
applied  
sciences

Article

Skin Characterizations by Using Contact Capacitive Imaging
and High-Resolution Ultrasound Imaging with Machine
Learning Algorithms

Elena Chirikhina 1,2, Andrey Chirikhin 3, Sabina Dewsbury-Ennis 1, Francesco Bianconi 4 and Perry Xiao 2,5,*

����������
�������

Citation: Chirikhina, E.; Chirikhin,

A.; Dewsbury-Ennis, S.; Bianconi, F.;

Xiao, P. Skin Characterizations by

Using Contact Capacitive Imaging

and High-Resolution Ultrasound

Imaging with Machine Learning

Algorithms. Appl. Sci. 2021, 11, 8714.

https://doi.org/10.3390/

app11188714

Academic Editor: Cecilia Di Ruberto

Received: 13 August 2021

Accepted: 6 September 2021

Published: 18 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Sinlen Beauty Clinic, 3 Elm Parade, Main Road, Sidcup, London DA14 6NF, UK; elena@sinlen.co.uk (E.C.);
sinlenbeauty@gmail.com (S.D.-E.)

2 School of Engineering, London South Bank University, 103 Borough Road, London SE1 0AA, UK
3 Quantitative Recipes, Crown House, 27 Old Gloucester Street, London WC1N 3AX, UK;

andrey@chirikhin.com
4 Department of Engineering, Università degli Studi di Perugia, Via Goffredo Duranti, 93-06125 Perugia, Italy;

bianco@ieee.org
5 Biox Systems Ltd., Technopark Building, 90 London Road, London SE1 6LN, UK
* Correspondence: perry.xiao@lsbu.ac.uk; Tel.: +44-(0)-207-815-7569

Featured Application: Authors are encouraged to provide a concise description of the specific
application or a potential application of the work. This section is not mandatory.

Abstract: We present our latest research on skin characterizations by using Contact Capacitive
Imaging and High-Resolution Ultrasound Imaging with Machine Learning algorithms. Contact
Capacitive Imaging is a novel imaging technology based on the dielectric constant measurement
principle, with which we have studied the skin water content of different skin sites and performed
image classification by using pre-trained Deep Learning Neural Networks through Transfer Learning.
The results show lips and nose have the lowest water content, whilst cheek, eye corner and under-eye
have the highest water content. The classification yields up to 83.8% accuracy. High-Resolution
Ultrasound Imaging is a state-of-the-art ultrasound technology, and can produce high-resolution
images of the skin and superficial soft tissue to a vertical resolution of about 40 microns, with which
we have studied the thickness of different skin layers, such as stratum corneum, epidermis and dermis,
around different locations on the face and around different body parts. The results show the chin has
the highest stratum corneum thickness, and the arm has the lowest stratum corneum thickness. We
have also developed two feature-based image classification methods which yield promising results.
The outcomes of this study could provide valuable guidelines for cosmetic/medical research, and
methods developed in this study can also be extended for studying damaged skin or skin diseases.
The combination of Contact Capacitive Imaging and High-Resolution Ultrasound Imaging could be
a powerful tool for skin studies.

Keywords: skin image analysis; capacitive imaging; high-resolution ultrasound; machine learning;
skin water content; skin texture; skin thickness

1. Introduction

Skin analysis, particularly of facial skin, is very important in many cosmetic and
medical applications. In this paper, we present our latest research on skin characterizations
by two novel skin imaging technologies—i.e., Contact Capacitive Imaging and High-
Resolution Ultrasound Imaging. The aim is to measure the skin water content and skin
layer thickness of different skin sites, mainly for facial skin, and to perform skin image
analysis by using Machine Learning Algorithms.

Contact Capacitive Imaging is a novel imaging technique based on the dielectric con-
stant measurement principle. It was originally developed for biometric applications, and
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has found applications for skin water content as well as skin texture measurements [1–5].
Our previous studies show that with Contact Capacitive Imaging we can analyze skin
water content, skin solvent penetrations, skin texture and skin micro-relief analysis [6–9].

Ultrasound imaging [10–12] is a well-established technique that has been applied in
medicine since the 1950s. Over the years, it has significantly improved with advancements
in technology, such as miniaturization, faster data processing and improved image quality.
Little changes in the imaging system make it applicable to aesthetic beauty, wound care
and dermatology. The EPISCAN I-200 High-Resolution Ultrasound (HRUS) [13] imaging
system is a state-of-the-art ultrasound system, with frequencies ranging from 20 MHz to
50 MHz. These high frequencies help to generate high-resolution skin images which make
it possible to differentiate different skin layers such as stratum corneum, epidermis, dermis
and subcutaneous [14,15].

