%, were corrected using Abbott’s formula [48]. Further 
analysis was done using R statistical software version 3.0 
[49]. Mean mortalities in mosquitoes collected either 

Table 1  Identification keys showing main morphological features to distinguish among female Culex collected in three rural wards 
(Minepa, Mavimba, and Lupiro) in Ulanga District, south-eastern Tanzania. Adapted from the morphological keys by Edwards [46]

Taxon Main morphological features for identification of Culex spp.

Culex pipiens complex Generally smaller size compared to other Culex species
Abdominal tergite with pale basal bands, sternite pale and not banded
Proboscis without a well-defined ring in the middle but pale beneath
Legs and tarsi mostly or entirely dark but hind tibia with a small pale spot at tip
Presence of one lower mesepimeral bristle
Halters yellowish

Culex (Lutzia) tigripes One of the largest Culex species
About 10 small prominent pale spots on a dark ground marking on femora and tibiae
Abdominal bands, 6 and 7 broad, sometimes occupying almost half of the tergites; all sternites pale-scaled, un-banded
Mainly dark proboscis
Dark-scaled wings
3–10 bristles on lower half of the mesepimeron in a more or less regular row

Culex (Culex) poicilipes Sharply-defined median pale yellowish ring on proboscis
Presence of 7–10 distinct small pale spots on anterior surfaces of front femora and tibiae
Tarsi with pale rings at joints, which are scarcely longer than wide; on joint 4–5 of hind tarsi, pale ring scarcely noticeable
No post-spiracular or pre-alar scales
Wings with all dark scales

Culex (Culex) duttoni Distinctly pale rings on the tarsi and indefinitely ringed proboscis but with whitish scales on the palp almost half
Middle tibia with narrow pale anterior stripe
Presence of 2–4 lower mesepimeral bristles
Presence of few post-spiracular scales
Dark thorax with no pale scales
Head with pale scales
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in the dry or wet season were compared using t-test 
and any differences considered statistically significant 
at P < 0.05. In the synergist tests, the observed 24 hours 
post-exposure was compared between synergised and 
un-synergised exposures using t-test and any differences 
considered statistically significant at P < 0.05. The propor-
tion of female Culex mosquito population density relative 
to other mosquito species were summarised in a tabular 
format and used as a proxy for estimating exposure of 
human to bites.

Results
Morphological identification of Culex mosquitoes
A sub-sample of 430 specimens reared from larvae from 
the three wards (Table  2) were identified as belonging 
to four Culex species or species complexes as follows: 
94% (n = 405) Cx. pipiens complex; 2% (n = 8) Cx. (Lut-
zia) tigripes; 1% (n = 3) Cx. (Culex) poicilipes; and 3% 
(n = 14) Cx. (Culex) duttoni. The 1053 Culex mosquitoes 
sub-sampled from indoor collections were also identi-
fied as members of the Cx. pipiens complex. Given the 
dominance of Cx. pipiens complex, results of insecticide 
resistance tests are considered most representative of this 
species complex.

Molecular identifications
About 94% of Culex belonged to the Cx. pipiens complex, 
of which 81% were verified by PCR as Cx. quinquefascia-
tus, 2% as Cx. pipiens pipiens, and 3% as hybrids of Cx. 
pipiens pipiens and Cx. quinquefasciatus. A small pro-
portion of samples (14%) did not amplify.

Insecticides resistance status of Culex mosquitoes 
in different wards and seasons
Table  3 summarizes results for standard WHO suscep-
tibility tests [32] on adult male and female Culex in the 
three study wards. The reference colony (An. gambiae 
(s.s.)) used to test insecticidal activity of the test papers 

was fully susceptible (100%) to all candidate insecticides. 
No mortality was observed upon exposure of wild-caught 
Culex to untreated papers. The Culex mosquitoes sam-
pled displayed differences in resistance to each insecti-
cide by ward, time of year (dry or wet season), sex (male 
or female mosquitoes), and insecticides tested.

