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Flood frequency analysis at ungauged catchments with the GAM and 27 

MARS approaches in the Montreal region, Canada 28 

Abstract 29 

 Regional frequency analysis (RFA) aims to estimate quantiles of extreme hydrological 30 

variables (e.g. floods or low-flows) at sites where little or no hydrological data is 31 

available. This information is of interest for the optimal planning and management of 32 

water resources. A number of regional estimation models are evaluated and compared in 33 

this study and then used for regional estimation of flood quantiles at ungauged 34 

catchments located in the Montreal region in southern Quebec, Canada. In this study, two 35 

neighborhood approaches using canonical correlation analysis (CCA) and the region of 36 

influence (ROI) method are applied to delineate homogenous regions. Three regression 37 

methods namely log-linear regression model (LLRM), generalized additive models 38 

(GAM), and multivariate adaptive regression splines (MARS), recently introduced in the 39 

RFA context, are considered for regional estimation. These models are also applied 40 

considering all stations (ALL). The considered models, especially MARS, have never 41 

been used previously in a concrete application. Results indicate that MARS and GAM 42 

have comparable predictive performances, especially when applied with the whole 43 

dataset. Results also show that MARS used in combination with the CCA approach 44 

provide improved performances compared to all considered regional approaches. This 45 

may reflect the flexibility of the combination of these two approaches, their robustness, 46 

and their ability to better reproduce the hydrological phenomena, especially in real-world 47 

conditions when limited data are available.  48 
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Résumé  49 

L'analyse fréquentielle régionale (AFR) vise à estimer les quantiles de variables 50 

hydrologiques extrêmes (par exemple, les crues ou les étiages) sur des sites avec peu ou 51 

aucune information hydrologique de disponible. Ces informations sont intéressantes pour 52 

la planification et la gestion optimales des ressources en eau. Un certain nombre de 53 

modèles d'estimation régionale ont été évalués et comparés dans cette étude, puis utilisés 54 

pour l'estimation régionale des quantiles de crue dans des bassins versants non jaugés 55 

situés dans la région de Montréal dans le sud du Québec, Canada. Dans cette étude, deux 56 

approches d’identification de voisinage utilisant l'analyse canonique de corrélation 57 

(CCA) et la méthode de la région d'influence (ROI) sont appliquées pour délimiter des 58 

régions homogènes. Trois méthodes de régression, à savoir le modèle de régression log-59 

linéaire (LLRM), les modèles additifs généralisés (GAM) et la régression multivariée par 60 

spline adaptative (MARS), récemment introduite dans le contexte de l’AFR, sont prises 61 

en compte pour l'estimation régionale. Ces modèles sont également appliqués en 62 

considérant toutes les stations (ALL). Les modèles considérés, en particulier MARS, 63 

n'ont jamais été utilisés auparavant dans une application concrète. Les résultats indiquent 64 

que MARS et GAM ont des performances prédictives comparables, en particulier 65 

lorsqu'ils sont appliqués à l'ensemble de la base de données. Les résultats montrent 66 

également que MARS utilisé en combinaison avec l'approche de CCA offre de meilleures 67 

performances par rapport à toutes les approches régionales considérées. Cela peut refléter 68 

la flexibilité de la combinaison de ces deux approches, leur robustesse et leur capacité à 69 

mieux reproduire les phénomènes hydrologiques, en particulier dans des conditions 70 

réelles lorsque des données limitées sont disponibles. 71 
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Keywords: Multivariate adaptive regression splines; Generalized additive models; 72 

Montreal region (Canada); Ungauged basin; Regional frequency analysis; Drainage 73 

network characteristics.  74 

1. Introduction  75 

Knowledge of the frequency and the magnitude of extreme hydrological events (e.g. 76 

floods and low-flows) are of interest for water resources management and hydrological 77 

design. Estimation of extreme flows is often required at sites where little or no 78 

hydrological data is available. To this end, regional frequency analysis (RFA) approaches 79 

are commonly used to estimate and assess extreme hydrological event characteristics.  80 

Generally, RFA includes two main steps: i) delineation of homogenous regions (DHR) to 81 

group gauged sites with hydrological behavior similar to the target one and ii) regional 82 

estimation (RE) to transfer the information from gauged sites to the target one within the 83 

same homogeneous region (e.g. Chebana and Ouarda 2008). Various methods have been 84 

suggested and documented for each of these two steps (e.g. Ouarda 2016). In practice, 85 

two DHR methods are often considered, namely : the region of influence (ROI) (Burn 86 

1990) and the canonical correlation analysis (CCA) (Ouarda et al. 2001). The 87 

geographical proximity of the catchments has also long been recognized and considered 88 

in RFA to group sites with similar characteristics (Han et al. 2020). It is especially 89 

convenient for practical purposes.  90 

For the RE step, two main approaches have commonly been used to regionalize flood 91 

characteristics. The first one includes regression-based approaches, where log-linear 92 

regression models (LLRM) are the most used because of their simplicity and good 93 
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predictive performances. The second approach includes the index-flood models 94 