Comprehensive detailing with a friendly interface is EPISCAN’s main feature. Addi-
tionally, it also allows the tiling of multiple images on the scanner screen along with an
illustration of the progression of conditions, thus making comparison quick and flexible.
Any suspected damage to skin tissues can be diagnosed using EPISCAN. high frequency
ultrasonic waves facilitate estimation of changes and damages to the skin. Clinical skin
assessment has become easier and quicker with such advanced tools.

Contact Capacitive Imaging and High-Resolution Ultrasound Imaging provide com-
plementary information to other skin diagnostic devices, such as skin water content, skin
trans-dermal water loss, skin elasticity, skin sebum measurement devices and so on. The
advantage of the two technologies is that they are imaging based, which provides more in-
formation, whilst the disadvantages are that they are expensive and need complex analysis
methods to extract information from the images. Therefore, to develop new Machine Learn-
ing algorithms to analyze skin capacitive images and high-resolution ultrasound images is
very important, and is the main novelty and the main contribution of this research.

2. Materials and Methods
2.1. Apparatus

Figure 1 shows photos and schematic diagrams of the Epsilon permittivity imaging
system (Biox Systems Ltd., London, UK) and the EPISCAN I-200 High-Resolution Ul-
trasound (HRUS) imaging system (Longport Inc., Chadds Ford, PA, USA). The Epsilon
is based on a Fujitsu fingerprint sensor [16], which has a resolution of 256 × 300 pixels
with 50 µm spatial resolution and 8-bit grey-scale capacitance resolution per pixel. The
measurements can be conducted by pressing the probe against the skin surface. Each
measurement typically takes 2 to 3 s, with controlled contact time and pressure. The EPIS-
CAN is a High-Resolution Ultrasound (HRUS) imaging system that utilizes ultrasound at
frequencies as high as 50 MHz to image the skin and underlying soft tissue. The system
has been designed to provide users with images of very high resolution and clarity and
offers a user-friendly interface, enabling the EPISCAN to be utilized in a broad range
of clinical applications, as well as in research and development. The EPISCAN enables
the examination of tissue at a microscopic level without the need to perform damaging
biopsies. The measurements can be conducted by filling the probe with water, then sealing
the probe with a designated thin rubber film. A small quantity of ultrasound gel is also
needed on the skin site. A measurement typically takes a few seconds.

2.2. Machine Learning Algorithms

Skin image classification is a very important aspect of skin image analysis. For the
skin Contact Capacitive image classification, we used different Deep Learning Neural
Networks, such as AlexNet [17], GoogLeNet [18], VGG [19], ResNet [20], Inception [21],
MobileNet [22], DenseNet [23], SqueezeNet [24], InceptionResNet [25] and Xception [26].
They are pre-trained Convolutional Neural Networks (CNNs) that have been trained on
over 1 million images from the ImageNet Dataset [27]. They can classify images into
1000 object categories (e.g., keyboard, mouse, coffee mug, pencil). Through Transfer
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Learning [28], we can take the advantages of pre-trained models and re-train these models
over the skin Contact Capacitive images, and achieve classification over different skin sites.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 3 of 15 
 

 
Figure 1. Epsilon permittivity imaging system (A), its measurement principle (B) and EPISCAN I-
200 imaging system (C) [13]. 

2.2. Machine Learning Algorithms 
Skin image classification is a very important aspect of skin image analysis. For the 

skin Contact Capacitive image classification, we used different Deep Learning Neural 
Networks, such as AlexNet [17], GoogLeNet [18], VGG [19], ResNet [20], Inception [21], 
MobileNet [22], DenseNet [23], SqueezeNet [24], InceptionResNet [25] and Xception [26]. 
They are pre-trained Convolutional Neural Networks (CNNs) that have been trained on 
over 1 million images from the ImageNet Dataset [27]. They can classify images into 1000 
object categories (e.g., keyboard, mouse, coffee mug, pencil). Through Transfer Learning 
[28], we can take the advantages of pre-trained models and re-train these models over the 
skin Contact Capacitive images, and achieve classification over different skin sites. 