Overall, lower mortality was observed in the Minepa 
ward than the other two wards, and females had lower 
mortalities than males. In addition, resistance to bendio-
carb, deltamethrin, lambda-cyhalothrin, and DDT, was 
higher in the dry season than in the wet season. There 
was complete resistance or reduced susceptibility to the 
pyrethroids, except permethrin, against which the mos-
quitoes (both males and females) from the Minepa and 
Mavimba wards were fully susceptible regardless of the 
season. In the Lupiro ward, however, Culex were suscep-
tible to permethrin in the dry season, but resistant to it 
during the wet season. In the Minepa ward, both male 
and female Culex were resistant to bendiocarb in the 
dry season, but fully susceptible in the wet season. Those 
Culex collected from the Mavimba and Lupiro wards 
remained fully susceptible to bendiocarb during both 
seasons. Similar spatio-temporal variations in resistance 
profiles were observed for male Culex exposed to del-
tamethrin, lambda-cyhalothrin, and bendiocarb.

Effects of synergists on pyrethroid and DDT resistance 
phenotypes
Results of synergist tests on the different resistance phe-
notypes are detailed in Tables  4 and 5. In the Minepa 
ward, samples synergized with 4% PBO exhibited mean 
mortality of 57.5% on exposure to 0.05% lambda-cyhalo-
thrin, compared to 35.0% in un-synergized cohorts. The 
difference in mean mortality was marginal, when exam-
ined using two-sample t-test (t(6) = 2.50, P = 0.047). Con-
versely, synergizing the same population with 20% TPP 
did not change the mortality after exposure to lambda-
cyhalothrin (t(6) = 0.23, P = 0.827). Resistant phenotype 
pre-exposure to 20% TPP followed by exposure to del-
tamethrin, resulted in 1.6-fold increase in mortality, rela-
tive to exposure to deltamethrin alone (81.3 vs 51.3%). 
This difference was statistically significant (t(3) = 2.84, 
P = 0.030). Similarly, there was a statistically significant 
difference in mortalities after exposure to 0.05% deltame-
thrin with or without pre-exposure to 4% PBO (93.8 vs 
73.8%; t(4) = 2.99, P = 0.042). However, there was no dif-
ference in mortalities in mosquitoes exposed to 4% DDT 
(90%) with or without pre-exposure to 20% DEM (95.0 vs 
90.0%; t(6) = − 1.73, P = 0.134).

In the Mavimba ward, we observed a significantly 
higher mortality when mosquitoes were pre-exposed to 
20% TPP, followed by lambda-cyhalothrin, as opposed 
to exposure to lambda-cyhalothrin alone (83.8 vs 72.5%; 

Table 2  Number of adult Culex of different species or species 
complexes identified from sub-samples emerged from larvae 
collected in three study wards in Ulanga District, Tanzania, in 
2015 and 2016

Species Study wards

Minepa ward Mavimba ward Lupiro ward Total

Cx. pipiens complex 160 112 133 405

Cx. (Lutzia) tigripes 4 1 3 8

Cx. (Culex) poicilipes 1 2 0 3

Cx. (Culex) duttoni 11 0 3 14

Total 176 115 139 430
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t(6) = 2.80, P = 0.030). Similarly, pre-exposure to 4% PBO, 
followed by lambda-cyhalothrin increased mortality 
relative to exposure to lambda-cyhalothrin alone (66.3 
vs 28.8%; t(6) = 6.60, P < 0.001). There was a marginal 
increase in mortality when mosquitoes were pre-exposed 
to 20% TPP, followed by exposure to deltamethrin, com-
pared to exposure to deltamethrin alone (86.0 vs 75.0%; 
t(6) = 3.42, P = 0.014). Pre-exposure to 4% PBO, followed 
by deltamethrin also resulted in higher mortality relative 
to cohorts exposed to deltamethrin only (60.0 vs 41.3%; 
t(6) = 3.17; P = 0.019). Lastly, pre-exposure to 20% DEM, 
followed by 4% DDT increased mortality in the syner-
gized cohorts, compared to their un-synergized counter-
parts (82.5 vs 48.8%; t(6) = 5.89, P = 0.001).

