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Abstract

Abstract

This Thesis studies the portfolio choice and asset pricing in economic settings with incom-

plete markets and is comprised of three chapters. Chapter 1 explores the formation of stock

prices in a general equilibrium economy with heterogeneous investors facing portfolio con-

straints. We compute the equilibrium when both investors have (identical for simplicity)

CRRA preferences, one of them is unconstrained while the other faces an upper bound

constraint on the proportion of wealth invested in stocks. We demonstrate that under cer-

tain parameters the model can generate countercyclical stock return volatilities, procyclical

price-dividend ratios, excess volatility and other patterns observed in the data. Our baseline

analysis is also extended to models with heterogeneous beliefs.

Chapter 2 studies the portfolio choice in economies with incomplete markets with in-

vestors guided by mean-variance criteria. Mean-variance criteria remain prevalent in multi-

period problems, and yet not much is known about their dynamically optimal policies. In

this chapter we provide a fully analytical characterization of the optimal dynamic mean-

variance portfolios within a general incomplete-market economy. We solve the problem by

explicitly recognizing the time-inconsistency of the mean-variance criterion and deriving a

recursive representation for it, which makes dynamic programming applicable. A calibration

exercise shows that the mean-variance hedging demands may comprise a significant fraction

of the total risky asset demand.

Chapter 3 provides a simple solution to the hedging problem in a general incomplete-

market economy in which a hedger, guided by the minimum-variance criterion, aims at

reducing the risk of a non-tradable asset. We derive fully analytical optimal time-consistent

hedges and demonstrate that they can easily be computed in various stochastic environ-

ments. Our dynamic hedges preserve the simple structure of complete-market perfect hedges

and are in terms of generalized “Greeks,” familiar in risk management applications. We

demonstrate that our optimal hedges typically outperform their static and myopic counter-

parts under plausible economic environments.
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Introduction

Introduction

The main objective of this Thesis is to study the optimal portfolio choice and asset pric-

ing in financial markets with imperfections, such as portfolio constraints or unhedgeable

risks that render the markets incomplete. It is generally admitted that these imperfections

significantly contribute towards understanding the investor behavior and the dynamics of

financial markets. Despite their importance in Finance, portfolio choice and asset pricing

models are notoriously difficult to solve in incomplete markets. This Thesis develops new

methods for solving these models in various incomplete-market settings and provides new

economic insights into the formation of optimal portfolios and asset prices. The Thesis

consists of three Chapters that explore different aspects of portfolio choice and asset pricing

in incomplete financial markets.

Chapter 1 is entitled “Asset Pricing in General Equilibrium with Constraints” and ex-

plores the formation of asset prices in a pure exchange general equilibrium economy with

two heterogeneous investors facing portfolio constraints, and one consumption good gener-

ated by a Lucas tree. Even though the presence of portfolio constraints is well documented

in the contemporary literature, it is admittedly difficult to incorporate them into general

equilibrium analysis unless constrained investors are logarithmic, as commonly assumed in

the literature. However, the assumption of logarithmic investors significantly impedes the

evaluation of the impact of portfolio constraints on financial markets. In particular, there

is a large literature (e.g., Detemple and Murthy, 1997; Basak and Cuoco, 1998; Basak and

Croitoru, 2000, 2006) demonstrating that in economic settings with logarithmic investors

various portfolio constraints do not affect stock prices since classical income and substitu-

tion effects perfectly offset each other. In Chapter 1 we develop a methodology that does

not rely on the restrictive assumption of logarithmic investors and therefore allows us to

evaluate the impact of constraints on equilibrium parameters such as interest rates, market

prices of risk, price-dividend ratios and stock return volatilities.

In particular, we numerically compute the equilibrium in a setting with two investors
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Introduction

with identical constant relative risk aversion (CRRA) utility functions where one investor

is unconstrained while the other faces an upper bound constraint on the proportion of

wealth that can be invested in stocks. We compute the equilibrium parameters and study

their behavior in good (when dividend growth shocks are positive) and bad (when dividend

growth shocks are negative) states of the economy. We demonstrate that the impact of

portfolio constraints crucially depends on the intertemporal elasticity of substitution (IES).

When IES is greater than unity our model generates countercyclical market prices of risk

and stock return volatilities and procyclical stock price-dividend ratios (i.e., market prices of

risk and stock return volatilities are higher in bad states and lower in good states, and vice

versa for price-dividend ratios) as well as excess stock return volatility, consistently with the

literature (e.g., Ferson and Harvey, 1991; Schwert, 1989; Campbell and Cochrane, 1999).

Moreover, we demonstrate that our methodology can easily be extended to incorporate

heterogeneous beliefs and multiple assets.

Chapter 2 is entitled “Dynamic Mean-Variance Asset Allocation” and studies optimal dy-

namic mean-variance asset allocation in a general incomplete-market economy with stochas-

tic investment opportunity sets. Mean-variance portfolio choice has always been recognized

as the cornerstone of modern portfolio theory, and is still widely employed both in industry

and academia due to its tractability and intuitive appeal (e.g., among others, Ait-Sahalia and

Brandt, 2001; Campbell and Viceira, 2002; Jagannathan and Ma, 2003; Bansal, Dahlquist

and Harvey, 2004; Acharya and Pedersen, 2005; Hong, Scheinkman and Xiong, 2006; Brandt,

2009; Campbell, Serfaty-de Medeiros and Viceira, 2009). The extant literature primarily

solves for optimal mean-variance policies assuming that investors are myopic and maxi-

mize their criterion over the next period, ignoring the hedging demands arising due to the

fluctuations of investment opportunity sets. In contrast with the previous literature, we

study dynamic optimal mean-variance asset allocation via dynamic programming by explic-

itly recognizing the time-inconsistency of mean-variance criteria. While previous literature

has reported difficulties in applying dynamic programming to mean-variance criteria due

to the failure of iterated expectations property (see e.g., Zhou and Li, 2000), we provide a
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Introduction

recursive representation of the investor’s mean-variance criterion which makes possible the

application of dynamic programming.

To our best knowledge, our work is the first to obtain closed form expressions for optimal

investment policies in a general incomplete-market setting in terms of exogenous model

parameters and a new hedge-neutral probability measure that facilitates the tractability of

the analysis. We also demonstrate that our dynamically optimal time-consistent policies

are generically different from the pre-commitment policies obtained in the literature, from

which an investor may deviate in the future unless being able to pre-commit. Moreover,

methodology presented in Chapter 2 can efficiently be applied to study the asset allocation

for various investment opportunity sets, including those endogenously derived in equilibrium

in Chapter 1. Specifically, in this work we obtain explicit expressions for various stochastic

investment opportunity sets widely used in the literature, such as models with Gaussian

mean-reverting stock returns (e.g., Kim and Omberg, 1996) and models with stochastic

volatility (e.g., Liu, 2005; Chacko and Viceira, 2005). Moreover, the calibration to the real

data reveals the significance of the hedging demands, which shows that popular myopic

policies ignore a substantial fraction of the optimal total demand for stocks in a dynamic

setting.

Finally, Chapter 3 entitled “Dynamic Hedging in Incomplete Markets: A Simple So-

lution” employs the methodology developed in Chapter 2 to study mean-variance hedging

problem in a dynamic incomplete-market economy with stochastic investment opportunity

sets. The investor in this setting hedges the fluctuations of a non-tradable asset by mini-

mizing the variance of the hedging error given by the difference of the non-tradable asset

payoff and tradable wealth at a terminal date. Hedging in incomplete markets is a classical

problem covered in major test books as well as academic works but primary in static or

myopic settings. When the market is incomplete and perfect hedging by means of standard

no-arbitrage methods is no longer feasible the literature derives optimal hedges that maxi-

mize investors’ utility functions or minimize various hedging criteria such as squired hedging

error or hedging error variance. Despite much work in this direction, we still lack tractable
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Introduction

dynamically optimal policies.

By employing the methodology of Chapter 2 we provide tractable dynamically opti-

mal hedges in a general incomplete-market economy by employing the minimum-variance

criterion. We demonstrate that our optimal hedges retain the intuitive structure of classi-

cal complete-market hedges and are in terms of generalized “Greeks”, widely used in risk

management applications. We obtain our dynamic time-consistent hedges via dynamic pro-

gramming by explicitly recognizing the time-inconsistency of mean-variance criteria while

previous works (e.g., Duffie and Richardson, 1991; Schweizer, 1994; Musiela and Rutkowski,

1998) obtain policies that minimize the variance criterion globally and from which the in-

vestor may choose to optimally deviate in the future. Moreover, we demonstrate that our

hedges typically outperform static and myopic counterparts in plausible economic settings.

13



Chapter 1: Asset Pricing in General Equilibrium with Constraints

1. Asset Pricing in General Equilibrium with Constraints

1.1. Introduction

Portfolio constraints and market frictions have long been considered among key contribu-

tors towards understanding investor behavior and equilibrium asset prices. In particular,

dynamic equilibrium models with heterogeneous investors facing portfolio constraints have

extensively been employed by financial economists to confront a wide range of phenomena

such as the equity premium puzzle, mispricing of redundant assets, role of arbitrageurs,

impact of heterogeneous beliefs on asset prices, and stock comovements (e.g., among oth-

ers, Detemple and Murthy, 1997; Basak and Cuoco, 1998; Basak and Croitoru, 2000, 2006;

Kogan, Makarov and Uppal, 2007; Gallmeyer and Hollifield 2008; Pavlova and Rigobon,

2008). However, tractable characterizations of equilibria are only obtained assuming that a

constrained investor has logarithmic preferences which simplifies the analysis at the cost of

assuming investor’s myopia.1 Despite recent developments in portfolio optimization, such

as duality method of Cvitanic and Karatzas (1992), portfolio constraints are notoriously

difficult to incorporate into general equilibrium analysis as well as portfolio choice when

constrained investors have more general preferences inducing hedging demands.

The assumption of logarithmic preferences is not innocuous and impedes the evaluation

of the impact of constraints on stock prices and stock return volatilities. Thus, in economic

settings with two logarithmic investors and single consumption good (e.g., Detemple and

Murthy, 1997; Basak and Cuoco, 1998; Basak and Croitoru, 2000, 2006) stock prices and

hence stock return volatilities are unaffected by constraints since the income and substitu-

tion effects perfectly offset each other. When the constrained investor is logarithmic, the

volatility effects of constraints have been studied in specific settings where the other (un-
1The assumption that one investor has logarithmic preferences is also commonly made for tractability

in models with unconstrained investors who differ in risk aversions. Thus, Dumas (1989) studies dynamic
equilibrium in a production economy, where one investor has logarithmic while the other general CRRA
preferences. Wang (1996) studies an exchange economy where one investor has logarithmic while the other
square-root preferences. One notable exception is Bhamra and Uppal (2009), who study the effect of in-
troducing non-redundant securities on the volatilities of asset returns in an exchange economy with CRRA
investors not restricted to being logarithmic.
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Chapter 1: Asset Pricing in General Equilibrium with Constraints

constrained) investor has different preferences (e.g., Gallmeyer and Hollifield, 2008), which

requires further justification. To our best knowledge, this paper is the first to study the

effect of different constraints on stock return volatility in a continuous-time economy with-

out relying on the assumption of logarithmic investors. As a result, our solution method

yields new insights on the impact of portfolio constraints on stock prices and, in particular,

highlights the role of constraints in explaining empirically observed procyclical variation of

price-dividend ratios and countercyclical variation of stock return volatilities (i.e., positive

shocks to dividend growth rates lead to higher price-dividend ratios and lower stock return

volatilities).

We solve for the equilibrium in a continuous-time pure exchange economy with one

consumption good and two heterogeneous investors facing portfolio constraints. First, for

general preferences and constraints we provide a characterization of interest rates and market

prices of risk which highlight the role of constraints and risk sharing, and in specific economic

settings can explicitly be characterized in terms of empirically observable quantities such as

stock returns and consumption volatilities. Based on these results, we specialize to settings

with two CRRA investors one of whom is unconstrained while the other faces portfolio

constraints. Specifically, we first derive the equilibrium when the constrained investor faces

an upper bound on the proportion of wealth invested in stocks.2 Then, we study the impact

of short-sale constraints on equilibrium when investors have different beliefs about mean

dividend growth. The methodological contribution of the paper is a solution method for

the efficient computation of equilibria in economies with constraints. Specifically, we derive

stock price-dividend ratios, stock return volatilities and other parameters in terms of wealth-
2Srinivas, Whitehouse and Yermo (2000) in a survey of pension fund regulations show that limits on both

domestic and foreign equity holdings of pension funds are in place in a number of OECD countries such
as Germany (30% on EU and 6% on non-EU equities), Switzerland (30% on domestic and 25% on foreign
equities) and Japan (30% on domestic and 30% on foreign equities), among others. Moreover, our approach
allows to study the impact of passive investors that hold a fixed fraction of their wealth in stocks, as in
Chien, Cole and Lustig (2008). Samuelson and Zeckhouser (1988) document the popularity of this strategy
using as an example the participants of popular TIAA/CREF retirement plan who choose a fraction of
wealth to be invested in stocks and rarely change it due to “status quo bias”, while Campbell (2006) points
out that households may limit their participation in stock market and invest cautiously due to the lack of
necessary skills. Important special case of our framework is stock market non-participation which in year
2002 accounted for 50% of U.S. households (e.g., Guvenen, 2006).
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Chapter 1: Asset Pricing in General Equilibrium with Constraints

consumption ratios that can be computed numerically via a simple iterative procedure with

fast convergence.

At the first step of our analysis when we allow for general preferences, we demonstrate

that the riskless rates and market prices of risk include new terms that capture the effects

of constraints and risk sharing. In specific settings we obtain the expressions for interest

rates and market prices of risk in terms of intuitive and empirically observable parameters

such as stock return and consumptions volatilities. The tractability of our results allows to

compare interest rates in constrained and unconstrained economies for a given allocation

of consumption among investors and demonstrate that for various constraints interest rates

will be lower in constrained economies whenever both investors have the same prudence-risk

aversion ratios.

Using the insights from the case with general preferences we show that when investors

have (identical for simplicity) CRRA preferences, one of them faces an upper bound on

the proportion of wealth invested in stocks, and dividends follow a geometric Brownian

motion, the interest rates and market prices of risk can explicitly be expressed in terms of

marginal utility ratios, their volatilities and the volatilities of stock returns. We completely

characterize the equilibrium by computing these volatilities numerically. While in models

with two logarithmic investors price-dividend ratios and stock return volatilities are deter-

ministic functions of time, in our setting these parameters depend on constrained investor’s

consumption share which evolves stochastically. The effect of constraints on price-dividend

ratios and stock-return volatilities depends on the relative strength of classical income and

substitution effects. When the intertemporal elasticity of substitution (IES) is less than

one and hence the income effect dominates, price-dividend ratios increase while stock re-

turn volatilities decrease with tighter constraints, and vice versa when IES is greater than

one and the substitution effect is stronger.3 Moreover, the effects of constraints are more
3When the investment opportunities worsen, the income effect induces investors to decrease consumption

and save more while the substitution effect induces them to consume more and save less due to cheaper
current consumption. For CRRA preferences with risk aversion γ, IES=1/γ, the income effect dominates
for IES < 1 and the substitution effect dominates for IES > 1 while for IES = 1 both effects perfectly offset
each other.
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Chapter 1: Asset Pricing in General Equilibrium with Constraints

pronounced in bad times, when dividends are hit by adverse shocks, than in good times.

To understand the intuition, we first evaluate the impact of portfolio constraints on

investment opportunity sets and demonstrate that interest rates decrease while market prices

of risk increase with tighter constraints, and that the effects of constraints are stronger in

bad times. When the portfolio constraint binds, negative shocks to dividends shift the

distribution of the aggregate wealth and consumption to the constrained investor since

she is less exposed to stock market fluctuations. Thus, in bad times, when the constrained

investor holds a significant fraction of aggregate wealth and consumption, the price-dividend

ratio is approximately equal to her wealth-consumption ratio. With tighter constraints the

investment opportunities of the constrained investor deteriorate since interest rates fall and

she is unable to benefit from the increase in market prices of risk. As a result, her wealth-

consumption ratio, and hence the price-dividend ratio, increases when the income effect

dominates and decreases when the substitution effect dominates. The effect of constraints

is weaker in good times since as the share of the unconstrained investor in aggregate wealth

and consumption increases, all the economic parameters, including price-dividend ratios,

converge to the parameters in the unconstrained economy.

Thus, when the substitution effect dominates, price-dividend ratios turn out to be pro-

cyclical (lower in bad times than in good times) while stock return volatilities exceed the

volatility of dividends and are countercyclical (higher in bad times than in good times), con-

sistently with the empirical evidence (e.g., Schwert, 1989; Campbell and Cochrane, 1999).

Moreover, irrespective of investors’ intertemporal elasticities of substitution, market prices

of risk turn out to be countercyclical (e.g., Ferson and Harvey, 1991) since in bad times

unconstrained investors lose wealth and require higher compensation for risk taking, caus-

ing market prices of risk to go up. We also study the survival of constrained investors in

equilibrium and demonstrate that their impact on financial markets is gradually eliminated

in the course of time but is significant even after one hundred years.

Finally, we extend our baseline analysis to economic settings with heterogeneous beliefs

and multiple stocks. In both cases, for general preferences we derive expressions for interest
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Chapter 1: Asset Pricing in General Equilibrium with Constraints

rates and market prices of risk similar to those in the baseline model. In the case of

heterogeneous beliefs we solve for equilibrium in a model where two investors have the same

CRRA utilities and disagree on the dividend growth rate. The optimist is unconstrained

while the pessimist faces a constraint on the proportion of wealth that can be held in short

positions in stocks. We demonstrate that tighter short-sale constraints imply higher price-

dividend ratios since they increase the constrained investor’s demand for stocks. We also

find that stock return volatility in the constrained economy can be both higher or lower

than the volatility in an unconstrained economy, depending on whether the latter is higher

or lower than the volatility of dividend growth. This is because the short-sale constraints

do not allow the investor to trade on her pessimism making her stockholding closer to what

it would be in the case of homogeneous beliefs, and hence, the stock return volatility shifts

towards volatility in an unconstrained homogeneous economy, given by the volatility of

dividends.

Our solution method is based on a combination of the duality approach and dynamic

programming. First, following Cvitanic and Karatzas (1992) we derive optimal consump-

tions in terms of the state price densities in equivalent unconstrained fictitious economies in

which the interest rates and market prices of risk are adjusted to account for the difference

in investors’ behavior in constrained economies. Then, market clearing for consumption

yields expressions for equilibrium parameters in terms of the adjustment parameters that

solve a certain fixed point problem. Moreover, in our specific examples these adjustments to

interest rates and market prices of risk can be derived in terms of instantaneous volatilities of

stock returns and the ratios of marginal utilities of the two investors. Next, these volatilities

and all the equilibrium parameters are explicitly characterized in terms of investors’ wealth-

consumption ratios that satisfy a system of quasilinear Hamilton-Jacobi-Bellman equations.

We solve this system of equations numerically via a simple iterative procedure that requires

solving a simple system of linear equations at each step.

There is a growing literature studying dynamic equilibria in continuous-time economies

with heterogeneous investors and portfolio constraints assuming that constrained investors
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have logarithmic preferences. Basak and Cuoco (1998) consider a model in which one in-

vestor is unconstrained and guided by a general time-additive utility function while the other

investor cannot invest in the stock market and has logarithmic preferences. They derive the

riskless rates and market prices of risk in this economy and characterize all the equilibrium

parameters explicitly when both investors are logarithmic. Detemple and Murthy (1997),

Basak and Croitoru (2000, 2006) present equilibrium models with two logarithmic investors,

heterogeneous beliefs and portfolio constraints. Hugonnier (2008) considers a similar model

and shows that under restricted participation the stock prices implied by market clearing

may contain a bubble and in the setting with multiple stocks the equilibrium might not be

unique. In contrast to our work all the above papers do not find the impact of constraints

on stock prices and their moments.

Jarrow (1980) studies the equilibrium effect of short-sale constraints in a one-period

economy with mean-variance investors that have heterogeneous beliefs. Dumas and Maen-

hout (2002) develop an approach with two central planners for solving incomplete-market

equilibrium with two CRRA investors. However, in their analysis the variance-covariance

matrix of returns is taken as given and hence they do not study the impact of constraints on

volatility. Kogan, Makarov and Uppal (2007) derive equilibrium parameters in an economy

with borrowing constraints when one investor is logarithmic while the other has general

CRRA utility and find that all the moments of asset returns are deterministic and stock

return volatilities are unaffected by constraints. When little borrowing is permitted they

numerically find interest rates and market prices of risk as functions of wealth distributions

but do not consider the volatilities of stock returns. He and Krishnamurthy (2008) consider

a model of intermediated asset pricing in which individual households are logarithmic and

invest into stock only via an intermediary guided by CRRA utility. Wu (2008) studies the

equilibrium in a setting with one unconstrained and one buy-and-hold CRRA investors.

Gallmeyer and Hollifield (2008) study the asset pricing with short-sale constraints in the

presence of heterogeneous beliefs when the pessimist and optimist have logarithmic and

CRRA utilities respectively. They study equilibrium parameters by employing Monte-Carlo
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simulations and derive conditions for stock return volatilities to be larger or lower than in

the unconstrained case assuming that investors have the same share of aggregate wealth at

the initial date.

Bhamra (2007) analyzes the effect of liberalization on emerging markets’ cost of capital

in a model with two logarithmic investors, two stocks and one consumption good. Pavlova

and Rigobon (2008) and Schornick (2009) consider models with constrained logarithmic

investors and two consumption goods in international finance framework and derive various

asset-pricing implications assuming that investors face preference shocks. Longstaff (2009)

develops a two-asset economy where one of the assets is non-tradable for a certain period

and logarithmic investors are heterogeneous in time discount parameter.

There are a number of papers that solve models with heterogeneous investors and port-

folio constraints numerically in discrete time. Cuoco and He (2001) consider a model with

general utilities and derive equilibrium asset prices in terms of stochastic weights of a rep-

resentative investor’s utility which are obtained numerically from a nonlinear system of

equations. Guvenen (2006) solves numerically a model with restricted market participa-

tion when investors are guided by recursive utilities. Chien, Cole and Lustig (2008) also

in a discrete-time framework consider a model with non-participants, passive and active

investors guided by CRRA preferences, where passive investors hold fixed portfolios while

active ones adjust them each period. Gomes and Michaelides (2008) study numerically the

equilibrium with incomplete markets and investors subject to fixed cost of stock market

participation and by calibration generate high equity premium and match observed market

participation rate. Dumas and Lyasoff (2008) solve for equilibrium in various incomplete

market settings in discrete time by employing binomial trees. These works do not study

the impact of constraints on conditional stock return volatilities and do not provide expres-

sions for equilibrium parameters in terms of observable quantities as we do in this paper by

employing considerable flexibility of continuous-time methods.

The remainder of the paper is organized as follows. In Section 1.2, we derive interest

rates and market prices of risk for general utility functions under the assumption that the
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dual optimization problem has a solution and discuss their properties. In Section 1.3 we

illustrate our solution method by computing the equilibrium in a model with two CRRA

investors where one investor is unconstrained while the other faces an upper bound on the

fraction of wealth invested in stocks. Section 1.4 extends our baseline analysis to the settings

with heterogeneous beliefs and multiple stocks. We also solve for equilibrium in a model with

heterogeneous beliefs in which one of the investors faces short-sale constraints. Section 1.5

concludes, Appendix A provides the proofs and Appendix B provides further details for our

numerical method.

1.2. General Equilibrium with Constraints

1.2.1. Economic Setup

We consider a continuous-time economy with one consumption good and an infinite horizon.

The uncertainty is represented by a filtered probability space (Ω,F , {Ft}, P ), on which is

defined a Brownian motion w. All the stochastic processes that appear in the paper are

adapted to {Ft, t ∈ [0,∞)}, the augmented filtration generated by w.

The investors trade continuously in two securities, a riskless bond in zero net supply

with instantaneous interest rate r and a stock in a positive net supply, normalized to one

unit. The stock is a claim to an exogenous strictly positive stream of dividends δ following

the dynamics

dδt = δt[µδtdt+ σδtdwt], (1)

where the dividend mean-return, µδ, and volatility, σδ, are stochastic processes. The divi-

dend process (1) and its moments are assumed to be well-defined, without explicitly stating

the regularity conditions. We consider equilibria in which bond prices, B, and stock prices,

S, follow processes

dBt = Btrtdt, (2)

dSt + δtdt = St[µtdt+ σtdwt], (3)
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where the interest rate r, the stock mean return µ and volatility σ are stochastic processes

determined in equilibrium, and bond price at time 0 is normalized so that B0 = 1.

There are two investors in the economy. Investor 1 is endowed with s units of stock

and −b units of bond, while investor 2 is endowed with 1 − s units of stock and b units of

bond. The investors choose consumption, ci, and an investment policy, {αi, θi}, where αi

and θi denote the fractions of wealth invested in bonds and stocks, respectively, and hence,

αi + θi = 1. Investor i’s wealth process W evolves as

dWit =
[
Wit

(
rt + θit(µt − rt)

)
− cit

]
dt+Witθitσtdwt, (4)

and her investment policies are subject to portfolio constraints

θi ∈ Θi, i = 1, 2, (5)

where Θi = [θi, θi]. We also assume that initial endowments of stocks are such that θi at

time 0 belong to sets Θi. Thus, the financial market in our economy is incomplete due to

the presence of portfolio constraints (5).

Each investor i (i = 1, 2) is guided by an expected utility over a stream of consumption

c. In particular, her dynamic optimization is given by

max
ci, θi

E
[∫ ∞

0
e−ρtui(cit)dt

]
, (6)

subject to the budget constraint (4), no-bankruptcy constraint Wt ≥ 0 and portfolio con-

straints (5), for some discount parameter ρ > 0. The utility functions ui(c) are assumed to

be increasing, concave, three times continuously differentiable, satisfying Inada’s conditions

lim
c↓0

u′i(c) =∞, lim
c↑∞

u′i(c) = 0, i = 1, 2. (7)

By Ait and Pit we denote absolute risk aversion and prudence parameters of investor i, given

by

Ait = −u
′′
i (c)
u′i(c)

, Pit = −u
′′′
i (c)
u′′i (c)

, (8)

and assume that both are strictly positive for each investor.
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Next, we define an equilibrium in this economy as a set of parameters {rt, µt, σt} and of

consumption and investment policies {c∗it, α∗it, θ∗it}2i=1 such that consumption and investment

policies solve dynamic optimization problem (6) for each investor, given price parameters

{rt, µt, σt}, and consumption and financial markets clear, i.e.,

c∗1t + c∗2t = δt,

α∗1tW
∗
1t + α∗2tW

∗
2t = 0,

θ∗1tW
∗
1t + θ∗2tW

∗
2t = St,

(9)

where W ∗1t and W ∗2t denote optimal wealths of investors 1 and 2 under optimal consumption

and investment policies.

1.2.2. Characterization of Equilibrium

This Section characterizes the parameters of equilibria and studies their properties in economies

with constrained investors. In particular, by employing the duality method of Karatzas and

Cvitanic (1992), we recover expressions for interest rates and market prices of risk in equi-

librium in terms of the parameters of equivalent fictitious unconstrained economies. These

expressions are intuitive and highlight the impact of risk-sharing and attitude towards risk

on equilibrium parameters. Moreover, they form a basis for an efficient methodology for

computing equilibria, which we develop in Section 1.3.

We start by noting that since the market is incomplete due to the presence of portfolio

constraints, a Pareto optimal allocation may not be feasible and hence, the ratio of the

marginal utilities of consumption of the investors follows a stochastic process. This ratio

can be interpreted as a stochastic weight in the construction of a representative-investor

preferences in an equivalent economy, and serves as a state variable in terms of which the

equilibrium can be characterized (e.g., Basak and Cuoco, 1998; Cuoco and He, 2001). By

employing the methodology of Cvitanic and Karatzas (1992) we obtain optimal consump-
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tions and then derive the equilibrium parameters from the market clearing conditions.4 This

approach is similar to the approach in Basak (2000), who characterizes the equilibrium in

an economy where investors have heterogeneous beliefs, but in contrast to our work are

unconstrained.

We start by characterizing optimal consumptions of constrained investors in a partial

equilibrium in which the investment opportunities are taken as given, and then obtain the

interest rate r, and the market price of risk κ, from the consumption clearing condition.

For each investor i, following the approach of Cvitanic and Karatzas (1992), we characterize

the optimality conditions for consumption by embedding investor i’s partial equilibrium

economy into an equivalent fictitious complete-market economy with bond and stock prices

following dynamics with adjusted parameters:

dBt = Bt[rt + f(ν∗it)]dt, (10)

dSt + δtdt = St[(µt + ν∗it + f(ν∗it))dt+ σtdwt], (11)

where fi(ν) are support functions for the sets of portfolio constraints Θi, defined as

fi(ν) = sup
θ∈Θi

(−νθ), (12)

and ν∗1t and ν∗2t solve so called dual optimization problem, defined in Cvitanic and Karatzas

(1992), and lie in the effective domains for support functions, given by

Υi = {ν ∈ R : fi(ν) <∞}. (13)

It follows from the dynamics of bond and stock prices in fictitious economy (10)–(11) that

the corresponding state prices ξit evolve as

dξit = −ξit[ritdt+ κitdwt], (14)

where rit and κit denote the adjusted riskless rate and market price of risk in fictitious

economy i, given by

rit = rt + fi(ν∗it), κit = κt +
ν∗it
σt
, (15)

4Cuoco (1997) studies consumption-portfolio choice of constrained investors, mainly at a partial equilib-
rium level, and extends the results of Cvitanic and Karatzas to the case of more general utility functions and
forms of market incompleteness. He derives a CAPM in an economy with portfolio constraints but does not
study interest rates and other parameters of equilibrium.
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where κ = (µ− r)/σ is the market price of risk in the original constrained economy.

Throughout this Section we assume that the solutions to dual optimization problems

exist and since the fictitious economies are complete, the marginal utilities of optimal con-

sumption are given by

e−ρtu′i(c
∗
it) = ψiξit, i = 1, 2, (16)

for some constants ψi > 0. The first order conditions (16) and state prices (14) demonstrate

that consumption and investment decisions of the constrained investor are equivalent to

those of an unconstrained one, who faces interest rates and market prices of risk adjusted

to account for the constraints. Moreover, optimality conditions in (16) allow to express

consumptions c∗it in terms of state prices in fictitious economies as follows:

c∗it = Ii(ψieρtξit), i = 1, 2, (17)

where Ii(·) denote inverse functions for marginal utilities u′i(·).

The expressions for marginal utilities in (16) also imply that the ratio of investors’

marginal utilities, defined as

λt =
u′1(c∗1t)
u′2(c∗2t)

, (18)

is stochastic in equilibrium, and not a constant as in complete markets (e.g., Karatzas

and Shreve, 1998) where consumption allocations are Pareto efficient. Basak and Cuoco

(1998) and Cuoco and He (2001) demonstrate that the process λ serves as a convenient

state variable in terms of which the equilibrium parameters can be expressed. Moreover, in

an equivalent complete-market economy with a representative investor, parameter λ can be

interpreted as a stochastic weight in the utility u(c;λ) of a representative investor, given by

u(c;λ) = max
c1+c2=c

u1(c1) + λu2(c2), (19)

and follows a stochastic process

dλt = −λt[µλtdt+ σλtdwt]. (20)

The parameters µλ and σλ are determined in equilibrium and quantify the violation of

Pareto-optimality in the economy.
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Next we characterize the parameters of our economy in equilibrium in terms of adjust-

ments ν∗it from the market clearing in consumption. To determine the interest rate r and

market price of risk κ we substitute optimal consumptions (17) into consumption clearing

condition in (9), apply Itô’s Lemma to both sides and recover equilibrium parameters by

matching the drift and volatility terms. Similarly, from optimality conditions (16), by ap-

plying Itô’s Lemma to equation (18) for λt and comparing the result with the process for λt

in (20) we recover parameters µλ and σλ. The following Proposition summarizes our results.