(Dalrymple 1960), where it is assumed that in a given homogeneous region, all local data 95 

normalized by a central position indicator (e.g. mean or median) have the same 96 

distribution. 97 

Hydrological processes represent complex and nonlinear natural phenomena (Xu et al. 98 

2010). They depend on a large number of interactive physio-meteorological catchment 99 

attributes such as the climate of the region, the topographic variability of the catchments, 100 

their soil characteristics, and their geological formations. The log-linear method 101 

commonly used in the RE step assumes that the relation between the response variable 102 

and the explanatory variables is linear. This assumption is generally not satisfied in such 103 

complex non-linear processes. To deal with the natural complexity of the hydrological 104 

events and account for the presence of non-linearity between the explanatory and the 105 

response variables, a number of non-linear approaches have been suggested in the 106 

literature such as the artificial neural networks (ANNs) and the Generalized Additive 107 

Models (GAMs) (e.g. Khalil, Ouarda, and St-Hilaire 2011; Ouarda et al. 2018). The use 108 

of ANNs to regionalize extreme hydrological characteristics has become increasingly 109 

popular (Ouarda and Shu 2009). However, it presents a major drawback which is the 110 

tendency to overfit the data (e.g. Gal and Ghahramani 2016; Lawrence and Giles 2000). 111 

Furthermore, their calibration is somewhat a complex task that requires some subjective 112 

choices.  113 

The use of GAM has also become increasingly popular in a number of fields such as 114 

hydro-climatology and environmental modelling (e.g. Wen et al. 2011; Rahman et al. 115 

2018), public health (e.g. Leitte et al. 2009; Bayentin et al. 2010), renewable energy 116 
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assessment (e.g Ouarda et al. 2016) and hydrology (e.g. Rahman et al. 2018; López‐117 

Moreno and Nogués‐Bravo 2005). It has been recently introduced in the RFA context by 118 

Chebana et al. (2014), where the authors found that GAM performs better than the 119 

classical linear regression model. However, the method can be computationally intensive 120 

and difficult to fit to high-dimensional databases (large number of explanatory variables).  121 

The reliability of the regional flood characteristic estimates depends strongly on the 122 

amount of available gauged sites data used in the regional estimation. In practice, it is 123 

often the case that rivers are poorly monitored and/or they have a short time series. 124 

Msilini et al. (2020) suggested that it may be possible to perform a reliable regional 125 

estimation with MARS even using a few data in the RFA context. The application of 126 

MARS in a real case study has never been performed.   127 

The aim of the present paper is to develop and test a number of approaches listed above 128 

in a practical real-world case study, with limited number of stations, consisting in the 129 

estimation of flood quantiles at 11 ungauged sites of interest in the Montreal region 130 

(Canada). Such quantiles are essential for the municipality to established flood maps 131 

within the region. The catchments of the considered study region are often of small areas 132 

and they are characterized by their high urbanized and agricultural areas which allow for 133 

a very high runoff. Moreover, the hydrological response in the Montreal catchments is 134 

known to have a higher degree of variability and non-linearity. Hence, the adoption of 135 

non-linear RE models, especially, MARS in predicting flood discharge at ungauged 136 

catchments in such conditions may be relevant. 137 

In this study, the LLRM, GAM and MARS models are used in conjunction with/and 138 

without the delineation of homogeneous region methods (ROI and CCA). Calibrations of 139 
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the regional models are performed with catchments located within a radius of 250 140 

kilometres around the target area to ensure certain similarity between their catchment 141 

characteristics. The performances of the different approaches are compared and the best 142 

identified models are used to predict flood quantiles at the 11 target ungauged sites.    143 

This paper is organized as follows. Section 2 presents a brief theoretical background of 144 

the different RFA approaches adopted in this work. The considered methodology is 145 

discussed in section 3. The case study and the dataset are described in section 4. The 146 

obtained results are illustrated and discussed in section 5. Finally, the conclusions of the 147 

study are summarized in section 6. 148 

2. Theoretical background 149 

2.1 Delineation of homogeneous region approaches 150 

2.1.1 Canonical correlation analysis (CCA)  151 

CCA is a technique commonly used to identify the possible correlations between two 152 

groups of random variables. Let X=(X1,X2,…,Xr) and Y=(Y1,Y2,…,Ys) be sets of random 153 

variables of respectively r physio-meteorological variables and s hydrological variables 154 

of n gauged sites. CCA allows identifying the dominant linear modes of covariability 155 

between the vectors X and Y so that it is possible to do inference about Y knowing X.  Let 156 

Vi and Wi be linear combinations (called canonical variables) of the sets X and Y, i.e.: 157 

Vi= Ai1X1+ Ai2X2+…+ AirXr (1) 