Estimated biting densities of Culex, relative to other 
mosquito species
Of the 387,318 mosquitoes collected indoors during the 
sampling period, Culex constituted 77% (n = 299,841) 
of the total catches. Of these, 79% were females 
(n = 236,484) and 21% males (n = 63,375). In total, 1053 
Culex mosquitoes were subjected to species-specific 
identification; of these all were identified as members of 
the Cx. pipiens complex (Table 6).

Table 3  Fine-scale spatial and seasonal variations in insecticide susceptibility of Culex mosquitoes collected in three neighbouring 
wards in the Ulanga District, Tanzania, in the dry season (June–December 2015) and wet season (January–May 2016). Adult 
mosquitoes exposed for each insecticide were either 20 or 25 per replicate. Results expressed as % mean mortality 24 hours post-
exposure

Notes: Morphological identification of the Culex mosquitoes revealed 94% were Cx. pipiens complex. Of these, PCR assays revealed that 81% were Cx. quinquefasciatus, 
2% were Cx. pipiens pipiens and 3% were hybrids of the two species. About 14% of the specimens were non-amplified. These test results can therefore be considered 
primarily representative of Cx. pipiens complex or more specifically for Cx. quinquefasciatus

Abbreviations: SS, mosquitoes were susceptible to the test insecticide (WHO assays mortality between (98% and 100%); RS, mosquitoes had reduced susceptibility 
indicating possible resistance and need for further investigation (mortality of 90–97%); RR, mosquitoes were confirmed resistant to the test insecticide (WHO assays 
mortality below 90%)
a  Chemicals for which we observed differences in susceptibility of Culex mosquitoes between dry and wet seasons, i.e. where mosquitoes were fully susceptible in 
one season and fully resistant in a different season in same ward
b  Chemicals for which we observed differences in susceptibility of Culex mosquitoes between (nearby) wards, i.e. where mosquitoes were fully susceptible in one 
ward and fully resistant in another ward during the same season
c  There was a statistically significant difference in mortality between the dry and wet seasons

Insecticide Minepa (8.271°S, 36.677°E) Mavimba (8.312°S, 36.677°E) Lupiro (8.385º S, 36.670º E)