Proposition 1.1. If there exists an equilibrium, the riskless interest rate r, market price

of risk κ, drift µλ and volatility σλ of weighting process λ that follows (20) are given by

rt = r̄t −
At
A1t

f1(ν∗1t)−
At
A2t

f2(ν∗2t)−
A3
t (P1t + P2t)
2A2

1tA
2
2t

σ2
λt −

A3
t

A1tA2t

(P1t

A1t
− P2t

A2t

)
δtσδtσλt,(21)

κt = κ̄t −
At
A1t

ν∗1t
σt
− At
A2t

ν∗2t
σt
, (22)

µλt = Atδtσδtσλt + f1(ν∗1t)− f2(ν∗2t)−
At
A1t

σ2
λt, σλt =

ν∗1t − ν∗2t
σt

, (23)

where r̄ is the riskless rate and κ̄ is the market price of risk in an unconstrained economy,

given by

r̄t = ρ+Atδtµδt −
AtPt

2
δ2
t σ

2
δt, κ̄t = Atδtσδt (24)

Ait, Pit, and At and Pt are absolute risk aversions and prudence parameters of investor i

and a representative investor with utility (19), respectively.5

Optimal consumptions c∗i , wealths Wi, stock S and optimal investment policies θ∗i are given

by

c∗it = gi(δt, λt), (25)

W ∗it =
1
ξit
Et

[∫ ∞
0

ξisc
∗
isds

]
, (26)

5As demonstrated in Basak (2000), the risk aversion, A, and prudence, P , of the representative investor
can be obtained from the following expressions:

1

At
=

1

A1t
+

1

A2t
,

Pt
A2
t

=
P1t

A2
1t

+
P2t

A2
2t

.
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St = W ∗1t +W ∗2t, (27)

θ∗it =
1
σt

(
W ∗it

(
κt +

ν∗it
σt

)
+
φit
ξit

)
, (28)

where functions gi(δt, λt) are such that c∗1t and c∗2t satisfy consumption clearing in (9) and

equation (18) for process λ, state prices ξit follow processes (14) and φi are such that

Mit ≡ Et
[∫ ∞

0
ξisc
∗
isds

]
= Mi0 +

∫ t

0
φisdws.

Initial value λ0 is such that the budget constraints at time 0 are satisfied:

siS0 + bi = W ∗i0, (29)

where s1 = s, s2 = 1 − s, b1 = −b and b2 = b. Moreover, adjustments ν∗it satisfy comple-

mentary slackness condition

fi(ν∗it) + θ∗itν
∗
it = 0. (30)

Proposition 1.1 provides the characterization of equilibrium parameters in terms of ad-

justments ν∗i in fictitious economy. Expression (21) decomposes interest rates r into groups

of terms that separate the effects of constraints and the inefficiency of risk sharing. The

first term in (21) is the riskless rate in the unconstrained economy with the representative

investor. The next two terms capture the effect of binding constraints on interest rates and

tend to increase or decrease them depending on the signs of support functions fi(ν). In

particular, these terms are positive in economic settings with binding portfolio constraints

when investors buy more bonds. This is due to the fact that the investors behave as if their

subjective interest rates rit in their fictitious economy were higher than in the real one, and

hence positive adjustments fi(ν∗i ). Finally, the last two terms in expression (21) capture the

effect of risk sharing, quantified by volatility σλ. The weight λ acts as a state variable that

gives rise to specific hedging demands that can push interest rates in either direction.

Similarly, the expression (22) for the market price of risk is comprised of the market

price of risk in an unconstrained economy (first term in (22)) and the effects of constraints
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(second and third terms in (22)). Expressions for the drift µλ and volatility σλ parameters

of the stochastic weighting process λ in (23) demonstrate that this process, in general, is no

longer a local martingale as in works assuming logarithmic constrained investor (e.g., Basak

and Cuoco, 1998; Gallmeyer and Hollifield, 2008; Pavlova and Rigobon, 2008). Finally we

observe that optimal consumptions, wealths, stock prices and investments can be obtained

from expressions (25) – (28) when the parameters of equilibrium, and hence all state prices,

are known.

The results in Proposition 1.1 can also be used to compute the equilibrium parameters

numerically. On one hand, Proposition 1.1 expresses equilibrium parameters and investment

policies in terms of adjustments ν∗i , and on the other, the adjustments can be obtained from

the complementary slackness condition (30). Thus, finding the adjustments becomes essen-

tially a fixed point problem, which can potentially be solved by the method of successive

iterations. Moreover, as demonstrated in Huang and Pages (1992), under certain condi-

tions optimal wealths (26) satisfy linear PDEs with coefficients determined by equilibrium

parameters while optimal policies (28) can be expressed in terms of derivatives of wealths

W ∗i . Hence, the adjustments can be expressed in terms of derivatives of Wit from conditions

(30) and substituted back into the PDEs for optimal wealths. Thus, the characterization of

equilibrium reduces to solving a system of quasilinear PDEs which, as we demonstrate in

Section 1.3, can efficiently be solved numerically for specific constraints.

1.2.3. Further Properties of Equilibrium

We here explore the implications of Proposition 1.1 by noting that in various economic

settings the signs of adjustments ν∗i and support functions fi(ν) can easily be determined

explicitly from the definitions of support functions and effective domains in (12) and (13).

Moreover, the interest rates r and market prices of risk κ can be expressed in terms of

empirically observed quantities, such as stock and consumption volatilities, thus providing

empirical implications of the model.
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Table 1.1
Effective Domains and Support Functions

Case Constraint Υ f(ν)

(a) θ ∈ R 0 0

(b) θ = 0 R 0

(c) θ ≤ θ ≤ θ, θ ≤ 0 R +

(d) θ ≤ θ, θ > 0 ν ≤ 0 +

(e) θ ≥ θ, θ < 0 ν ≥ 0 +

(f) θ ≥ θ, θ > 0 ν ≥ 0 −

Table 1.1 presents the effective domains and the signs of the support functions for plau-

sible constraints and allows to analyze their effect on equilibrium parameters. For example,

when investors face constraints on the proportion of wealth invested in stocks (case (d) in

Table 1.1) the results in Proposition 1.1 and Table 1.1 imply that these constraints tend

to decrease the interest rates and increase the market prices of risk relative to an uncon-

strained model if stock volatility σ is strictly positive. Hence, these constraints work in the

right direction for explaining the equity premium puzzle (e.g., Mehra and Prescott, 1985).

The overall effect of constraints on interest rates is convoluted by the risk sharing captured

by the last two terms in the expression for interest rates (21). The following Corollary to

Proposition 1.1 establishes simple sufficient conditions under which the interest rate r will

be lower than the interest rate r̄ in a representative-investor unconstrained economy.

Corollary 1.1. If the utility functions and the allocation of consumption are such that

P1/A1 = P2/A2 and the sets of portfolio constraints have positive support functions fi(ν)

then the interest rate in a constrained economy, r, is lower than in an unconstrained one,

r̄, and the following upper bound for rate r holds:

rt ≤ r̄t −
A3
t (P1t + P2t)
2A2

1tA
2
2t

σ2
λ. (31)

The Corollary demonstrates that the inability to share risks contributes to the decrease of
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interest rates by creating hedging needs against fluctuating ratios of marginal utilities λ. The

condition that investors have the same prudence-risk aversion ratio is in particular satisfied

when both investors have identical HARA preferences.6 In the case of two logarithmic

investors when one of them is unconstrained the result in Corollary 1.1 has also been pointed

out in the literature (e.g., Basak and Cuoco, 1998).

Conveniently, in various economic settings interest rates and market price of risk can

be expressed only in terms of the parameters of utility functions and empirically observed

parameters. For example, when investor 1 is unconstrained and investor 2 faces a con-

straint allowing her to invest in stock no more than a certain fraction of wealth (case (d) of

Table 1.1), it can be observed that parameters r and κ are given by:

rt = r̄t −
At
A2t

θ̄σtσλt −
A3
t (P1t + P2t)
2A2

1tA
2
2t

σ2
λt −

A3
t

A1tA2t

(P1t

A1t
− P2t

A2t

)
δtσδtσλt, κt = κ̄t +

At
A2t

σλt,

(32)

where stock return volatility σ can easily be obtained from the data, while the weighting

process volatility σλ can be obtained in terms of utility parameters and the parameters

of the consumption processes for each investor. In particular, assuming that consumption

processes ci for each investor follow Itô’s processes

dcit = cit[µcitdt+ σcitdwt], (33)

applying Itô’s Lemma to the definition of weighting process λ in (18) we find that

σλt = A1tc1tσc1t −A2tc2tσc2t. (34)

In specific frameworks the volatilities of consumption growth can potentially be estimated

from the data. In particular, for the model with restricted participation (θ̄ = 0) Malloy,

Moskowitz and Vissing-Jorgensen (2009) estimate consumption volatilities of stock market

participants and non-participants to be 3.6% and 1.4% respectively, while Mankiw and

Zeldes (1991) and Guvenen (2006) show that the share of consumption of non-participants
6For HARA utility function absolute risk aversion is given by −u′′(c)/u′(c) = γ/(γ0 + c). Differentiating

both sides of this expression and then dividing by −u′′(c)/u′(c) we obtain that Pi/Ai = 1 + γ, and hence,
the prudence-risk aversion ratio is the same for both investors.
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in aggregate consumption is 0.68. As a result, the expressions for r and κ in (32) can

potentially be used for identifying the parameters of the utility functions of investors as well

as for quantifying the impact of risk sharing inefficiencies on the interest rates and market

prices of risk.

1.3. Equilibrium with Proportional Constraints

This Section applies the results of Section 1.2 to compute and analyze the equilibrium in

a specific economic setting in which investor 1 is unconstrained while investor 2 faces a

constraint allowing her to invest in stock no more than a certain fraction of wealth. For

simplicity we assume that dividends follow a geometric Brownian motion and both investors

have identical CRRA preferences. Using the results of Section 1.2, in Section 1.3.1 we present

a simple solution method for finding an equilibrium in this economy, and in Section 1.3.2

we study the impact of constraints on the equilibrium. In our setting with fully rational

investors we also study the survival of constrained investors in the long run and demonstrate

that it takes a long time to eliminate their impact on financial markets.

1.3.1. Characterization and Computation of Equilibrium

In this Section we present a solution method which allows to compute the equilibrium in

an efficient way. This method does not rely on a widely used assumption of a logarithmic

constrained investor (e.g., Detemple and Murthy, 1997; Basak and Cuoco, 1998; Basak

and Croitoru, 2000, 2006; Kogan, Makarov and Uppal, 2003; Bhamra, 2007; Gallmeyer

and Hollifield, 2008; Hugonnier, 2008; Pavlova and Rigobon, 2008; Schornick, 2009) which

allows to derive the adjustments ν∗i in fictitious economy explicitly at the cost of investor’s

myopia inherent in logarithmic preferences. In discrete time, Cuoco and He (2001), Guvenen

(2006), Chien, Cole and Lustig (2008) and Gomes and Michaelides (2008) study the models

with constrained heterogeneous investors numerically without assuming that constrained

investor is logarithmic. In contrast to these works, in settings with two CRRA investors the

flexibility of continuous-time analysis allows us to recover tractable expressions for interest

rates and market prices of risk and to find new insights on the impact of constraints on
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price-dividend ratios and stock return volatilities.

Finding an equivalent unconstrained economy is a challenging problem which so far

has only been solved for logarithmic investors (e.g., Cvitanic and Karatzas, 1992; Karatzas

and Shreve, 1998) or CRRA investors but assuming constant investment opportunity sets

(e.g., Tepla, 2000a). We tackle this problem by first expressing the parameters of the

fictitious economy in terms of the stochastic weighting process λ, and the volatilities of λ and

stock returns, which then are obtained in terms of the investors’ wealth-consumption ratios

satisfying Hamilton-Jacobi-Bellman equations. Even though in equilibrium the coefficients

of HJB equations themselves depend on the sensitivities of wealth-consumption ratios with

respect to parameter λ, we demonstrate that the time-independent solutions can easily be

obtained via an iterative procedure that at each step requires solving a simple system of

linear algebraic equations.

Throughout Section 1.3 we assume for simplicity that dividends follow a geometric Brow-

nian motion

dδt = δt[µδdt+ σδdwt], (35)

both investors have CRRA utilities with relative risk aversion parameter γ, given by7

ui(c) =
c1−γ − 1

1− γ , i = 1, 2, (36)

and solve optimization problem in (6) subject to budget constraint (4), no-bankruptcy

constraint Wt ≥ 0, and portfolio constraint θ ≤ θ̄ for investor 2, while investor 1 is uncon-

strained. By Ji(Wt, λt, t) we denote the indirect utility function of investor i.

For convenience, we solve the optimization problem of constrained investor 2 in an

equivalent fictitious unconstrained economy in which she maximizes objective function (6)

subject to budget constraint

dW2t =
[
W2t

(
rt + f2(ν∗2t) + θ2t(µt − rt + ν∗2t)

)
− c2t

]
dt+W2tθ2tσtdwt, (37)

7The assumption that investors have identical risk aversions is made for simplicity. More general case can
be considered along the same lines.
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where ν∗2t and f2(ν∗2t) are adjustments to stock mean returns and riskless rates respectively.

By applying dynamic programming we find that the indirect utility functions should satisfy

the following HJB equations:

0 = max
ci,θi

{
e−ρt

c1−γ
it

1− γ +
∂Jit
∂t

+
[
Wit

(
rt + fi(ν∗it) + θit(µt − rt + ν∗it)

)
− cit

] ∂Jit
∂Wit

−λtµλt
∂Jit
∂λt

+
1
2

[
W 2
itθ

2
itσ

2
t

∂2Jit
∂W 2

it

− 2Witθitλtσtσλt
∂2Jit

∂Wit∂λt
+ λ2

tσ
2
λt

∂2Jit
∂λ2

t

]}
,

(38)

with transversality condition Et[JiT ] → 0 as T → ∞, which guarantees the convergence of

the integral in investors’ optimization (6). We next obtain expressions for ν∗i and fi(ν∗i )

without solving the dual problem by noting that since investor 1 is unconstrained ν∗1 = 0

(case (a) in Table 1.1) while ν∗2 can be obtained from equilibrium expression for σλt in (23),

and hence,

ν∗1t = 0, f1(ν∗1t) = 0, ν∗2t = −σtσλt, f2(ν∗2t) = θ̄σtσλt. (39)

The HJB equations in (38) are standard except for the fact that the equation for investor

2 is in terms of parameters of fictitious economy, which allows to formulate her problem as

an unconstrained one. We conjecture that the indirect utility functions are given by

Ji(Wi, λ, t) = e−ρt
W 1−γ
i

1− γ Hi(λ, t)γ , i = 1, 2. (40)

Then, from the first order conditions with respect to consumption we obtain

c∗it =
Wit

Hit
, i = 1, 2, (41)

where Hit is a shorthand notation for Hi(λ, t), and hence, functions Hit can be interpreted

as the wealth-consumption ratio of investor i. By substituting indirect utility functions (40)

into HJB equations it can be verified that wealth-consumption ratios satisfy the following

PDEs:

∂Hit

∂t
+
λ2
tσ

2
λt

2
∂2Hit

∂λ2
t

−λt
(
µλt+

1− γ
γ

κitσλt

)∂Hit

∂λt
+
(1− γ

2γ
κ2
it+(1−γ)rit−ρ

)Hit

γ
+1 = 0, i = 1, 2,

(42)
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where rit and κit denote riskless rate and price of risk in a fictitious economy and are

defined in (15) in terms of adjustments given in (39). Moreover, optimal investment policies

for investors 1 and 2 are given by

θit =
1
γσt

(
κit − γσλt

∂Hit

∂λt

λt
Hit

)
, i = 1, 2. (43)

Since the horizon is infinite we will look for time-independent and bounded solutions

of equations (42). Moreover, throughout this Section we assume that θ̄ ≤ 1. We note

that if investor 2 faces borrowing constraint, i.e. θ̄ ≥ 1, the equilibrium coincides with the

equilibrium in an unconstrained economy in which the investors, being identical, optimally

choose θ∗it = 1.

Conveniently, since the fictitious economy is complete, the equations for wealth-consumption

ratios in (42) are linear if volatilities σ and σλ are known. However, in equilibrium these

volatilities themselves depend on wealth-consumption ratios Hi. The stock return volatil-

ity σ can be obtained by applying Itô’s Lemma to stock price St = Rtδt, where Rt is a

shorthand notation for the stock price-dividend ratio which can be expressed in terms of

wealth-consumption ratios from the market clearing conditions in (9). Furthermore, the

volatility σλ can be obtained from the complementary slackness condition (30). The follow-

ing Proposition 1.2 summarizes our results and provides a characterization of equilibrium

in terms of wealth-consumption ratios.

Proposition 1.2. If there exists an equilibrium, the riskless interest rate r, market price

of risk κ and drift µλ of weighting process λ that follows (20) are given by

rt = r̄ − λ
1/γ
t

1 + λ
1/γ
t

θ̄σtσλt −
1 + γ

2γ
λ

1/γ
t

(1 + λ
1/γ
t )2

σ2
λt, (44)

κt = κ̄+
λ

1/γ
t

1 + λ
1/γ
t

σλt, (45)

µλt = γσδσλt − θ̄σtσλt −
1

1 + λ
1/γ
t

σ2
λt, (46)

where r̄ is the riskless rate and κ̄ is the market price of risk in an unconstrained economy,
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given by

r̄ = ρ+ γµδ −
γ(1 + γ)

2
σ2
δ , κ̄ = γσδ. (47)

Optimal consumptions c∗i , wealths W ∗i , stock price-dividend ratio R and optimal investment

policies θ∗i are given by

c∗1t =
1

1 + λ
1/γ
t

δt, c∗2t =
λ

1/γ
t

1 + λ
1/γ
t

δt, (48)

W ∗1t = H1t
1

1 + λ
1/γ
t

δt, W ∗2t = H2t
λ

1/γ
t

1 + λ
1/γ
t

δt, (49)

Rt = H1t
1

1 + λ
1/γ
t

+H2t
λ

1/γ
t

1 + λ
1/γ
t

, (50)

θ∗1t =
1
γσt

(
κt − γσλt

∂H1t

∂λt

λt
H1t

)
, θ∗2t = θ̄, (51)

while the volatilities of the stock returns, σ, and weighting process, σλ, are given by

σt = σδ − σλt
∂Rt
∂λt

λt
Rt
, σλt =

(1− θ̄)γσδ
1

1+λ
1/γ
t

+ γ ∂H2t
∂λt

λt
H2t
− θ̄γ ∂Rt∂λt

λt
Rt

, (52)

where wealth-consumption ratios H1t and H2t satisfy equations (42). Moreover, the initial

value λ0 for the weighting process (20) solves equation

sH2(λ0, 0)
λ

1/γ
0

1 + λ
1/γ
0

δ0 − (1− s)H1(λ0, 0)
1

1 + λ
1/γ
0

δ0 = b. (53)

The expressions for riskless rate r and price of risk κ in Proposition 1.2 are in terms

of the of volatilities σ and σλ, as well as parameter λ1/γ which in our economic setting

can be interpreted as the ratio of consumptions of investors 2 and 1, as it follows from the

expressions in (48). As in the general case in Proposition 1.1, interest rates are comprised

of three terms, where the first term is a riskless rate in an unconstrained economy, while the

second and third terms highlight the impact of constraints and risk sharing. Moreover, the

effect of risk sharing, as captured by volatility σλ, can be expressed in terms of consumption

volatilities. In particular, from expression (34) it follows that

σλt = γ(σc1t − σc2t). (54)
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It will be demonstrated later that volatility σλ is positive in equilibrium since investor 1 is

more exposed to risk and hence her consumption growth is more volatile.

Proposition 1.2 also demonstrates that when θ̄ < 1 the portfolio constraint of investor

2 is always binding since otherwise, having identical preferences, both investors should find

optimal to invest θi < 1 which contradicts market clearing conditions (9). Moreover, Propo-

sition 1.2 provides expressions for equilibrium volatilities σ and σλ in terms of the elasticities

of wealth-consumption and price-dividend ratios with respect to weighting process λ, given

by

εH2t =
∂H2t

∂λt

λt
H2t

, εP t =
∂Rt
∂λt

λt
Rt
. (55)

From the expression for the volatility σλ in (52) it follows that σλ is decreasing in elasticity

εH2 and increasing in εP . The effect of elasticities in (55) on volatility σλ then determines

their impact on all the other parameters in equilibrium.

To understand the effect of these elasticities on volatility σλ we observe that elasticity

εH2 is proportional to the stock hedging demand of investor 2 given by the second term in

the expression for optimal policy (43). Moreover, since σλ is positive, it follows from this

expression that higher elasticity εH2 tends to decrease optimal investment in stock. Thus,

higher εH2 makes the stock less attractive, and hence reduces the cost of being constrained.

Therefore, σλ also decreases to reflect decreased risk sharing distortions of the constraint.

Moreover, as follows from the expressions for volatilities (52) the increase in elasticity εP

tends to decrease stock volatility σ since the dividends and weighting process are negatively

correlated. Hence, if volatility σ decreases, the stock becomes more attractive for both

investors. However, since investor 2 is constrained, her ideal unconstrained holding moves

further away from her constrained holding θ̄ and hence the risks are shared in a less optimal

way and σλ increases.

Proposition 1.2 also allows to explicitly identify the coefficients of PDEs (42) for wealth-

consumption ratios Hi, which depend on equilibrium parameters identified in expressions

(44)–(52). Moreover, it appears that the coefficients themselves depend on ratios Hi and
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hence, we obtain a system of quasilinear PDEs the solutions to which completely charac-

terize the equilibrium. We next solve for time-independent solutions of PDEs (42) which

correspond to the infinite horizon case. To solve the equations (42), we first fix a large

horizon parameter T , choose a starting value for Hi(λ, T ) and then solve the equation back-

wards using a modification of Euler’s finite-difference method until the solution converges to

a stationary one. This approach is similar to the subsequent iterations method for solving

Bellman equations in discrete time (e.g., Ljungqvist and Sargent, 2004) when at a distant

time in the future the value function is set equal to some function (usually zero) and then

the value functions at earlier dates are obtained by solving equations backwards.

Since weight λ varies from zero to infinity, we first perform a change of variable and

rewrite the PDEs (42) as well as the equilibrium parameters in Proposition 1.2 in terms of

constrained investor’s share in aggregate consumption, given by

yt =
λ

1/γ
t

1 + λ
1/γ
t

. (56)

Variable y takes values in the interval [0, 1] and provides one-to-one mapping to variable

λ. The solution of PDEs in terms of new variable we label as H̃i(y, t). Assuming that

the solutions to new PDEs are continuous and twice continuously differentiable, setting

in those equations y = 0 and y = 1 we recover boundary conditions for H̃i(y, t). Next, we

replace the derivatives by their finite-difference analogues letting the time and state variable

increments denote ∆t ≡ T/M and ∆y ≡ 1/N , where M and N are integer numbers. Solving

the equation backwards, sitting at time t we compute the coefficients of finite-difference

analogues of PDEs (42) using the solutions H̃i(y, t + ∆t) obtained from the previous step

t+ ∆t. As a result, the coefficients of equations for H̃i(y, t) are known at time t and hence

H̃i(y, t) can be found by solving a system of linear finite-difference equations with three-

diagonal matrix. Appendix B provides further details of the numerical algorithm. The

wealth-consumption ratios then allow us to derive all the parameters of equilibrium.

Remark 1 (Bond prices). Proposition 1.2 allows to determine the instantaneous interest

rate rt. Therefore, the bond price Bt can be obtained by solving numerically the equation
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Figure 1.1: Parameters of Equilibrium with Constraints, γ < 1.

The figure plots interest rates r, market prices of risk κ, price-dividend ratios R and ratios of stock
return and dividend growth volatilities σ/σδ as functions of constrained investor’s consumption share
y. Dividend mean growth rate µδ = 1.8% and volatility σδ = 3.2% are from the estimates in Campbell
(2003), based on consumption data in 1891–1998, while risk aversion and time discount are set to
γ = 0.8 and ρ = 0.01.

for the bond price dynamics (2).

Remark 2 (Existence of Equilibrium). The numerical analysis shows that the function

on the left-hand side of the equation for λ0 in (53) is a monotone function of λ0 and maps

interval [0,∞) into [C0, C1), where C0 and C1 are some constants, and hence, if b ∈ [C0, C1)

there always exists the unique solution λ0 that satisfies the equation. Given the existence

of λ0 and the solutions to HJB equations (42), expressions (44)–(52) fully characterize the

equilibrium in the economy.
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1.3.2. Analysis of Equilibrium

We now study the impact of constraints on various equilibrium parameters. Important im-

plication of our model is that in contrast to models with logarithmic investors the constraints

do affect the price-dividend ratios and stock return volatilities. Figures 1.1 and 1.2 present

equilibrium interest rates, market prices of risk, price-dividend ratios and the ratios of stock

return and dividend growth volatilities as functions of constrained investor’s consumption

share y for different levels of the tightness of constraints θ̄ when risk aversions are less than

unity (γ = 0.8) and greater than unity (γ = 3), respectively. The equilibrium is derived

under plausible parameters for the dividend process.8 We note that in our model the instan-

taneous changes in the dividend growth dδ/δ and constrained investor’s consumption share

dy are negatively correlated since negative shocks to dividends shift relative consumption to

constrained investors, due to the fact that the latter are less affected by adverse stock market

fluctuations. Hence, higher consumption share y is associated with bad times while lower

y is associated with good times. Following the literature (e.g., Chan and Kogan, 2002) we

label economic variables as procyclical if they increase in good times (when dividend growth

rate shocks are positive) and decrease in bad times (when dividend growth rate shocks are

negative), and as countercyclical if they decrease in good times and increase in bad times.

For risk aversion less than unity Figure 1.1 demonstrates that tighter constraints de-

crease interest rates and price-dividend ratios, and increase market prices of risk and stock

return volatilities. For risk aversion greater than unity, Figure 1.2 shows that tighter con-

straints decrease interest rates and stock return volatilities, and increase market prices of

risk and price-dividend ratios. In both cases the impact of constraints is asymmetric and is

more pronounced in bad times, when consumption share y is larger. We first analyze the

equilibrium parameters for the case γ < 1, presented on Figure 1.1, and then for the case

γ > 1, presented on Figure 1.2.
8In particular, the parameters for the dividend process (µδ = 1.8%, σδ = 3.2%) are taken from the

estimates in Campbell (2003), based on consumption data in 1891–1998 years, and the discounting parameter
is set to ρ = 0.01.
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Figure 1.2: Parameters of Equilibrium with Constraints, γ > 1.

The figure plots interest rates r, market prices of risk κ, price-dividend ratios R and ratios of stock
return and dividend growth volatilities σ/σδ as functions of constrained investor’s consumption share
y. Dividend mean growth rate µδ = 1.8% and volatility σδ = 3.2% are from the estimates in Campbell
(2003), based on consumption data in 1891–1998, while risk aversion and time discount are set to
γ = 3 and ρ = 0.01.

Panel (a) of Figure 1.1 presents interest rates when γ < 1 and demonstrates that in

line with the results of Section 1.2 interest rates in constrained economy are lower than in

an unconstrained one for a given consumption share y. Moreover, they become lower with

tighter constraints and are decreasing functions of constrained investor’s share of consump-

tion y. Intuitively, constrained investor invests more in bonds driving interest rates down.

Moreover, constraints prevent the investor from sharing risks efficiently and smoothing con-

sumption over time. As a result, when her current consumption is high the price of future

consumption increases making her more willing to lend at a lower interest causing interest

rates to fall.
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Panel (b) of Figure 1.1 shows that the prices of risk are higher in the constrained than

in the unconstrained economies and increase as constraint becomes tighter. When the

constrained investor invests only a fraction θ̄ < 1 of her wealth in the stock, for the markets

to clear investor 1 should be leveraged so that θ∗1 > 1. This, however, implies that the

unconstrained investor should be more exposed to risk as the constraint tightens, and hence,

the market price of risk should be higher. Moreover, market price of risk also increases with

constrained investor’s consumption share y since in those states in which the unconstrained

investor consumes less and possesses less wealth she is more risk averse and requires market

prices of risk to increase for the stock market to clear. Thus, the market price of risk is

countercyclical, consistently with the empirical literature (e.g., Ferson and Harvey, 1991).

Panel (c) of Figure 1.1 demonstrates that the price-dividend ratios become lower with

tighter constraints and the effect of constraints is more pronounced in states with higher

constrained investor’s consumption share y. To understand the patterns of price-dividend

ratios we first observe that in equilibrium the price-dividend ratio can be interpreted as

the ratio of aggregate wealth over aggregate consumption since the market clearing condi-

tions (9) imply that the sock price equals aggregate wealth while the aggregate consumption

equals the dividend. As a result, the price-dividend ratio will be close to wealth-consumption

ratio of unconstrained or constrained investor depending on which of them dominates in the

market by holding larger fraction of consumption and wealth. When the unconstrained

investor dominates (y is low), the equilibrium will be close to that in the benchmark uncon-

strained economy in which case all equilibrium parameters, including price-dividend ratios,

are constant (dotted lines in Figures 1.1 and 1.2). However, in states with dominating

constrained investor (y is high) the price-dividend ratio is close to constrained investor’s

wealth-consumption ratio, which increases or decreases with tighter constraints depending

on the relative strength of classical income and substitution effects. When the investment

opportunities worsen, the income effect induces investors to decrease consumption and save

more while the substitution effect induces them to consume more and save less due to

cheaper current consumption. For CRRA preferences the intertemporal elasticity of substi-
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tution (IES) equals 1/γ, the income effect dominates for IES < 1 and the substitution effect

dominates for IES > 1 while in the case of IES = 1 both effects perfectly offset each other.

With tighter constraints the investment opportunities for constrained investor worsen due to

the decline in interest rates and inability to fully benefit from the increase in market prices

of risk, and hence her wealth-consumption ratios decrease for γ < 1 via the substitution

effect.9 As a result, the price-dividend ratios decrease with tighter constraints and the effect

is stronger in bad times, when constrained investor dominates the market and the decline

in interest rates is sharper.

The stock return volatilities on panel (d) of Figure 1.1 increase with tighter constrains

and are higher in bad times (when y is high) than in good times (when y is low). This is due

to the fact that the instantaneous changes in price-dividend ratio R and dividend δ are pos-

itively correlated due to the fact that ratio R is a decreasing function of consumption share

y, which is negatively correlated with changes in dividend δ. Consequently, since the stock

price is the product of price-dividend ratio and the dividend, stock return volatility should

be higher in constrained economy. Moreover, this effect is stronger in bad times (when y is

high) due to the concavity of ratio R, and when θ̄ is low, due to the higher sensitivity of ratio

R to changes in y. Thus, for γ < 1 consistently with the empirical literature (e.g., Schwert,

1989; Campbell and Cochrane, 1999) our model generates procyclical price-dividend ratios,

countercyclical stock return volatilities exceeding the volatility of dividends, as well as nega-

tive correlation between changes in stock returns and their volatilities. Moreover, the results

on Figure 1.1 demonstrate that lower price-dividend ratios R predict higher market prices

of risk κ as well as higher risk premia (given by µ− r = κσ).
9The relation between wealth-consumption ratios and the attractiveness of investment opportunities can

conveniently be illustrated in an unconstrained partial equilibrium economy with constant interest rate r and
market price of risk κ = (µ−r)/σ, and an investor maximizing her objective (6) subject to budget constraint
(4) and no-bankruptcy constraint. It can easily be verified that when condition ρ− (1− γ)(r+ 0.5κ2/γ) > 0
is satisfied, the investor’s wealth-consumption ratio is given by:

W

c
=

γ

ρ− (1− γ)(r + 0.5κ2/γ)
,

Hence, if investment opportunities deteriorate due to decrease of r or κ, the wealth-consumption ratio
increases if the income effect dominates (γ > 1) and decreases if the substitution effect dominates (γ < 1).
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Turning to the case γ > 1 we observe from the results shown on Figure 1.2 that the

constraints affect the interest rates and market prices of risk in the same directions as in

the case γ < 1. However, by contrast with the case of γ < 1, due to the dominance of

income effect, price-dividend ratios increase while stock return volatilities decrease with

tighter constraints, and the effects are stronger in bad times.10 One might think that the

results in the case γ > 1 are more plausible than in the case γ < 1 given the evidence (e.g.,

Mehra and Prescott, 1985) that risk aversion is greater than unity. However, we note, that

the intuition for the dynamics of price-dividend ratios and stock return volatilities in our

model is driven by the relative strength of income and substitution effect and not by the

risk aversion per se. It is well known that CARA utility does not allow to separate IES from

the risk aversion and hence, in our setting IES > 1 is necessarily associated with γ < 1.