For the skin High-Resolution Ultrasound Imaging classifications, we have developed 
two new feature-based classification methods. One is based on the luminosity values (0 to 
255) from the red, green or blue channels of the images. In this approach, Logistic Regres-
sion, K-Nearest Neighbor (KNN), Neural Networks (NNs) and Random Forest were used 
as classifiers. Logistic Regression is a parametric model where KNN is a non-parametric 
model, and KNN is comparatively slower than Logistic Regression. KNN supports non-
linear solutions where Logistic Regression supports only linear solutions. NNs need a 
large volume of training data compared to KNN to achieve sufficient accuracy. NNs need 
lot of hyperparameter tuning compared to KNN. 

Another new classification method is based on skin ultrasound image texture. In this 
approach, ten types of textural features were extracted from each skin ultrasound image. 
Of the ten textural features, five were traditional textural features and five were from the 
output of one intermediate layer of pre-trained convolutional networks, such as Dense-
Net, MobileNet, ResNet, VGG and Xception. We then applied principal component anal-
ysis (PCA) on each feature class and retained the first two principal components to gen-
erate scatter plots for exploratory data analysis. 

Figure 1. Epsilon permittivity imaging system (A), its measurement principle (B) and EPISCAN
I-200 imaging system (C) [13].

For the skin High-Resolution Ultrasound Imaging classifications, we have developed
two new feature-based classification methods. One is based on the luminosity values
(0 to 255) from the red, green or blue channels of the images. In this approach, Logistic
Regression, K-Nearest Neighbor (KNN), Neural Networks (NNs) and Random Forest
were used as classifiers. Logistic Regression is a parametric model where KNN is a non-
parametric model, and KNN is comparatively slower than Logistic Regression. KNN
supports non-linear solutions where Logistic Regression supports only linear solutions.
NNs need a large volume of training data compared to KNN to achieve sufficient accuracy.
NNs need lot of hyperparameter tuning compared to KNN.

Another new classification method is based on skin ultrasound image texture. In this
approach, ten types of textural features were extracted from each skin ultrasound image.
Of the ten textural features, five were traditional textural features and five were from the
output of one intermediate layer of pre-trained convolutional networks, such as DenseNet,
MobileNet, ResNet, VGG and Xception. We then applied principal component analysis
(PCA) on each feature class and retained the first two principal components to generate
scatter plots for exploratory data analysis.

Although the classification algorithms developed in this study are mainly for differen-
tiating skin sites, they can also be used for other classification tasks, such as differentiating
dry skin from normal skin, damaged skin from intact skin, young skin from aged skin,
healthy skin from diseased skin, and even different types of skin diseases.

2.3. Measurement Methods

All the measurements were performed under normal ambient laboratory conditions
of 20–21 ◦C and 40–50% relative humidity.
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The measurements were performed on the different skin sites, such as the volar
forearm, cheek, chin, eye corner, forehead, lips, neck and nose, of healthy volunteers (aged
20–70, both male and female, Caucasian and Asian). The test skin sites used were initially
wiped clean with ETOH/H2O (95/5) solution. The volunteers were acclimatized in the
laboratory for 20 min prior to the experiments.

3. Results
3.1. Skin Contact Capacitive Images

Skin Contact Capacitive Imaging produces 2D skin surface images. Figure 2 shows the
typical contact capacitive images of different skin sites, such as the volar forearm, cheek,
chin, eye corner, forehead, lips, neck and nose. The signal intensity (image brightness) is
proportional to the water content. As illustrated, the skin contact capacitive images can
show not only the water content of different skin sites, but also the skin texture. The volar
forearm has the most uniform skin texture, while the nose, cheek and eye corner are less
uniform. The textural differences of the different skin sites are also clearly seen.
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Figure 2. Samples of capacitive images (256 × 300 pixels) from different skin sites.

3.1.1. Skin Water Content

Table 1 shows the mean and the standard deviation of measured skin Epsilon values
of different volunteers at the different skin sites. Epsilon values are in arbitrary units, but
proportional to the skin water content. The results show that the lips and nose have the
lowest water content, whilst the cheek, eye corner and under-eye have the highest water
content. The lips and nose also have the lowest standard deviation, whilst the neck, eye
corner and under-eye have the highest standard deviation.

Table 1. The measured skin Epsilon values of different volunteers at the different skin sites. Epsilon
values are in AU (arbitrary units, proportional to water content).