 Wi = Bi1Y1+ B2Y2+…+ BisYs (2) 
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where  i = 1,…,d and d = min (r, s). CCA allows for the identification of vectors A and B 158 

in such a way that the correlation coefficients between the canonical variables, i.e. λ i= 159 

corr (Vi  ,Wj) where i = j, is maximized and corr (Vi  ,Wj) =0 where i ≠ j under constraints 160 

of unit variance. 161 

In the RFA, the hydrological neighborhood for a given target ungauged site at 100(1 −162 

𝛼)% confidence level is defined by the set of K sites such that the canonical hydrological 163 

score wk  , k =1, . . . , K, is close to the canonical physio-meteorological score of the 164 

target site v0. The closeness is measured using a Mahalanobis distance calculated 165 

between the hydrological mean position of the site of interest Ʌv0 and the positions of 166 

other sites  wk such that : 167 

(W ‐ Ʌ V0  )
T (Id ‐  Ʌ

2
)

‐1
(W ‐ Ʌ V0  ) ≤   ᵡα,d

2  (3) 

where ᵡα,d
2  is defined such that Prob (ᵡ

2
 ≤ ᵡα,d

2 ) = 1-α, Id is the d×d identity matrix and Ʌ = 168 

diag (λ1, …, λd). For more details the reader is referred to Ouarda et al. (2001). 169 

2.1.2 Region of influence (ROI)  170 

The ROI approach was introduced by Burn (1990). As the CCA technique, the ROI can 171 

be used in the RFA to identify the neighborhood of a given target site. In this method, the 172 

identification of the neighborhood is carried out based on the similitude between 173 

catchment characteristics. The similitude is measured based on the Euclidean distance 174 

calculated in the physio-meteorological space (e.g. Burn 1990; Tasker, Hodge, and Barks 175 

1996)  i.e.: 176 
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ROIi= {sites j ϵ (1,…,n);  Dij= [ ∑ Wk

r

k=1

(Xk,i‐Xk,j)
2]

1
2 ≤ ϴ} 

 

(4) 

where Dij is the weighted Euclidean distance between the target site i and the gauged one, 177 

j = 1,…, n, Xk,j (k = 1,…, r) is the standardized value of the kth physio-meteorological 178 

variable at site j, Wk is the weight associated with the kth physio-meteorological variable, 179 

and ϴ represents the threshold value. For more details, the reader is referred to (e.g. Burn 180 

1990; GREHYS 1996). 181 

2.2 Regional estimation approaches  182 

2.2.1 Log Linear Regression Model (LLRM) 183 

The log-linear regression model (LLRM) is one of the most common regional estimation 184 

models. It consists in establishing a linear relationship between the hydrological variable 185 

Y and the physio-meteorological characteristics of a given catchment (X1, X2, …, Xm) 186 

(e.g. Pandey and Nguyen, 1999) :  187 

log (E(Y/X))= β 0+ ∑ βj

m

j=1

log (Xj )+ ε 

 

(5) 

Where X is a matrix whose columns correspond to a set of m explanatory variables, β0 188 

and βj are unknown parameters to be estimated using the least-squares method, and ε is 189 

the model error.  190 

2.2.2 Generalized Additive Model (GAM) 191 

GAM (Hastie and Tibshirani 1987) is a non-linear model that is able to model a large 192 

variety of nonlinear relationships and it allows to consider non-Gaussian response 193 
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variables (Wood 2006). This model uses flexible non-linear smooth functions to model 194 

the response variable (i.e. the hydrological variable). A GAM can then be defined as 195 

(Wood 2006): 196 

g (E(Y/X))= α+ ∑ fj

m

j=1

(Xj)+ ε 

 

(6) 

where g is a monotonic link function, X is a matrix whose columns correspond to a set of 197 

m explanatory variables, and fj are smooth functions giving the relationship between the 198 

explanatory variables Xj and the response variable Y , 𝛼 is the intercept and 𝜀 is the error 199 

term. Because of the additive property of GAM, one can separately analyze the impact of 200 

each explanatory variable on the response variable. 201 

The smooth non-linear functions fj are expressed as: 202 

 fj(X)= ∑ βji

q

i=1

bji(X) 

 

(7) 

where βji are parameters to be estimated and bji are the spline basis functions. Further 203 

information on GAM can be found in Wood (2006) and Wood (2017). 204 

2.2.3  Multivariate adaptive regression splines (MARS) 205 

Friedman (1991) introduced MARS as a flexible non-parametric regression approach able 206 

to model complex and non-linear relationship often hidden in high-dimensional data. The 207 

MARS model f(X) can be defined as a linear combination of basis functions and their 208 

interactions as: 209 
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f(X)= β0+ ∑ βn

 r

n=1

Bn(X)  

 

(8) 

where β0 is the intercept, and  βn are regression coefficients of the basis functions 210 