We also note that since lower θ̄ decreases interest rates and increases market prices of

risk, irrespective of risk aversion γ, the case of restricted participation which corresponds

to θ̄ = 0 better explains the levels of observed interest rates and market prices of risk. In

particular, in our model with plausible parameters described above and γ = 3, when we set

y = 0.7 (e.g., Mankiw and Zeldes, 1991; Guvenen, 2006) we obtain r = 4.8% and κ = 28%,

while the volatilities of individual consumptions are σc1 = 9% and σc2 = 0.7%. The estimates

in Campbell (2003) show that r = 2% and κ = 36%, while Malloy, Moskowitz, and Vissing-

Jorgensen (2009) show that σc1 = 3.6% and σc2 = 1.4%. Thus, our model implies riskless

rates and market prices of risk sufficiently close to those in the data for such a simple model.

Remark 3 (Duffie-Epstein preferences). The discussion above demonstrates that for

risk aversion γ < 1 the model generates empirically plausible patterns for price-dividend

ratios and stock return volatilities while for γ > 1 it generates high market prices of risk and

low interest rates close to those observed in the data. We note that the intuition for price-

dividend ratios and stock return volatilities only relies on the relative strength of income and
10In our model when γ > 1 the instantaneous volatility of stock returns is lower than that of dividend

growth and hence there is no excess volatility. Bhamra and Uppal (2009) demonstrate a significant excess
volatility in a complete-market exchange economy with CRRA investors that differ in risk aversions. Thus,
excess volatility is likely to be present in the extension of our model to the case where investors have different
risk aversions.
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substitution effects. As pointed out above, for CRRA preferences the intertemporal elasticity

of substitution (IES) equals 1/γ and hence high IES leading to the dominance of substitution

effect is only possible for γ < 1. However, more general Duffie-Epstein recursive preferences

allow for IES independent of risk aversion parameter γ (Duffie and Epstein, 1992). Our

results lead to a conjecture that in a model with Duffie-Epstein preferences with both IES

and risk aversion exceeding unity (as in Bansal and Yaron, 2004) it might be possible to

match interest rates and market prices of risk, as well as generate procyclical price-dividend

ratios and countercyclical stock return volatilities which exceed the volatility of dividends,

consistently with the empirical literature.11

Our results also allow to obtain the expressions for consumption growth volatilities of

investors, which also capture the effect of risk sharing between them. The expressions for

the volatilities can be obtained by applying Itô’s Lemma to optimal consumptions (48) and

are reported in the following Corollary 1.2.

Corollary 1.2. The optimal consumption growth volatilities of unconstrained and con-

strained investors are given by

σc1t = σδ +
1
γ

λ
1/γ
t

1 + λ
1/γ
t

σλt, σc2t = σδ −
1
γ

1

1 + λ
1/γ
t

σλt. (57)

It can be shown in our example that the volatility σλ is positive, and hence, consumption

volatilities in (57) imply that unconstrained investor, being exposed to more risk, has larger

volatility of consumption than the constrained one. Basak and Cuoco (1998) show in the

case of restricted participation and γ = 1 that the volatility σc2 of constrained investor

is zero and all the risk is borne by the unconstrained investor. However, in our case with

γ > 1 volatility σc2 is greater than zero, as also in the data for non-stockholders (e.g. Malloy,

Moskowitz, Vissing-Jorgensen, 2009).
11Campbell and Cochrane (1999) and Chan and Kogan (2002) present the models with habit formation

and “catching up with the Joneses” preferences respectively, that explain the patterns for price-dividend
ratios and stock return volatilities.
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Figure 1.3: Probability Density Functions for Constrained Investor’s Share
in Aggregate Consumption, γ = 3.

The figure plots interest rates r, market prices of risk κ, price-dividend ratios R and ratios of stock
return and dividend growth volatilities σ/σδ as functions of constrained investor’s consumption share
y. Dividend mean growth rate µδ = 1.8% and volatility σδ = 3.2% are from the estimates in Campbell
(2003), based on consumption data in 1891–1998, while risk aversion and time discount are set to
γ = 3 and ρ = 0.01.

Finally, we address the question of how the constraints affect the distribution of con-

sumption between the investors. So far we have compared the parameters of equilibria with

different constraint θ̄ for a given level of consumption share y. This comparison does not

account for the fact that share y itself depends on θ̄. Figure 1.3 shows probability density

functions of y for γ = 3, different constraints θ̄ and time horizons equal to ten and one hun-

dred years respectively. The probability densities imply that consumption share y tends to

decline, and hence, the impact of constrained investor becomes smaller in the course of time

even though it is still significant even after hundred years. As discussed in Hong, Kubik and

Stein (2004) stock market participation depends on person-specific characteristics such as

social integrations and education. Thus, specializing to the case of restricted participation

(θ̄ = 0) our model demonstrates that these characteristics lead to gradual, although slow,
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elimination of non-stockholders’ impact on financial markets via natural selection.12

1.4. Extensions and Ramifications

In this Section we demonstrate that our model is extendable to different alternative economic

settings. Section 1.4.1 extends the results of Section 1.2 to the case of heterogeneous beliefs

and provides a numerical solution to the model with CRRA investors with heterogeneous

beliefs when one of them faces short-sale constraints. Section 1.4.2 demonstrates that the

results of Section 1.2 generalize to the environments with multiple assets.

1.4.1. Heterogeneous Beliefs Formulation

We now consider an economy in which investors are constrained and have different beliefs

about mean dividend growth rate in the economy. We first generalize the results of Section

1.2 and derive expressions for the parameters of equilibrium in terms of adjustments in

fictitious economy and the differences in beliefs. Then, we specialize to a framework in

which both investors have identical CRRA preferences and the pessimist faces short-sale

constraints. We solve this model numerically by employing the approach of Section 1.3 and

discuss some properties of the equilibrium parameters.

Basak (2000, 2005) derives expressions for equilibrium parameters for general utility

functions in the economy in which investors face heterogeneous belief but does not study

the impact of constraints as we do in this work. Our model is also related to the model of

Gallmeyer and Hollifield (2008) in which the pessimist has logarithmic preferences and faces

short-sale constraints while the investor with general CRRA is optimistic and unconstrained.

By contrast, our model does not rely on the assumption of a logarithmic constrained investor.

The economic setting is similar to that of Section 1.2. In particular, investors trade in
12In unconstrained economic settings the survival of irrational investors has been studied in Kogan, Ross,

Wang and Westerfield (2004), Berrada (2009), Dumas, Kurshev and Uppal (2009) and Yan (2008), among
others. The results in the latter three works suggest that it takes a long time to eliminate the impact of
irrational investors that have wrong beliefs about mean dividend growth rates. Hugonnier (2008) considers
survival of constrained logarithmic investor and demonstrates that their impact can quickly be eliminated.
However, in his calibration the volatility of dividends is 20% while we set this parameter to the volatility
of aggregate consumption 3.2% taken from Campbell(2003). When in the calibration we choose γ = 1 and
σδ = 20% consistently with Hugonnier our results also imply fast elimination of constrained investor’s impact.
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two securities, a riskless bond and stock, and dividends follow process (1). They agree on

dividends, bond and stock prices and the dividend growth rate volatility σδ but disagree

on the growth rate µδ. Throughout this Section we will be using superscript i to denote

quantities on which investors disagree, while by subscript i investor-specific quantities on

which there is no disagreement. Investors update their beliefs µiδt in a Bayesian fashion:

µiδt = Ei[µδt|Fδt ], i ∈ {o, p}, (58)

where Ei[·] denotes the expectation under the subjective probability measure of investor

i and Fδt is the augmented filtration generated by δt. Both investors have different priors

µiδ0 and investor 1 is optimistic (i = o) while investor 2 is pessimistic (i = p) about the

dividend growth. From the point of view of investor i the dividends and stock prices follow

the processes

dδt = δt[µiδt + σδtdw
i
t], (59)

dSt + δtdt = St[µitdt+ σtdw
i
t], (60)

where wit denotes Brownian motions under the subjective probability measure of investor i.

From the filtering theory in Lipster and Shiryayev (1977) it follows that Brownian mo-

tions wit are given by

dwit =
µδ − µiδt
σδ

dt+ dwt, i ∈ o, p. (61)

By ∆µδt we denote the disagreement process defined as

∆µδt =
µoδt − µ

p
δt

σδt
. (62)

Moreover, if dividends follow geometric Brownian motion (35) and investors’ initial priors

are normally distributed with parameters

µiδ ∼ N(µ̂iδ0, σ̂
i
δ0),

then µiδt is also normally distributed and the processes for µiδt and ∆µδt are given by

dµiδt =
σ̂iδt
σδ
dwit, (63)

d∆µδt = − σ̂
p
δt

σδ
∆µδtdt+

σ̂oδt − σ̂
p
δt

σδ
dwit, (64)
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where

σ̂iδt =
σ̂iδ0σ

2
δ

σ̂iδ0t+ σ2
δ

. (65)

The budget constraint for each investor is given by (4) in which Brownian motion w and

stock mean-return µ are replaced by investor’s subjective Brownian motion wi and mean-

return µi. Each investor solves optimization problem (6) in which now expectation operator

E[·] is replaced by operator Ei[·] under investor’s subjective beliefs, subject to the budget

constraint, no-bankruptcy constraint Wt ≥ 0 and portfolio constraints (5).

The equilibrium in this economy is a set of parameters {rt, µot , µpt , σt} and of consumption

and investment policies {c∗it, α∗it, θ∗it}i∈{o,p} which solve investor i’s dynamic optimization

problem and satisfy market clearing conditions in (9).

As in Section 1.2, the parameters of equilibrium are characterized in terms of adjustments

ν∗i and support functions fi(ν∗i ). We first characterize investor’s marginal utilities in terms

of state prices that follow processes as in (14) but with Brownian motions under subjective

probability measures. Then, we introduce the ratio of their marginal utilities λ, which

follows the process

dλt = −λt[µiλtdt+ σλtdw
i
t]. (66)

By employing market clearing conditions we obtain the parameters of equilibrium. Propo-

sition 1.3 summarizes our results.

Proposition 1.3. If there exists an equilibrium, the riskless interest rate r, perceived market

prices of risk κi, drifts µiλ and volatility σλ of weighting process (66) are given by

rt = r̄t −
At
Aot

fo(ν∗ot)−
At
Apt

fp(ν∗pt)−
A3
t (Pot + Ppt)
2A2

otA
2
pt

σ2
λt −

A3
t

AotApt

(Pot
Aot
− Ppt
Apt

)
δtσδtσλt

− A
2
t

Apt
δtσδt∆µδt +

A2
t

AotApt
σλt∆µδt, (67)

κot = κ̄t +
At
Apt

σλt, κpt = κ̄t −
At
Aot

σλt, (68)

µoλt = Atδtσδtσλt + fo(ν∗ot)− fp(ν∗pt)−
At
Aot

σ2
λt, µpλt = µoλt − σλt∆µδt, (69)
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σλt = ∆µδt +
ν∗ot − ν∗pt

σt
, (70)

where r̄ is the riskless rate and κ̄ is the market price of risk in an unconstrained economy

populated by optimists, given by

r̄t = ρ+Atδtµ
o
δt −

AtPt
2

δ2
t σ

2
δt, κ̄t = Atδtσδt, (71)

Ait, Pit, and At and Pt are absolute risk aversions and prudence parameters of investor i

and a representative investor with utility (19), respectively.

Expressions for optimal consumption c∗i and stock price S are as in Proposition 1.1. Op-

timal wealths W ∗i and optimal investment policies θ∗i are given by expressions (26) and (28)

in which expectation operator E[·] and market prices of risk κ are replaced by subjective oper-

ator Ei[·] and price of risk κi. Initial value λ0 for weighting process (66) is such that budget

constraint at time zero (29) is satisfied. Moreover, adjustments ν∗i satisfy complementary

slackness conditions (30), as in Proposition 1.1.

The expressions for interest rates in Proposition 1.3 demonstrate the impact of het-

erogeneous beliefs on interest rates and subjective market prices of risk. In particular, the

expression for interest rates have additional terms (last two terms in (67)) which demonstrate

the direct effect of disagreement process ∆µδ. Since the disagreement process is positive,

its impact depends on the sign of volatility σλ. Moreover, the expression for volatility σλ in

(70) demonstrates that this parameter itself depends on ∆µδ since the disagreement affects

the efficiency of the risk sharing, quantified by σλ. Unlike the setup of Section 1.2, investors

now disagree also on the market prices of risk, which are given in (68).

We now consider a modification of the model in Section 1.3 in which now investors have

heterogeneous beliefs about the dividend growth rate. In particular, investor 1 is optimistic

and unconstrained while investor 2 is pessimistic and faces constraints that impose a limit

on the short-sales θ ≥ θ, where θ < 0. For simplicity, as in Yan (2008) we assume that

investors do not update their beliefs and believe that dividends follow a GBM

dδt = δt[µiδdt+ σδdw
i
t], (72)
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and their difference in beliefs we denote by ∆µδ. This assumption can further be justified by

noting that under plausible parameters it takes very long time for the beliefs to converge.13

As in Section 1.3 we characterize the equilibrium in terms of the wealth-consumption

ratios of investors which satisfy HJB equations (42) in which the drift parameter µλ is now

investor-specific and should be replaced by µiλ. Our results are summarized in Proposition

1.4.

Proposition 1.4. If there exists an equilibrium, the riskless interest rate r, perceived market

price of risk κi and drifts µiλ of weighting process λ that follows (20) are given by

rt = r̄ +
λ

1/γ
t

1 + λ
1/γ
t

θσt(∆µδ − σλt)−
1 + γ

2γ
λ

1/γ
t

(1 + λ
1/γ
t )2

σ2
λt

−γ λ
1/γ
t

1 + λ
1/γ
t

σδ∆µδ +
λ

1/γ
t

(1 + λ
1/γ
t )2

σλt∆µδ, (73)

κot = κ̄+
λ

1/γ
t

1 + λ
1/γ
t

σλt, κpt = κ̄− 1

1 + λ
1/γ
t

σλt, (74)

µoλt = γσδσλt −
1

1 + λ
1/γ
t

σ2
λt −∆µδκ

p
t + θσt(∆µδ − σλt), µpλt = µoλt −∆µδσλt, (75)

where r̄ is the riskless rate and κ̄ is the market price of risk in an unconstrained economy

populated by optimists, given by

r̄ = ρ+ γµoδ −
γ(1 + γ)

2
σ2
δ , κ̄ = γσδ. (76)

Optimal consumptions c∗i , wealths W ∗i , stock price-dividend ratio R and optimal investment

policies θ∗i are given by

c∗ot =
1

1 + λ
1/γ
t

δt, c∗pt =
λ

1/γ
t

1 + λ
1/γ
t

δt, (77)

13In particular, assuming that investors have the same variances for the prior belief, σ̂iδ0 = σ̂δ0, equations
for the disagreement and estimation error processes in (64) and (65) imply that

∆µδt = ∆µδ0

(
σ2
δ

σ̂δ0t+ σ2
δ

)σδ
.

Assuming further that σ̂δ0 = σδ and taking σδ = 3.2%, as in Campbell (2003), we obtain that it takes 100
years for the disagreement ∆µδ to decrease by 20%.
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W ∗ot = Hot
1

1 + λ
1/γ
t

δt, W ∗pt = Hpt
λ

1/γ
t

1 + λ
1/γ
t

δt, (78)

Rt = Hot
1

1 + λ
1/γ
t

+Hpt
λ

1/γ
t

1 + λ
1/γ
t

, (79)

θ∗ot =
1
γσt

(
κot − γσλt

∂Hot

∂λt

λt
Hot

)
, θ∗pt =

1
γσt

(
κpt − γσλt

∂Hpt

∂λt

λt
Hpt

)
, (80)

while the volatilities of the stock returns, σ, and weighting process, σλ, are given by

σt = σδ − σλt
∂Rt
∂λt

λt
Rt
, σλt = min

{ (1− θ)γσδ
1

1+λ
1/γ
t

+ γ
∂Hpt
∂λt

λt
Hpt
− θγ ∂Rt∂λt

λt
Rt

,∆µδ
}
, (81)

where wealth-consumption ratios Hot and Hpt satisfy equations (42). Moreover, the initial

value λ0 for the weighting process (20) solves equation

sHp(λ0, 0)
λ

1/γ
0

1 + λ
1/γ
0

δ0 − (1− s)Ho(λ0, 0)
1

1 + λ
1/γ
0

δ0 = b. (82)

Proposition 1.4 characterizes equilibrium parameters in terms of wealth-consumption

ratios and highlights the effects of heterogeneous beliefs and short-sale constraints. Crucial

difference form the results of Proposition 1.2 is that now market prices of risk (74) and

the drifts of weighting process (75) are investor-specific due to investors’ disagreement on

the dividend growth. Moreover, the short-sale constraint will not always be binding in

equilibrium since when constrained investor’s share of aggregate consumption is large she

becomes more willing to smooth consumption over time and invests more in stock.

By calibrating our economy to plausible parameters we find that constraints have little

effect on riskless rates, while market prices of risk are investor-specific. Therefore, we here

focus on price-dividend ratios and stock return volatilities which are presented on Figure 1.4

for different levels of θ. We here consider only the case γ > 1 and note that the case γ < 1 can

be analyzed in a similar way. The dotted lines correspond to quantities in an unconstrained

economy (θ = −∞) which are computed using explicit formula for stock prices in terms of

weighting process λ, available in Yan (2008). We assume that the optimist has correct beliefs

about mean dividend growth while the pessimist underestimates it by 40%. The first picture
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Figure 1.4: Price-Dividend Ratios and Ratios of Stock Return and Dividend
Growth Volatilities with Heterogeneous Beliefs, γ > 1.

The figure plots interest rates r, market prices of risk κ, price-dividend ratios R and ratios of stock
return and dividend growth volatilities σ/σδ as functions of constrained investor’s consumption share
y. Dividend mean growth rate µδ = 1.8% and volatility σδ = 3.2% are from the estimates in Campbell
(2003), based on consumption data in 1891–1998, while risk aversion and time discount are set to
γ = 3 and ρ = 0.01.

on Figure 1.4 demonstrates that tighter short-selling constraints (higher θ) increase price-

dividend ratios. In the presence of short-sale constraints the optimist should hold less stocks

in equilibrium which decreases her perceived market price of risk. As a result, investment

opportunities deteriorate and her wealth-consumption ratio increases due to the dominance

of substitution effect. Thus, when the optimist dominates in the market, the price-dividend

ratio should go up for the similar reasons as in Section 1.3. When the pessimist dominates,

the constraint does not bind and the price-dividend ratio becomes closer to that in the

unconstrained case.

It can also be observed that the price-dividend ratios on panel (a) of Figure 1.4 are U-

shaped when θ is low, even though this effect is not economically significant. To understand

the intuition, we observe that when the optimist dominates in the market, when pessimist’s

consumption and wealth share gradually increases, she shorts more in proportion of her

wealth. As a result, the optimist should hold more stocks in equilibrium which requires

higher market prices of risk, and hence, better investment opportunities. Therefore, the

income effect decreases the optimist’s wealth-consumption ratio. However, as the pessimist’s
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consumption share increases further, at some point the price-dividend ratio should start

increasing again since when the pessimist dominates, the optimist’s wealth is low and she

becomes unable to hold large amount of stock. As a result, shorting becomes less attractive

for the pessimist in equilibrium and her subjective market price of risk increases pushing up

the wealth-consumption ratio and hence the price-divided ratio.

Panel (b) of Figure 1.4 demonstrates that stock return volatility can both be higher

and lower than the volatility of dividends, which is due to the U-shaped form of the price-

dividend ratio. Moreover, as short-sale constraints become tighter the volatility of stock

returns decreases for small consumption shares y, increases for medium y, and is almost

unchanged for values of y close to unity when the constraint does not bind. Intuitively,

short-sale constraints limit the ability of the pessimist to trade on her pessimism and hence

her stockholding look as if she had smaller disagreement with the unconstrained investor. As

a result, the economic parameters should become closer to the values in the unconstrained

economy without disagreement. In particular, stock return volatilities should move closer

to the volatility of dividends σδ, which we observe on Figure 1.4. This effect can also

be formally demonstrated by observing that adjustment parameters for unconstrained and

constrained investors are such that ν∗o = 0 (case (a) in Table 1.1) and ν∗p ≥ 0 (case (e)

in Table 1.1), and hence the volatility σλ given by (70) decreases towards zero since the

volatility of stock returns σ is positive. Then, from the expression for volatility σ in (81) it

follows that the difference between σ and dividend growth volatility σδ becomes smaller.

In a similar model with a logarithmic constrained pessimist Gallmeyer and Hollifield

(2008) find that the stock return volatility increases when the unconstrained optimist has

risk aversion γ > 1 and each investor is initially endowed with 50% of the market portfolio.

By contrast with their work we present the analysis of price-dividend ratios and stock

return volatilities as functions of both the pessimist’s consumption share y and the tightness

of the short-sale constraint. Moreover, we show that the volatility σ can decrease with

tighter constraints even though the economic magnitude of this effect is small. Finally, our

numerical method relies only on solving linear algebraic equations at each step rather than
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employing Monte-Carlo simulations as in their work.

1.4.2. Multiple Stock Formulation

We now demonstrate that the baseline analysis of Section 1.2 with single stock can easily

be generalized to the case of multiple stocks. The uncertainty is now generated by a multi-

dimensional Brownian motion w = (w1, ..., wN). The investors trade in a riskless bond

and N stocks in a positive net supply, normalized to unity, each of which is a claim to an

exogenous strictly positive stream of dividends δn following the dynamics

dδnt = δnt[µδntdt+ σ>δntdwt], n = 1, ..., N, (83)

where µδn and σδn are stochastic processes. We consider equilibria in which bond prices, B,

and stock prices, S, follow processes

dBt = Btrtdt (84)

dSnt + δntdt = Snt[µntdt+ σ>ntdwt], n = 1, ..., N. (85)

We let µ ≡ (µ1, ..., µN)> denote the vector of stock mean returns and σ ≡ (σ1, ..., σN)>

the volatility matrix, assumed invertible, with each component measuring the covariance

between the stock return and Brownian motion wn. By δ we denote the process for aggregate

dividend, δ = δ1 + δ2 + ...+ δN , which follows the process

dδt = δt[µδt + σ>δtdwt], (86)

where

µδt =
δ1t

δt
µδ1t + ...+

δNt
δt
µδN t, σδt =

δ1t

δt
σδ1t + ...+

δNt
δt
σδN t.

Investor 1 is endowed with sn units of stock n and −b units of bond, while investor 2 is

endowed with 1 − sn units of stock n and b units of bond. Investor i’s wealth process W

follows

dWit =
[
Wit

(
rt + θ>it (µt − rt)

)
− cit

]
dt+Witθ

>
itσtdwt, (87)

and her investment policies are subject to portfolio constraints

θi ∈ Θi, i = 1, 2, (88)
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where Θi is a closed convex set in RN and θ = (θ1, ..., θN)> is the vector of wealth proportions

invested in the N stocks. Each investor i solves her dynamic optimization (6) subject to

budget constraint (87), no-bankruptcy constraint Wt ≥ 0 and portfolio constraints (88).

Following the approach of Section 1.2 we first embed the optimization problem for each

investor into an equivalent fictitious complete-market economy in which stock prices evolve

as

dξit = −ξit[ritdt+ κ>itdwt]. (89)

Assuming that dual problems in Cvitanic and Karatzas (1992) have solutions we obtain that

riskless rates rit and market prices of risk κit in fictitious economy are given by

rit = rt + fi(ν∗it), κit = κt + σ−1
t ν∗it, (90)

where κ is the market price of risk in the original economy, fi(ν) are support functions for

the sets Θi, defined as

fi(ν) = sup
θ∈Θi

(−ν>θ), (91)

ν∗1t and ν∗2t solve duality optimization problem in Cvitanic and Karatzas (1992) and belong

to the effective domains for support functions, given by

Υi = {ν ∈ RN : fi(ν) <∞}. (92)

Proposition 1.5 characterizes the equilibrium in terms of the adjustments ν∗it and f(ν∗it)

in fictitious economies and the parameters of the process for the ratio of marginal utilities

of consumption, λt, which evolves as

dλt = −λt[µλtdt+ σ>λtdwt]. (93)

Proposition 1.5. If there exists an equilibrium, the riskless interest rate r, market price

of risk κ, drift µλ and volatility σλ of weighting process λ that follows (93) are given by

rt = r̄t−
At
A1t

f1(ν∗1t)−
At
A2t

f2(ν∗2t)−
A3
t (P1t + P2t)
2A2

1tA
2
2t

σ>λtσλt−
A3
t

A1tA2t

(P1t

A1t
−P2t

A2t

)
δtσ
>
δtσλt, (94)
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κt = κ̄t −
At
A1t

σ−1
t ν∗1t −

At
A2t

σt
−1ν∗2t, (95)

µλt = Atδtσ
>
δtσλt + f1(ν∗1t)− f2(ν∗2t)−

At
A1t

σ>λtσλt , σλt = σ−1
t (ν∗1t − ν∗2t), (96)

where r̄ is the riskless rate and κ̄ is the market price of risk in an unconstrained economy,

given by

r̄t = ρ+Atδtµδt −
AtPt

2
δ2
t σ
>
δtσδt, κ̄t = Atδtσδt, (97)

Ait, Pit, and At and Pt are absolute risk aversions and prudence parameters of investor i and

a representative investor with utility (19), respectively. Optimal consumptions c∗i , wealths

Wi and optimal investment policies θ∗i are given by

c∗it = gi(δt, λt), (98)

W ∗it =
1
ξit
Et

[∫ ∞
0

ξisc
∗
isds

]
, (99)

θ∗it = σ−1
t

(
W ∗it(κt + σ−1

t ν∗it) +
φit
ξit

)
, (100)

where functions gi(δt, λt) are such that c∗1t and c∗2t satisfy consumption clearing in (9) and

equation (18) for process λ, state prices ξit follow processes (14) and φi are such that

Mit ≡ Et
[∫ ∞

0
ξisc
∗
isds

]
= Mi0 +

∫ t

0
φ>isdws.

Initial value λ0 is such that budget constraints at time 0 are satisfied:

si1S10 + ...+ siNSN0 + bi = W ∗i0, (101)

where s1n = sn, s2n = 1 − sn, b1 = −b and b2 = b. Moreover, adjustments ν∗it satisfy

complementary slackness condition

fi(ν∗it) + θ∗>it ν
∗
it = 0. (102)

The expression for interest rates (94) can again be decomposed into three groups of terms

that represent riskless rate in an unconstrained economy, the impact of constraints and the

effect of risk sharing. The last term in (94) also shows that in the case of heterogeneous
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utility functions the interest rates depend on the covariance between aggregate dividend and

weighting process λ, captured by σ>δ σλ. The expression for equilibrium interest rates also

allows to formulate a simple sufficient condition under which the equilibrium interest rates

in the constrained economy are lower than in the unconstrained one.

Corollary 1.3. If the utility functions and the allocations of consumption are such that

P1/A1 = P2/A2 and the sets of portfolio constraints Θi contain the origin, i.e. 0 ∈ Θi, then

the interest rate in a constrained economy, r, is lower than in an unconstrained one, r̄, and

the following upper bound for rate r holds:

rt ≤ r̄t −
A3
t (P1t + P2t)
2A2

1tA
2
2t

σ>λ σλ. (103)

The expressions for the market price of risk now reflect the impact of multiple constraints.

By contrast with the single stock case, market clearing conditions can only determine the

aggregate value of all stocks and not the values of individual ones. Moreover, as demon-

strated in Hugonnier (2008) if the weighting process is not a martingale then there might

be multiple equilibria with different stock prices but unique riskless rates and market prices

of risk. The application of the methodology developed in Section 1.3 for finding equilibria

in a multi-stock economy we leave for the future research.

1.5. Conclusion

Despite numerous applications of dynamic equilibrium models with heterogeneous investors

facing portfolio constraints, little is known about the equilibrium when we depart from the

assumption of logarithmic preferences. In various frameworks we provide explicit expres-

sions for interest rates and market prices of risk in terms of instantaneous volatilities of

stock returns and consumptions as well as risk aversions and prudence parameters. We then

consider an economic setting where one investor is unconstrained while the other faces up-

per bound on the proportion that can be invest in stocks, and both investors have identical

CRRA utilities. We completely characterize the equilibrium in terms of investors’ wealth-
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consumption ratios satisfying a pair of differential equations that we solve numerically by

employing a simple iterative algorithm. We further demonstrate that the direction in which

portfolio constraints change price-dividend ratios and stock returns volatilities crucially de-

pends on the intertemporal elasticity of substitution (IES). In particular, when the IES is

greater than unity the model generates countercyclical market prices of risk and stock return

volatilities, procyclical price-dividend ratios, excess volatility and other patterns consistent

with empirical findings. We also find that the impact of constrained investor diminishes in

the course of time but is still significant even after one hundred years. Our approach is then

extended to the case of heterogeneous beliefs and multiple assets. Given the tractability of

our analysis we believe that our approach for finding equilibria in economies with constraints

may find applications in various models with heterogeneous investors and incomplete finan-

cial markets as well as in solving portfolio choice problems with constraints at a partial

equilibrium level.
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1.6. Appendix A: Proofs

Proof of Proposition 1.1. First, we obtain a system of equations for parameters of

the fictitious economy by substituting the expressions for optimal consumption (17) into

consumption clearing condition in (9), applying Itô’s Lemma to both sides and matching

the coefficients. Noting from the properties of inverse functions that

I ′i(ψie
ρtξit) =

1
u′i(c

∗
it)
, I ′′i (ψieρtξit) = −u

′′
i (c
∗
it)

u′i(c
∗
it)

1
(u′i(c

∗
it))2

,

we obtain the following equations

rt − ρ
At

+
f1(ν∗1t)
A1t

+
f2(ν∗2t)
A2t

+
1
2

(
P1t

( κ1t

A1t

)2
+ P2t

( κ2t

A2t

)2)
= δtµδt, (104)

κ1t

A1t
+
κ2t

A2t
= δtσδt. (105)

By applying Itô’s Lemma to both sides of the definition of λ in (18) and noting that marginal

utilities u′i(c
∗
i ) are given by (16), matching the terms we obtain the drift µλ and volatility

σλ of the weighting process (20):

µλt = σλtκ2t + f1(ν∗1t)− f2(ν∗2t), σλt = κ1t − κ2t. (106)

Taking into account the definition of κit in terms of adjustments in (15) from equations

(104)–(106) we obtain expressions (21)–(23) in Proposition 1.1. Analogously, it can be

shown that in the unconstrained economy the interest rate is given by (24).

Optimal consumptions c∗it are obtained from consumption clearing and the equation for

weight λ in (18). Expressions for optimal wealths and optimal policy (26) and (28) follow

from the results in Cox and Huang (1989), Huang and Pages (1992) and Karatzas and

Shreve (1998), while stock prices (3) are derived from the market clearing conditions in (9).

The complementary slackness condition in (30) is established in Chapter 6.3 of Karatzas

and Shreve (1998). Q.E.D.

Proof of Corollary 1.1. The proof directly follows from Proposition 1.1 by noting that

the last term in the expression for r in (21) disappears. Q.E.D.
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Proof of Proposition 1.2. We obtain expressions (44)–(48) for equilibrium parameters

from expressions (21)–(25) in Proposition 1.1 by substituting adjustment parameters (39)

and risk-aversion and prudence parameters for CRRA preferences, given by

A1t =
γ

c1t
, A2t =

γ

c2t
, At =

γ

δt
,

P1t =
1 + γ

c1t
, P2t =

1 + γ

c2t
, Pt =

1 + γ

δt
.

(107)

We first demonstrate that the constraint for investor 2 should always be binding in

equilibrium. The complementary slackness condition (30), given expressions for adjustments

(39), takes the form (θ̄ − θ∗2t)ν∗2t = 0. Therefore, if constraint does not bind it follows that

ν∗2t = 0. Hence, from (23) we obtain that σλt = 0 and µλt = 0 and the economy will

permanently remain in a Pareto-efficient unconstrained equilibrium. As a result, since the

investors have identical preferences and the equilibrium investment opportunity sets are

constant when σλt = 0 and µλt = 0, it can easily be verified that the investors will choose

θ∗it = 1, which violates constraint θ2t ≤ θ̄ < 1. Therefore, the constraint should always be

binding in equilibrium.

Expressions for wealths W ∗it follow from the first order condition for consumption in (41),

while the expression for price-dividend ratio R follows from the expression for stock price

(3), derived from consumption clearing, and the expressions for wealths in (49). Optimal

policy for investor 1, θ∗1t, in (51) is obtained by solving an HJB equation, while policy for

investor 2 equals θ̄ since the investor always binds on her constraint, as demonstrated below.