Dry season Wet season Dry season Wet season Dry season Wet season

Female mosquitoes 0.75% permethrina,b 100SS 100SS 100SS 100SS 100SS c 72.0RR c

0.05% deltamethrin 86.0RR c 56.3RR c 87.0RR 90.0RS 8.0RR c 87.5RR c

0.05% lambda-cyhalothrin 60.0RR 82.5RR 76.3RR c 91.3RS c 80.0RR c 87.5RR c

4% dieldrin 94.0RS 98.8SS 98.8SS 100SS 100SS 100SS

4% DDT 92.0RS 95.0RS 87.5RR 91.3RS 78.0RR 71.0RR

0.1% propoxur 94.0RS 100 SS 91.3RS c 100SS 100SS 98.0SS

0.1% bendiocarba,b 29.0RR c 99.0SS c 98.0SS 100SS c 100SS 99.0SS

0.25% pirimiphos-methyl 100SS 100SS 90.0RS c 100SS c 100SS 100SS

5% malathion 100SS 100SS 100SS 97.5SS 99.0SS 100SS

Control (untreated paper) 4.6 2.4 2.2 1.8 1.2 2.9

Male mosquitoes 0.75% permethrin 100SS 100SS 98.8SS 100SS 100SS 100SS

0.05% deltamethrinb 90.0RS 93.0RS 97.5RS 98.8SS 99.0SS 95.0RS

0.05% lambda-cyhalothrina,b 88.0RR c 99.0SS c 100SS 98.8SS 71.0RR 92.0RS

4% dieldrin 100SS 100SS 100SS 100SS 100SS 100SS

4% DDTa,b 97.0RS 95.0RS 77.0RR 98.8SS 99.0SS 100SS

0.1% propoxur 93.0RS 99.0SS 97.0RS 100SS 100SS 100SS

0.1% bendiocarba,b 58.0RR c 100SS c 100SS 98.0SS 100SS 100SS

0.25 % pirimiphos-methyl 100SS 98.0SS 97.0RS 100SS 100SS 100SS

5% malathion 100SS 100SS 100SS 100SS 100SS 100SS

Control (untreated paper) 1.1 11.2 4.8 2.5 2.6 3.9
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Discussion
Until this study, the insecticide susceptibility status 
of non-malaria vectors such as Culex spp. was widely 
unknown in Tanzania, despite the abundance of these 
mosquito species. The present study investigated the 
susceptibility of Cx. pipiens complex, to insecticides 
approved by the WHO for vector control. Stand-
ard WHO insecticide susceptibility bioassays were 

conducted separately for female and male Culex mos-
quitoes collected in different seasons and different 
wards.

Generally, Culex mosquitoes were found resistant to 
a wide range of pyrethroids, lambda-cyhalothrin and 
deltamethrin, DDT and the carbamate, bendiocarb. 
However, these species showed susceptibility to organo-
phosphates, such as pirimiphos-methyl and malathion, 

Table 4  Mean % mortality recorded 24 hours after exposure to lambda-cyhalothrin and deltamethrin, with and without synergist, TPP 
(triphenyl phosphate) or PBO (piperonyl butoxide). The mosquitoes tested were 3- to 5-day-old adult Culex mosquitoes reared from 
wild-collected larvae from Minepa and Mavimba wards in Ulanga District, Tanzania, in 2015 and 2016

Notes: Morphological identification of the Culex mosquito populations revealed 94% were Cx. pipiens complex. Of these, PCR assays revealed that 81% were Cx. 
quinquefasciatus, 2% were Cx. pipiens pipiens and 3% were hybrids of the two species. About 14% of the specimens were non-amplified. These test results can 
therefore be considered primarily representative of Cx. pipiens complex or more specifically for Cx. quinquefasciatus. Environmental control refers to a control where 
mosquitoes are exposed to non-treated papers, and is used to assess any contamination in the test environment or during the procedures
a,b  The letters a and b signify statistically significant differences between % mortalities obtained in tests with or without the synergists

Treatment No. of 
replicates

Sample size Mean % mortality (95% CI)

Mavimba (8.312°S, 36.677°E) Minepa (8.271°S, 36.677°E)

0.05% deltamethrin 0.05% lambda-
cyhalothrin

0.05% deltamethrin 0.05% lambda-cyhalothrin

Tests with triphenyl phosphate (TPP)

 Environmental control 4 80 0 1.3 (-2.7–5.2) 0 0

 Solvent control 4 80 0 0 0 0

 20% TPP only 4 80 0 1.3 (-2.7–5.2) 0 0

 20% TPP and test insec-
ticide

4 80 86.0 (77.8–94.2)a 83.8 (76.1–91.4)a 81.3 (63.6–98.9)a 73.8 (48.3–99.2)a

 Test insecticide only 4 80 75.0 (68.9–81.1)b 72.5 (62.2–82.8)b 51.3 (23.7–79.8)b 71.3 (47.5–95.2)a

Tests with piperonyl butoxide (PBO)

 Environmental control 4 80 0 0 0 0

 Solvent control 4 80 0 1.3 (-2.7–5.2) 0 0

 4% PBO only 4 80 0 1.3 (-2.7–5.2) 0 0

 4% PBO and test Insec-
ticide

4 80 60.0 (42.8–77.2)a 66.3 (54.3–78.2)a 93.8 (86.1–101.4)a 57.5 (32.8–82.2)a

 Test insecticide only 4 80 41.3 (33.6–48.9)b 28.8 (15.2–42.3)b 73.8 (53.9–93.6)b 35.0 (20.5–49.5)b

Table 5  Mean % mortality recorded 24 hours after exposure to 4% DDT, with and without the synergist, diethyl maleate (DEM). The 
mosquitoes tested were 3- to 5-day-old adult Culex mosquitoes reared from wild collected larvae from Minepa and Mavimba wards in 
Ulanga District, Tanzania, in 2015 and 2016