Skin Sites Count 1 Mean Standard Deviation

Lips 86 21.42 5.75
Nose 116 23.13 4.65

Forehead 232 24.05 6.40
Chin 157 25.28 6.99
Neck 108 26.15 8.19
Cheek 239 26.46 7.36

Eye Corner 92 27.32 7.89
Under-eye 144 28.00 7.93

1 Count is the number of measurements taken for each skin site.
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3.1.2. Skin Image Classification

Table 2 shows the skin Contact Capacitive image classification results by using differ-
ent Deep Learning Neural Networks, such as AlexNet, GoogLeNet, VGG16, ResNet-50,
InceptionV3, MobileNetV2, DenseNet 201, SqueezeNet, InceptionResNetV2 and Xception,
through Transfer Learning. The results show that DenseNet 201 gives the best accuracy
(83.8%), but it also takes a long time to train (110 min). GoogLeNet gives the best perfor-
mance if you consider both the accuracy (73.5%) and training time (21 min), VGG16 gives
the worse performance with both accuracy (59.1%) and training time (114 min). SqueezeNet
is the quickest to train (8 min) but the accuracy is very low (61.1%). The training was
carried out by using MATLAB software on a standard desktop computer with Intel® Core™
i7-3770 CPU @3.4 GHz, 8 cores, 16 GB RAM and Windows 8.1 operating system.

Table 2. The image classification results of different Deep Learning Neural Networks.

Deep Learning Networks Accuracy Training Time

AlexNet 64.3% 15 min
GoogLeNet 73.5% 21 min

VGG16 59.7% 114 min
ResNet-50 73.9% 64 min

InceptionV3 71.0% 78 min
MobileNetV2 72.8% 46 min
DenseNet 201 83.8% 110 min
SqueezeNet 61.1% 8 min

InceptionResNetV2 64.7% 168 min
Xception 71.0% 164 min

3.2. High-Resolution Skin Ultrasound Images

Differently from skin Contact Capacitive Imaging, which produces surface images of
the skin, the EPISCAN I-200 High-Resolution Ultrasound (HRUS) Imaging system returns
a cross-sectional view along a plane approximately orthogonal to the skin surface. Figure 3
shows the typical high-resolution ultrasound images at the different skin sites: cheeks,
chin, forearm, forehead, lips and nose.

3.2.1. Skin Layer Thickness

By analyzing the skin ultrasound images, we can obtain the thickness information of
the different skin layers. Figure 4 shows the skin layers at different cross-sections in the
high-resolution ultrasound image [6].

In this experiment, a sample of 605 color images was obtained from eight different
areas of the body: the arm, cheek, chin, eyelid, forehead, lips, neck and nose.

Table 3 shows the skin layers’ thickness measured at the different skin sites. The
results show that the cheek contains the highest percentage of dermis among all facial sites,
about 95.3%, while the neck’s dermis percentage was the lowest at 92.0%. The value for
the stratum corneum was found to be highest on the chin, at 0.038 mm, and lowest on the
arm—merely 0.024 mm. Likewise, the epidermis thickness measurements recorded for the
arm and chin were lowest (0.047 mm) and highest (0.083 mm), respectively. A deviation
from the mean indicates poor skin condition. The risk of skin damage will be higher when
the standard deviation is high.
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Table 3. The measured skin layer thickness of different volunteers at the different skin sites.

Skin Sites Count 1 Full Skin Standard
Deviation

Stratum
Corneum Epidermis Dermis Dermis (%)

Arm 498 1.306 0.194 0.024 0.047 1.185 90.7%
Eyelid 453 1.309 0.226 0.025 0.052 1.238 94.5%
Neck 490 1.378 0.187 0.026 0.054 1.267 92.0%
Lips 477 1.426 0.294 0.027 0.064 1.320 92.5%

Forehead 451 1.647 0.173 0.028 0.065 1.569 95.2%
Cheek 551 1.690 0.437 0.032 0.074 1.611 95.3%
Nose 487 1.912 0.316 0.033 0.077 1.821 95.2%
Chin 339 1.929 0.271 0.038 0.083 1.837 95.2%

1 Count is number of measurements for each skin site.
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Figure 5 shows the average stratum corneum thickness at the different skin sites with
+1 sigma and −1 sigma.
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3.2.2. Luminosity Feature-Based Skin Image Classifications

A new classification method, based on the luminosity values (0 to 255) from the red,
green or blue channels, rather than images themselves, has been developed. To achieve
this, we need to analyze the images first, to extract the luminosity feature values.
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Expert evaluation of the ultrasound images allows formulating the following observa-
tions/hypotheses:

1. Areas of different colors correspond to different elements of the skin: fat, etc.
2. Properties of skin, e.g., density of the elements, may only depend on the depth.

As such, we are not looking for any two-dimensional patterns and the problem is
essentially one-dimensional.