Stock return volatility σ in (52) is derived by applying Itô’s Lemma to stock price, given by

St = Rtδt.

From the definition of κit in (15), expression for κt in (45) and expressions for adjustments

in (39) we find that

κ2t = γσδ −
1

1 + λ
1/γ
t

σλ. (108)

Substituting κ2t from (108) into expression for optimal investment policy (43) and noting
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that constraint θ2t ≤ θ̄ is always binding we obtain the following equation for σλ:

1
γσt

(
γσδ − σλt

( 1

1 + λ
1/γ
t

+ γ
∂H2t

∂λt

λt
H2t

))
= θ̄. (109)

Substituting volatility σ given by first expression in (52) into equation (109) and solving

it yields σλ given by second expression in (52). Finally, the equation for λ0 is obtained

so as to satisfy time-0 budget constraints (29). By substituting W ∗10, W ∗20 and S0 = R0δ0

from Proposition 1.2 into the budget constraints (29) it can easily be observed that both

constraints are satisfied whenever equation (53) for λ0 holds.14

Q.E.D.

Proof of Corollary 1.2. Applying Itô’s Lemma to both sides of the first order conditions

for consumption (16) and matching the terms we find that

citσcit =
κit
Ait

. (110)

Since investor 1 is unconstrained, κ1 = κ and is given by (45) while κ2 is given by (108).

Substituting κ1 and κ2 into (110) and noting that for CRRA utility Ai = γ/ci we obtain

expressions (57) for volatilities σci . Q.E.D.
14We also note that the results of Proposition 1.2 can be derived without relying on the methodology

in Cvitanic and Karatzas (1992) by solving the HJB for investor 2 directly in constrained economy. Since
the constraint is always binding the problem is equivalent to the one with constraint θ2t = θ̄. The HJB
equation is then given by (38) in which θ2t = θ̄ and ν∗it = 0, since we solve in constrained economy. Then,
conjecturing that J2t has form (40) yields the equation for H2t. From the first order condition (41) we obtain
e−ρtW−γ2t H

γ
2t = ξ2t, where ξ2t is the marginal utility of investor 2 which follows the process (14). Applying

Itô’s Lemma to both sides shows that

θ̄σt =
κ2t

γ
− σλt

∂H2t

∂λt

λt
H2t

.

Substituting this expression into HJB after some algebra we obtain equation (42) for investor 2. Price of risk
κ2 can be found from (105)–(106) while r2 can be found by applying Itô’s Lemma to ξ2tW2t = e−ρtW 1−γ

2t Hγ
2t,

noting that the right-hand side satisfies HJB equation, θ2t = θ̄, and matching the terms.
Moreover, since investor 1 faces complete market, in the derivation of rt and κt to obtain equations

(104)–(105) we assume that u′(c∗1t) = ψ1e
ρtξ1t where

ξ1t = −ξ1t[rtdt+ κtdwt].

Huang and Pages (1992) derive this result assuming that
∫ t
0
|rτ |dτ < ∞ a.s., and κt < K̄ a.s., where K̄

is a constant. It is difficult to check these conditions analytically. However, the graphs on Figure 1.3
demonstrate that the states with y close to 1, where rt and κt are unbounded, have zero probability, and
hence, the conditions are likely to be satisfied. We also check numerically that the integrals in investor’s
optimization (6) converge to Jit derived in Section 1.3.
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Proof of Proposition 1.3. From expression (61) we first express Brownian motion wp

in terms of Brownian motion wo as follows:

dwpt = ∆µδtdt+ dwot , (111)

and then rewrite all subsequent stochastic processes in terms of Brownian motion wo under

the optimist’s probability measure. Then, state prices ξit in fictitious economies follow

processes:

dξot = −ξot[rotdt+ κotdw
o
t ], dξpt = −ξpt[(rpt + ∆µδtκ

p
t )dt+ κptdw

o
t ]. (112)

Optimal consumptions in fictitious economies are given by (17). Substituting them into

consumption clearing condition in (9), applying Itô’s Lemma to both sides and matching

terms as in the proof of Proposition 1.1 after some algebra we obtain:

rt − ρ
At

+
fo(ν∗ot)
Aot

+
fp(ν∗pt)
Apt

+
1
2

(
Pot

( κot
Aot

)2
+ Ppt

( κpt
Apt

)2)
=

κot
Aot

µoδt
σδt

+
κpt
Apt

µpδt
σδt

,(113)

κot
Aot

+
κpt
Apt

= δtσδt. (114)

By applying Itô’s Lemma to both sides of the definition of λ in (18) and noting that marginal

utilities u′i(c
∗
i ) are given by (16) and state prices follow (112), matching the terms we obtain

the drift µλ and volatility σλ of the weighting process (66) for the optimist:

µoλt = σλtκ
p
t −∆µδtκ

p
t + fo(ν∗ot)− fp(ν∗pt), σλt = κot − κpt . (115)

Using equations (113), (114) and the second equation in (115) we obtain expressions for r

and κ in Proposition 1.3.

To obtain drift µpλt we rewrite the process for λt given by (66) under the Brownian

motion of the optimist as follows

dλt = −λt[(µpλt + σλt∆µδt)dt+ σλtdw
o
t ].

Matching the drift parameters for the processes for λt from both optimist’s and pessimist’s

points of view yields expression for µpλt in Proposition 1.3. To obtain expression for σλ we
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note first that by the definition of prices of risk in fictitious economies

κot =
µot − rt
σt

+
νoit
σt
, κpt =

µpt − rt
σt

+
νpit
σt
. (116)

Moreover, rewriting the process for stock prices St for both the optimist and pessimist in

terms of Brownian motion wo

dSt = St[µotdt+ σtdw
o
t ]

= St[(µ
p
t + ∆µδtσt)dt+ σtdw

o
t ],

and matching the terms we obtain

µot − µpt
σt

= ∆µδt. (117)

The expression for σλ in (115) along with equations (116) and (117) gives σλ reported in

Proposition 1.3. The rest of the proof is as in Proposition 1.1. Q.E.D.

Proof of Proposition 1.4. From the definition of the support function in (12) applied

to θ ≥ θ and the expression (70) for volatility σλ we obtain the adjustment parameters:

ν∗1t = 0, f(ν∗1t) = 0, ν∗2t = σt(∆µδt − σλt), f(ν∗2t) = −θσt(∆µδt − σλt). (118)

Substituting adjustments (118) and risk-aversion and prudence parameters in (107), into the

expressions (67)–(71) we obtain equilibrium parameters (73)–(76) reported in Proposition

1.4.

Consumptions (77) are obtained from the consumption clearing condition in (9) and

definition of λt in (18). Wealth-consumption ratios Ho and Hp satisfy HJB equations (42)

in which µλ is replaced by µoλ and µpλ respectively. Hence, from the first order condition

for consumption in (41) and market clearing condition we obtain expressions for W ∗it and

Rt. Expressions for optimal policies are obtained by solving HJB equations in fictitious

economies, as in Section 1.3, while stock return volatility σ is obtained by applying Itô’s

Lemma to stock price St = Rtδt.

The complementary slackness condition in (30) in our setting takes the form (θ−θ∗it)ν∗it =

0. As a result, if constraint is not binding ν∗it = 0, and hence, from the expression in (70) it
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follows that σλ = ∆µδt. To solve for σλ when the constraint is binding we first substitute

κp from (74) into the investment policy (80) and obtain

θ∗pt =
1
γσt

(
γσδ − σλt

( 1

1 + λ
1/γ
t

+ γ
∂Hp

t

∂λt

λt
Hp
t

))
. (119)

Then, substituting σ from (81) into (119) and solving equation θ∗pt = θ we obtain

σλt =
(1− θ)γσδ

1

1+λ
1/γ
t

+ γ
∂Hpt
∂λt

λt
Hpt
− θγ ∂Rt∂λt

λt
Rt

. (120)

Moreover, since ν∗2t ≥ 0 (Table 1.1 case (e)) if the constraint binds σλ is given by (120) and

should be lower than ∆µδt which leads to expression for σλ in Proposition 1.4.15

Q.E.D.

Proof of Proposition 1.5. The proof is a multi-dimensional version of the proof of

Proposition 1.1.
Q.E.D.

Proof of Corollary 1.3. From the definition of support functions in (12) it follows easily

that fi(ν) ≥ 0 if 0 ∈ Θi. Then, the proof follows from the fact that in the expression for

interest rates r in Proposition 1.5 the second and third terms are positive while the last

term vanishes.
Q.E.D.

15Similarly to the discussion in the footnote in the proof of Proposition 1.2 it can be argued that the results
in Proposition 1.4 can be obtained without relying on the methodology in Cvitanic and Karatzas (1992).
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1.7. Appendix B: Numerical Method

We here present the details of our numerical solution method in Section 1.3 first for γ > 1

and then for γ < 1. Since variable λ takes values in the interval (0,+∞) we first rewrite

the HJB equations (42) in terms of variable y = λ1/γ/(1 + λ1/γ). By H̃i(y, t) we denote the

wealth-consumption ratios as functions of y so that

Hi(λ, t) = H̃i(y(λ), t). (121)

The derivatives of Hi(λ, t) then can be expressed in terms of derivatives of H̃i(y, t) by

differentiating both sides in (121) as follows:

∂Hit

∂t
=

∂H̃it

∂t
, λt

∂Hit

∂λt
=
y(1− y)

γ

∂H̃it

∂y
, (122)

λ2
t

∂2Hit

∂λ2
t

=
y2(1− y)2

γ2

∂2Hit

∂y2
+

2y(1− y)((1− γ)/2− y)
γ2

∂H̃it

∂y
. (123)

Taking into account our change of variable and the expressions for derivatives in (122)–

(123) from the expressions in Proposition 1.2, definitions of parameters rit and κit in (15),

and expressions for adjustment parameters in (39) we obtain the following expressions for

equilibrium parameters in fictitious economies:

r1t = r̄ − y

1− y θ̄σtσyt −
1 + γ

2γ
y

1− yσ
2
yt, κ1t = γσδ +

y

1− yσyt,

r2t = r̄ + θ̄σtσyt −
1 + γ

2γ
y

1− yσ
2
yt, κ2t = γσδ − σyt,

µλt =
µyt

1− y , σλt =
σyt

1− y

(124)

where r̄ is given by (47), µyt, σt and σyt are given by

µyt = γσδσyt−θ̄σtσyt−σ2
yt, σt = σδ−

σyt
γ

∂R̃t
∂yt

yt

R̃t
, σyt =

(1− θ̄)γσδ

1 + ∂H̃2t
∂yt

yt
H̃2t
− θ̄ ∂R̃t∂yt

yt
R̃t

, (125)

and R̃t is a price-dividend ratio as a function of y. Substituting expressions for derivatives

(122) and (123) into the HJB equations (42) we obtain the following PDEs for H̃it:

∂H̃it

∂t
+
y2
t σ

2
yt

2γ2

∂2H̃it

∂y2
t

+
yt
γ2

(
σ2
yt

(1− γ)/2− yt
1− yt

− γµyt − (1− γ)κitσyt
)∂H̃it

∂yt

+
1
γ

(1− γ
2γ

κ2
it + (1− γ)rit − ρ

)
H̃it + 1 = 0, i = 1, 2.

(126)
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To find stationary, time-independent solutions of equations (126) we fix a large horizon T ,

pick two functions h̃1(y) and h̃2(y), specify terminal condition

H̃i(y, T ) = h̃i(y), i = 1, 2, (127)

and solve HJB equations (126) backwards until the convergence to stationary solutions. We

assume that functions h̃i are continuous and differentiable on the interval [0, 1] and satisfy

conditions h̃1(1) = 0 and h̃′2(1) = (γ − 1)h̃2(1).

We assume that H̃i(y, t) are twice continuously differentiable in the interval (0, 1), have

bounded first and second right derivatives at y = 0, σ2
y > 0, and there exist limits (1 −

y)2∂2H̃1(y, t)/∂y2 → 0, (1 − y)∂2H̃2(y, t)/∂y2 → 0 and (1 − y)∂H̃1(y, t)/∂y → 0, as y →

1. After we compute the solutions we also verify numerically that these assumptions are

satisfied for γ > 1.

Passing to the limit y → 0 in equations (126) we obtain simple ordinary differential

equations for Hi(0, t) solving which yields boundary conditions at y = 0:

H̃i(0, t) = h̃i(0)epi(T−t) +
epi(T−t) − 1

pi
, i = 1, 2, (128)

where

p1 =
1− γ

2
θ̄2σ2

δ +
(1− γ)r̄ − ρ

γ
, p2 =

1− γ
2

σ2
δ +

(1− γ)r̄ − ρ
γ

. (129)

Expressions in (128) and (129) demonstrate that conditions pi ≤ 0 are necessary for the

existence of stationary solutions of equations (126). To obtain boundary conditions at y = 1

we multiply the equations for H1(y, t) and H2(y, t) by (1−y)2 and (1−y), respectively, and

passing to the limit y → 1 we obtain:

(1− θ̄)(γ − 1)H̃1(1, t) = 0,
∂H̃2(1, t)

∂y
= (γ − 1)H̃2(1, t). (130)

The problem then becomes to solve HJB equations (126) subject to terminal condition (127)

and boundary conditions (128) and (130).

For simplicity, in the description of the numerical method we omit subscript i. We

let the time and state variable increments denote ∆t ≡ T/M and ∆y ≡ 1/N , where M
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and N are integer numbers, and index time and state variables by t = 0,∆t, 2∆t, ..., T and

y = 0,∆y, 2∆y, ..., 1, respectively. Next, we derive discrete-time analogues of HJB equations

and boundary conditions replacing derivatives by their finite-difference analogues as follows:

H̃n,k+1 − H̃n,k

∆t
+an,k+1

H̃n+1,k − 2H̃n,k + H̃n−1,k

∆y2
+bn,k+1

H̃n,k − H̃n−1,k

∆y
+cn,k+1H̃n,k+1 = 0,

(131)

H̃n,M = h̃n, H̃0,k = d0,k, H̃N,k = eN,kH̃N−1,k, (132)

where n = 1, 2, ..., N − 1, k = 1, 2, ...,M − 1, H̃n,k = H̃(n∆y, k∆t). The coefficients in (131)

correspond to coefficients in equation (126) and are computed using the solution H̃n,k+1,

while coefficients in (131) are obtained by replacing terminal condition (127) and boundary

conditions (128) and (130) by their finite-difference analogues. The system of equations in

(131)–(132) is then solved backwards in time, starting at k = M − 1. Given solution Hn,k+1

we compute all the coefficients in (131) at step k+ 1, and hence at step k function Hn,k for

fixed k solves a system of linear algebraic equations. We then iterate backwards until the

process converges to a stationary time-independent solution.

Figure 1.1 shows the numerical solutions for wealth-consumption ratios plotted against

constrained investors share of consumption, y, for plausible exogenous parameters. These

numerical solutions have the appearance of bounded and twice continuously differentiable

on interval [0, 1] functions irrespective of the grid parameter ∆y. Assuming that they

are indeed twice continuously differentiable, and given that they satisfy finite-difference

equations (131)–(132), passing to a limit ∆y → 0 indeed gives solutions to the HJB equations

for wealth-consumption ratios.16

When risk aversion γ is less than unity wealth-consumption ratio H1t and its derivatives

become unbounded while σyt approaches zero, as y approaches unity. As a result, the

assumptions under which the boundary conditions (128) and (130) are derived are violated.

However, it turns out that function (1 − y)H1t is bounded and equals zero when y = 1.
16As an additional check we also verify by Monte-Carlo simulations that for both investors integrals in

their optimization problem (6) do not explode under optimal consumption policies in (48) and converge
to the values obtained by our numerical method. The convergence of those integrals also implies that the
transversality conditions for HJB equations (38) are satisfied.
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Hence, we derive the differential equation for (1− y)H1t and solve it using the methodology

described above.

The model with heterogeneous beliefs in Section 1.4.1 is solved in a similar way. First,

we derive an HJB equation in terms of consumption share y, which is given by (126) in which

µy is replaced by µiy. Then, we obtain boundary conditions and solve the finite-difference

equations numerically.
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2. Dynamic Mean-Variance Asset Allocation

2.1. Introduction

The mean-variance analysis of Markowitz (1952) has long been recognized as the cornerstone

of modern portfolio theory. Its simplicity and intuitive appeal have led to its widespread

use in both academia and industry. Originally cast in a single-period framework, the mean-

variance paradigm has no doubt also inspired the development of the multi-period portfolio

choice literature. To this day, the mean-variance criteria are employed in many multi-period

problems by financial economists, but typically for a myopic investor, who in each period

maximizes her next-period objective (e.g., among others, Ait-Sahalia and Brandt, 2001;

Campbell and Viceira, 2002; Jagannathan and Ma, 2003; Bansal, Dahlquist and Harvey,

2004; Acharya and Pedersen, 2005; Hong, Scheinkman and Xiong, 2006; Brandt, 2009;

Campbell, Serfaty-de Medeiros and Viceira, 2009).17 While the myopic assumption allows

analytical tractability and abstracts away from dynamic hedging considerations, there is

growing evidence that intertemporal hedging demands may comprise a significant part of

the total risky asset demand (e.g., Campbell and Viceira, 1999; Brandt, 1999).

However, solving the dynamic asset-allocation problem with mean-variance criteria has

had mixed success to date. A major obstacle has been the inability to directly apply the

traditional dynamic programming approach due to the failure of the iterated-expectations

property for mean-variance objectives. A growing recent literature tackles this by just

characterizing the optimal policy chosen at an initial date, by either employing martingale

methods or tractable auxiliary problems in complete market settings (as discussed below).

However, due to the time-inconsistency of the mean-variance criteria, the investor may find it

optimal to deviate from this policy unless she is able to pre-commit, and henceforth we refer
17We acknowledge the well-known theoretical objections to the mean-variance criteria if interpreted as

investors’ preferences, namely admitting potentially negative terminal wealth, increasing absolute risk aver-
sion, and potentially non-monotonicity of preferences. Despite the theoretical limitations, the mean-variance
criteria remain relatively popular in practice and academia due to their simplicity and tractability, which
we will also demonstrate in our analysis. Interestingly, recent evidence in neuroscience, as provided and dis-
cussed by Bossaerts, Preuschoff, and Quartz (2006, 2008), suggests that the human brain appears to analyze
risky gambles by considering variance and expectation separately, consistent with the mean-variance criteria.
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to it as the pre-commitment policy. Nevertheless, time-consistency is a basic requirement

of rational decision making, and as Strotz (1956) in his original work on time-consistent

plans puts it: an investor should choose “... the best plan among those that he will actually

follow.” Many decades have passed since the original Markowitz analysis, and yet we still

lack a comprehensive treatment of dynamically optimal policies consistent with the mean-

variance criteria.

In this paper, we solve the dynamic asset allocation problem of a mean-variance optimizer

in an incomplete-market setting, and provide a simple, tractable solution for the risky stock

holdings. To our knowledge, ours is the first to obtain within a general environment a fully

analytical characterization of the dynamically optimal mean-variance policies, from which

the investor has no incentive to deviate, namely, the time-consistent policies. Towards

this, we consider the familiar multi-period asset allocation problem of an investor, who has

preferences over terminal wealth and dynamically allocates wealth between a risky stock and

a riskless bond. The investor is guided by the mean-variance criterion, linearly trading-off

mean and variance of terminal wealth. Our setting is a continuous-time Markovian economy

with stochastic investment opportunities, allowing for a potentially incomplete market. Our

solution method for the determination of optimal dynamic mean-variance policies is based

on the derivation of a recursive formulation so that dynamic programming can be employed.

This recursive derivation is complicated by the fact that mean-variance criteria in a multi-

period setting result in time-inconsistency of investment policies, in that the investor has

an incentive to deviate from an initial policy at a later date. The intuition for this is that

sitting at a point in time, the mean-variance investor perceives the variability of terminal

wealth to be higher than the anticipated variability at a future date. To address this

problem, we decompose the investor’s conditional objective function as her expected future

objective plus a term accounting for the incentives to deviate, which then leads to the desired

recursive formulation. This in turn allows us to employ dynamic programming, derive the

Hamilton-Jacobi-Bellman (HJB) equation, and obtain an analytical solution to the problem.

Our recursive approach is the one originally suggested by Strotz (1956), although the same
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solution can alternatively be obtained as the Nash equilibrium outcome of an intra-personal

game by the dynamic mean-variance investor, similarly to the literature on consumer choice

with time-inconsistent preferences (e.g., Peleg and Yaari, 1973; Harris and Laibson, 2001).18

The optimal stock investment policy of a dynamic mean-variance optimizer has a simple

structure, being comprised of familiar myopic and intertemporal hedging terms. The novel

feature of our case is that we identify the hedging demand to be driven by the expected total

gains or losses from the stock investments over the investment horizon, in contrast to being

driven by the value function in the extant literature. This is because the mean-variance

value function is linear in wealth. Since the conditional variance of terminal wealth equals

that of future portfolio gains, the mean-variance hedging demands are determined by the

anticipated portfolio gains. The economic role of the hedging demands in our setting is then

straightforward: when the stock return is negatively related to the anticipated portfolio

gains, the gains in one offset the losses in the other. This leads to a lower variability of

wealth, making the stock more attractive, and hence inducing a positive hedging demand;

and vise versa for a negative hedging demand. We then identify a unique probability mea-

sure, labeled a “hedge-neutral” measure, which absorbs the hedging demands so that the

anticipated investment gains under this measure look as if the investor were myopic. This

representation under the new measure facilitates considerable tractability, allowing one to

easily determine the mean-variance portfolios explicitly or otherwise perform Monte-Carlo

simulation straightforwardly. Moreover, given our dynamically optimal mean-variance pol-

icy, it is possible to recover time-consistent objective functions that would lead to the same

policy (Remark 1). One such function is an increasing, concave, state-dependent criterion

of CARA form, a result also generalizing the well-known equivalence of mean-variance and

CARA optimization in a one-period Gaussian setting.

We also find the dynamic mean-variance policies to inherit a number of conventional
18The dynamic inconsistency of preferences is common in economic settings with non-exponential dis-

counting and changing preferences. A growing literature emphasizes the importance of time-inconsistency
by demonstrating that it significantly affects consumption and investment decisions of individuals (Harris
and Laibson, 2001; Grenadier and Wang, 2007; Ekeland and Lazrak, 2008; Kihlstrom, 2008).
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properties of single-period models, such as, the higher the stock volatility, bond interest rate

or investor risk aversion, the lower the stock investment (in absolute terms). However, these

dynamic policies also generate rich implications related to the effects of investment hori-

zon, market price of risk, and market incompleteness. For example, the variance of terminal

wealth in incomplete markets is higher than that in complete markets, and consequently the

mean-variance investor with positive hedging demand is worse off in incomplete markets. We

also compare our time-consistent solution to the mean-variance pre-commitment solution

in a simple complete market settings. The mean-variance investor under pre-commitment

maximizes her initial objective and pre-commits to that initial investment policy, not de-

viating at subsequent times. We demonstrate that the time-consistent investment policy,

obtained via dynamic programming, is generically different from the pre-commitment pol-

icy, obtained via martingale methods. Although for very short investment horizons the

pre-commitment solution approximates the time-consistent one up to second order terms,

for plausible horizons, the two solutions can differ considerably. Of course, with standard

utility functions, the two solutions are well-known to coincide (Karatzas and Shreve, 1998).

We illustrate the practical usefulness of our analysis by considering the dynamic mean-

variance problem under several stochastic investment opportunities that have been studied

in the literature for other preference specifications. In particular, we specialize our eco-

nomic setting to the constant elasticity of variance model in a complete market (Cox and

Ross, 1976; Schroder, 1989), a mean-reverting stochastic-volatility model in an incomplete

market (Liu, 2001; Chacko and Viceira, 2005; Heston, 1993), and a time-varying Gaus-

sian mean-returns model in an incomplete market (Kim and Omberg, 1998; Campbell and

Viceira, 1999; Wachter, 2002). In all these applications, we explicitly derive the dynamic

mean-variance portfolios as a straightforward exercise, by computing the anticipated gains

process under the hedge-neutral measure, which amounts to evaluating the expectation of

the squared market price of risk. We emphasize that our computations do not resort to

solving an HJB PDE for the investor’s value function, as would be the case for other popu-

lar objective specifications. In addition to providing further insights, our explicit solutions
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allow us to assess the economic significance of the intertemporal hedging demands of a

mean-variance optimizer. Specifically, we compute the percentage hedging demand over

total demand in our richer incomplete market settings for a range of plausible parameter

values. We find our results to be in line with those in the literature and show that the

percentage hedging demand can be considerable in some economic settings, ranging from

18% to 84%, supporting the findings of Brandt (1999) and Campbell and Viceira (1999).

Finally, we consider extensions of our baseline analysis to economic settings in discrete-

time and settings with stochastic interest rates, multiple stocks and multiple sources of

uncertainty. We demonstrate our main results to be valid also under these alternative

environments. Moreover, we here provide fully-explicit closed-form solutions for optimal in-

vestment policies in several discrete-time settings with stochastic investment opportunities

that, to our knowledge, are new in the literature. In contrast, the extant literature charac-

terizes optimal policies in such settings by employing either numerical methods or various

approximations (e.g., Ait-Sahalia and Brandt, 2001; Bansal and Kiku, 2007; Brandt, Goyal,

Santa-Clara and Stroud, 2005; Brandt and Santa-Clara, 2006; Campbell and Viceira, 1999,

2002, among others).

There is a growing literature investigating the multi-period portfolio problem of a mean-

variance investor. Bajeux-Besnainou and Portait (1998), Bielecki, Jin, Pliska and Zhou

(2005), Cvitanic, Lazrak and Wang (2008), Cvitanic and Zapatero (2004), Zhao and Ziemba

(2002) consider continuous-time complete market settings and employ martingale methods

to solve for the variance minimizing policy subject to the constraint that expected terminal

wealth equals some given level, sitting at an initial date. Cochrane (2008) in an incomplete-

market setting solves for the optimal investment policy that minimizes the “long-run” vari-

ance of portfolio returns subject to the constraint that the long-run mean of portfolio returns

equals a pre-specified target level. However, the ensuing solution in these works is a pre-

commitment investment policy chosen at an initial date since the investor may subsequently

find it optimal to deviate from if the constraint is violated in the future. Duffie and Richard-

son (1991) study the futures hedging policy in a continuous-time incomplete market. They
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solve the hedging problem with a mean-variance objective sitting at an initial date, ob-

taining the pre-commitment solution, by observing that the optimal policy here also solves

the hedging problem with a quadratic objective for some specific parameters. Recognizing

the difficulty of applying dynamic programming, Li and Ng (2000), Leippold, Trojani and

Vanini (2004) in discrete-time, Zhou and Li (2000), Lim and Zhou (2002) in continuous-time,

use a similar approach to solve for mean-variance portfolios in complete market settings.

Specifically, these authors show that the investment policy that solves the mean-variance

problem sitting at an initial date also solves the one with a quadratic objective for some

specific parameters. The solution to the quadratic auxiliary optimization is then derived,

which gives the pre-commitment strategy for the mean-variance problem. Brandt (2009)

considers portfolio choice with mean-variance criterion over portfolio returns. The solution

is provided when the investor chooses portfolio weights for several periods ahead, implicitly

assuming pre-commitment.

Our work also contributes to the multi-period portfolio choice literature that provides

explicit closed-form solutions for optimal investment policies under various stochastic in-

vestment opportunities, all obtained in continuous-time settings. Kim and Omberg (1996)

explicitly solve for the optimal portfolio of an investor with constant relative risk aversion

(CRRA) preferences over terminal wealth when the market price of risk follows a mean-

reverting Ornstein-Uhlenbeck process in an incomplete market setting. Merton (1971) and

Wachter (2002) provide solutions to similar problems for constant absolute risk aversion

(CARA) and CRRA investors, respectively, with intermediate consumption under complete

markets. Maenhout (2006) extends the Kim-Omberg results by providing explicit solutions

for an investor who worries about model specification, while Huang and Liu (2007) provide

a generalization with incomplete information. Liu (2001, 2007) obtains explicit solutions for

an investor with CRRA preferences over terminal wealth facing an incomplete market with

stochastic volatility. In similar models, Chacko and Viceira (2005) provide the explicit solu-

tion for an investor having recursive preferences over intertemporal consumption with unit

elasticity of intertemporal substitution, while Liu (2007) for a CRRA investor with intertem-
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poral consumption in a complete market. In related problems, nearly-explicit closed-form

solutions have additionally been obtained by Brennan and Xia (2002) and Sangvinatsos and

Wachter (2005). In general, however, obtaining fully-explicit closed-form solutions to dy-

namic portfolio choice problems with stochastic investment opportunities is a daunting task,

and one would need to resort to numerical methods, such as those proposed by Detemple,

Garcia and Rindisbacher (2003), Cvitanic, Goukasian and Zapatero (2003), and Brandt,

Goyal, Santa-Clara and Stroud (2005).

The remainder of the paper is organized as follows. In Section 2.2, we present our

methodology for the determination of optimal dynamic mean-variance policies. We then

provide the time-consistent solution, discuss its properties, and compare it with the pre-

commitment policy. In Section 2.3, we provide applications of our analysis to various

stochastic investment opportunities, while in Section 2.4, we discuss the extensions to

discrete-time, multiple-stock and stochastic interest rate settings. Section 2.5 concludes

and the Appendix provides all proofs.

2.2. Asset Allocation with Mean-Variance Criteria

2.2.1. Economic Setup

We consider a continuous-time Markovian economy with a finite horizon [0, T ]. Uncertainty

is represented by a filtered probability space (Ω,F , {Ft}, P ), on which are defined two

correlated Brownian motions, w and wX , with correlation ρ. All stochastic processes are

assumed to be adapted to {Ft, t ∈ [0, T ]}, the augmented filtration generated by w and

wX . In what follows, given our focus, we assume all processes and moments introduced are

well-defined, without explicitly stating the regularity conditions.

Trading may take place continuously in two securities, a riskless bond and a risky stock.

The bond provides a constant interest rate r. The stock price, S, follows the dynamics

dSt
St

= µ(St, Xt, t)dt+ σ(St, Xt, t)dwt, (133)

where the stock mean return, µ, and volatility, σ, are deterministic functions of S and the
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state variable X, which satisfies

dXt = m(Xt, t)dt+ ν(Xt, t)dwXt. (134)

Under appropriate conditions, the stochastic differential equations (133)–(134) have a unique

solution (S,X), which is a joint Markov process. We will denote µt, σt, mt and νt as

shorthand for the coefficients in equations (133)–(134). We note that under this setup,

the market is incomplete as trading in the stock and bond cannot perfectly hedge the

changes in the stochastic investment opportunity set. However, in the special cases of

perfect correlation between the stock return and state variable, ρ = ±1, dynamic market

completeness obtains. For the case of zero correlation, there is no hedging demand for the

state variable since trading in the stock cannot hedge the fluctuations in the state variable.

An investor in this economy is endowed at time zero with an initial wealth of W0. The

investor chooses an investment policy, θ, where θt denotes the dollar amount invested in the

stock at time t. The investor’s wealth process W then follows

dWt = [rWt + θt(µt − r)] dt+ θtσtdwt. (135)

We assume that the investor is guided by mean-variance objectives over horizon wealth WT .

In particular, the dynamic optimization problem of the investor is given by

max
θ

E[WT ]− γ

2
var[WT ], (136)

subject to the dynamic budget constraint (135). In Section 2.2.2, we provide the time-

consistent solution to this problem via a recursive formulation that employs dynamic pro-

gramming, while in Section 2.2.4, we provide the pre-commitment solution via a static

formulation that employs martingale methods. We demonstrate that the two solutions are

generically different.

In order to keep our problem analytically tractable, we follow the related literature

and make the simplifying assumptions of constant interest rate and lack of intermediate

consumption. It is unlikely that our model, with stochastic investment opportunities and
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potentially incomplete markets, could be solved analytically if these assumptions were re-

laxed, as in the related works of Kim and Omberg (1996), Liu (2001), Maenhout (2006).

However, with an appropriate choice of a numeraire, we provide an extension of our results

for the case with stochastic interest rates in Section 2.4.3. We further note that even though

the mean-variance criterion (136) is in many ways similar to the time-consistent quadratic

utility function, to our best knowledge the latter does not admit tractable optimal policies

in our economic setting. For example, Brandt and Santa-Clara (2006) investigate dynamic

portfolio selection with a quadratic criterion in an incomplete market setting and develop

an approach that leads to approximate solutions.