(Bn(X)).  211 

Three forms can be taken by the Bn(X) terms in the MARS model: i) a constant term 212 

which represents the intercept, ii) a linear spline functions on a given variable Xj namely 213 

hinge function (hm(Xj)=(tm-Xj)+
or hm(Xj)=(Xj-tm)

+
where t is a knot) or iii) a product 214 

of two or more hm(Xj) which represents the interaction between the variables. The Bn(X) 215 

are defined in pairs of hm(Xj) and are separated by a knot between the range of a given 216 

variable.  217 

MARS algorithm builds a model in two main steps: the first step is the forward pass 218 

where the model starts with the intercept and iteratively adds the Bns. At each time, the 219 

most significant variable and knot yielding the largest decrease in the error of the model 220 

are chosen. This step results in a large model that usually overfits the data. The second 221 

step is the backward pass which allows improving the predictive performance of the built 222 

model by deleting the less significant Bns. This later step continues until obtaining the 223 

best sub-models having the lowest Generalized Cross Validation (GCV) score. For more 224 

details, the reader is referred to Msilini, Masselot, and Ouarda (2020). 225 
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3. Methodology 226 

3.1 Regional models 227 

In this work, two methods for neighborhood identification (CCA and ROI) are applied in 228 

combination with the LLRM, GAM and MARS for regional estimation. Three other 229 

approaches are also assessed by applying the LLRM, GAM and MARS using all stations 230 

(ALL).  Table 1 summarizes the used combinations. 231 

The CCA and the ROI techniques are applied in the DHR step to improve the degree of 232 

homogeneity, and hence the accuracy of the predictions of the RE models. For these 233 

methods, the relevant variables in terms of explaining the flooding process need to be 234 

identified. In this work, the appropriate variables selected for the LLRM with a stepwise 235 

procedure approach are adopted in each of the neighborhood methods such as in Ouarda 236 

et al. (2018). Then, the optimal number of sites in the neighborhood (optimum threshold 237 

distance) is identified based on a jackknife procedure. This distance is the one that 238 

minimizes a given performance criterion of the log-linear model applied in each 239 

neighborhood. 240 

GAM is fitted using the R package mgcv (Wood 2006). The thin plate regression spline is 241 

considered in this study as a basis in the smoothing function. The adopted link function is 242 

the identity function because of the approximately Gaussian log-transformed quantiles ( 243 

see Chebana et al. (2014), for instance).  244 

MARS is built using the R package earth (Milborrow 2018). To this end, three main 245 

parameters need to be tuned: the maximum number of terms to be reached in the model in 246 

the forward phase (Nk), the degree of interaction between the variables (degree) which 247 
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allows including interaction terms between multiple hinge functions when its value is 248 

greater than 1, and the maximum number of terms to be retained after the backward phase 249 

(Nprune). These parameters are optimized based on the GCV, the residual sum of squares 250 

(RSS) and the coefficient of determination (R2) criteria of the fitted models. Imposing 251 

termination conditions for the forward pass is necessary to save calculation time and to 252 

avoid the generation of terms with arbitrary knots. This allows optimizing the model 253 

more efficiently. In this study, the parameter Nk is optimized to avoid that the final model 254 

includes a large number of variables. This may allow obtaining more reliable estimates 255 

within the neighborhood.  256 

For each regional model, different sets of physio-meteorological variables are considered. 257 

A backward stepwise technique is used in this work to select the most significant 258 

explanatory variables for each RE models (LLRM, GAM and MARS). The presentation 259 

of this approach is given in the next section.    260 

3.2 Variable selection 261 

The backward stepwise selection procedure is used in this study to identify the optimal 262 

combination of explanatory variables as in Ouarda et al. (2018). This technique consists 263 

in removing iteratively the least significant variable from an initial full model containing 264 

all available variables. At each step, the deleted variable is the one associated with the 265 

highest p-value for the null hypothesis that the coefficients βj in Eq. (5) (for the LLRM) 266 

and  the smooth terms (for GAM) are null. In the case of MARS, the removed variables 267 

are those yielding to the most significant decrease in the GCV score. For the aim of 268 

simplicity, the predictor variables selected with the backward stepwise regression 269 
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approach applied to the quantile associated to the smallest return period are considered as 270 

predictor variables to estimate the other quantiles. Ouarda et al. (2018) suggested that the 271 

quantile with the smallest return period can be considered as the most reliable quantile. 272 

3.3 Validation 273 

The performances of each considered RFA combination are assessed using a jackknife 274 

procedure. This method consists in considering, in turn, each gauged site as the target site 275 

and performs RE. This process is repeated for each gauged site. Then, the regional 276 

estimate is compared to its corresponding observed value. Based on the jackknife 277 

procedure, a number of standard performance criteria can be used to evaluate the 278 

prediction power of each regional model: 279 

Nash- Sutcliffe Efficiency index: 