3. Coloration of the images is essential, so moving to monochrome representation will
lose information.

There are three major issues with the ultrasound images, as shown in Figure 3.

1. The large empty area on top, which is not perfectly black. This is due to the design of
the probe.

2. The natural curvature of skin.
3. Possible presence of the gel layer, due to the imperfect contact between the probe’s

thin rubber film and the skin.

To rectify the issues, the following three transformations of the images were per-
formed:

1. Gel was manually removed if present.
2. Curvature was removed algorithmically.
3. Nearly black area on top, if present, was removed algorithmically and only 50% of

the image vertical area was kept.

Figure 6 illustrates the transformations performed.
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Table 4 summarizes the training dataset with total 368 images, modified to remove
outliers per site from the original set of images.

Table 4. The modified ultrasound images at different skin sites.

Class Skin Sites Number of Images

1 Cheek 57
2 Chin 50
3 Forarm 46
4 Forehead 60
5 Lips 36
6 Nose 38
7 Undereye 81

Factor Specification

The pre-processed images were used as input for the training algorithms. Images were
first represented as three matrices of luminosity values from 0 to 255, with each matrix
representing red, green or blue channels.
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Due to the relatively small number of observations, we chose the following features
for classification per channel:

1. Mean luminosity value.
2. Standard deviation of luminosity value.
3. Median luminosity value.
4. Tail of the luminosity histogram with bin values (150, 170, 200, 256).

Consequently, there were six features per channel and 18 features on the whole image.
Values of those 18 factors were then used as the explanatory variable for the classification.
The output variable was a number from 1 to 7, coding the facial site.

Three standard classifiers were used: Logistic, K-Nearest neighbor and Neural Net-
works. Training was repeated 10 times and on each iteration the set was split randomly
into 20% and 80% groups, representing testing and training sets. Score and accuracy across
all runs were then aggregated.

Table 5 presents a typical average output; the best ever average score we observed
was 0.68 or 68%. Score represents the quality of training, while accuracy represents the
quality of classification on the testing set. It can be concluded that Logistic classifier
performs best. We expect its performance to be improved for larger sample sizes and
more rigorous systematic measurements. Random Forest was also originally tried, but it
appeared constantly overfit and underclassified.

Table 5. The Machine Learning classification results.

Classifier Min Score
Mean Max Min Accuracy

Mean Max

Logistic 0.57 0.61 0.64 0.43 0.50 0.59
K-Nearest
Neighbour 0.62 0.65 0.68 0.30 0.39 0.42

Neural
Networks 0.16 0.34 0.45 0.16 0.30 0.30

3.2.3. Texture-Based Skin Image Classification

Another image classification method based on image texture was also investigated in
this study. In this approach, the original EPISCAN images in DICOM (.dcm) format were
cropped to patches of dimension 512 × 1024 pixels (Figure 7) and converted, losslessly,
to 8-bit gray-scale bitmaps (.bmp). No further pre-processing operation, such as filtering,
de-noising, intensity clipping and/or resampling, was applied.

Ten types of textural features (five traditional and five based on convolutional networks—
see below) were extracted from each image, this way obtaining as many Mi data matrices,
i ∈ {1, . . . , 10}, each of dimension N × Fi, where Fi indicates the number of features
generated by the i-th descriptor. We applied principal component analysis (PCA) on each
of the Mi and retained the first two principal components to generate scatter plots for
exploratory data analysis (Figures 8 and 9).
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Traditional (‘Hand-Designed’) Descriptors
Discrete Cosine Filters (DCF)
Mean and standard deviation of the transformed images processed through a bank

of 25 two-dimensional separable filters. The filters were generated via pair-wise outer
product of five one-dimensional DCF kernels defined on a sequence of 11 points [29]
(25 × 2 = 50 features).

Gabor filters
Mean and standard deviation of the magnitude of the transformed images pro-

cessed through a bank of 25 Gabor filters with five frequencies and five orientations [29]
(525 × 2 = 50 features).

Laws’ masks
Mean and standard deviation of the transformed images processed through a bank of

25 two-dimensional separable filters. These were generated via pair-wise outer product on
the five one-dimensional Laws’ kernels [30] (25 × 2 = 50 features).

Local binary patterns (LBP)
Concatenation of directional (non-rotation-invariant) local binary patterns histograms [31]

computed on eight-pixel digital circles of radius 1 px, 2 px and 3 px (256× 3 = 768 features).
Zernike polynomials
Mean and standard deviation of the transformed images processed through a bank

of filters based on even and odd Zernike polynomials of order r ∈ {0, . . . ., 6} [29,32]
(42 features).