2.2.2. Determination of Optimal Dynamic Investment Policy

In this Section, we first present our solution method, based on dynamic programming, for

the determination of optimal dynamic mean-variance policies. Our method is analogous to

the original approach of Strotz (1956), recently re-emphasized by Caplin and Leahy (2006),

who advocates solving problems with time-inconsistent criteria recursively. The dynamic

programming approach here, however, is complicated by the presence of the variance term in

the mean-variance objective function: it cannot be represented as the expected utility over

terminal wealth, such as E[u(WT )], for which dynamic programming is readily applicable

due to the iterated-expectation property Et [Et+τ [u(WT )]] = Et[u(WT )]. The violation of

this property for mean-variance criteria makes the application of dynamic programming

problematic (see e.g., Zhou and Li, 2000). To our best knowledge, there are no works that

apply dynamic programming to derive explicit solutions to the multi-period mean-variance

portfolio choice. We tackle this problem by first obtaining a tractable recursive formulation

for the mean-variance objective, expressed as its expected future value plus an adjustment

term, given by the time-t variance of expected terminal wealth. This explicit identification

allows us to employ dynamic programming, derive the HJB equation and obtain an analytical

solution to the problem. The intuition for the adjustment term is based on the observation

that for a mean-variance optimizer sitting at time t + τ , the variability of terminal wealth
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may be lower than that of sitting at time t. This induces her to revise her time-t optimal

policy at subsequent dates, and hence the need for the adjustment in her objective function

sitting at any point in time.

Formally, the variability of terminal wealth, by the law of total variance (e.g., Weiss,

2005), is given by

vart[WT ] = Et [vart+τ (WT )] + vart [Et+τ (WT )] , τ > 0. (137)

Clearly, the time-t variance exceeds the expected variance at time t + τ . As a result, the

investment policy θτ , for τ ≥ t, chosen at time t, accounts not only for the expected time-

(t + τ) variance of the terminal wealth, but also for the variance of time-(t + τ) expected

terminal wealth. However, since the latter vanishes as time interval τ elapses, the investor

may deviate from the time-t optimal policy at time t + τ .19 We now account for these

incentives to deviate in the time-t objective function of the investor, who for each t ∈ [0, T ]

maximizes

Ut ≡ Et[WT ]− γ

2
vart[WT ], (138)

subject to the dynamic budget constraint (135). Substituting (137) into (138) and using the

law of iterated expectations, we obtain the following recursive representation for the time-t

objective function of the mean-variance optimizer:

Ut = Et [Ut+τ ]− γ

2
vart [Et+τ (WT )] . (139)

This representation reveals that decision-making at time t involves maximizing the expected

future objective function, plus an adjustment that quantifies the investor’s incentives to devi-

ate from the time-t optimal policy. This adjustment enables us to determine the investment

policy by backward induction, namely the time-consistent policy in that the investor opti-

mally chooses the policy taking into account that she will act optimally in the future, if she
19Johnsen and Donaldson (1985) provide necessary and sufficient conditions for the time-consistency of

intertemporal preferences in a discrete-time setting. These conditions essentially require that initial time-0
preferences can be expressed as an increasing function of preferences at future states/dates, and actions in
each state enter separably into the current utility function. The time-inconsistency of our mean-variance
criteria can alternatively be demonstrated by explicitly verifying that these conditions fail to hold even in a
simple two-period binomial setting.
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is not restricted from revising her policy at all times. We elaborate more on the issue of

time-consistency in Section 2.2.4.

Our next step towards the derivation of the HJB equation is to determine a recursive

relationship for the value function. Given the optimal time-consistent policy θ∗s , s ∈ [t, T ],

derived by backward induction, the value function, J , is defined as

J(Wt, St, Xt, t) ≡ Et[W ∗T ]− γ

2
vart[W ∗T ],

where terminal wealth W ∗T is computed under the optimal policy θ∗s , s ≥ t. Now let τ > 0

denote the decision-making interval such that the investor can reconsider her investment

policy chosen at time t only after the time interval τ elapses. Suppose further that at time

t, the investor anticipates to follow the optimal policy θ∗s from time t + τ onwards. Then,

from the recursive representation of the objective function (139) and the definition of Jt+τ ,

shorthand for the value function at t+ τ , the investor’s time-t problem would be to find an

investment policy θs, for s ∈ [t, t+ τ ] that maximizes

Et[Jt+τ ]− γ

2
vart [Et+τ (WT )] . (140)

Sitting at time t, the investor accounts for the fact that starting from t+ τ , she will follow

the policy that is optimal sitting at time t + τ . Note, however, that because of the time-

consistency adjustment term in (140), the investment policy θ∗s , s ≥ t + τ , under which

Jt+τ is computed, will not necessarily be optimal, when sitting at time t. Moreover, Jt is

not equal to the maximum of its expected future value, Jt+τ , as it would be in the case of

standard utility functions over terminal wealth that have the form Et[u(WT )].

Problem (140) presented above, and the definition of the value function after some

algebra (proof of Lemma 2.1) lead to the following recursive equation for J :

Jt = max
θs,s∈[t,t+τ ]

Et[Jt+τ ]− γ

2
vart[ft+τ − ft +Wt+τe

r(T−t−τ) −Wte
r(T−t)], (141)

subject to the budget constraint (135) and the terminal condition JT = WT , where ft is

shorthand for f(Wt, St, Xt, t) defined as

f(Wt, St, Xt, t) ≡ Et[W ∗T ]−Wte
r(T−t), (142)
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representing expected total gains or losses from the optimal stock investment over the hori-

zon T − t, while W ∗T is terminal wealth under the optimal policy θ∗s , s ≥ t.20 The dynamic

budget constraint (135) allows us to obtain the following representation for ft in terms of

the optimal stock investment policy θ∗s :

f(Wt, St, Xt, t) = Et

[∫ T

t
θ∗s(µs − r)er(T−s)ds

]
. (143)

Going back to (141), it is clear that ft+τ is defined using the optimal policy. This observation

enables us to formulate the following Lemma, which gives the HJB equation in differential

form and establishes some properties of θ∗t , ft and Jt.

Lemma 2.1. The value function J(Wt, St, Xt, t) of a mean-variance optimizing investor

satisfies the following recursive equation:

0 = max
θt

Et[dJt]−
γ

2
vart[dft + d(Wte

r(T−t))], (144)

subject to JT = WT and the budget constraint (135), where ft is as in (143). Moreover,

J(Wt, St, Xt, t) is separable in wealth and admits the representation

J(Wt, St, Xt, t) = Wte
r(T−t) + J̃(St, Xt, t), (145)

while ft and the optimal investment policy θ∗t do not depend on time-t wealth Wt and are

functions of St, Xt and t only.

We note that dft term in (144) is unaffected by the control θt since according to Lemma

2.1, ft does not depend on Wt and by definition is evaluated at the optimal policy. So,

θt affects the adjustment term vart[dft + d(Wte
r(T−t))] via d(Wte

r(T−t)) only. Using the

separability property of J in (145) and applying Itô’s Lemma to J̃t, ft and Wte
r(T−t), from

the HJB equation (144) we obtain

0 = max
θt

{
DJ̃tdt+θt(µt−r)er(T−t)dt−

γ

2
vart

[
σtSt

∂ft
∂St

dwt+νt
∂ft
∂Xt

dwXt+θtσte
r(T−t)dwt

]}
,

(146)

20In deriving (141) we use the fact that vart[ft+τ + Wt+τe
r(T−t−τ)] = vart[ft+τ − ft + Wt+τe

r(T−t−τ) −
Wte

r(T−t)].
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where D denotes the Dynkin operator.21 Computation of the variance term in (146) yields

the following PDE for the function J̃t:

0 = max
θt

{
DJ̃t + θt(µt − r)er(T−t) −

γ

2

[
σ2
t S

2
t

( ∂ft
∂St

)2
+ ν2

t

( ∂ft
∂Xt

)2
+ 2ρνtσtSt

∂ft
∂St

∂ft
∂Xt

+θ2
t σ

2
t e

2r(T−t) + 2θtσt
(
σtSt

∂ft
∂St

+ ρνt
∂ft
∂St

)
er(T−t)

]}
, (147)

subject to J̃T = 0. The HJB equation (147) is nonstandard in that in addition to the

conventional term, DJ̃t+θt(µt−r)er(T−t), there is an adjustment component that is explicitly

characterized in terms of anticipated investment gains, ft, and the investment policy, θt. An

attractive feature of the HJB equation (147) is that the maximized expression is a quadratic

function of θt. We use this property to derive the following Proposition that provides a

recursive representation for the optimal investment policy θ∗t .

Proposition 2.1. The optimal stock investment policy of a dynamic mean-variance opti-

mizer is given by

θ∗t =
µt − r
γσ2

t

e−r(T−t) −
(
St
∂ft
∂St

+
ρνt
σt

∂ft
∂Xt

)
e−r(T−t), (148)

where the process ft represents the expected total gains or losses from the stock investment

and is given by

f(St, Xt, t) = Et

[∫ T

t
θ∗s(µs − r)er(T−s)ds

]
. (149)

The optimal investment policy has a simple, familiar structure, and is given by my-

opic and intertemporal hedging terms. The myopic demand, (µt − r)/γσ2
t , would be the

investment policy for an investor who optimized over the next instant not accounting for

her future investments, or the optimal policy if the investment opportunity set were con-

stant. The intertemporal hedging demands, then, arise due to the need to hedge against

the fluctuations in the investment opportunities, as in the related portfolio choice literature,
21The Dynkin operator transforms an arbitrary twice continuously differentiable function F (St, Xt, t) as

follows:

DF (St, Xt, t) =
∂Ft
∂t

+ µtSt
∂Ft
∂St

+mt
∂Ft
∂Xt

+
1

2

(
σ2
tS

2
t
∂2Ft
∂S2

t

+ ν2
t
∂2Ft
∂X2

t

+ 2ρνtσtSt
∂2Ft
∂Xt∂St

)
.
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following Merton (1971). What is different in our case is that we explicitly identify the

hedging demands to be given by the sensitivities of anticipated portfolio gains (f) to the

stock price and state variable fluctuations, whereas in other works these sensitivities are in

terms of the investor’s value function. The reason is that the mean-variance conditional

expected terminal wealth, and hence the value function, are linear in time-t wealth, and

as a result, no hedging demand arises due to marginal utility fluctuations. Consequently,

since the conditional variance of terminal wealth equals the conditional variance of future

portfolio gains or losses, the anticipated portfolio gains or losses drive the hedging demands.

This, in turn, enables us to provide more direct intuition on the implications of the hedging

terms.

To see the role of the hedging demand, θH , we observe that

θHt ≡ −
(
St
∂ft
∂St

+
ρνt
σt

∂ft
∂Xt

)
e−r(T−t) = −covt(dSt/St, dft)

σ2
t dt

e−r(T−t). (150)

The hedging demand is positive when the instantaneous stock return is negatively correlated

with instantaneous portfolio gains. The reason for this is that when the stock return and

anticipated portfolio gains move in opposite directions, losses in one are offset by the gains

in the other. This leads to a lower variability of wealth, making the stock more attractive,

and hence induces a positive hedging demand.

Even though the optimal stock investment expression is fairly intuitive, it is not char-

acterized in terms of the exogenous parameters of the model since it relies on knowing

the future optimal policy. To address this, we next recover an explicit representation for

the anticipated portfolio gains, f . Substituting (148) into (149), we obtain the following

representation for f under the original measure P :

f(St, Xt, t) = Et

[∫ T

t

1
γ

(
µs − r
σs

)2

ds

]
−Et

[∫ T

t

(
Ss
∂fs
∂Ss

+
ρνs
σs

∂fs
∂Xs

)
(µs − r)ds

]
. (151)

The first component in (151) comes from the myopic demand, while the second comes from

the hedging demand. To facilitate tractability, we next look for a new probability measure

under which the representation of f does not have the hedging related component. Since
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ft is represented as a conditional expectation, by the Feynman-Kac theorem (Karatzas and

Shreve, 1991), we obtain the following PDE after some manipulation:

∂ft
∂t

+ rSt
∂ft
∂St

+
(
mt − ρνt

µt − r
σt

) ∂ft
∂Xt

+
1
2

(
σ2
t S

2
t

∂2ft
∂S2

t

+ ν2
t

∂2ft
∂X2

t

+ 2ρνtσtSt
∂2ft

∂Xt∂St

)
+

1
γ

(µt − r
σt

)2
= 0, (152)

with fT = 0. Again, by the Feynman-Kac theorem, (152) admits a unique solution with the

following representation:

f(St, Xt, t) = E∗t

[∫ T

t

1
γ

(
µs − r
σs

)2

ds

]
, (153)

where E∗t [·] denotes the expectation under a new probability measure P ∗ such that the stock

and state variable now follow dynamics with modified drifts22

dSt
St

= rdt+ σtdw
∗
t , dXt =

(
mt − ρνt

µt − r
σt

)
dt+ νtdw

∗
Xt, (154)

and where w∗t and w∗Xt are Brownian motions under P ∗ with correlation ρ. Comparing

(153) with (151), we see that measure P ∗ absorbs the hedging demand so that f represents

the anticipated gains from the myopic portfolio only. We henceforth label P ∗ as the hedge-

neutral measure. Note that this measure is also a risk-neutral measure since it modifies the

drift of S to equal to rS. However, in our setting the risk-neutral measure is not unique

due to market incompleteness;23 in the special case of a complete market, the hedge-neutral

and risk-neutral measures coincide. Proposition 2.2 summarizes the results above.
22Since the coefficients assigned to partial derivatives ∂ft/∂St and ∂ft/∂Xt in the PDE (152) represent

the drifts of stochastic processes for S and X, it follows that measure P ∗ modifies the drifts so that S and
X satisfy (154).

23To see this, observe that dwXt can be decomposed as dwXt = ρdwt +
√

1− ρ2dw̃t, where wt and w̃t are
uncorrelated Brownian motions under P . Hence, any measure under which dw∗t = dwt + (µt − r)/σtdt and
dw̃∗t = dw̃t + gtdt will be a risk-neutral measure irrespective of the process gt. We further note that in an
incomplete market, there is generally not a unique no-arbitrage price for a given payoff as it is impossible
to hedge perfectly. Towards this, a common approach for pricing and hedging with market incompleteness
is to choose a specific risk-neutral measure according to some criterion. Related to minimizing a quadratic
loss function, a large literature in mathematical finance has developed which employs: the “minimal martin-
gale measure” (Follmer and Sondermann, 1986; Schweizer, 1999) solving min

Q
E[− ln(dQ/dP )], the “variance

optimal measure” (Schweizer, 1992) solving min
Q

E[(dQ/dP )2], and the “minimal entropy measure” (Miya-

hara, 1996) solving min
Q

E[dQ/dP ln(dQ/dP )], where dQ/dP denotes the Radon-Nikodym derivative of a

risk-neutral measure Q with respect to the original measure P . Interestingly, our measure P ∗, employed in
a somewhat different context, turns out to coincide with the minimal martingale measure.
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Proposition 2.2. The anticipated portfolio gains, f , can be expressed as

f(St, Xt, t) = E∗t

[∫ T

t

1
γ

(
µs − r
σs

)2

ds

]
, (155)

where E∗t [·] denotes the expectation under the unique hedge-neutral measure P ∗ on which

are defined two Brownian motions w∗ and w∗X with correlation ρ, given by

dw∗t = dwt +
µt − r
σt

dt, dw∗Xt = dwXt + ρ
µt − r
σt

dt, (156)

and measure P ∗ is defined by the Radon-Nikodym derivative

dP ∗

dP
= e−

1
2

∫ T
0 (µs−r

σs
)2ds−

∫ T
0

µs−r
σs

dws . (157)

Consequently, the optimal investment policy is given by

θ∗t =
µt − r
γσ2

t

e−r(T−t) − 1
γ

(
St
∂E∗t

[∫ T
t

(
µs−r
σs

)2
ds
]

∂St
+
ρνt
σt

∂E∗t

[∫ T
t

(
µs−r
σs

)2
ds
]

∂Xt

)
e−r(T−t).

(158)

Proposition 2.2 provides a fully analytical characterization of the optimal investment

policy in terms of the model parameters which exists under certain regularity conditions.24

The characterization identifies a unique measure P ∗ that incorporates intertemporal hedg-

ing demands so that only the expected gains or losses from the myopic portfolio need to

be considered explicitly. This in turn allows us to explicitly compute the optimal dynamic

mean-variance portfolios in a straightforward manner, as will be demonstrated in Section

2.3. For economic environments in which explicit computations are not possible, the optimal

investment expression (158) can easily be computed numerically by standard Monte Carlo
24In particular, the Proposition proves the existence of the optimal policy θ∗t satisfying the recursive

equations (148)–(149) assuming the exogenous parameters µt, σt, mt and νt are such that the expectations
in (158) are well-defined and twice continuously differentiable (these conditions can explicitly be verified in
the specific applications of Section 2.3). Under this assumption ft is a classical solution of the PDE (152), and
hence, ft and θ∗t solve equations (148)–(149). Moreover, from the Feynman-Kac theorem, the policy is unique
in the class of policies such that θt(µt − r) has polynomial growth in the stock price St and state variable
Xt. This polynomial growth can directly be checked in specific applications that provide explicit closed-form
expressions for θ∗t . Verifying sufficient conditions for optimality are, in general, technically involved (e.g.,
Korn and Kraft, 2004) and are beyond the scope of this paper. Specifically, for the mean-variance framework,
verification does not amount to comparing the value functions of the time-consistent and arbitrary policies,
as would be for the standard framework. The reason is that by construction, the value function under the
time-consistent mean-variance policy is lower than that under the pre-commitment policy.
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simulation methods, where the simulation would be performed under measure P ∗. Addi-

tionally, the partial derivatives can be written in terms of Malliavin derivatives, leading

to a more refined representation, which can then be computed by Monte Carlo simulation

following the method of Detemple, Garcia and Rindisbacher (2003).

The optimal investment expression (158) also allows some simple comparative statics

to be carried out. First, the optimal dynamic investment displays a number of appealing,

conventional properties that are present in simple single-period or myopic models. Looking

at the risk aversion parameter γ, we see that the more risk averse the investor, the lower her

optimal investment in the risky stock (in absolute terms |θ∗|), with the investment tending

to zero for an extremely risk averse investor. Similar conclusions can be drawn on the effects

of the stock volatility σ and bond interest rate r on investment behavior. As is commonly

assumed in the literature (and also in the applications of Sections 2.3.2–2.3.3), suppose that

the market price of risk, (µt − r)/σt, is driven by the state variable Xt only, and not by

σt or r. Under this scenario, higher the stock volatility or bond interest rate, lower the

stock investment (in absolute terms), since the stock now becomes less attractive, with the

investment monotonically tending to zero for higher levels of volatility or interest rate.

The correlation parameter ρ captures the extent of market incompleteness in the econ-

omy. When the market is incomplete, hedging against fluctuations in the investment oppor-

tunities is complex since it may affect the variability of terminal wealth. The implications

of this effect are addressed in Section 2.2.3. The correlation parameter also affects the joint

probability distribution of the stock and state variable under which the expressions in (158)

are evaluated. This indirect correlation effect will be assessed in the applications studied

in Section 2.3. Finally, note that the quantitative effect of the hedging demand due to the

state variable is directly driven by the correlation parameter. Clearly, this effect is higher for

the case of complete markets, ρ = ±1, and disappears for zero correlation, ρ = 0. However,

with zero correlation, an intertemporal hedging term still arises (second term in (158)) due

to the market price of risk possibly being dependent on the stock price, consistent with such

a term arising when perfectly replicating a payoff by no-arbitrage in complete markets.
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Turning to the time-horizon parameter T−t, in general the investor’s optimal risky stock

investment may increase or decrease as the investment horizon increases. Nevertheless, we

see that longer time-horizons decrease the myopic demand in (158) (in absolute terms). This

is because longer horizons imply higher variability of terminal wealth, and hence the investor

decreases the risky stock investment. The impact of the time-horizon on the hedging demand

is, however, ambiguous. To illustrate this, suppose that both the myopic and hedging

demands are positive. When the time-horizon increases, while the investor’s myopic demand

decreases, her expected portfolio gains are higher, which may increase the hedging demand.

For short time-horizons, the former effect dominates, and the hedging demand vanishes as

the horizon T − t is shortened. In the applications of Section 2.3, we demonstrate that the

optimal risky investment may either increase or decrease as the horizon increases, depending

on the specific economic setting.

Finally, the optimal investment expression highlights the importance of the market price

of risk process, (µt − r)/σt. The myopic demand is increasing in the price of risk, while the

effect on the hedging demand is ambiguous. However, its impact on the hedging component

becomes less pronounced with shorter time-horizons since the integrals in (158) shrink as

the horizon T is approached. The effect on the hedging demand also depends on whether

anticipated portfolio gains become more or less sensitive to the stock and state variable

as the market price of risk increases. However, this effect can be disentangled in some

applications for which the expectation under measure P ∗ can be explicitly computed. For

constant market price of risk, the optimal mean-variance policy reduces to the myopic

demand expression, which is identical to the policy that would be obtained under CARA

preferences. Another common feature is the presence of the multiplicative discounting term

in (158), which is also present in the literature studying optimal CARA investments (Merton,

1971; Cox and Huang, 1989).25

Remark 1 (Recovering time-consistent objective functions). It is of interest to see

25Indeed, for CARA preferences with risk aversion parameter γ, it can be demonstrated that γer(T−t) =
−JWW/JW where J denotes the investor’s value function, and hence γer(T−t) can be interpreted as absolute
risk aversion.
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whether there are economically meaningful time-consistent objective functions leading to

our dynamically optimal investment policy (158). In our Markovian economy, it turns out

to be possible to recover a time-consistent, increasing, concave, state-dependent objective

function that implies the same optimal portfolio policy as our dynamically optimal one.

In particular, we consider the following dynamic optimization problem involving a state-

dependent objective function of CARA form:

max
θt

Et

[
−εTe−γWT

]
, (159)

with ε following the process

dεt = −γ
2

2

((µt − r
γσt

)2
+ (1− ρ2)νt

( ∂ft
∂Xt

)2)
εtdt,

and ft given by (155), subject to the budget constraint (135). Applying dynamic program-

ming to this problem one can derive an HJB equation and verify that the value function is

given by Jt = − exp(−γ(Wte
r(T−t) + ft)), and that the optimal investment policy coincides

with (158). To understand the intuition behind the process εt we observe (from the opti-

mal wealth (161)) that dεt = −(γ2/2)εt vart[dW ∗t e
r(T−t)], and hence, an investor with the

state-dependent utility (159) puts higher weight on those states of the economy in which the

optimal wealth process is less volatile along its path. Since εt > 0 we may construct a new

probability measure Q defined by the Radon-Nikodym derivative εT/Et[εT ] with respect to

the original measure P so that the optimization problem (159) is equivalent to

max
θt

EQt

[
−e−γWT

]
, (160)

where EQt [·] denotes the expectation under the beliefs represented by measure Q. Further-

more, the CARA-type dynamic optimization problems, (159) or (160), leading to the same

solution as our dynamic mean-variance problem generalizes the well-known equivalence of

mean-variance and CARA optimization in a one-period setting with normally distributed

stock returns. We finally note that there are other time-consistent, state-dependent objec-
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tive functions leading to the optimal policy (158).26

Remark 2 (Game-theoretic interpretation of optimal policies). Our methodology

until now has employed the traditional dynamic programming approach to portfolio choice.

However, the problem of finding the time-consistent mean-variance investment policy has

an intra-personal game-theoretic interpretation, as in the literature on consumer behavior

under time-inconsistent preferences (e.g., Peleg and Yaari, 1973; Harris and Laibson, 2001).

In particular, the investor, unable to precommit, takes the investment policy of her future

selves as given and reacts to them in an optimal way. Thus, her investment policy emerges

as the outcome of a pure-strategy Nash equilibrium in this game.

In particular, consider a game with a continuum of players (selves) [0, T ]. Each player

t ∈ [0, T ] at time t is guided by the mean-variance criterion (138) over terminal wealth,

and chooses a time-t Markovian investment strategy θ(Wt, St, Xt, t) subject to the budget

constraint (135). Thus, the players impose an externality on each other by affecting the

terminal wealth. Denote by J(Wt, St, Xt, t) player t’s value function when all players s ≥ t

follow the equilibrium strategies θ∗(Wt, St, Xt, t). Then, a pure-strategy Nash equilibrium

of the game is defined as follows.

Definition: The set of strategies {θ∗t , t ∈ [0, T ]} constitutes a pure-strategy Nash equi-

librium in the intra-personal game with the mean-variance objective if θ∗t is an optimal

response of player t to the strategies θ∗s of players s > t – that is, taking θ∗s as given, θ∗t
26In particular, using the results of Lemma 2.1 and Proposition 2.1, it is straightforward to see that the

dynamically optimal policy (26) can be obtained by solving a time-consistent instantaneous mean-variance
problem of the form

max
θt

Et[d(Wte
r(T−t)) + dft]−

γ

2
vart[d(Wte

r(T−t)) + dft],

with ft given by (155), subject to budget constraint (135). Interestingly, this objective becomes my-
opic in the restrictive special case of deterministic anticipated portfolio gains ft, max

θt
θt(µt − r)er(T−t) −

(γ/2)θ2tσ
2
t e

2r(T−t). Moreover, solving the instantaneous problem generally can be demonstrated to be equiv-
alent to a CARA-type problem

max
θt

Et[−de−γ(Wte
r(T−t)+ft)],

since dWte
r(T−t) + dft is locally normally distributed. This is again analogous to the equivalence of the

mean-variance and CARA portfolio choice problems in a one-period setting under normality. Furthermore,
since Jt = − exp(−γ(Wte

r(T−t) + ft)) is a value function for a CARA-type criterion in (159), it turns out
that dynamic mean-variance portfolio choice is equivalent to the portfolio choice with monotonic CARA-type
preferences in (159).
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solves the dynamic optimization problem (144).

It is straightforward to see that the set of strategies {θ∗t , t ∈ [0, T ]} remains an equilib-

rium in any subgame of this game, thus comprising a subgame-perfect pure-strategy Nash

equilibrium. Moreover, the equilibrium strategy θ∗t is characterized by the recursive equa-

tion for the optimal policy (148), which is now interpreted as the optimal response function

of player t to the actions θ∗s of other players. The equilibrium strategy then coincides with

the closed-form expression for the optimal investment policy (158).

2.2.3. Further Properties of Optimal Policy

In this Section, we discuss further properties of the mean-variance optimizer’s optimal be-

havior by providing explicit expressions for her terminal wealth, its moments, and her value

function. We particularly focus on the implications of market incompleteness. Towards

this, it is convenient to employ the decomposition wXt = ρwt +
√

1− ρ2w̃t, where w̃t is a

Brownian motion independent of wt, and so w̃t represents the unhedgeable source of risk

in the economy. In the sequel, the effect of market incompleteness on terminal wealth is

identified via the w̃ terms.

Proposition 2.3. The optimal terminal wealth, its mean, variance and the value function

of a dynamic mean-variance optimizer are given by

W ∗T = Wte
r(T−t) + ft +

1
γ

∫ T

t

µs − r
σs

dws +
√

1− ρ2

∫ T

t
νs
∂fs
∂Xs

dw̃s, (161)

vart[W ∗T ] =
1
γ2
Et

[∫ T

t

(
µs − r
σs

)2

ds

]
+ (1− ρ2)Et

[∫ T

t
ν2
s

(
∂fs
∂Xs

)2
]
ds, (162)

Et[W ∗T ] = Wte
r(T−t) + ft, (163)

Jt = Wte
r(T−t) + ft −

1
2γ
Et

[∫ T

t

(
µs − r
σs

)2

ds

]
− γ

2
(1− ρ2)Et

[∫ T

t
ν2
s

(
∂fs
∂Xs

)2

ds

]
,

(164)

where ft = E∗t [
∫ T
t (µs−r)2/γσ2

sds] and dw̃t = (dwXt−ρdwt)/
√

1− ρ2. Consequently, under

the assumption that the market price of risk (µt − r)/σt depends only on Xt,

(i) The variance of terminal wealth in incomplete markets is higher than that in complete
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markets;

(ii) The mean of terminal wealth is increasing (decreasing) in the level of market incom-

pleteness, ρ2, when the hedging demand is positive (negative) for all s ∈ [t, T ];

(iii) The value function in incomplete markets is lower than that in complete markets when

the hedging demand is positive for all s ∈ [t, T ]. The effect is ambiguous when the

hedging demand is negative.

Optimal terminal wealth is given by conditionally riskless terms (first and second in

(161)), capturing anticipated bond and stock gains, and risky terms driven by the hedgeable

stock uncertainty (third term in (161)) and unhedgeable uncertainty (fourth term in (161)).

The effect of market incompleteness on terminal wealth enters through the unhedgeable risk

and the joint probability distribution of stock return and state variable, both under the

original and new measures. The unhedgeable risk component vanishes in complete markets

with ρ2 = 1.27

The variance of optimal terminal wealth is determined by the variances of hedgeable (first

term in (162)) and unhedgeable uncertainties (second term in (162)). When the market

price of risk depends only on the state variable, market incompleteness does not affect

the hedgeable uncertainty variance. In that case, the terminal wealth variance is always

higher in incomplete markets than in complete markets by the presence of unhedgeable

risk (Proposition 2.3(i)). Naturally, this effect is more pronounced for higher state variable

volatility or sensitivity of anticipated gains to the state variable. However, the anticipated

gains process, f , itself depends on the correlation ρ, which convolutes the exact dependence

of wealth variance on correlation, and hence market completeness.28 This indirect effect can

be disentangled in the applications, where the expectation under measure P ∗ can explicitly

be computed.
27As for CARA and quadratic preferences, the optimal mean-variance terminal wealth in (161) may become

negative. In future work, it would be of interest to incorporate a non-negativity constraint on terminal wealth
into our analysis which would ensure that the investor remains solvent.

28This is due to the fact that the drift of the state variable is affected by the correlation ρ under measure
P ∗, as revealed by equation (154).
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The effect of market incompleteness on the mean of terminal wealth enters via the

anticipated gains, f . Proposition 2.3(ii) states that the direction of this effect is determined

by the sign of the hedging demand. In particular, the expected terminal wealth is lower for

higher levels of market incompleteness (i.e., lower ρ2) when the hedging demand is positive

till the horizon and the market price of risk depends only on the state variable. The reason is

that lower correlation ρ decreases the hedging demand, which vanishes for zero correlation,

as discussed in Section 2.2.2. So, the investor’s positive hedging demand will be lower for

higher levels of market incompleteness, leading to lower expected terminal wealth. Clearly,

the converse is true when the hedging demand is negative.

Turning to the value function, we find that when the hedging demand is positive until

the horizon, the mean-variance optimizer is worse off in incomplete markets due to higher

variance and lower expectation of terminal wealth. However, the welfare effect is ambiguous

in the case of negative hedging demand, for which the expected wealth is higher in incomplete

markets, offsetting the effect of higher variance. As will be shown in Section 2.3, the sign

of the hedging demand can readily be identified in particular applications, simplifying the

analysis in incomplete markets.

2.2.4. Optimal Pre-commitment Policy

In Section 2.2.2, we have already demonstrated that the mean-variance objective in a dy-

namic setting results in time-inconsistency of the investment policy, in that an investor has

an incentive to deviate from an initial policy at a later date. We have so far focused on the

time-consistent investment policy in which the investor chooses an investment in each period

that maximizes her objective at that period, taking into account the re-adjustments that she

will make in the future. We now analyze the alternative way of dealing with this issue and

look at the pre-commitment investment policy in which the investor initially chooses a pol-

icy to maximize her objective function at time 0, and thereafter does not deviate from that

policy. Of course, with standard utility functions and absent market imperfections, the so-

lutions to the time-consistent and pre-commitment formulations are well-known to coincide
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(Cox and Huang, 1989; Karatzas, Lehoczky and Shreve, 1987). The pre-commitment solu-

tion, in our view, serves as a useful benchmark against which to compare our time-consistent

solution, especially because the explicit analytical solutions to the dynamic mean-variance

problem so far have been obtained only in the pre-commitment case. Moreover, if there

were a credible mechanism for the investor to commit to her initial policy, she would be

better off to follow her initial policy than the time-consistent policy, since the dynamic time-

consistency requirement restricts her to consider only policies that she would not be willing

to deviate from. Thus, if the investor were able to pre-commit, her time-0 value function

would have been higher than the one under the time-consistent policy.