Notes: Morphological identification of the Culex mosquitoes revealed 94% were Cx.pipiens complex. Of these, PCR assays revealed that 81% were Cx. quinquefasciatus, 
2% were Cx. pipiens pipiens and 3% were hybrids of the two species. About 14% of the specimens were non-amplified. Environmental control refers to a control where 
mosquitoes are exposed to non-treated papers, and is used to assess any contamination in the test environment or during the procedures
a,b  The letters a and b signify statistically significant differences between % mortalities obtained in tests with or without the synergists

Treatment No. of replicates Sample size Mean % mortality (95% CI)

Mavimba (8.312° S, 36.677° E) Minepa (8.271° S, 36.677° E)

Environmental control 4 80 0 0

Solvent control 4 80 0 0

20% DEM only 4 80 0 0

20% DEM and 4% DDT 4 80 82.5 (67.3–97.7)a 90.0 (83.5–96.5)a

4% DDT only 4 80 48.8 (38.7–58.8)b 95.0 (88.5–101.5)a
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except for populations from the Mavimba ward, which 
were resistant to these insecticide classes.

While resistance was widespread across the study sites, 
lowest mortalities were observed against bendiocarb in 
Minepa (mortalities of 29% in female and 58% in male 
Culex mosquitoes) and against deltamethrin in Lupiro 
(8% mortality in female Culex). Previous studies have 
reported that resistance in male Cx. pipiens and An. gam-
biae could potentially affect mating competitiveness in 
nature [50–52]. Additionally, information on insecticide 
susceptibility of male mosquitoes could be useful when 
designing interventions primarily against males, e.g. 
sterile insect technique (SIT) [53, 54], spraying of male 
swarms with insecticides [34], and use of attractive toxic 
sugar baits [55, 56].

In this part of south-eastern Tanzania, LLINs impreg-
nated with permethrin remain the primary vector and 
diseases control interventions [35]. This study con-
firmed phenotypic resistance to this and also other pub-
lic health insecticides that are currently not used in the 
study area. Our results suggest alternative sources of 
insecticide resistance selective pressure, most likely from 
agricultural pesticides [57–60]. Indeed, direct observa-
tion in the communities revealed an array of chemical 
classes widely sold and used for crop protection (Matowo 
et  al., unpublished data). Therefore, for effective vector 
control, an integrated approach with agricultural pest 
control programmes in the allocation of insecticides is 

recommended. With reference to Culex spp., which also 
cause considerable biting nuisance in these communi-
ties where most people are small-holder farmers [37], 
the need for integrated pest and vector management and 
coordination among the public health and agriculture 
sectors is particularly important.

The significant differences in phenotypic resistance 
between the neighbouring wards, as revealed in this 
study, has also been reported for the malaria vector 
An. arabiensis [29], and clearly suggest that selection of 
insecticide resistance is happening at fine spatial scales 
and over time, e.g. between small administrative wards, 
other than variations previously reported between dis-
tricts and regions [28, 61, 62]. The spatial and seasonal 
differences in insecticide resistance in Cx. pipiens com-
plex species could be influenced by the presence/use of 
various insecticides at a particular geographical area and 
time, even though this study did not directly assess the 
link between the two. These variations signify an impor-
tant challenge for vector and disease control programmes 
when choosing insecticides for particular time periods 
and locations. For example, susceptibility was generally 
higher in the wet season than in the dry season. Thus, 
the possibility that insecticide-based interventions aimed 
at the wet season may have greater entomological and 
epidemiological impact on mosquito densities and dis-
ease transmission than those in the dry season, should 
be investigated. These fine-scale spatial and temporal 

Table 6  Relative abundance and indoor distribution of mosquitoes, across three study wards (including Minepa and Mavimba wards, 
from where Culex larvae were also obtained for the resistance tests). Data obtained from an annual mosquito surveillance programme 
conducted by the Ifakara Health Institute in Ulanga District, south-eastern Tanzania in 2012, 2013, and 2015

a  Sub-samples of An. gambiae complex mosquitoes collected in this area during this period have consistently been 100% An. arabiensis
b  A sub-sample of 1053 Culex mosquitoes were subjected to further morphological examination and identified as Cx. pipiens complex