Texture Descriptors Based on Deep Learning

We considered five learned descriptors from the following pre-trained convolutional
networks: DenseNet121, MobileNet, ResNet50, VGG16 and Xception. Following the
approach described in previous works [33–35], we used the L1-normalised output of one
intermediate layer as image features. Specifically, we retrieved the features from the
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‘dropout’ layer of the MobileNet, the ‘fc2′ layer of the VGG16 and the ‘avg_pool’ layer of
the DenseNet121, ResNet50 and Xception networks. The number of features, respectively,
was 1024 for DenseNet121 and MobileNet, 2048 for ResNet50 and Xception and 4096 for
VGG16.

All the networks had been previously trained on the ImageNet dataset and were used
off-the-shelf without any further adjustment or fine-tuning. The EPISCAN images were
resized to fit the receptive field of each net before processing.

Figures 8 and 9 show the results of texture analysis on the EPISCAN data using
Gabor filters as texture descriptors. As can be seen from Figure 8, the measurement points
were not separable by age, gender of the subject or anatomical site where the scan was
taken. However, Figure 8 indicates the presence of two clear clusters. Further investigation
revealed that the two clusters belong to the results that were obtained by using two different
types of ultrasound probes. Figure 9 shows the results corresponding to the ultrasound
probes used. The other descriptors returned similar results and the corresponding plots
are provided as supplementary material.

These findings suggest that texture analysis on ultrasound scans of the skin is unable
to predict the age and gender of the subject or the anatomical part. By contrast, texture
analysis revealed a surprising ability to discriminate between the ultrasound probes used.

4. Discussion

Skin Contact Capacitive Imaging is a promising, novel imaging technique based on
the dielectric constant measurement principle, which has been used not only for skin
water content measurements, but also for solvent penetration measurements [6], skin tex-
ture/microrelief and hair water content measurements [7,8]. With Skin Contact Capacitive
Imaging, we have studied the water content of different facial skin sites. Although the
water content results available in the literature for different face areas are not always
consistent, our results agree well with Voegeli’s study [36]. Apart from normal skin mea-
surements, Skin Contact Capacitive Imaging can also be used for measuring diseased skin.
Combined with the advances of Artificial Intelligence, which has already been used for
skin classification [9] and decision supporting in radiotherapy [37], it is possible to develop
a skin capacitive image classification system to identify different types of skin diseases,
such as neoplastic lesions [38]. With the 50 µm spatial resolution, it is also possible to detect
skin diseases at an early stage.

High-Resolution Ultrasound Imaging is a state-of-the-art ultrasound technology,
which allows us to measure the thickness of the different skin layers, such as the stra-
tum corneum, epidermis and dermis. Estimating the thickness of the stratum corneum,
the outmost skin layer, is very useful for skin cosmetic studies, and is not possible with
any other techniques. The skin histology information can reflect skin conditions, such as
damaged skin or diseased skin. Our thickness results agree generally well with literature
studies [39,40]. We have also developed two new ultrasound image classification tech-
niques based on image features, rather than the whole images. The first is based on skin
ultrasound image luminosity values from the red, green or blue channels as well as the
histogram values. The second is based on skin image texture, where 10 skin image textural
features were used. Finally, we evaluated the feasibility of training standard Machine
Learning classifications to identify the different facial sites based on the pre-processed
High-Resolution Ultrasound images. We consider our result a moderate success, with lots
of room to improve accuracy by having a more systematic measurement setup.

5. Conclusions

We conducted a detailed skin characterization study by using two state-of-the-art
imaging technologies, Contact Capacitive Imaging and High-Resolution Ultrasound Imag-
ing. With Contact Capacitive Imaging, we measured skin water content, and obtained
information about skin texture. We also performed capacitive image classifications by
using pre-trained Deep Learning neural networks through Transfer Learning.
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With High-Resolution Ultrasound Imaging, we studied the thickness of the different
skin layers, such as the stratum corneum, epidermis and dermis. We also developed two
new ultrasound image classification techniques based on image features with promising
results.

Future research will focus on improving the classification algorithms and to apply
the two technologies to studying other types of skin samples, such as dry skin, damaged
skin, young skin, aged skin, diseased skin and even samples of different types of skin
diseases. The classification algorithms we developed in this study can also be used for
discriminating different types of skin samples. The combination of Contact Capacitive
Imaging and High-Resolution Ultrasound Imaging, with the aid of new Machine Learning
algorithms, could be a powerful research tool for skin studies.
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