The pre-commitment mean-variance problem and its variations have been analyzed in the

literature, amongst others, by Bajeux-Besnainou and Portrait (1998), Bielecki, Jin, Pliska

and Zhou (2005), Cvitanic and Zapatero (2004), Zhao and Li (2000), Zhao and Ziemba

(2002). These works have primarily employed martingale methods in a complete market

setting. For completeness, we here provide the pre-commitment solution for our setting,

and follow the literature by specializing to a complete-market setting, ρ = ±1. Portfolio

choice problems that employ martingale methods in incomplete markets are well-known to

be a daunting task. However, we can illustrate our main points in the simple complete

market setting.

Dynamic market completeness allows the construction of a unique state price density

process, ξ, consistent with no-arbitrage, and given by

ξt = ξ0e
−rt− 1

2

∫ t
0

(
µs−r
σs

)2
ds−

∫ t
0
µs−r
σs

dws . (165)

The quantity ξT (ω) can be interpreted as the Arrow-Debreu price per unit probability P of

one unit of wealth in state ω ∈ Ω at time T , and without loss of generality, we set ξ0 = 1. The

dynamic investment problem of an investor can be restated as a static variational problem

using the martingale representation approach (Cox and Huang, 1989; Karatzas, Lehoczky

and Shreve, 1987). Accordingly, a mean-variance optimizer under pre-commitment solves
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the following problem at time 0:

max
WT

E0[WT ]− γ

2
var0[WT ], (166)

subject to E0[ξTWT ] ≤W 0. (167)

Proposition 2.4 presents the optimal solution to this problem in terms of the state price

density.

Proposition 2.4. The optimal terminal wealth of a mean-variance optimizer under pre-

commitment is given by

ŴT = W 0e
rT +

1
γ
E0[ξ2

T ]e2rT − 1
γ
ξT e

rT . (168)

Furthermore, under the assumption of a constant market price of risk (µt−r)/σt ≡ (µ−r)/σ,

the pre-committed investor’s optimal terminal wealth and investment policy are given by

ŴT = W 0e
rT +

1
γ
e(µ−r

σ
)2T − 1

γ
ξT e

rT , (169)

θ̂t =
µ− r
γσ2

e−r(T−t)ξte
(µ−r
σ

)2(T−t)+rt. (170)

To facilitate comparisons with the pre-commitment solution above, we also provide the

time-consistent solution (Propositions 2.2–2.3). In the special case of a complete market,

the time-consistent optimal terminal wealth, expressed in terms of the state price density,

is given by

W ∗T = W0e
rT +

1
γ
E0

[
ξT e

rT

∫ T

0

(µs − r
σs

)2
ds
]
− 1
γ

[
ln ξT + rT +

1
2

∫ T

0

(µs − r
σs

)2
ds
]
. (171)

Under the additional assumption of constant market price of risk, the time-consistent opti-

mal terminal wealth and investment policy are

W ∗T = W0e
rT +

1
γ

(µ− r
σ

)2
T − 1

γ

[
ln ξT + rT +

1
2

(µ− r
σ

)2
T
]
, (172)

θ∗t =
µ− r
γσ2

e−r(T−t). (173)
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Clearly, the pre-commitment solution ((168)–(170)) and the time-consistent solution

((171)–(173)) are generically different. The two solutions coincide only in the knife-edge

case of a zero market price of risk, in which case both the pre-commitment and time-

consistent policies entail investing nothing in the stock and putting all wealth in the bond.

We observe that for short investment horizons T , the pre-commitment solution approximates

the time-consistent one up to second-order terms. However, for plausible horizons, the two

solutions can differ considerably. In particular, for constant market price of risk case, the pre-

commitment expected terminal wealth is higher than the time-consistent one for sufficiently

long investment horizons.29 This is because the inability to pre-commit destroys investors

welfare. While for short time-horizons the effect of time-inconsistency can be negligible, it is

amplified at longer time-horizons. Moreover, since the state price density is positive, it can

easily be observed from (169) that the terminal wealth under the pre-commitment policy is

bounded from above. In contrast, the time-consistent policy retains the intuitive property

that the terminal wealth can become arbitrarily large for sufficiently small state prices when

the cost of wealth is low.30

The pre-commitment policy is stochastic, driven by the state-price density, even under

the assumed constant investment opportunity set, while the time-consistent investment is

deterministic. Being stochastic, the investment policy under pre-commitment induces a

hedging demand component, which is amplified at longer horizons. As a result, with longer

horizons, the pre-committed investor tends to invest more in the risky stock than the time-

consistent investor does. Finally, in bad states (high ξ) the pre-committed mean-variance

optimizer increases her risky investment, and in good states decreases investments. This is
29To see this, observe that the expected wealth under pre-commitment (169) grows exponentially with the

horizon, while the expected wealth under time-consistency (172) grows linearly. Even though the variance
is also higher in the pre-commitment case, it can be verified that the time-0 probability Prob0(ŴT > W ∗T )
approaches unity with long horizons. Indeed, from (165), (169) and (172) ŴT −W ∗T can be written as a
function of wT /

√
T . Moreover, it can be shown that this function is positive whenever −0.5((µ−r)/σ)

√
T ≤

wT /
√
T ≤ 0.5((µ − r)/σ)

√
T and T is sufficiently large. Therefore, since wT /

√
T is standard normal,

ŴT ≥W ∗T with probability approaching unity as T →∞.
30This property holds for any utility function satisfying the condition limWT→∞u

′(WT ) = 0 since the
marginal utility u′(WT ) is proportional to the state price density ξT at the optimum. In particular, one
can easily demonstrate that for CARA utility with absolute risk aversion parameter γ the optimal terminal
wealth is unbounded and is given by WT = −(1/γ) ln ξT − (1/γ) ln(λ/γ), where λ is a constant, similarly to
(172).
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because bad, costly states reduce her expected terminal wealth. To offset this, the investor

takes on more risk by increasing her risky investment.

2.3. Applications

This Section provides several applications that illustrate the simplicity and the usefulness of

the methodology developed in Section 2.2. In Sections 2.3.1–2.3.3, we consider the portfolio

choice problem of a mean-variance optimizer for different stochastic investment opportunity

sets. We obtain explicit solutions to these problems and provide further insights, disentan-

gling some effects that cannot be analyzed in the general framework. We also assess the

economic significance of the intertemporal hedging demands of a mean-variance optimizer

by quantitatively comparing them with the total demand in the richer economic settings of

Sections 2.3.2–2.3.3.

2.3.1. Constant Elasticity of Variance

In this Section, we specialize our setting to a complete market and the constant elasticity

of variance (CEV) model for the stock price:

dSt
St

= µdt+ σ̄S
α/2
t dwt, (174)

where α is the elasticity of instantaneous stock return variance, σ2
t = σ̄2Sαt , with respect

to the stock price. This process is a generalization of geometric Brownian motion, which

corresponds to α = 0, and has been successfully employed in the option pricing literature

(e.g, Cox and Ross, 1976; Schroder, 1989; Cox, 1996) to model the empirically observed

pattern of stock prices with heavy tails. Moreover, the CEV process with α < 0 generates

the finding that the volatility increases when the stock price falls (Black, 1976; Beckers,

1980). When α < 0, the distribution of stock prices has the left tail heavier than the right

one, while the converse is true for α > 0. The CEV model also helps explain volatility smiles

(Cox, 1996).

The mean-variance investor’s optimal policy under the CEV setting can be computed

explicitly by a straightforward application of Proposition 2.2. It amounts to computing the
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anticipated gains process under measure P ∗, which coincides with the familiar risk-neutral

one due to market completeness. We then derive the anticipated gains by computing the

expectation of the squared market price of risk, which after some manipulation, reduces

to solving an ordinary linear differential equation for which we obtain the unique explicit

solution. We emphasize that this computation does not resort to solving an HJB PDE,

as it would be the case under other popular objective functions, such as CRRA or CARA

preferences. The following Corollary to Proposition 2.2 presents the optimal investment

policy, as well as some of its properties.

Corollary 2.1. The optimal stock investment policy for the CEV model (174) is given by:

θ∗t =
µ− r
γσ̄2Sαt

e−r(T−t) − 1
γ

(
µ− r
σ̄S

α/2
t

)2
e−αr(T−t) − 1

r
e−r(T−t). (175)

Consequently,

(i) The hedging demand is positive (negative) for α > 0 (α < 0), and vanishes for α = 0;

(ii) The optimal investment policy θ∗t is a quadratic function of the market price of risk,

(µ− r)/σ̄Sα/2t , and may become negative for large values of market price of risk when

α < 0;

(iii) The optimal investment policy is a decreasing function of the time-horizon, T − t, for

α ≤ −1 and µ− r > 0, and is non-monotonic otherwise.

Corollary 2.1(i) reveals that the sign of the hedging demand (the second term in (175))

depends on the sign of the elasticity α. Positive elasticity implies that the market price

of risk decreases in the stock price. This induces a negative correlation between the stock

returns and anticipated portfolio gains (given by (155)) since the latter are positively related

to the market price of risk. As discussed in Section 2.2.2, this gives rise to a positive hedging

demand. Analogously, the hedging demand is negative for negative elasticity.

Property (ii) of Corollary 2.1 sheds light on the impact of the market price of risk on

the optimal investment policy. The optimal investment policy is a quadratic function of the
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market price of risk for a given stock volatility. Moreover, with negative hedging demand

the investor may short the stock despite a high market price of risk or risk premium. In such

a case, an increase in the market price of risk leads to a proportionally larger increase in

anticipated gains. This then implies a larger covariance between stock returns and portfolio

gains, making the hedging demand larger than the myopic demand in absolute terms, and

hence the negative stock investment.

Turning to the horizon effect, property (iii) reveals that the optimal investment can

be either decreasing or non-monotonic as the time-horizon increases, due to two effects

working in opposite directions. On one hand, the investment is perceived riskier at longer

horizons which decreases the demand for stock. On the other hand, the anticipated gains

may become higher with longer horizon, inducing larger hedging demands in absolute terms.

As a result, hedging demands can be either increasing or decreasing functions of the horizon,

depending on their sign. Thus, depending on which effect is stronger for a given horizon, the

optimal risky investment may increase or decrease as the horizon increases, which results in

a non-monotonic pattern.

2.3.2. Stochastic Volatility

We now consider an incomplete market setting in which the stock price follows the stochastic-

volatility model of Liu (2001):

dSt
St

= (r + δX
(1+β)/2β
t )dt+X

1/2β
t dwt, (176)

where the state variable, X, follows a mean-reverting square-root process

dXt = λ(X̄ −Xt)dt+ ν̄
√
XtdwXt, (177)

and where β 6= 0 is the elasticity of the market price of risk, δ
√
Xt, with respect to instan-

taneous stock return volatility, σt = X
1/2β
t , and λ > 0 (to exclude explosive processes).

In this setting, Liu derives an explicit solution to the portfolio choice problem for an

investor with CRRA preferences over terminal wealth. The case of β = −1 corresponds
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to the stochastic-volatility model employed by Chacko and Viceira (2005), who study the

intertemporal consumption and portfolio choice problem for an investor with recursive pref-

erences over intermediate consumption. They obtain an exact solution to the problem for

investors with unit elasticity of intertemporal substitution of consumption. The case of

β = 1 reduces to the stochastic-volatility model of Heston (1993), popular in option pricing.

Our mean-variance investor’s dynamic optimal policy is again a straightforward, simple

application of Proposition 2.2. Since the squared market price of risk equals δ2Xt, explicitly

finding the solution amounts to computing the conditional expectation of the state variable

under measure P ∗, which is easily seen (second equation in (154)) to also follow a mean-

reverting, square-root process as in (177). The conditional expectation of such a process is

well-known (e.g., Cox, Ingersoll and Ross, 1985). In contrast, the solution method of Liu

is based on the derivation of the HJB equation for the investor’s value function. However,

in the case of CRRA preferences this approach is cumbersome for two reasons. First, it

involves guessing the value function and reducing the HJB to a system of ODE, one of which

is a Riccatti equation. Second, this system of equations itself is notorious for complexity.

Corollary 2.2 reports our solution and some of its properties.

Corollary 2.2. The optimal stock investment policy for the stochastic-volatility model (176)–

(177) is given by:

θ∗t =
δ

γ
X

(β−1)/2β
t e−r(T−t) − ρν̄δ

(1− e−(λ+ρν̄δ)(T−t)

λ+ ρν̄δ

) δ
γ
X

(β−1)/2β
t e−r(T−t). (178)

Consequently,

(i) The hedging demand is positive (negative) for ρ < 0 (ρ > 0) and vanishes for ρ = 0;

(ii) The optimal investment policy θ∗t is positive (negative) for positive (negative) stock

risk premium;

(iii) The optimal investment policy is increasing (decreasing) in the market price of risk,

δ
√
Xt, for β < 0 or β > 1 (0 < β < 1) when the stock risk premium is positive, and

the converse is true when the stock risk premium is negative;
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(iv) The optimal investment policy is increasing in the time-horizon T−t for λ+r+ρν̄δ < 0,

is decreasing for ρν̄δ > 0, and is non-monotonic otherwise;

(v) The expected terminal wealth, Et[W ∗T ], is decreasing in the correlation ρ. The variance

of terminal wealth, vart[W ∗T ], attains its minimum when the market is complete, ρ2 =

1, and its maximum for some ρ∗ < 0. The value function, Jt, is decreasing in ρ on

the interval [−1, ρ∗] and ambiguous otherwise.

Corollary 2.2(i) shows that the sign of the hedging demand (second term in (178)) is

determined by the sign of the correlation between the stock and state variable. When

this correlation is negative, the instantaneous stock returns are negatively correlated with

anticipated portfolio gains since the latter are positively related to the squared market price

of risk, δ2Xt. As discussed in Section 2.2.2, such a negative correlation with anticipated

gains induces a positive hedging demand. Analogously, a positive correlation ρ gives rise to

a negative hedging demand.

Property (ii) of Corollary 2.2 reveals that the mean-variance optimizer always holds a

long position in a risky stock with positive risk premium, as in static or myopic portfolio

choice problems.31 In contrast, Liu (2001) finds that a CRRA investor with low risk aversion

may short the risky stock even for a high positive risk premium. Moreover, the mean-

variance investment policy is increasing in the market price of risk for negative (β < 0) or

relatively high (β > 1) elasticities of market price of risk with respect to stock volatility

when the stock risk premium is positive (property (iii)). With a negative elasticity, the

market price of risk is high when the stock volatility is low that makes the stock attractive.

For high elasticities, high market price of risk is associated with a high volatility. However,

since the elasticity is high, an increase in the market price of risk offsets an increase in

the stock volatility making the stock attractive. Conversely, for intermediate elasticities

(0 < β < 1), the optimal investment decreases in the market price of risk.

Property (iv) also shows that the optimal investment either increases or decreases as
31The optimal investment, however, may become negative for negative speed of mean-reversion λ, which

corresponds to an explosive process for the state variable.
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the time-horizon increases, similarly to the setting in Section 2.3.1. This horizon effect

depends on the covariance between the stock returns and state variable per unit of stock

volatility, ρν̄, amplified by the risk premium scale parameter, δ. With positive correlation

and high state variable volatility, hedging demand is small and vanishes with long horizons.

Otherwise, increasing the stock investment would lead to higher anticipated gains and higher

variability of terminal wealth amplified by longer time-horizon. Conversely for sufficiently

negative correlation.

Corollary 2.2(v) also sheds further light on the effect of market incompleteness on wealth

and welfare. First, the expected terminal wealth is decreasing in the correlation between the

stock and state variable. For negative correlation, it decreases since the hedging demand is

positive, and becomes smaller as the correlation approaches zero. For positive correlation,

expected terminal wealth declines since the hedging demand is negative, and becomes larger

in absolute terms as the correlation approaches unity. In congruence with Proposition 2.3,

the variance of terminal wealth is lowest in the complete market case (ρ2 = 1), in which

perfect hedging is possible, and attains a maximum at some intermediate correlation level

ρ∗ < 0. Thus, for relatively low correlation (ρ < ρ∗) the expected wealth is decreasing in

correlation while the variance is increasing, which leads the welfare to decrease in correlation.

The welfare effect is ambiguous for relatively high correlation (ρ > ρ∗) since lower expected

wealth is counterbalanced by decreased variance. However, for plausible parameter values

(Table 2.1, Panel A: ρ = 0.5241, ν̄ = 0.6503, δ = 0.0811, λ = 0.3374), it can be shown that

the loss in expected wealth dominates, and hence the welfare decreases in correlation.

Finally, we investigate the economic significance of the mean-variance intertemporal

hedging demands induced by the stochastic volatility setting. To this end, we compute the

ratio of the hedging demand to total optimal demand, θHt/θ∗t , for a range of plausible pa-

rameter values. Conveniently, this ratio is deterministic and depends only on the correlation

ρ, the state variable speed of mean-reversion λ and volatility parameter ν̄ for a given time-

horizon. Table 2.1 presents the percentage hedging demand for varying levels of correlation,
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Table 2.1
Percentage Hedging Demand over Total Demand

for the Stochastic-Volatility Model with elasticity β = −1

The table reports the percentage hedging demand over total demand for different levels of
correlation ρ, speed of mean-reversion λ and time-horizon T − t. The other pertinent parameters
are fixed at their estimated values. The relevant model parameter values are taken from Chacko
and Viceira (2005, Table 1) who estimate the stochastic-volatility model with elasticity β = −1
using U.S. stock market data based on monthly returns from 1928 to 2000 and annual returns
from 1871 to 2000. Panel A reports our results for (annualized) parameter values ρ = 0.5241,
ν̄ = 0.6503, δ = 0.0811 and λ = 0.3374 based on estimates from the monthly data of 1926–
2000. Panel B reports the results for parameter values ρ = 0.3688, ν̄ = 1.1703, δ = 0.0848
and λ = 0.0438 based on annual data of 1871–2000. Both tables also report results for vary-
ing levels of ρ and λ, with bolded ratios corresponding to the estimated parameter values of ρ and λ.

Panel A: Monthly Data Parameter Estimates Panel B: Annual Data Parameter Estimates
Horizon Horizon

ρ 6-month 1-year 5-year 10-year 20-year 6-month 1-year 5-year 10-year 20-year
-1.00 2.4 4.39 12.3 14.9 15.6 4.8 9.3 36.4 57.0 78.4
-0.50 1.2 2.2 6.23 7.5 7.8 2.4 4.7 20.1 33.8 51.3
0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.37 -1.0 -1.7 -4.8 -5.6 -5.8 -1.8 -3.6 -17.7 -33.6 -57.3
0.50 -1.2 -2.3 -6.5 -7.6 -7.8 -2.5 -5.0 -24.7 -47.6 -81.5
0.52 -1.3 -2.4 -6.8 -8.0 -8.2 -2.6 -5.2 -26.0 -50.3 -86.2
1.00 -2.5 -4.6 -13.1 -15.3 -15.6 -5.0 -10.2 -54.9 -111.8 -189.1
λ 6-month 1-year 5-year 10-year 20-year 6-month 1-year 5-year 10-year 20-year

0.00 -1.4 -2.8 -14.8 -31.8 -73.8 -1.9 -3.7 -20.1 -44.2 -107.9
0.04 -1.4 -2.7 -13.2 -24.6 -41.7 -1.8 -3.6 -17.7 -33.6 -57.3
0.30 -1.3 -2.4 -7.3 -8.8 -9.2 -1.7 -3.2 -9.7 -11.7 -12.2
0.34 -1.3 -2.4 -6.8 -8.0 -8.2 -1.7 -3.2 -9.0 -10.6 -10.8
0.60 -1.2 -2.1 -4.4 -4.6 -4.6 -1.6 -2.8 -5.8 -6.1 -6.1
0.90 -1.1 -1.8 -3.0 -3.1 -3.1 -1.5 -2.4 -4.0 -4.1 -4.1

speed of mean-reversion and the investor’s horizon.32 The relevant parameter values are

taken from Chacko and Viceira (2005), who estimate the stochastic-volatility model with

elasticity β = −1 using U.S. stock market data based on monthly returns from 1926 to 2000

and annual returns from 1871 to 2000.

Inspection of the results in Panel A of Table 2.1, based on monthly data parameter

estimates, reveals a relatively small ratio of the hedging demand over total demand, ranging

from −1.3% to −8.2% for the parameter estimates ρ = 0.52 and λ = 0.34 (in bold). This
32We do not consider varying the levels of ν̄ and δ since they always appear multiplicatively with the

correlation ρ in the hedging and total demand expressions. So, separately varying the levels of ν̄ and δ would
lead to a range of percentage hedging demand similar to that generated by different levels of ρ.
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small magnitude of the hedging demand is due to the relatively low correlation and high

speed of mean-reversion estimates. In contrast, Panel B, based on annual data parameter

estimates, reveals a considerably larger percentage hedging demand, ranging from −1.8%

to −57.3% for the parameter estimates ρ = 0.37 and λ = 0.04. Our results are in line

with the findings of Chacko and Viceira, although in absolute terms they are large. Chacko

and Viceira find the percentage hedging demand to range from −1.5% to −3.6% for the

monthly data and from −5.2% to −18.4% for the yearly data for an infinitely-lived recursive-

utility investor with relative risk aversion and elasticity of intertemporal substitution ranging

[1.5, 40] and [1/0.8, 1/40], respectively.33 Thus, the hedging demand in our setting is larger

in absolute terms than in Chacko and Viceira.

2.3.3. Time-Varying Gaussian Mean Returns

In this Section, we consider the mean-variance optimizer’s problem in an incomplete market

in which the stock price dynamics are specialized to follow:

dSt
St

= (r + σXt)dt+ σdwt, (179)

where the market price of risk, Xt, follows a mean-reverting Ornstein-Uhlenbeck process

dXt = λ(X̄ −Xt)dt+ νdwXt, (180)

with λ > 0. Kim and Omberg (1996) explicitly solves the portfolio choice problem of

an investor with CRRA preferences over terminal wealth in this incomplete market setting.

Merton (1971) studies the consumption and portfolio choice problem of an agent with CARA

preferences in this Gaussian mean-reverting setting for the special complete-market case of

positive perfect correlation, ρ = +1. Wachter (2002) provides an explicit solution to the

consumption and portfolio choice problem of an investor with CRRA preferences under this

setting with negative perfect correlation, ρ = −1. Campbell and Viceira (1999) study the
33Chacko and Viceira compute the ratio of hedging demand to myopic demand, which we then convert

into the ratio of hedging demand to total demand. Moreover, they also consider the case of the relative risk
aversion being less than unity, which is less empirically plausible for the average investor. In that case, they
find that the ratio of hedging demand to myopic demand is positive.
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infinite-horizon discrete-time consumption and portfolio choice of an investor with recursive

utility and under discrete-time versions of the dynamics (179)–(180), where the state variable

is taken to be the dividend-price ratio.

For the mean-variance optimizer, finding the optimal investment policy again reduces

to computing the expectation of the squared market price of risk, X2
t , under measure P ∗.

It follows from (154) that under this measure, the market price of risk follows a simple

mean-reverting process as in (180) for which the first and second moments can easily be

derived (e.g., Vasicek, 1977). This approach avoids solving the HJB equation which is a

tedious task in the case of CRRA preferences and incomplete markets since it amounts to

solving a system of nonlinear ordinary differential equations (e.g., Kim and Omberg, 1996).

The following Corollary to Proposition 2.2 reports our mean-variance solution and some of

its unambiguous properties.

Corollary 2.3. The optimal stock investment policy for the time-varying Gaussian mean

returns model (179)–(180) is given by:

θ∗t =
Xt

γσ
e−r(T−t) − ρν

γσ

(
λ
(1− e−(λ+ρν)(T−t)

λ+ ρν

)2
X̄ +

1− e−2(λ+ρν)(T−t)

λ+ ρν
Xt

)
e−r(T−t). (181)

Consequently,

(i) The mean hedging demand is positive (negative) for ρ < 0 (ρ > 0) and vanishes for

ρ = 0 when X̄ > 0, and the converse is true when X̄ < 0;

(ii) The optimal stock investment, θ∗t , is increasing in the market price of risk, Xt.

The hedging demand (second term in (181)) in general may become positive or negative

for any combination of model parameters depending on the sign and magnitude of the

market price of risk Xt, which is Gaussian and can possibly take on negative values. The

mean hedging demand, the unconditional expectation of the hedging demand, however,

is positive for negative correlation between the stock and state variable, and negative for

positive correlation. The intuition for this is as in the stochastic-volatility model of the

previous Section (Corollary 2.2(i)).
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Table 2.2
Percentage Mean Hedging Demand over Mean Total Demand

for the Mean-Reverting Gaussian Returns Model

The table reports the percentage mean hedging demand over mean total demand for different
levels of correlation ρ, speed of mean-reversion λ and the investor’s time-horizon T − t. The
other pertinent parameters are fixed at their estimated values. The relevant parameter values
are taken from the estimates provided in Wachter (2002, Table 1). These parameter esti-
mates are based on their discrete-time analogues in Barberis (2000) and Campbell and Viceira
(1999), and are: ρ = −0.93, ν = 0.065 and λ = 0.27. The table also reports results for vary-
ing levels of ρ and λ, with bolded ratios corresponding to the estimated parameter values of ρ and λ.

Horizon
ρ 6-month 1-year 5-year 10-year 20-year

-1.00 19.1 32.5 71.0 81.6 87.4
-0.93 17.9 30.7 68.2 78.7 84.4
-0.50 10.0 17.9 45.5 54.2 58.1
0.00 0.0 0.0 0.0 0.0 0.0
0.50 -11.2 -22.2 -96.5 -135.1 -143.5
1.00 -23.8 -50.1 -427.7 -920.6 -1020.9
λ 6-month 1-year 5-year 10-year 20-year

0.00 19.0 34.4 87.9 98.5 100.0
0.27 17.9 30.7 68.2 78.7 84.4
0.30 17.7 30.3 66.1 75.8 80.6
0.60 16.6 26.9 48.7 51.6 52.0
0.90 15.5 23.6 37.3 38.0 38.0

Corollary 2.3(ii) reveals the optimal investment policy to be increasing in the market

price of risk. Thus, our dynamic mean-variance optimizer under the mean-reverting Gaus-

sian setting retains this familiar property of the myopic or static portfolio choices despite

a potentially large hedging demand, as demonstrated below. However, the welfare implica-

tions of the market incompleteness for this setting are complicated due to the fact that the

hedging demand may change signs over time depending on the behavior of the market price

of risk, but can explicitly be analyzed for a given set of model parameters.

We here assess the significance of the intertemporal hedging demands by computing the

ratio of the mean hedging demand over the mean total demand, as in Campbell and Viceira

(1999).34 This ratio depends only on the correlation ρ, the speed of mean-reversion λ and

the instantaneous variance of the state variable ν for a given time-horizon T − t. Table 2.2
34The ratio of the hedging demand over the total demand is stochastic and depends on the state variable

Xt. Therefore, as a tractable quantitative assessment of the percentage hedging demand, we follow Campbell
and Viceira and consider the mean hedging demand over the mean total demand, which is deterministic.
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reports the percentage mean hedging demand for varying levels of correlation, speed of

mean-reversion parameter and the investor’s horizon. The parameter values are taken from

the estimates provided by Wachter (2002) and are described in the caption of Table 2.2.

Inspection of Table 2.2 establishes the percentage mean hedging demand over mean

total demand to be positive and fairly large, ranging from 17.9% to 84.4% for the parameter

estimates ρ = −0.93 and λ = 0.27 (in bold). This result is primarily due to the large

negative correlation ρ, which implies (on average) a positive and large hedging demand. Our

finding is consistent with that reported in the literature under a similar economic setting but

with different investor preferences. Campbell and Viceira (1999) find the percentage mean

hedging demand to range from 22.9% to 65.5% for an infinitely lived recursive-utility investor

with relative risk aversion and elasticity of intertemporal substitution ranging [1.5,40] and

[1/0.75,1/40], respectively. Results in Brandt (1999) confirm the findings of Campbell and

Viceira for the case of CRRA preferences with relative risk aversion 5. A large hedging

demand in proportion to wealth is also reported in Wachter (2002).

2.4. Extensions and Ramifications

In this Section, we demonstrate that the baseline analysis of Section 2.2 can easily be adopted

to alternative or richer economic environments. Section 2.4.1 illustrates our methodology

in a discrete-time framework, and provides an explicit solution to the stochastic-volatility

model in discrete time. Sections 2.4.2 – 2.4.3 demonstrate that the results of Section 2.2

are readily extendable to more realistic environments with stochastic interest rates and with

multiple stocks, state variables and sources of uncertainty.

2.4.1. Discrete-Time Formulation

We consider the mean-variance asset allocation problem in a discrete-time setting. The

extant literature, to our best knowledge, lacks analytic expressions for multi-period discrete-

time investment policies in rich stochastic environments and characterizes optimal policies

by employing either numerical methods or various approximations (e.g., Ait-Sahalia and
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Brandt, 2001; Bansal and Kiku, 2007; Brandt, Goyal, Santa-Clara and Stroud, 2005; Brandt

and Santa-Clara, 2006; Campbell and Viceira, 1999, 2002, among others). In contrast, we

here derive a recursive representation for the optimal investment policy in discrete time and

provide fully-explicit closed-form solutions for specific stochastic investment opportunity

sets as in the continuous-time formulation. To our knowledge, these explicit solutions are

new in the literature.35

We let the time increment denote ∆t ≡ T/M , where M is an integer number, and index

time by t = 0,∆t, 2∆t, ..., T . The uncertainty is generated by two correlated discrete-time

stochastic processes w and wX , with correlation ρ. The increments of the processes, ∆wt

and ∆wXt, are serially uncorrelated and distributed according to some distribution with

zero mean and variance ∆t, D(0,∆t). An investor trades in two securities, a riskless bond

that provides a constant interest rate r over the interval ∆t, and a risky stock that has price

dynamics given by
∆St
St

= µ(St, Xt, t)∆t+ σ(St, Xt, t)∆wt,

where the state variable X follows the process

∆Xt = m(Xt, t)∆t+ ν(Xt, t)∆wXt.

An investor’s wealth W then follows

∆Wt = [rWt + θt(µt − r)]∆t+ θtσt∆wt, (182)

where θt again denotes the dollar stock investment. The investor maximizes the objective

function (138) subject to the dynamic budget constraint (182) for each time t = 0,∆t, ..., T−

∆t. Proposition 2.5 is the discrete-time analogue of Proposition 2.1 and provides a recursive

representation for the optimal investment policy in terms of the anticipated portfolio gains,

ft = Et[W ∗T ] − WtR
T−t. The proof is similarly based on deriving the Bellman equation

in discrete-time. Not surprisingly though, since the anticipated gains process cannot be
35Since the purpose of this Section is to demonstrate the tractability of our analysis in discrete time, we

employ a simple Euler discretization scheme and abstract away from potential issues of convergence of our
discrete-time stochastic processes to their continuous-time analogues.
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represented in differential form in discrete-time, the optimal policy is characterized not in

terms of partial derivatives of f , but in terms of its time-t conditional covariance with

one-period stock returns.

Proposition 2.5. The optimal stock investment policy of a dynamic mean-variance opti-

mizer in discrete-time is given by

θ∗t =
µt − r
γσ2

t

R−(T−∆t−t) − covt(∆St/St,∆ft)
σ2
t∆t

R−(T−∆t−t), (183)

where process ft represents the expected total gains or losses from the stock investment and

is given by

f(St, Xt, t) = Et

[
T−∆t∑
s=t

θ∗s(µs − r)R(T−∆t−s)∆t

]
, (184)

R = (1 + r∆t)1/∆t and t = 0,∆t, ..., T −∆t.

The discrete-time optimal investment policy has the same structure as in Proposition

2.1 and is given by myopic and hedging demands. The absence of a discrete-time version

of the Feynman-Kac formula, however, does not allow us to characterize the optimal policy

entirely in terms of the exogenous model parameters, as in Proposition 2.2. Nevertheless,

expression (183) can be used to obtain an explicit representation for the optimal policy for

specific applications either by solving (183) backwards or by guessing the structure of the

solution.

To illustrate an application of Proposition 2.5, we solve the discrete-time versions of the

models of Sections 2.3.2–2.3.3. Specifically, the discrete-time dynamics of the stock price

and state variable for the stochastic-volatility model are specified as follows:

∆St
St

= (r + δX
(1+β)/2β
t )∆t+X

1/2β
t ∆wt, (185)

∆Xt = λ(X̄ −Xt)∆t+ ν̄
√
Xt∆wXt, (186)

where β 6= 0 and λ > 0. In discrete time, there is a probability that Xt hits the zero-

boundary even with a non-explosive process. To exclude this, we assume that either the

interval ∆t is so small that this event has negligible probability or the distribution func-

tion of ∆wt and ∆wXt is truncated in such a way that it never happens. To obtain the
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optimal investment policy explicitly, we first conjecture that the solution has the form

θ∗t = g(t)X(β−1)/2β
t R−(T−∆t−t), where g(t) is a deterministic function. Substituting this

expression into the recursive representation (183) gives a recursive equation for the function

g(t) that can be solved explicitly.