NASH =1‐ 
∑ (yi‐ŷi)

2N
i=1

∑ (yi‐y)2N
i=1

 

 

(9) 

Root-mean-square error : 

RMSE = √
1

N
∑ (yi‐ŷi)2

N

i=1

 

 

(10) 

Relative root-mean-square error : 

RRMSE= 100√
1

N
∑ [

(yi‐ŷi)

yi
] 2

N

i=1

 

 

(11) 

Mean bias : 

BIAS =
1

N
∑ (yi‐ŷi)

N

i=1

 

 

(12) 
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Relative mean bias : 

RBIAS =100 
1

N
∑

(yi‐ŷi)

yi

N

i=1

 

 

(13) 

where yi and ŷi are, respectively, the local and regional quantile estimates at site i,  𝑦 is 280 

the mean of the local quantile estimates, and N is the number of stations. 281 

Based on the computed performance criteria, the best models can be identified and then 282 

used to make predictions in the ungauged sites of the study case.  283 

4.  Case study and datasets 284 

Considering a number of physio-meteorological variables (Table 2), the considered 285 

regional approaches are applied to a group of hydrometric stations located in the southern 286 

part of Quebec (Canada) within a radius of 250 kilometres around the city of Montreal 287 

(Figure 1). The objective is to estimate the specific flood quantiles QST (with T = 10, 50 288 

and 100 years) for the spring season (January-June) at ungauged sites. The considered 289 

region is characterized by its low number of hydrometric stations. 290 

In this study, we focus on the spring season because maximum annual floods in the study 291 

area often occur on this season. Figure 2 illustrates the variation of the annual mean of 292 

the day’s indices associated to the maximum annual flow as a function of the sites. It can 293 

be seen that annual floods occur generally during the spring season and especially 294 

between the April and May months, hence the choice to focus on this season. 295 

The hydrological variables are calculated from daily flows acquired by the Quebec Water 296 

Expertise Center (CEHQ) available at 297 
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(https://www.cehq.gouv.qc.ca/hydrometrie/historique_donnees/default.asp ). Considering 298 

a number of selection criteria such as the minimum size of the sample series at the station 299 

(15 years), their monitoring levels  (proximity to a natural regime with a maximum of an 300 

influence on a daily basis) and their geographical proximity to the target stations, 63 301 

hydrometric stations are retained for the estimation of the local quantiles.  302 

A local frequency analysis (FA) is carried out in each gauged site. This involves the 303 

verification of the basic assumptions (independence and stationarity) and the 304 

identification of the adequate distributions. The distributions that are found to best fit the 305 

observed data are essentially the two-parameter distribution functions such as gamma, 306 

Weibull and the log normal. Finally, 57 stations are retained for the analysis of the QST 307 

for the spring season.  308 

The physio-meteorological variables used in this study come from widely validated and 309 

used dataset covering the South of the province of Quebec (e.g. Shu and Ouarda 2007; 310 

Durocher, Chebana, and Ouarda 2015; Wazneh, Chebana, and Ouarda 2016; Ouali, 311 

Chebana, and Ouarda 2016) and are given in Table 2. The characteristics of catchments 312 

corresponding to each gauged station are computed using the ArcHydro and HecGeoHms 313 

tools implemented in the ArcGIS environment. These tools comprise functionalities for 314 

catchment delineation and drainage network extraction from Digital Elevation Models 315 

(DEMs). The DEMs used here are obtained from the Natural Resources Canada database 316 

(https://www.nrcan.gc.ca/earth-sciences/geography/topographic-information/download-317 

directory-documentation/17215) distributed with a spatial resolution of ~ 20 m grid cells. 318 

The DEMs of the United States Geological Survey (USGS) 319 

https://www.cehq.gouv.qc.ca/hydrometrie/historique_donnees/default.asp
https://www.nrcan.gc.ca/earth-sciences/geography/topographic-information/download-directory-documentation/17215
https://www.nrcan.gc.ca/earth-sciences/geography/topographic-information/download-directory-documentation/17215
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(https://earthexplorer.usgs.gov/ ) are used for the cross-border catchments. These data 320 

have a spatial resolution of ~ 30 m grid cells.  321 

The catchment limit features are used to calculate the spatial average of the physio-322 

meteorological variables. The variables characterizing the drainage network systems are 323 

extracted using the D8 method (O'Callaghan and Mark 1984; Jenson and Domingue 324 

1988). The variables related to the land cover, are calculated based on the digital maps of 325 

Quebec also available in the Natural Resources Canada database. The meteorological 326 

variables are computed using spatial interpolation of the meteorological data of the 327 

Ministry of the Environment and the Fight against Climate Change (MELCC). The 328 

meteorological stations which retained in this study had at least 15 years of data. The 329 

universal kriging method (Isaaks and Srivastava 1989) is used in this work for the spatial 330 

interpolation of the meteorological data. This technique gave the most accurate 331 

predictions based on a cross validation method. Descriptive characteristics of the 332 

considered hydrological and physio-meteorological variables are summarized in Table 3. 333 