Ward Mosquito species 2012
n (%)

2013
n (%)

2015
n (%)

Total

Minepa Ward Total mosquitoes collected 57,393 23,448 39,359 120,200

An. arabiensis, femalesa 15,305 (26.6) 9224 (39.3) 10,950 (27.8) 35,479

An. funestus group, females 7713 (13.4) 1582 (6.7) 3097 (7.9) 12,392

Cx. pipiens complex, males 6469 (11.2) 2062 (8.7) 4160 (10.5) 12,691

Cx. pipiens complex, femalesb 27,906 (48.6) 10,580 (45.1) 21,152 (53.7) 59,638

Mavimba ward Total mosquitoes collected 44,378 14,673 23,540 82,591

An. arabiensis, femalesa 4292 (9.6) 3158 (21.5) 2101 (8.9) 9551

An. funestus group, females 2460 (5.5) 894 (6.0) 793 (3.4) 4147

Cx. pipiens complex, males 8608 (19.3) 1418 (9.6) 3034 (12.8) 13,060

Cx. pipiens complex, femalesb 29,018 (65.4) 9203 (62.7) 17,612 (74.8) 55,833

Kivukoni ward Total mosquitoes collected 98,902 34,374 51,251 184,527

An. arabiensis, femalesa 9572 (9.6) 4416 (12.8) 7070 (13.7) 21,058

An. funestus group, females 3327 (3.3) 663 (1.9) 860 (1.6) 4850

Cx. pipiens complex, males 18,905 (19.1) 7546 (21.9) 11,155 (21.7) 37,606

Cx. pipiens complex, femalesb 67,098 (67.8) 21,749 (63.2) 32,166 (62.7) 121,013
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variations are increasingly being reported across multiple 
sites. In one study in a single area in Mexico, both resist-
ance phenotypes and genotypes were markedly varied 
at a fine spatial scale and time, in Aedes aegypti popula-
tions against chorpyrifos-ethyl and deltamethrin, driven 
by fine-scale pressure from the household insecticides 
use [63]. Similarly, Grossman et al. [64] recently reported 
spatial and seasonal heterogeneity in the frequency of kdr 
haplotypes in Ae. aegypti from Mexico, likely to be influ-
enced by differences in the usage of insecticides in space 
and time. In Uganda, there were monthly variations in 
kdr allele frequency in Plasmodium-infected An. gambiae 
(s.s.) and the resistance was significantly higher in the dry 
compared to the wet season which is likely to be caused 
by seasonal changes in insecticide pressure [65]. A recent 
report by Jones et al. [22] on insecticide resistance in Cx. 
quinquefasciatus from Zanzibar showed variability of 
resistance levels between nearby study sites, though the 
results were incomparable due to differences of Culex 
species at these sites. Niang et al. [66] also reported spa-
tial variations of the L1014F kdr allele found to dominate 
in An. arabiensis compared to An. coluzzii and An. gam-
biae sampled from 20 different study sites in the south-
eastern part of Senegal.

Mechanisms for resistance appear to be mixed. The 
partial suppression of pyrethroid resistance by syner-
gist PBO and TPP exposures suggests that both P450 
monooxygenases and esterases might be contributing 
to the pyrethroid resistance phenotypes observed in 
mosquito populations sampled from both Minepa and 
Mavimba wards. However, esterases seemed not to be 
involved in lambda-cyhalothrin resistance in mosquitoes 
from the Minepa ward, as only minimal change in mor-
tality was observed upon pre-exposure to the synergist. 
In addition, DDT resistance was significantly restored 
after being exposed to DEM, suggesting a role for GSTs 
in DDT resistance in the Mavimba ward. However, DDT 
was not affected by DEM in Minepa samples, suggest-
ing no role for metabolic resistance mechanisms here. 
Besides metabolic resistance, other resistance mecha-
nisms, such as kdr mutation, could play a role and further 
research is required to identify the mechanisms of resist-
ance. These observations are consistent with previous 
studies on incomplete suppressions of pyrethroids and 
DDT resistances due to pre-exposure to synergists [22, 
30, 31]. Nonetheless, the multiplicity of resistance mech-
anisms in these mosquito populations is a major concern 
and should be considered by control programmes.