The discrete-time dynamics of the stock price and state variable for the time-varying

Gaussian mean returns model are given by:

∆St
St

= (r + σXt)∆t+ σ∆wt, (187)

∆Xt = λ(X̄ −Xt)∆t+ ν∆wXt, (188)

where λ > 0. Campbell and Viceira (1999) consider a discrete-time version of these

dynamics and derive optimal policies under recursive utility by employing log-linear ap-

proximations. To obtain an explicit solution we conjecture that it has the form θ∗t =

Xt/γσ− (g1(t) + g2(t)Xt)/γσ, where g1(t) and g2(t) are deterministic functions. Substitut-

ing θ∗t into representation (183), as in the previous case, we obtain recursive equations for

g1(t) and g2(t) which we solve explicitly. Corollary 2.4 reports the results.

Corollary 2.4. The optimal investment policy for the discrete-time stochastic-volatility

model (185)–(186) is given by

θ∗t =
δ

γ
X

(β−1)/2β
t R−(T−∆t−t)−ρν̄δ1− (1− (λ+ ρν̄δ)∆t)(T−∆t−t)/∆t

λ+ ρν̄δ

δ

γ
X

(β−1)/2β
t R−(T−∆t−t),

(189)

and for the discrete-time model with Gaussian mean-returns (187)–(188) is given by

θ∗t =
Xt

γσ
R−(T−∆t−t) − g1(t) + g2(t)Xt

γσ
R−(T−∆t−t), (190)

where

g1(t) = (A+B)
(

1− [(1− λ∆t)(1− ρν∆t)](T−∆t−t)/∆t
)

−B
(

1− [(1− λ∆t)2(1− 2ρν∆t)](T−∆t−t)/∆t
)
,

g2(t) =
(

1− (1− (1− λ∆t)2)(1 + 2ρνλ∆t)
1− (1− λ∆t)2(1− 2ρν∆t)

)(
1− [(1− λ∆t)2(1− 2ρν∆t)](T−∆t−t)/∆t

)
,

and A and B are constants, explicitly reported in the Appendix.
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It can be verified that as time interval ∆t approaches zero, the discrete-time policies

converge to the continuous-time ones reported in Corollaries 2.2 and 2.3. As a result, the

comparative statics for (189) and (190) are similar to those in the continuous-time case.

We note that in deriving expressions (189) and (190), we do not assume normality of the

stochastic processes w and wX , as in continuous-time.

2.4.2. Multiple Stock Formulation

We now generalize the baseline analysis of Section 2.2 with a single stock and state variable

to the case of multiple stocks and state variables. Specifically, uncertainty is generated by

two multi-dimensional Brownian motions w = (w1, ..., wN)> and wX = (wX1, ..., wXK)> with

N × K correlation matrix ρ, where each element of the matrix ρ = {ρnm} represents the

correlation between the Brownian motions wn and wXm. An investor trades in a riskless bond

with a constant interest rate r and N risky stocks, and so the market is again potentially

incomplete. The stock prices, S = (S1, ..., SN)>, follow the dynamics

dSit
Sit

= µi(St, Xt, t)dt+ σi(St, Xt, t)>dwt, i = 1, ..., N,

where µi and σi are deterministic functions of S and K state variables, X = (X1, ..., XK)>,

which satisfy

dXjt = mj(Xt, t)dt+ νj(Xt, t)>dwXt, j = 1, ...,K.

We let µ ≡ (µ1, ..., µN)> denote the vector of stock mean returns and σ ≡ (σ1, ..., σN)>

the volatility matrix, assumed invertible, with each component σ = {σin} capturing the

covariance between the stock return and Brownian motion wn. Similarly, m ≡ (m1, ...,mK)>

and ν ≡ (ν1, ..., νK)> will denote the mean growth and the volatility matrix of the sate

variables X, respectively. The investor’s wealth follows

dWt = [rWt + θ>t (µt − r)]dt+ θ>t σtdwt, (191)

where θt = (θ1t, ..., θNt)> denotes the vector of dollar investments in the N stocks at time t.

The dynamic optimization problem of the investor is as in Section 2.2. For each time

t ∈ [0, T ], she maximizes the time-t objective function (138) subject to the dynamic budget
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constraint (191). As in Section 2.2, the optimal policy is characterized in terms of the antic-

ipated portfolio gains, f , and arises from the HJB equation adjusted for time-inconsistency.

Proposition 2.6 generalizes Proposition 2.2 and reports the optimal investment and antici-

pated gains in terms of the model parameters and the hedge-neutral measure.

Proposition 2.6. The optimal investment policy in the multiple-stock economy is given by

θ∗t =
1
γ

(σtσ>t )−1(µt − r)e−r(T−t) −
(
ISt

∂ft

∂S>t
+ (νtρ>σ−1

t )>
∂ft

∂X>t

)
e−r(T−t), (192)

where ISt is a diagonal N ×N matrix with S1t, ..., SNt on the main diagonal, ∂ft/∂St and

∂ft/∂Xt denote the row-vectors of partial derivatives with respect to relevant variables. The

anticipated portfolio gains, f , can be represented as

f(St, Xt, t) = E∗t

[ ∫ T

t

1
γ

(µs − r)>(σsσ>s )−1(µs − r)ds
]
,

where E∗t [·] denotes the expectation under the unique hedge-neutral measure P ∗ on which

are defined N -dimensional Brownian motion w∗ and K-dimensional Brownian motion w∗X

with correlation ρ, given by

dw∗t = dwt + σ−1
t (µt − r)dt, dw∗Xt = dwXt + ρ>σ−1

t (µt − r)dt,

and measure P ∗ is defined by the Radon-Nikodym derivative

dP ∗

dP
= e−

1
2

∫ T
0 (µs−r)>(σsσ>s )−1(µs−r)ds−

∫ T
0 (σ−1

s (µs−r))>dws .

The optimal investment policy (192) is given by myopic and intertemporal hedging

terms, retaining the structure of the single-stock case. It can again be shown that the

hedging demands can be expressed in terms of the covariance of stock returns and anticipated

portfolio gains. Proposition 2.6 also identifies the effect of cross-correlations on the optimal

investment and reveals that the hedging term for one stock depends on the correlations

of other stocks with the state variables. The optimal investment expression also allows

for some simple comparative statics with respect to the risk aversion parameter, interest

rate and stock volatility matrix with similar implications to those in Section 2.2. We can
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also obtain expressions for optimal terminal wealth, its moments and the value function of

the mean-variance optimizer and identify the effect of market incompleteness, as in Section

2.2.3.

2.4.3. Stochastic Interest Rates

In this Section, we incorporate stochastic interest rates into our analysis and demonstrate

that the optimal policies can explicitly be computed as in the baseline model of Section

2.2. Specifically, we consider an incomplete-market economy with an additional source of

uncertainty generated by a Brownian motion wr that is correlated with Brownian motions

w and wX with correlations ρrS and ρrX , respectively. The locally riskless bond now has a

stochastic interest rate r that follows the dynamics

drt = µr(Xt, rt, t)dt+ σr(Xt, rt, t)dwrt, (193)

where µr and σr are deterministic functions of X and r. Furthermore, we allow the stock

price and state variable parameters µ, σ, m and ν to additionally depend on the interest

rate r.

In our analysis we take the bond as the numeraire so that all relevant quantities are in

terms of the bond price Bt = B0e
∫ t
0 rsds, as is common in various problems in finance. To

facilitate tractability, we employ the mean-variance criterion over terminal wealth in units

of this numeraire, which allows us to adopt our earlier solution method and characterize the

optimal policy in units of the numeraire, that is, θ̃t ≡ θ∗t /Bt.
36 Proposition 2.7 reports our

results.

Proposition 2.7. The optimal investment policy in the economy with stochastic interest

rates is given by

θ̃t =
µt − rt
γσ2

t

−
(
St
∂ft
∂St

+
ρνt
σt

∂ft
∂Xt

+
ρrSσrt
σt

∂ft
∂rt

)
, (194)

where ft is as in Proposition 2.2, but with r following (193).
36Otherwise, if the mean-variance criterion is over WT and the interest rate is stochastic, in contrast to

Lemma 2.1 the value function is not separable in Wt and the policy θ∗t is no longer independent of Wt, which
makes the problem intractable.
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The optimal policy (194) has the same structure as the baseline case. The main differ-

ence is that the hedging term now additionally accounts for the interest rate fluctuations by

incorporating the sensitivity of anticipated portfolio gains (f) to interest rates. As in Sec-

tion 2.3, the optimal policies may explicitly be computed for various stochastic investment

opportunities. We consider a simple application where all the fluctuations in the investment

opportunities are driven by the stochastic interest rate r. In particular, the stock price

follows a geometric Brownian motion with constant parameters µ and σ, while the interest

rate follows a Vasicek model (Vasicek, 1977)

drt = λr(r̄ − rt)dt+ σrdwrt. (195)

Along the lines of Corollaries 2.1–2.3, it can be demonstrated that the optimal policy is

given by

θ̃t =
µ− rt
γσ2

− ρrSσr
γσ

(
λr

(1− e−(λr−ρrSσr/σ)(T−t)

λr − ρrSσr/σ
)2µ− r̄

σ
+

1− e−2(λr−ρrSσr/σ)(T−t)

λr − ρrSσr/σ
µ− rt
σ

)
.

This policy is comparable to that of the case of time-varying Gaussian mean-returns (181)

in Section 2.3.3, but now additionally allows us to consider comparative statics with respect

to the parameters of the interest rate dynamics (195).

2.5. Conclusion

Despite the popularity of the mean-variance criteria in multi-period problems in finance,

little is known about the dynamically optimal mean-variance portfolio policies. This work

makes a step in this direction by providing a fully analytical characterization of the optimal

mean-variance policies within a familiar, dynamic, incomplete-market setting. The optimal

mean-variance dynamic portfolios are shown to have a simple, intuitive and tractable struc-

ture. The solution is obtained via dynamic programming and is facilitated by deriving a

recursive formulation for the mean-variance criteria, accounting for its time-inconsistency.

We also identify a “hedge-neutral” measure that absorbs intertemporal hedging demands

and allows explicit computation of optimal portfolios in a straightforward way for various

stochastic environments.
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Given the tractability offered by our analysis, we believe that our results are well suited

for various applications in financial economics. For example, portfolio selection problems

in incomplete markets are notoriously hard to solve, and it may be very convenient for

future applications to have a reasonable criterion for which the solution can actually be

computed. In our ongoing work, we extend the current study to an incomplete market

setting where the investment opportunities may also experience jumps and again discover

much tractability in the ensuing analysis. We also foresee potential applications in security

pricing with incomplete markets, for which the investor preferences are to be accounted for.
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2.6. Appendix: Proofs

Proof of Lemma 2.1. We first demonstrate equation (141). Using Itô’s Lemma we

rewrite the budget constraint (135) as

d(Wte
r(T−t)) = θt(µt − r)er(T−t)dt+ θtσte

r(T−t)dwt. (196)

Integrating (196) from t+ τ to T and assuming that the investor follows the optimal policy

θ∗s from t+ τ onwards we obtain

Et+τ [W ∗T ] = Wt+τe
r(T−t−τ) + ft+τ , (197)

where W ∗T is optimal wealth given the optimal policy θ∗s , s ≥ t+ τ , and ft is given by (143).

Substituting (197) into (140) and noting that Wte
r(T−t) and ft are adapted to the filtration

Ft, we obtain (141).

The HJB equation in differential form (144) follows from equation (141) when the deci-

sion making interval, τ , tends to zero. To derive the terminal condition for JT , we note that

varT [WT ] = 0 and ET [WT ] = WT . The definition of the value function, JT , then implies

JT = WT .

To show that Wt does not affect θ∗t , we integrate (196) from t to T and substitute WT

into the time-t objective function:

Et[WT ]− γ

2
vart[WT ] = Wte

r(T−t) + Et

[∫ T

t
θs(µs − r)er(T−s)ds

]
− γ

2
vart

[∫ T

t
θs(µs − r)er(T−s)ds+

∫ T

t
θsσse

r(T−s)dws

]
.(198)

It can be observed from (198) that the objective function is separable in Wte
r(T−t), and

hence the optimal policy θ∗s does not depend on Wt for s ≥ t. Since the investor solves for

the investment policy by backwards induction, θ∗s also does not depend on Ws for s > t. Due

to the Markovian nature of the economy, θ∗t depends only on St, Xt and t. The fact that

the function ft depends only on St, Xt and t follows from the expression for ft in terms of

the optimal policy, given in (143). The separability of the value function Jt from Wte
r(T−t)

follows from (198). Q.E.D.
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Proof of Proposition 2.1. To prove Proposition 2.1, it remains to derive the first order

condition for the problem (147).37 The objective function in (147) is quadratic and concave

in θt, and so the unique optimal policy solves the first order condition:

(µt − r)er(T−t) − γθ∗t σ2
t e

2r(T−t) − γσt
(
σtSt

∂ft
∂St

+ ρνt
∂ft
∂Xt

)
er(T−t) = 0,

leading to the expression (148).
Q.E.D.

Proof of Proposition 2.2. Under standard conditions, there exists a probability measure

P ∗ under which the function ft admits the Feynman-Kac representation (153) (Karatzas

and Shreve, 1991) and under this measure, the processes S and X satisfy the stochastic

differential equations (154). Comparing (154) with (133)–(134), we obtain that measure P ∗

transforms Brownian motions wt and wXt into w∗t and w∗Xt satisfying (156).

We next find the Radon-Nikodym derivative dP ∗/dP . To apply Girsanov’s Theorem

(Karatzas and Shreve, 1991), we first decompose the Brownian motion wX as a sum of

two uncorrelated Brownian motions: dwXt = ρdwt +
√

1− ρ2dw̃t, where w̃t = (wXt −

ρwt)/
√

1− ρ2. We observe that in terms of dw̃t, the representations (156) can be rewritten

as follows:

dw∗t = dwt +
µt − r
σt

dt, dw∗Xt = ρ

(
dwt +

µt − r
σt

dt

)
+
√

1− ρ2dw̃t.

Since measure P ∗ affects only the first component of the two-dimensional Brownian motion

(wt, w̃t)>, the Radon-Nikodym derivative (157) obtains by Girsanov’s Theorem. Finally,

substituting ft given by (155) into the recursive representation (148), we obtain (158).
Q.E.D.

37The proof of Proposition 2.1 implicitly assumes that f(St, Xt, t) is twice differentiable and

Et

[∫ τ

t

ν2
s

(
∂fs
∂Xs

)2

+ (σsSs)
2

(
∂fs
∂Ss

)2

ds

]
<∞.

These conditions justify the computation of the variance term in (146) (e.g., Karatzas and Shreve, 1991)
which yields the HJB equation (147), and can be verified in the specific applications of Section 2.3 where
the process ft is computed explicitly.
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Proof of Proposition 2.3. First, we derive the terminal wealth expression. Substituting

the optimal policy θ∗t from (148) into (196) and rearranging terms we obtain

d(Wte
r(T−t)) = −dft +

µt − r
γσt

dwt +
√

1− ρ2νt
∂ft
∂Xt

dw̃t, (199)

where w̃t is defined in Proposition 2.3. Integrating (199) from t to T , we obtain (161). Since

w̃t and wt are uncorrelated, the variance of terminal wealth is given by

vart[W ∗T ] = vart

[
1
γ

∫ T

t

µs − r
σs

dws

]
+ vart

[√
1− ρ2

∫ T

t
νs
∂fs
∂Xs

dw̃s

]
,

which leads to expression (162). The expressions for Et[W ∗T ] and Jt are immediate.

We next prove assertions (i)–(iii). Property (i) follows from the wealth variance expres-

sion (162). Since (µt−r)/σt is assumed to not depend on St, the first term in (162) does not

depend on the correlation ρ. The second term is strictly positive in incomplete markets and

vanishes in complete markets, ρ2 = 1, and hence the assertion. To prove property (ii) we

compute the derivative of ft with respect to correlation ρ in terms of the hedging demand.

Since (µt − r)/σt depends only on Xt, ft in (155) also depends only on Xt. As a result, the

PDE (152) for ft becomes:

∂ft
∂t

+
(
mt − ρνt

µt − r
σt

)
∂ft
∂Xt

+
ν2
t

2
∂2ft
∂X2

t

+
1
γ

(
µt − r
σt

)2

= 0, (200)

with fT = 0. Differentiating (200) with respect to ρ and denoting f̃t ≡ ∂ft/∂ρ, we obtain

the equation for f̃t:

∂f̃t
∂t

+
(
mt − ρνt

µt − r
σt

)
∂f̃t
∂Xt

+
ν2
t

2
∂2f̃t
∂X2

t

− νt
µt − r
σt

∂ft
∂Xt

= 0, (201)

where f̃T = 0. Applying the Feynman-Kac Theorem to equation (201), using the expression

(150) for θHt and the fact that ft does not depend on St we obtain:

∂ft
∂ρ

=
1
ρ
E∗t

[∫ T

t
θHs(µs − r)er(T−s)ds

]
.

As a result, if θHs > 0 for s ∈ [t, T ], function ft is increasing (decreasing) in ρ when ρ is

positive (negative). This is equivalent to saying that ft is increasing in ρ2. Conversely, if

θHs < 0 for s ∈ [t, T ], ft is decreasing in ρ2.
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The proof of Assertion (iii) follows from (i) and (ii). If the hedging demand is positive

over the horizon, the expected terminal wealth is lower in incomplete markets, while the

variance is higher. As a result, the value function is unambiguously lower in this case.Q.E.D.

Proof of Proposition 2.4. The optimal pre-commitment terminal wealth ŴT solves the

first order condition

1− γŴT + γE0[ŴT ]− ψξT = 0, (202)

where ψ is the Lagrange multiplier of the static budget constraint (167). Taking time-zero

expectation on both sides of (202) yields ψ = 1/E0[ξT ], or ψ = erT , since E0[ξT erT ] = 1.

Substituting ψ back into (202) we obtain

ŴT =
1
γ

(
1 + γE0[ŴT ]− ξT erT

)
. (203)

(203) substituted into the static budget constraint (167) leads to γE0[ŴT ] = γW0e
rT − 1 +

E0[ξ2
T ]e2rT , which along with (203) yields the optimal terminal wealth (168).

With a constant market price of risk, (µ−r)/σ, E0[ξ2
T ] = e−2rT+(µ−r

σ
)2T leading to (169).

To compute the pre-commitment investment policy, θ̂t, we first consider the optimal time-t

wealth:

Ŵt = Et

[
ξT
ξt
ŴT

]
= a(t)− 1

γ
e−(2r−(µ−r)2/σ2)(T−t)erT ξt, (204)

where the second equality follows by substituting ŴT from (169) and evaluating the moments

of ξT , and a(t) is a deterministic function of time. Applying Itô’s Lemma to (204) and using

dξt = −ξt[rdt+ (µ− r)/σdwt] yields:

dŴt = (a′(t)− b(t)ξt)dt+
µ− r
γσ

e−(2r−(µ−r)2/σ2)(T−t)erT ξtdwt,

where b(t) is a time-deterministic function. Matching the coefficients with the dynamic

budget constraint (135) yields θ̂t in (170). Q.E.D.

Proof of Corollary 2.1. In the case of a complete market, measure P ∗ coincides with the

risk-neutral one. To compute the optimal investment policy from Proposition 2.2, we need to
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evaluate the expected squared market price of risk, E∗t [(µs− r)2/σ2
s ], under the risk-neutral

measure. Since the squared market price of risk in the CEV model is (µ − r)2/(σ̄2Sαt ), we

need to determine g(t, s) ≡ E∗t [S−αs ] for s > t. By Itô’s Lemma, the process for S−αt under

the risk-neutral measure satisfies:

dS−αt =
(
−αrS−αt +

α(1 + α)σ̄2

2

)
dt− ασ̄S−αt dw∗t . (205)

Integrating (205) from t to s and taking the time-t expectation under the risk-neutral mea-

sure on both sides, we obtain the equation for g(t, s):

g(t, s) = S−αt −
∫ s

t

(
αrg(t, y)− α(1 + α)σ̄2

2

)
dy. (206)

Differentiating (206) with respect to s yields the linear differential equation

∂g(t, s)
∂s

= −αrg(t, s) +
α(1 + α)σ̄2

2
, (207)

with initial condition g(t, t) = S−αt . The unique solution to equation (207) is given by

g(t, s) = S−αt e−αr(s−t) + (1 + α)σ̄2 1− e−αr(s−t)
2r

. (208)

Substitution of (208) into the optimal investment policy (158) leads to the θ∗t reported

in Corollary 2.1. We also note that the process for the market price of risk is explosive

for α ≤ −1 since the conditional expectation (208) is unbounded for large horizons. For

−1 < α < 0, the conditional expectation (208) is not well-defined since it may become

negative for large investment horizons, implying that the process hits the zero-boundary

with a positive probability.

Property (i) is immediate from the expression for the optimal investment policy (175).

Property (ii) follows from (175) and the fact that the hedging demand is negative for α < 0.

Finally, property (iii) can be demonstrated by observing that the derivative of θ∗t with

respect to the time-horizon is negative for α ≤ −1 and µ > r > 0, and can both be negative

or positive otherwise, depending on the horizon, T − t.
Q.E.D.
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Proof of Corollary 2.2. Since the squared market price of risk is equal to δ2Xt, finding

θ∗t amounts to evaluating E∗t [Xs]. It follows from (154) that the state variable under measure

P ∗ follows the process

dXt = (λ+ ρν̄δ)
( λX̄

λ+ ρν̄δ
−Xt

)
dt+ ν̄

√
Xtdw

∗
Xt,

for which the conditional moments are well-known (e.g., Cox, Ingersoll and Ross, 1985),

yielding

E∗t [Xs] =
λX̄

λ+ ρν̄δ
+
(
Xt −

λX̄

λ+ ρν̄δ

)
e−(λ+ρν̄δ)(s−t). (209)

Substituting (209) into (158) yields the desired result.

Assertion (i) follows from the fact that (1 − e−(λ+ρν̄δ)(T−t))/(λ + ρν̄δ) is always pos-

itive. As a result, the sign of the hedging demand (second term in (178)) depends only

on the correlation. Assertion (ii) for the case of ρ < 0 is immediate from the fact that

the hedging demand is positive in this case. For ρ > 0, it follows from the fact that

ρν̄δ(1− e−(λ+ρν̄δ)(T−t))/(λ+ ρν̄δ) is less than unity. Property (iii) follows directly from the

properties of function X(β−1)/β. Assertion (iv) obtains due to the fact that the derivative

of θ∗t with respect to the time-horizon is positive for λ+ r + ρν̄δ < 0, negative for ρν̄δ > 0,

and can both be negative or positive otherwise, depending on the horizon.

Turning to property (v), we first prove that ft decreases in correlation ρ. Since ft =

δ2
∫ T
t E∗t [Xs]ds, it remains to show that E∗t [Xs] decreases in ρ. We observe that by virtue of

(209), E∗t [Xs] =
∫ s
t e
−(λ+ρν̄δ)(y−t)dy+Xte

−(λ+ρν̄δ)(s−t), which is clearly decreasing in correla-

tion ρ. Similarly, using Proposition 2.3, it can be shown that the variance of terminal wealth

can be represented as vart[W ∗T ] = (1− ρ2)G(ρ), where G(ρ) ≡ Et[
∫ T
t ν̄2Xs(∂fs/∂Xs)2ds] is

a positive decreasing function of ρ. Clearly, the minimum is attained in a complete market

with ρ2 = 1. The first order condition for finding the ρ∗ at which vart[W ∗T ] is maximized is

2ρG(ρ) = (1− ρ2)G′(ρ). Since the right-hand-side is negative and G(ρ) is positive, the first

order condition can only be satisfied for ρ∗ < 0.
Q.E.D.
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Proof of Corollary 2.3. Since the squared market price of risk is X2
t , finding the optimal

investment policy amounts to computing E∗t [X2
s ], which is well-known (e.g., Vasicek, 1977):

E∗t [X2
s ] =

( λX̄

λ+ ρν
+
(
Xt −

λX̄

λ+ ρν

)
e−(λ+ρν)(s−t)

)2
+ ν2 1− e−2(λ+ρν)(s−t)

2(λ+ ρν)
. (210)

Substituting (210) into (158) yields the reported result.

Property (i) follows from the fact that since the unconditional expectation of the state

variable, X̄, is assumed positive, the sign of the mean hedging demand depends only on the

sign of the correlation ρ. To show property (ii), we observe that the optimal investment

policy can be rewritten as follows:

θ∗t =
(

1− ρν 1− e−2(λ+ρν)(T−t)

λ+ ρν

)Xt

γσ
e−r(T−t) − ρνλ

γσ

(1− e−(λ+ρν)(T−t)

λ+ ρν

)2
X̄e−r(T−t).

Similarly to the proof of Corollary 2.2(ii), it can be shown that 1−ρν(1− e−2(λ+ρν)(T−t))/(λ+ ρν)

is positive, which then implies that θ∗t is increasing in the market price of risk Xt. Q.E.D.

Proof of Proposition 2.5. The proof is similar to the proof of Proposition 2.1. The first

step is to derive the Bellman equation adjusted for time-inconsistency in terms of anticipated

gains, f . The second step is to derive the first order condition for the strategy θ∗t . In discrete

time, however, the explicit representation for the process for ft is not available. As a result,

the optimal strategy is in terms of covt(∆St/St,∆ft). Q.E.D.

Proof of Corollary 2.4. The first step is to obtain the anticipated gains process f .

Substituting the conjecture θ∗t = g(t)X(β−1)/2β
t R−(T−∆t−t) for the stochastic-volatility model

(185)–(186) into the expression for ft (184), we obtain:

ft = Et

[T−∆t∑
s=t

δXsg(s)∆t
]
. (211)

To compute Et[Xs], we take expectations of both sides of the state variable process, (186),

and obtain a difference equation for Et[Xs]:

Et[Xs+∆t] = λX̄∆t+ (1− λ∆t)Et[Xs], (212)
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with initial condition Et[Xt] = Xt. The unique solution to equation (212) is

Et[Xs] = (Xt − X̄)(1− λ∆t)(s−t)/∆t + X̄. (213)

Substituting (213) into (211) yields:

ft = d(t) + δXt

T−∆t∑
s=t

g(s)(1− λ∆t)(s−t)/∆t∆t, (214)

where d(t) denotes a time-deterministic function. Using (214), we compute ∆ft and substi-

tute it into the recursive expression for the optimal strategy (183). Taking into account the

conjecture for θ∗t , after some algebra we obtain a recursive equation for g(t):

g(t) = δ/γ − ρν̄δ
T−∆t∑
s=t+∆t

g(s)(1− λ∆t)(s−∆t−t)/∆t∆t. (215)

Evaluating (215) at time t−∆t and then subtracting it from (215), we obtain the following

forward difference equation for g(t): g(t − ∆t) = λδ∆t/γ + (1− (λ+ ρν̄δ∆t)g(t)) , with

condition g(T −∆t) = δ/γ. The explicit solution to this equation is

g(t) =
δ

γ
− ρν̄δ1− (1− (λ+ ρν̄δ)∆t)T−∆t−t

λ+ ρν̄δ

δ

γ
,

which then yields the reported result.

For the case of Gaussian mean-returns dynamics (187)–(188), we first obtain ft by sub-

stituting our conjecture θ∗t = Xt/γσ − (g1(t) + g2(t)Xt)/γσ into (184). Then, substituting

ft into (183) we obtain recursive equations for g1(t) and g2(t). Solving them as in the pre-

vious stochastic-volatility case we obtain g1(t) and g2(t), as reported in Corollary 2.4, with

constants A and B explicitly given by

A =
ρν(1− λ∆t)(2X̄ − ϕν2λ∆t

√
∆t)∆t

1− (1− λ∆t)(1− ρν∆t)
− ϕν2λ∆t

√
∆t

−
(

1− (1− (1− λ∆t)2)(1 + 2ρνλ∆t)
1− (1− λ∆t)2(1− 2ρν∆t)

)(
X̄ − ϕν

√
∆t

2ρ
+
ρν(1− λ∆t)(X̄ + ϕν

√
∆t/2ρ)∆t

1− (1− λ∆t)(1− ρν∆t)

)
,

B =
( ρν(1− λ∆t)(X̄ + ϕν

√
∆t/2ρ)∆t

(1− λ∆t)2(1− 2ρν∆t)− (1− λ∆t)(1− ρν∆t)

+X̄ − ϕν
√

∆t
2ρ

)(
1− (1− (1− λ∆t)2)(1 + 2ρνλ∆t)

1− (1− λ∆t)2(1− 2ρν∆t)

)
,

where ϕ = cov(∆w,∆w2
X).38

Q.E.D.
38It can easily be demonstrated that ϕ = 0 if ∆w and ∆wX are normally distributed.
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Proof of Proposition 2.6. The proof is a multi-dimensional version of the proofs for

Propositions 2.1–2.2.
Q.E.D.

Proof of Proposition 2.7. The proof is similar to those of Propositions 2.1–2.2, but now

accounting for the mean-variance criterion being over WT /BT . As in the proof of Lemma

2.1, substituting the integral representation for WT /BT into the criterion we show that θ̃t

does not depend on Wt/Bt. Then, as in Section 2.2 we obtain an HJB equation in terms of

dft and d(Wt/Bt), where ft ≡ Et[W ∗T /BT ]−Wt/Bt, whose solution yields (194). Employing

measure P ∗ it can be shown that ft is the same as in Proposition 2.2, but now with stochastic

rt. Q.E.D.
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3. Dynamic Hedging in Incomplete Markets: A Simple So-
lution

3.1. Introduction

Perfect hedging is a risk management activity that aims to eliminate risk completely. In

theory, perfect hedges are possible via dynamic trading in frictionless complete markets

and are obtained by standard no-arbitrage methods (e.g., Cvitanic and Zapatero, 2004).

In reality, however, “perfect hedges are rare,” as simply put by Hull (2008). Despite the

unprecedented development in the menu of financial instruments available, market frictions

render markets incomplete, making perfect hedging impossible. Consequently, hedging in

incomplete markets has much occupied the profession. The traditional, pragmatic approach

is to employ static minimum-variance hedges (e.g., Stulz, 2003; McDonald, 2006; Hull, 2008)

or the corresponding myopic hedges that repeat the static ones over time. While intuitive

and tractable, these hedges are not necessarily optimal in multi-period settings and may

lead to significant welfare losses (e.g., Brandt, 2003). Moreover, they do not generally

provide perfect hedges in dynamically complete markets. The alternative route is to consider

richer dynamic incomplete-market settings and characterize hedges that maximize a hedger’s

preferences or provide the best hedging quality. The latter is measured by various criteria

in terms of means and variances of the hedging error, as given by the deviation of the

hedge from its target value. Despite much work, the literature still lacks tractable dynamic

hedges in plausible stochastic environments, with explicit solutions arising in a few settings

(typically with constant means and volatilities of pertinent processes).

In this paper, we provide tractable dynamically optimal hedges in a general incomplete-

market economy by employing the minimum-variance criterion. We demonstrate that these

hedges retain the basic structure of perfect hedges, as well as the intuitive elements of the

static minimum-variance hedges. Towards that, we consider a hedger who is concerned with

reducing the risk of a non-tradable or illiquid asset, or a contingent claim at some future

date. Notable examples include various commodities, human capital, housing, commercial
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properties, various financial liabilities, executive stock options. The market is incomplete

in that the hedger cannot take an exact offsetting position to the non-tradable asset pay-

off by dynamically trading in the available securities, a bond and a stock (or futures or

any other derivative) that is correlated with the non-tradable. We employ the familiar

minimum-variance criterion for the quality of the hedging but considerably differ from the

literature in that we account for the time-inconsistency of this criterion and obtain the

solution by dynamic programming. We here follow a methodology developed in the con-

text of dynamic mean-variance portfolio choice in Chapter 2. In dynamically complete

markets, there is no time-inconsistency issue (unlike the problem in Chapter 2) and our

dynamically optimal minimum-variance hedges reduce to perfect hedges, unlike their static

or myopic counterparts. In incomplete markets, we show that the variance criterion be-

comes time-consistent only when the stock has zero risk premium or when considered under

any risk-neutral probability measure (which is not unique here). Our dynamically optimal

hedge can then alternatively be obtained by minimizing such a criterion under a specific

risk-neutral measure.