It should be noted that, in this work a specific RT (RT standardized by basin area) is used 334 

to eliminate the scale effect as RT is a variable that is highly correlated with the basin 335 

area.  336 

5. Results and discussion 337 

5.1 Delineation with CCA and ROI 338 

The CCA and the ROI approaches are applied in this study in the DHR using a set of 339 

explanatory variables selected by a stepwise procedure. Given the complexity of GAM 340 

and the small number of stations, 6 variables are used to model the spring flood quantiles 341 

https://earthexplorer.usgs.gov/
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and 3 knots are considered in this model in the smooth functions. Based on these 342 

parameters, the optimal threshold distance for the CCA and the ROI neighborhoods is 343 

fixed at 5×10-6 and 6, respectively.  344 

CCA requires the normality of the hydrological and physio-meteorological variables. To 345 

achieve normality, some variables need to be transformed. The normality of each variable 346 

is visually evaluated with a normal probability plot. This technique plots empirical 347 

quantiles versus theoretical Gaussian quantiles and the plot should be approximately 348 

linear in the case of actual normality. Visual inspection of transformed variables indicates 349 

that the logarithmic transformation is applied to the flood quantiles, RT and MBS and a 350 

square root transformation is used for PLAKE.  351 

5.2 Selection of optimal explanatory variables 352 

To avoid overfitting and optimise the predictive power of the methods, we perform 353 

variable selection through backward stepwise techniques. The optimal variables selected 354 

for the LLRM are RT, PLAKE, LONGC, ρWMRB, MBS, LATC and FS. For GAM, the 355 

most relevant explanatory variables were found to be somewhat different than those 356 

obtained for the LLRM because in this case selected predictors present non-linear links 357 

with the response variables. These variables are namely, MCL, MBS, PFOR, PLAKE, 358 

MASP and ρWMRB. Finally, the significant explanatory variables selected for MARS are 359 

AREA, PLAKE, MALPS, RT, PFOR, MASP, ρWMRB and WMRB. The definition of 360 

these variables is given in Table 2. 361 

The selected variables mainly include: i) variables dealing with drainage network 362 

characteristics such as RT, ρWMRB and WMRB. These variables have a high relationship 363 
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with the underlying lithology, the infiltration ability and the topographic characteristics of 364 

the terrain which allow integrating more information about the underlying 365 

hydrogeological flows (Msilini, Ouarda, and Masselot 2021); ii) Precipitations (MALPS 366 

and MASP) and variables related to the local climate conditions such as LONGC and 367 

LATC; and iii) variables characterising the land cover such as PLAKE acting like a 368 

sponge absorbing the excess of water during the extreme events and PFOR variable 369 

controlling the soil erosion phenomenon and the infiltration ability of the basins.  370 

5.3 Comparison of regional models 371 

Table 4 shows the jackknife validation results for each regional model. Accordingly, the 372 

lowest RRMSE values are associated with the CCA/MARS approach, followed by 373 

MARS and GAM applied with all datasets. With ALL, MARS has a comparable or even 374 

superior performance than GAM. One can also see that, applying the LLRM model 375 

within the neighborhoods gives considerably improved results. However, it did not 376 

improve significantly the predictive ability of non-linear RE models, especially GAM. 377 

This may be attributed to the fact that the amount of data used in this study is not 378 

sufficiently large. On the other hand, the use of the neighborhood approaches often leads 379 

to significant improvement in the RE in comparison with ALL. In this study, when non-380 

linear RE models are used, especially GAM, the difference between ALL and 381 

neighborhood approaches is negligible. This result indicates that the use of non-linear RE 382 

models may make the analyses more satisfactory and robust by compensating the benefits 383 

of using the neighborhoods approaches which is not the case for the LLRM.  Therefore, 384 

non-linear RE models, especially GAM, seem especially useful for smaller datasets. The 385 

use of these models may reduce the importance of using the neighborhood approaches.    386 
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In this work, the considered limited amount of data may also be the cause of the high 387 

variance observed for the different models. It can also be seen that the NASH obtained 388 

with the different approaches is not sufficiently high, especially for QS50 and QS100. This 389 

result may also be explained by the small size of the used data as the NASH is a criterion 390 

that is highly sensitive to the sample size (McCuen, Knight, and Cutter 2006).  391 