In line with the WHO Global Vector Control Response 
strategy [18], it is important to integrate control of dif-
ferent arthropod vectors. In this area, where malaria is 
certainly the most important mosquito-borne disease, 
79% of biting risk indoors was associated with Cx. pipiens 

mosquitoes. Despite long-term use of the permethrin-
based Olyset® nets, which are regularly distributed via 
the national government’s mass distribution campaigns 
[35], Culex mosquitoes were fortunately found suscepti-
ble to permethrin, except in the Lupiro ward in the wet 
season (Table 3). Nonetheless, as resistance continues to 
spread, additional approaches, such as improved housing, 
larval source management, and indoor residual spraying 
(IRS) with non-pyrethroids and non-carbamates, may be 
considered as alternatives against both Culex and malaria 
vectors.

The most abundant Culex species in tropical and sub-
tropical countries, including East Africa, belong to the 
Cx. pipiens complex, which contains Cx. quinquefascia-
tus, Cx. pipiens pipiens, Cx. pipiens torrentium and Cx. 
pipiens molestus [3, 4]. From our findings, 94% of Culex 
belonged to the Cx. pipiens complex, of which 81% were 
verified by PCR as Cx. quinquefasciatus, 2% as Cx. pipi-
ens pipiens and 3% as hybrids of Cx. pipiens pipiens and 
Cx. quinquefasciatus. A small proportion (14%) of sam-
ples were non-amplified, suggesting other Culex species 
for which there were no primers to distinguish. The pres-
ence of hybrids of Cx. pipiens pipiens and Cx. quinque-
fasciatus suggests that these species cross-mate in the 
wild. Cx. quinquefasciatus was previously documented 
through morphological identification as the dominant 
Culex species in the Kilombero Valley, where it occurred 
alongside a few Cx. theileri and Cx. univittatus [1]. How-
ever, none of these species were confirmed by PCR [1].

An important limitation of this study is that we ana-
lysed only a relatively small number of Culex to identify 
other possible Culex sibling species using PCR tech-
niques due to the lack of appropriate primers. It should 
also be noted that synergists findings presented here 
stem from only female Culex specimens sampled in the 
dry season in Minepa and Mavimba wards as synergist 
papers are not easily accessible and not produced in bulk.

Conclusions
Culex  pipiens complex, which mostly consists of Cx. 
quinquefasciatus, are the most abundant Culex species 
in the study area, and contribute to more than 79% of all 
biting risk experienced in houses. The species are resist-
ant to carbamates and pyrethroids commonly used in 
public health inside houses and also to DDT. The organo-
phosphate, pirimiphos-methyl, which is also available 
for IRS however remains effective. This study has also 
demonstrated that insecticide resistance phenotypes 
and the underlying mechanisms varies considerably 
at fine geographical scales, suggesting some modifica-
tions to current insecticide resistance monitoring plans. 
Monooxygenases and esterases partly underlie the resist-
ance phenotypes against pyrethroids, while GSTs play an 
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important role in DDT resistance. Further investigations 
are required to identify more drivers and other mecha-
nisms of resistance in Culex species across the wards. 
Overall, the extent of resistance reported in the cur-
rent study indicates that additional approaches, such as 
improved housing, community-based larval source man-
agement, and IRS with non-pyrethroids and non-carba-
mates, should be considered as complementary vector 
control strategies. Lastly, resistances against insecticides 
not currently used for vector control in the villages, sug-
gests possible linkages to agricultural pesticides use. 
Hence, multi-sectorial approaches should be encouraged 
to improve management of insecticide resistance.
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