Figure 3 shows the variability of the relative error as a function of the sites associated to 392 

the best models ALL/GAM, ALL/MARS and CCA/MARS for QS50 (QS10 and QS100 are 393 

not presented here because of the similarity of the results). Overall, CCA/MARS 394 

performs slightly better than the other approaches, especially for two specific sites that 395 

have exceptionally large relative errors. The first site (050701) was also previously 396 

identified by Ouali, Chebana, and Ouarda (2017) as a problematic station with atypically 397 

large relative errors; the second site (030919) is a cross-border catchment. In this study, 398 

the physiographical variables of the cross-border catchments are extracted based on data 399 

come from the USGS database, which have a different resolution than the DEMs 400 

obtained from the Natural Resources Canada database.  This difference in measurement 401 

might therefore explain this observation different behaviour. 402 

The best models identified in this study are used to do predictions in the 11 ungauged 403 

sites of the study case (see Figure 1). The estimations of the quantiles obtained by 404 

CCA/MARS are found to be higher compared to those obtained by ALL/GAM and 405 

ALL/MARS. This may be explained by the fact that the CCA/MARS approach presented 406 

a positive RBIAS, and then it overestimates the target quantiles. 407 
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6. Conclusions 408 

In this study, the performances of a number of commonly used regional approaches are 409 

compared for the estimation of spring flood quantiles at 11 ungauged sites of interest 410 

located in the Montreal region (Canada). The objective is to test the robustness of the 411 

various methods by testing them on a real world case study with less than ideal 412 

conditions: limited number of stations and moderate data quality. Different RE models 413 

(LLRM, GAM and MARS) are considered with and without delineation methods (CCA 414 

and ROI). These models are calibrated and validated on a group of catchments from the 415 

study area. The best models are selected and used to estimate the flood quantiles at the 416 

target ungauged sites.  417 

Results indicate that it is possible and important to use the proposed non-linear regional 418 

models in practice (GAM and MARS) because performances are improved when these 419 

models are used instead of LLRM. The CCA/MARS combination was found to be the 420 

best combination of DHR and RE with respect of the RMSE and RRMSE for this case 421 

study. The neighborhood approaches considered in conjunction with GAM do not lead to 422 

improved performances. This may be explained by the fact that the calibration of GAM 423 

requires a large dataset which is not the case for the present study area. The different 424 

models are also found to have a high variance compared to the bias, which may also be 425 

attributed to the size and quality of the used dataset.  426 

In future efforts, it may be of interest to enlarge the database by considering other stations 427 

with short time series. Procedures for the combination of local and regional information 428 

can then be used and their performance assessed (see for instance, Seidou et al. (2006)). 429 
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These procedures have been proposed in the literature but are almost never used in 430 

practice. Their application to a real-world case study may help demonstrate their potential 431 

and increase their use in practical hydrological estimation studies. One important aspect 432 

that can also be considered in future work is the integration of climate change influence 433 

in the modeling of the hydrological response. Indeed, it would be of interest to test the 434 

proposed statistical model using flood quantiles estimated under a changing climate. In 435 

future efforts it may also be useful to assess and compare the predictions that were 436 

obtained with the considered models with those obtained with deterministic models such 437 

as HYDROTEL or CEQUEAU. In this work, we assessed and applied the different RE 438 

models (LLRM, GAM and MARS) in combination with linear neighborhood models 439 

(CCA and ROI). In further work, it should be of interest to evaluate and apply these 440 

models in conjunction with non-linear neighborhood approaches such as the non-linear 441 

canonical correlation analysis model (Ouali, Chebana, and Ouarda 2016) and the 442 

nonlinear neighborhood approach based on statistical depth functions (Wazneh, Chebana, 443 

and Ouarda 2016). 444 
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 Table 1 Considered regional models. 609 

                     Step 

Regional model 

 

DHR 

 

RE 

ALL/LLRM ALL (all stations) LLRM 

ALL/GAM ALL (all stations) GAM 

ALL/MARS ALL (all stations) MARS 

CCA/LLRM CCA LLRM 

CCA/GAM CCA GAM 

CCA/MARS CCA MARS 

ROI/LLRM ROI LLRM 

ROI/GAM ROI GAM 

ROI/MARS ROI MARS 

 610 

Table 2 List of variables used in the present study. 611 

Notation Variable 

QST   Spring specific flood quantiles associated to the return period T 

AREA  Basin area 

MCL  Main channel length 

MCS Main channel slope 

MBS Mean basin slope 

PFOR  Percentage of the area occupied by forest 

PLAKE Percentage of the area occupied by lakes 

MATP Mean annual total precipitation 

MALP Mean annual liquid precipitation 

MASP Mean annual solid precipitation 

MALPS Mean annual liquid precipitation (summer–fall) 

DDBZ Mean annual degree days below 0 °C 

LATC Latitude of the centroid of the basin 

LONGC Longitude of the centroid of the basin 

RT Texture ratio 

RC Circularity ratio 

MRL Mean stream length ratio 

MRB Mean bifurcation ratio   

WMRB Weighted mean bifurcation ratio 

ρWMRB RHO WMRB coefficient 

DD Drainage density 

FS Stream frequency 

IF Infiltration number 

RN Ruggedness number 

PN1 Percentage of first-order streams 

PL1 Percentage of first-order stream lengths 

 612 
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Table 3 Descriptive statistics of the hydrological and physio-meteorological variables. 613 

Variable Min Mean Max Std. dev 

AREA   (km²) 26.30 1045.85 5440 1196.13 

MCL     (km) 12.51 68.98 225.80 46.13 

MCS     (m/km) 0.77 4.23 21.06 3.94 

MBS     (degree) 0.26 3.00 9.72 2.05 

PFOR    (%) 5.15 67.45 96 24.99 

PLAKE (%) 0.00 3.93 21.28 3.86 

MATP   (mm)  923 1066.47 1239 78.33 

MALP   (mm)   669 828.68 1097 73.23 

MASP   (cm)  166 252.61 343 41.46 

MALPS (mm)  426 504.64 664 45.30 

DDBZ   (degree-day)  859 1167.19 1578 184.25 

LATC    (°N) 44.88 45.97 47.43 0.66 

LONGC (°W) 70.65 72.88 75.12 1.14 

RT         (km-1) 2.42 16.40 45.25 9.84 

RC  0.08 0.21 0.39 0.07 

MRL 0.48 0.84 1.14 0.20 

MRB 1.69 2.12 5.78 0.74 

WMRB 1.85 2.06 2.86 0.18 

ρWMRB 0.18 0.41 0.55 0.10 

DD         (km-1) 2.10 2.84 3.48 0.29 

FS          (km-2)  7.04 9.10 11.42 1.21 

IF           (km-3) 16.04 26.20 39.73 6.06 

RN 0.05 1.56 3.70 0.85 

PN1        (%) 50.16 50.39 51.20 0.22 

PL1         (%) 38.78 51.59 60.43 4.47 

QS10          (m3/s km-2) 0.080 0.272 0.482 0.093 

QS50             (m3/s km-2) 0.108 0.346 0.679 0.135 

QS100            (m3/s km-2) 0.119 0.377 0.772 0.156 

 614 

 615 

 616 

 617 

 618 

 619 

 620 

 621 
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Table 4  Jackknife validation results (Best results are in bold character). 622 

Quantile 

LLRM GAM MARS 

ALL CCA ROI  ALL CCA ROI ALL CCA ROI  

NASH 

QS10 0.426 0.604 0.522 0.705 0.681 0.706 0.731 0.743 0.652 

QS50 0.409 0.593 0.464 0.589 0.534 0.579 0.551 0.586 0.559 

QS100 0.383 0.575 0.419 0.521 0.468 0.510 0.426 0.558 0.486 

RMSE  

[(m3/s)km-2] 

QS10 0.070 0.058 0.064 0.050 0.052 0.050 0.048 0.046 0.054 

QS50 0.103 0.085 0.099 0.085 0.091 0.086 0.089 0.085 0.088 

QS100 0.122 0.101 0.119 0.107 0.113 0.108 0.117 0.102 0.111 

RRMSE (%) 

QS10 29.020 25.610 26.712 21.796 21.290 21.353 19.023 17.189 22.607 

QS50 29.933 27.785 29.078 28.476 28.637 28.196 26.857 21.385 26.532 

QS100 31.456 29.508 30.933 31.863 32.017 31.602 32.514 23.723 29.529 

BIAS  

[(m3/s)km-2]  

QS10 0.003 0.009 0.005 0.004 0.007 0.001 0.007 0.013 -0.004 

QS50 0.004 0.013 0.005 0.008 0.012 0.005 0.013 0.015 0.001 

QS100 0.005 0.015 0.005 0.011 0.016 0.007 0.005 0.021 0.006 

  RBIAS (%) 

QS10 -3.819 -1.792 -2.535 -1.488 -0.815 -2.843 1.199 2.577 -4.377 

QS50 -4.049 -2.218 -3.677 -2.331 -1.967 -4.005 -0.496 1.546 -4.628 

QS100 -4.390 -2.584 -4.350 -2.946 -2.552 -4.834 -4.498 1.541 -3.865 

 623 

 624 

 625 

 626 

 627 

 628 

 629 

 630 

 631 

 632 

 633 
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 635 
 636 

Figure 1 Location of the hydrometric stations across the study area (black circles), the 637 

red stars present the ungauged sites. The blue diamond refers to the location of the study 638 

area (Montreal region). 639 
 640 
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 641 

Figure 2 Annual mean of the day’s indices (MDI) associated to the maximum annual 642 

flow as a function of sites. The dotted blue lines represent the limit of the April-May 643 

months. The red circles are the MDI values (annual floods) which are mostly observed in 644 

the April-May months. 645 
 646 

 647 

 648 

Figure 3 Relative errors associated to the at site quantile QS50 calculated using 649 

ALL/GAM; ALL/MARS and CCA/MARS. Diamond refers to sites with (or not) a small 650 

neighborhood. Sites are ordered according to their areas. 651 
 652 

 653 
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