We obtain a fully analytical characterization of the dynamically optimal minimum-

variance hedges in terms of the exogenous model parameters. The complete-market dynamic

hedge, obtained by no-arbitrage, is determined by the “Greeks” that quantify the sensitiv-

ities of the asset value under the unique risk-neutral measure to the pertinent stochastic

variables in the economy. Ours is given by generalized Greeks, still representing the as-

set value sensitivities to the same variables, but now in terms of an additional parameter

accounting for the market incompleteness and where the asset-value is under a specific risk-

neutral measure accounting for the hedging costs. The hedges are in terms of the Greeks

since, as we demonstrate, a higher variability of asset value implies a lower quality of hedg-

ing, and hence the need to account for asset-value sensitivities. We further demonstrate

the tractability and practical usefulness of our solution by explicitly computing the hedges

for plausible intertemporal economic environments with stochastic market prices of risk and

volatilities of non-tradable asset and stock returns.
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We next compare the performances of our dynamically optimal hedges with those of the

minimum-variance hedges employed in the literature and practice. We quantify the relative

performance by the percentage increase or decrease in the expected hedging error variance

when the hedger switches from our hedge to the alternative one. Two popular alternatives

are the classic static hedge, initially minimizing the hedging error variance and subsequently

not readjusting, and the myopic hedge repeating over time the static one with small horizons.

These popular hedges are simply driven by the comovement of the stock return and the

non-tradable asset payoff over the relevant horizon. Our dynamic hedge inherits this basic

structure, but now tracking the comovement between the instantaneous stock return and

the non-tradable asset value under our risk-neutral measure, and so additionally capturing

the arrival of new information. Consequently, we show that our dynamic hedge typically

outperforms the static and myopic ones in plausible intertemporal settings for stock and

non-tradable asset dynamics, especially when there is predictability in the non-tradable

asset. Only in the special case of random walk processes do the static and myopic hedges

coincide with ours. We also compare our hedges with the dynamic hedges considered in the

literature that minimize the hedging error variance sitting at an initial date. These hedges,

which we refer to as the “pre-commitment” hedges, are generically different from ours since

they do not account for the time-inconsistency of the variance criteria and the hedger may

deviate from them at later dates unless she can pre-commit to follow them. By definition,

a pre-commitment hedge outperforms ours at the initial date. We demonstrate that for a

one-year hedging horizon and plausible parameters, it requires less than half a year for our

hedge to start outperforming when the stock and the non-tradable asset follow geometric

Brownian motions (GBMs).

We generalize our basic framework to the case when the hedger additionally accounts

for the mean hedging error, trading it off against the hedging error variance, as commonly

considered in the literature under static settings. We also relate this mean-variance hedging

to the benchmarking literature in which a money manager’s performance is evaluated relative

to that of a benchmark. We show that the dynamic hedge now has an additional speculative
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component and additional hedging demands due to the anticipated speculative gains or

losses, as in the related literature. We also show that our main baseline results can easily

be extended to the case of multiple non-tradable assets and stocks.

The subject of hedging is, of course, prevalent in the literature on derivatives and risk

management. Major textbooks, Duffie (1989), Siegel and Siegel (1990), Stulz (2003), Cvi-

tanic and Zapatero (2004), McDonald (2006), Hull (2008), all present the classic static

minimum-variance hedging and demonstrate its usefulness for real-life risk management ap-

plications. Ederington (1979), Rolfo (1980), Figlewski (1984), Kamara and Siegel (1987),

Kerkvliet and Moffett (1991), In and Kim (2006) employ minimum-variance static hedges

and evaluate their quality in different empirical applications. Kroner and Sultan (1993),

Lioui and Poncet (2000), Brooks, Henry and Persand (2002) study the performance and

economic implications of closely related myopic hedges. In an economy with a static mean-

variance hedger, Anderson and Danthine (1980, 1981) study futures hedging and evaluate its

impact on production, while Hirshleifer (1988) derives futures risk premia under transaction

costs. Roll (1992), Chan, Karceski and Lakonishok (1999), Costa and Paiva (2002), Jorion

(2003), Gomez and Zapatero (2003), Cornell and Roll (2005) employ static mean-variance

criteria and consider portfolio management with tracking error, deviation from a bench-

mark, which is just the opposite of hedging error. In the literature above, the hedger either

cannot rebalance her portfolio over time or is myopic and looks one period ahead only. This

limitation is underscored by Brandt (2003) who demonstrates that when hedging S&P 500

index options under CARA utility, the multi-period hedges can generate substantial welfare

gains.

A steadily growing strand of work investigates optimal dynamic hedges consistent with

a hedger’s utility maximization in typically continuous-time incomplete market settings.

Breeden (1984) provides optimal hedging policies with futures in terms of the value func-

tion for a general utility function over intertemporal consumption. Stultz (1984) derives

explicit optimal hedges with foreign currency forward contacts when the exchange rate fol-

lows a GBM and the hedger has logarithmic utility over intertemporal consumption. He
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further argues that this hedger behaves like a myopic mean-variance one. Adler and De-

temple (1988) consider the hedging of a non-traded cash position for logarithmic utility

over terminal wealth and provide an explicit solution in complete markets, and a solution

in terms of the value function in incomplete markets. Svensson and Werner (1993), Tepla

(2000b) and Henderson (2005) study the optimal hedging of non-tradable income or assets

for general utility over intertemporal consumption or terminal wealth. To obtain explicit

solutions, these authors specialize to constant relative risk aversion (CARA) preferences,

GBM tradable asset prices and an income process following an arithmetic Brownian motion

(ABM), while Henderson additionally obtains hedges for GBM and mean-reverting incomes

in incomplete and compete markets, respectively. For more general processes or utilities,

the solutions in Svensson and Werner and Henderson are typically in terms of value func-

tions, while in Tepla in terms of sensitivities of tradable wealth with respect to asset and

state prices. Duffie, Fleming, Soner and Zariphopoulou (1997) and Viceira (2001) consider

the hedging of stochastic income with constant relative risk aversion (CRRA) preferences

and the tradable asset and income following GBMs and discrete-time lognormal processes,

respectively. The former work demonstrates the existence of the solution in a feedback

form and derives its asymptotic behavior for large wealth, while the latter work derives a

log-linear approximation for the optimal policies in discrete time.

The rapidly growing so-called “mean-variance” hedging literature in dynamic incomplete

market settings studies optimal policies based on hedging error means and variances. A large

body of literature characterizes these hedges for a quadratic criterion over the hedging er-

ror. In the context of futures hedging, Duffie and Richardson (1991) provide explicit optimal

hedges that minimize the expected squared error when both the tradable and non-tradable

asset prices follow GBMs. Schweizer (1994) and Pham, Rheinlander and Schweizer (1998)

in a more general stochastic environment obtain a feedback representation for the optimal

policy. Gourieroux, Laurent and Pham (1998) derive hedges in terms of parameters from a

specific non-tradable asset payoff decomposition, but are difficult to obtain explicitly. Bert-

simas, Kogan and Lo (2001) solve the quadratic hedging problem via dynamic programming
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and numerically compute the optimal hedges. Schweizer (2001) provides a comprehensive

survey of this literature with further references and notes that finding tractable optimal

quadratic hedges is still an open problem. To our best knowledge, with the exception of

Duffie and Richardson, there are no works that derive explicit quadratic hedges.

Duffie and Richardson (1991), Schweizer (1994), Musiela and Rutkowski (1998) solve the

dynamic minimum-variance hedging problem by reducing it to a quadratic one, thus char-

acterizing the pre-commitment hedges at an initial date from which the hedger may deviate

in the future. Duffie and Richardson and Bielecki, Jeanblanc and Rutkowski (2004) also

characterize the pre-commitment minimum-variance hedge subject to a constraint on the

mean hedging error. This literature, however, lacks explicit results in the case of stochastic

mean returns and volatilities, and explicit hedges are only obtained in Duffie and Richard-

son for GBM asset prices. Duffie and Jackson (1990) derive explicit minimum-variance

hedges in futures markets under the special case of martingale futures prices, which makes

the hedging problem time-consistent. In the case of mean-variance hedging, by employing

backward induction, Anderson and Danthine (1983) obtain hedges in a simple three-period

production economy, while Duffie and Jackson (1989) in a two-period binomial model of

optimal innovation of futures contracts.

The remainder of the paper is organized as follows. In Section 3.2, we describe the

economic setting and determine the dynamically optimal minimum-variance hedges via dy-

namic programming. We then explicitly compute these hedges in plausible environments

with stochastic mean returns and volatilities, and present the time-consistency conditions.

In Section 3.3, we compare our dynamically optimal hedge with the pre-commitment, static

and myopic hedges, while in Section 3.4, we generalize our baseline model to the case of

mean-variance hedging and the case of multiple assets. Section 3.5 concludes. Proofs are in

the Appendix.

3.2. Dynamic Minimum-Variance Hedging
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3.2.1. Economic Setup

We consider a continuous-time incomplete-market Markovian economy with a finite horizon

[0, T ]. The uncertainty is represented by a filtered probability space (Ω,F , {Ft}, P ), on

which are defined two correlated Brownian motions, w and wX , with correlation ρ. All

stochastic processes are assumed to be well-defined and adapted to {Ft, t ∈ [0, T ]}, the

augmented filtration generated by w and wX .

An agent in this economy, henceforth the hedger, is committed to hold a non-tradable

asset with payoff XT at time T . The non-tradable asset can be interpreted in different

ways depending on the application. The process X may represent the price of oil, copper

or other commodity that the hedger is committed to sell at time T , or may denote the

price of a company share that the hedger cannot trade so as to preserve company control.

Alternatively, the non-tradable asset may be interpreted as a firm or a project cash flow,

the realization of which is defined by the non-tradable state variable X, such as economic

conditions, temperature or precipitation level.39 Without loss of generality, we adopt the

first interpretation and postulate the price of the non-tradable asset to follow the dynamics

dXt

Xt
= m(Xt, t)dt+ ν(Xt, t)dwXt, (216)

where the stochastic mean, m, and volatility, ν, are deterministic functions of X. The

risk associated with holding the non-tradable asset can be hedged by continuous trading

in two securities, a riskless bond that provides a constant interest rate r and a tradable

risky security. Depending on the application, the risky security can be interpreted as a

stock, a futures contract or any other derivative security written on the non-tradable asset.

Accordingly, the mean and volatility of instantaneous returns on tradable security, which for

expositional simplicity we call the stock, in general may depend on the non-tradable asset

price, X. The dynamics for the stock price, S, is then modeled as

dSt
St

= µ(St, Xt, t)dt+ σ(St, Xt, t)dwt, (217)

39If the terminal payoff is a non-linear function of some state variable Y , h(YT ), one can always redefine
the state variable to be Xt = Et[h(YT )], so that the terminal payoff is XT .
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where the stochastic mean return, µ, and volatility, σ, are deterministic functions of S

and X. We will denote µt, σt, mt and νt as shorthand for the coefficients in equations

(216)–(217).

The hedger chooses a hedging policy, θ, where θt denotes the dollar amount invested in

the stock at time t, given initial wealth W0. The hedger’s tradable wealth W then follows

the process

dWt = [rWt + θt(µt − r)] dt+ θtσtdwt. (218)

The market in this economy is incomplete in that it is impossible to hedge perfectly the

fluctuations of the non-tradable asset by tradable wealth. Dynamic market completeness

obtains only in the special case of perfect correlation between the non-tradable asset and

stock returns, ρ = ±1, in which case the non-tradable asset can be replicated by stock

trading and the hedge portfolio uniquely determined by standard no-arbitrage methods.

Since perfect hedging is not possible in incomplete markets, the common approach in the

literature is to determine a hedging policy according to some criterion that determines the

quality of hedging.

The mean-variance hedging literature addresses this for hedging criteria based on the

mean and variance of the hedging error, XT −WT . The mean squared error, Et(XT −WT )2,

is a commonly employed measure for the quality of hedging from the class of mean-variance

criteria (e.g., Duffie and Richardson, 1991; Schweizer, 1994; Gourieroux, Laurent and Pham

1998; Bertsimas, Kogan and Lo, 2001, among others). In general, these quadratic hedges

have a complex structure in that they are derived either in a recursive feedback form (e.g.,

Schweizer, 1994; Pham, Rheinlander and Schweizer, 1998) or depend on parameters from

a specific decomposition of the non-tradable asset price X which are difficult to obtain

explicitly (e.g., Gourieroux, Laurent and Pham, 1998). Duffie and Richardson provide an

explicit quadratic hedge for the special case of both the non-tradable asset and stock prices

following GBMs. However, for richer stochastic environments, quadratic hedging has failed

to produce tractable, explicit policies.
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Another natural criterion for the quality of hedging is the variance of the hedging error,

vart[XT −WT ], widely employed in static and myopic settings (analyzed in Sections 3.3.2–

3.3.3), as well as dynamic settings (e.g., Duffie and Richardson, 1991; Schweizer, 1994;

Musiela and Rutkowski, 1998; Bielecki, Jeanblanc and Rutkowski, 2004, among others).

This literature obtains the variance-minimizing policies primarily as a special case of the

quadratic hedging problem sitting at an initial date. The time-inconsistency of the variance

criterion, however, may induce the hedger to deviate from the initial policy at a later date,

as discussed in Section 3.2.4. Moreover, as in the quadratic case, the variance-minimizing

policies have not generally been obtained explicitly, with the notable exception being the

Duffie and Richardson case of both risky assets following GBMs.

In this paper, we employ the variance-minimizing criterion for the hedger whose problem

is

min
θ

vart[XT −WT ], (219)

subject to the dynamic budget constraint (218). We solve this problem by dynamic pro-

gramming and hence provide the time-consistent dynamic hedging policy.

3.2.2. Dynamically Optimal Hedging Policy

In this Section, we determine the dynamically optimal minimum variance hedges. The

application of dynamic programming, however, is complicated by the fact that the variance

criterion is non-linear in the expectation operator and in general not time-consistent. To

address these problems, we follow the approach in Chapter 2 developed in the context of

dynamic mean-variance portfolio choice and derive a recursive formulation for the hedger’s

objective function, which yields the appropriate Hamilton-Jacobi-Bellman (HJB) equation

of dynamic programming. Proposition 3.1 reports the optimal policy derived from the

solution to this equation and the resulting optimal quality of the hedge.

Proposition 3.1. The optimal hedging policy and the corresponding variance of the hedging
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error are given by

θ∗t =
ρνt
σt
Xt
∂E∗t [XT e

−r(T−t)]
∂Xt

+ St
∂E∗t [XT e

−r(T−t)]
∂St

, (220)

vart[XT −W ∗T ] = (1− ρ2)Et
[∫ T

t
ν2
sX

2
s

(∂E∗s [XT ]
∂Xs

)2
ds
]
, (221)

where W ∗T is the terminal tradable wealth under the optimal hedging policy, and E∗t [·] denotes

the expectation under the unique probability measure P ∗ on which are defined two Brownian

motions w∗X and w∗ with correlation ρ such that the processes for the non-tradable asset, X,

and stock price, S, are given by

dXt

Xt
=
(
mt − ρνt

µt − r
σt

)
dt+ νtdw

∗
Xt,

dSt
St

= rdt+ σtdw
∗
t , (222)

and the P ∗-measure is defined by the Radon-Nikodym derivative

dP ∗

dP
= e−

1
2

∫ T
0 (µs−r

σs
)2ds−

∫ T
0

µs−r
σs

dws . (223)

Proposition 3.1 provides a simple, fully analytical characterization of the optimal hedging

policy in terms of the exogenous model parameters and a probability measure P ∗ (discussed

below). We first note that the optimal hedging policy (220) preserves the basic structure

of that in complete markets. Indeed, the perfect hedging policy in complete markets (with

ρ = ±1), obtained by standard no-arbitrage methods, is given by

θ∗t =
ρνt
σt
Xt
∂ERN

t [XT e
−r(T−t)]

∂Xt
+ St

∂ERN
t [XT e

−r(T−t)]
∂St

, (224)

where ERN
t [·] denotes the expectation under the unique risk-neutral measure and ERN

t [XT e
−r(T−t)]

represents the unique no-arbitrage value of the asset payoff XT . The complete-market dy-

namic hedge is comprised of the Greeks, given by the sensitivities of the time-t asset value to

the non-tradable asset and stock prices (X and S dynamics under the risk-neutral measure

are as in (222) with ρ = ±1). Thus, our dynamic hedge (220) is a simple generalization

of the complete-market perfect hedge, with the additional parameter ρ accounting for the

market incompleteness and the measure P ∗ replacing the risk-neutral measure. This is
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in stark contrast to the optimal hedging policies obtained in the mean-variance hedging

literature which reduce to perfect hedges in complete markets but do not maintain their

intuitive structure in incomplete markets. Moreover, as demonstrated in Section 3.2.3, our

simple structure allows us to explicitly compute the optimal hedges under various stochastic

economic setups.

The probability measure P ∗ naturally arises in our setting and facilitates much tractabil-

ity. To highlight the role of this measure, we note the following relation (as derived from

Proposition 3.1 in the Appendix) between the expected discounted non-tradable asset payoff,

XT e
−r(T−t), under the new and original measures:

E∗t [XT e
−r(T−t)] = Et[XT e

−r(T−t)]− Et[W ∗T e−r(T−t) −Wt]. (225)

The residual term, Et[W ∗T e
−r(T−t)−Wt], represents the expected discounted gains in tradable

wealth that the hedger forgoes in order to hedge the non-tradable asset over the period

[t, T ], that is, the cost of hedging. So, the right-hand side of (225) represents the expected

discounted terminal payoff net of the hedging cost, while the left-hand side the expectation

under P ∗. In other words, the probability measure P ∗ incorporates the hedging cost when

computing the expected discounted asset payoff. Henceforth, we label P ∗ as the “hedge-

neutral measure” (see Remark 1), and the quantity E∗t [XT e
−r(T−t)] as the “hedge-neutral

value” of the payoff XT , analogously to the risk-neutral value in the complete-market case.

We further note that the hedge-neutral value can also be interpreted as the minimal time-t

value of a self-financing minimum-variance hedging portfolio for which the expected hedging

error, Et[XT −W ∗T ], is zero. To demonstrate this interpretation, we observe from (225) that

the expected hedging error is zero only if the initial value of the self-financing portfolio equals

the expected discounted non-tradable asset payoff under the hedge-neutral measure, that

is, Wt = E∗t [XT e
−r(T−t)]. Since the hedge-neutral value is related to the expected hedging

error, the hedger guided by the minimum-variance criterion can achieve a better hedging

quality by accounting for the sensitivities of the hedge-neutral value. Hence, the hedges are

in terms of the hedge-neutral value sensitivities, which we interpret as the delta-hedges, as

in the standard analysis of the Greeks.
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The quality of the optimal hedge, as measured by the variance of the hedging error

(221), also has a simple structure. The hedging error variance is driven by the level of

market incompleteness, ρ2, and becomes zero in complete markets. Moreover, the quality of

the hedge decreases with higher volatility of the non-tradable asset, νt, or higher sensitivity

of the hedge-neutral value with respect to the asset price, ∂E∗t [XT ]/∂Xt, since it becomes

more difficult to hedge the non-tradable asset.

The optimal hedging policy (220) admits intuitive comparative statics with respect to the

model parameters. Assuming for simplicity that the market price of risk, (µt−r)/σt, is driven

by the variable Xt only, we see that the total investment in absolute terms, |θ∗t |, is decreasing

in the stock price volatility, σt, because higher volatility makes hedging less efficient. The

correlation parameter ρ has both a direct and an indirect effect on the magnitude and sign

of the hedge. The direct effect implies that the magnitude of the hedge is decreasing in

the absolute value of the correlation, |ρ|. Intuitively, for higher absolute correlation more

wealth is allocated to the stock as the hedge becomes more efficient. This effect is most

pronounced in complete markets when ρ = ±1, and the non-tradable asset can perfectly be

hedged. With zero correlation, ρ = 0, the direct effect disappears as it becomes impossible to

hedge the non-tradable asset. The indirect effect enters via the joint probability distribution

of the prices of tradable and non-tradable assets. This latter effect, along with the effects of

the non-tradable asset volatility, time horizon and market price of risk, can only be assessed

in specific examples for which the optimal hedge can explicitly be computed.

Remark 1 (The hedge-neutral measure). Our hedge-neutral measure P ∗ is a particu-

lar risk-neutral measure, which is not unique in incomplete markets. A similar intuition for

P ∗ with the same label is developed in Chapter 2 in the context of dynamic mean-variance

portfolio choice, where this measure is shown to absorb intertemporal hedging demands in

such a setting. The measure P ∗ also turns out to coincide with the so-called “minimal mar-

tingale measure” solving min
Q

E[− ln(dQ/dP )], where dQ/dP denotes the Radon-Nikodym

derivative of measure Q with respect to the original measure P . The minimal martingale
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measure is argued to arise naturally in the different context of “risk-minimizing hedging,”

introduced by Follmer and Sondermann (1986) and Follmer and Schweizer (1991). These

works define the cost of hedging as Ct = Wt −
∫ t

0 θτdSτ/Sτ and minimize the risk mea-

sure, Et[(CT − Ct)2], with respect to Wτ and θτ , for t ≤ τ ≤ T . In contrast to our work,

the resulting hedging policies do not satisfy the budget constraint and require additional

zero-mean inflows or outflows to it. As argued by Pham, Rheinlander and Schweizer (1998)

in the context of mean-variance hedging a more suitable measure is the “variance-optimal

measure” that solves min
Q

E[(dQ/dP )2]. The reason is that in general the optimal policy

can be characterized in terms of the variance optimal measure, and only in terms of the

minimal martingale measure in the special cases where the two measures coincide under the

restrictive conditions of either
∫ T

0 (µs − r)/σsds being deterministic or the stock price, S,

not being affected by the state variables.

3.2.3. Applications

In this Section, we demonstrate that in contrast to the extant mean-variance hedging liter-

ature, our dynamically optimal minimum-variance hedges can easily be explicitly computed

in settings with stochastic means and volatilities. We here interpret the hedging instrument

as the stock of a firm that produces the commodity the hedger is committed to hold. It is

then plausible that the stock mean return is increasing in the commodity price and the stock

volatility decreasing, since the higher commodity price tends to increase the firm cash flows

and decrease their risk. Towards this, we consider two examples, each accounting for one

of these effects.40 In both examples, the non-tradable asset price follows a mean-reverting

process, which is consistent with the empirical evidence on oil and other commodity prices.

For example, Schwartz (1997) and Schwartz and Smith (2000) provide supporting evidence

for Gaussian mean-reverting logarithmic commodity prices, while Dixit and Pindyck (1994)

and Pindyck (2004) employ a geometric Ornstein-Uhlenbeck process to model and estimate
40A more realistic model would combine the two effects and may include dependence on the state variables

that affect both tradable and non-tradable asset prices. In Section 3.4.2 we show that our model can easily
be extended to incorporate additional state variables.
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oil price dynamics.

In our first example, the non-tradable asset price follows a mean-reverting Ornstein-

Uhlenbeck (OU) process:41

dXt = λ(X̄ −Xt)dt+ ν̄dwXt, (226)

with λ > 0. The stock price has mean returns linear in price X and follows the dynamics

considered in Kim and Omberg (1996) in the context of dynamic portfolio choice:

dSt
St

= (r + σXt)dt+ σdwt. (227)

According to Proposition 3.1, finding the optimal hedging policy amounts to computing

the expected non-tradable payoff under the hedge-neutral measure. Since under the hedge-

neutral measure the non-tradable asset price, X, also follows an OU process, its first two

moments are straightforward to obtain (e.g., Vasicek, 1977). Corollary 3.1 reports the

optimal hedging policy and its corresponding quality.

Corollary 3.1. The optimal hedging policy and the corresponding variance of the hedging

error for the mean-reverting Gaussian model (226)–(227) are given by

θ∗t =
ρν̄

σ
e−(r+λ+ρν̄)(T−t), (228)

vart[XT −W ∗T ] = (1− ρ2)ν̄2 1− e−2(λ+ρν̄)(T−t)

2(λ+ ρν̄)
. (229)

The optimal hedge is a simple generalization of the complete-market perfect hedge, with

ρν̄ replacing ν̄ in complete markets to account for the imperfect correlation between the

stock and non-tradable asset. This explicit solution also yields further insights that cannot

be analyzed in the general framework of Section 3.2.2. In particular, Corollary 3.1 reveals

that the sign of the hedge is given by that of the correlation parameter, ρ. When the non-

tradable asset and stock prices are positively correlated, only a long position in the stock
41The OU process allows considerable tractability at the cost of possibly negative prices. Alternatively, the

hedging strategies can explicitly be derived in a model with the stock mean return driven by a mean-reverting
logarithmic non-tradable asset price, as in Schwartz (1997) and Schwartz and Smith (2000). In this case all
prices would remain positive.
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can reduce the hedging error variance, and vise versa for negative correlation. Moreover,

the absolute value of the hedge and the variance of the hedging error are decreasing in the

speed of mean-reversion parameter, λ. This is intuitive since a higher speed of convergence

to the mean leads to a lower variance of the non-tradable asset payoff, and hence a smaller

hedge. The hedging quality also improves as the degree of market completeness, captured

by ρ2, increases. Moreover, the hedging quality is higher for a positive correlation than for

a negative one of the same magnitude since positively correlated stock better tracks the

non-tradable asset price.

The second example considers the case of the stock volatility being decreasing in the

non-tradable asset price, which follows a square-root mean-reverting process

dXt = λ(X̄ −Xt)dt+ ν̄
√
XtdwXt, (230)

with λ > 0. The stock price follows the stochastic-volatility model employed by Chacko and

Viceira (2005) in the context of portfolio choice:

dSt
St

= µdt+
√

1
Xt
dwt. (231)

As in the previous example, the explicit hedge follows easily from Proposition 3.1. Corollary

3.2 presents the optimal hedge along with the associated variance of the hedging error.

Corollary 3.2. The optimal hedging policy and the corresponding variance of the hedging

error for the mean-reverting stochastic-volatility model (230)–(231) are given by

θ∗t = ρν̄Xte
−(r+λ+ρν̄(µ−r))(T−t), (232)

vart[XT −W ∗T ] = (1− ρ2)ν̄2X̄
1− e−2(λ+ρν̄(µ−r))(T−t)

2(λ+ ρν̄(µ− r))

+ (1− ρ2)ν̄2(Xt − X̄)
e−λ(T−t) − e−2(λ+ρν̄(µ−r))(T−t)

λ+ 2ρν̄(µ− r) . (233)

Corollary 3.2 reveals that the absolute value of the hedge is increasing in the non-tradable

asset price. This is because a high asset price implies a low stock volatility. Hence, a higher

stock holding is required to hedge the non-tradable asset. The sign of the optimal hedge
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equals that of the correlation ρ and its absolute value is decreasing in the mean-reversion

parameter λ. For the same reason as in the previous example, the hedging quality improves

with increased mean-reversion or degree of market completeness.

3.2.4. Time-Consistency Conditions

We here discuss the time-inconsistency of the variance minimization criterion and establish

conditions on the economy, albeit restrictive, under which time-consistency obtains. First,

we observe that by the law of total variance

vart[XT −WT ] = Et[vart+τ (XT −WT )] + vart[Et+τ (XT −WT )], τ > 0. (234)

Sitting at time t, the hedger minimizes the sum of the expected future (t + τ)-variance

of hedging error and the variance of its future expectation, both of which may depend on

future strategies. When the hedger arrives at the future time t+ τ , however, she minimizes

just the variance at that time, and regrets having taken into account the second term in

(234), the time-t variance of future expectation, since it vanishes at time t + τ , and hence

the time-inconsistency.

The time-inconsistency issue disappears in complete markets (ρ = ±1), where the non-

tradable asset can perfectly be replicated by dynamic trading, leading to zero hedging error

variance. However, it is still possible to have time-consistency of the variance criterion in an

incomplete-market economy under certain restrictions, as summarized in Proposition 3.2.

Proposition 3.2. Assume that the stock risk premium is zero, µt − r = 0. Then the

variance criterion (219) is time-consistent and the ensuing optimal dynamic minimum-

variance hedging policy is given by

θ∗t =
ρνt
σt
Xt
∂Et[XT e

−r(T−t)]
∂Xt

+ St
∂Et[XT e

−r(T−t)]
∂St

. (235)

In an economy with no compensation for risk taking and where the stock is traded only

for hedging purposes, the variance criterion becomes time-consistent. The reason is that
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with zero stock risk premium, the (discounted) tradable wealth reduces to a martingale

and so the hedging costs (second term in (225)) disappear. Consequently, the non-tradable

asset, and hence time-t hedge, are not affected by future policies, eliminating the time-

inconsistency.42 Moreover, we see that the structure of the optimal hedge is as in complete

and incomplete markets, but now the original measure acts as the valuating expectation.

This optimal hedge generates those obtained by Duffie and Jackson (1990), who consider

among other problems, minimum-variance hedging with futures contracts which turns out

to be time-consistent. As in Proposition 3.2, it can be shown for their economic setting with

martingale futures prices and interest accruing on a futures margin account that the variance

criterion is time-consistent and the optimal hedge is given by (235), which generalizes their

explicit hedges derived for martingale and geometric Brownian motion non-tradable asset

prices.

Proposition 3.2 also allows us to convert the minimum-variance hedging problem con-

sidered in Section 3.2.2 to a time-consistent one, as discussed in Corollary 3.3.

Corollary 3.3. In our incomplete-market economy consider the class of risk-neutral prob-

ability measures, P η, parameterized by η, on which are defined two Brownian motions wηX

and wη with correlation ρ such that the processes for the non-tradable asset, X, and stock

price, S, are given by

dXt

Xt
=
(
mt − ρνt

µt − r
σt

−
√

1− ρ2ηt

)
dt+ νtdw

η
Xt,

dSt
St

= rdt+ σtdw
η
t , (236)

and the P η-measure is defined by the Radon-Nikodym derivative

dP η

dP
= e
− 1

2

∫ T
0

(
(µs−r
σs

)2+η2
s

)
ds−

∫ T
0

µs−r
σs

dws−
∫ T
0 ηsdw⊥s

, (237)

where w⊥ is a Brownian motion uncorrelated with w and defined by dw⊥t ≡ (dwXt −

ρdwt)/
√

1− ρ2.

The following minimum-variance criteria

varηt [XT −WT ], (238)
42Formally, the first term in the law of total variance (234) depends only on future policies, while the

second term depends only on the time-t policy, θt. As a result, the minimization of time-t variance does not
lead to any inconsistency.
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where the variance is taken under a risk-neutral measure P η, are time-consistent with the

optimal hedge given by

θηt =
ρνt
σt
Xt
∂Eηt [XT e

−r(T−t)]
∂Xt

+ St
∂Eηt [XT e

−r(T−t)]
∂St

, (239)

where Eηt [·] denotes the expectation under P η. For η = 0, a risk-neutral measure is hedge-

neutral and the optimal hedge (239) equals the dynamically optimal hedge (220).

Corollary 3.3 reveals that a risk-neutral measure adjusts the variance criterion so that it

becomes time-consistent. The criterion (238) treats the non-tradable asset and stock price

processes as if they were under a risk-neutral measure. Under this measure the stock has

mean return equal to the riskless rate r, and hence zero risk premium, which implies time-

consistency by Proposition 3.2. The dynamically optimal hedge (220) is then obtained from

the time-consistent hedging problem when ηt = 0.

3.3. Comparison with Pre-commitment, Static and Myopic Hedges

In this Section, we compare our dynamically optimal hedging policy with popular minimum-

variance hedging policies employed in the finance literature and practice. First, we consider

the policy that minimizes the hedging error variance at an initial date. Second, we look at

the classic static hedge that minimizes the hedging error variance at an initial date and does

not allow subsequent portfolio rebalancing. Finally, we study the popular myopic hedge that

in each period hedges the changes in the non-tradable asset price over the next period.

To assess the relative performance of any given two policies, we compare their hedging

error variances. Since the conditional variances in general are stochastic, for tractability we

consider a relative performance measure that computes the percentage increase or decrease

in the unconditional expected variance when the hedger switches from the dynamically

optimal to an alternative hedging policy:

∆t =
E0[vart(XT −W alternative

T )]
E0[vart(XT −W ∗T )]

− 1, (240)

whereW alternative
T denotes the terminal tradable wealth under the alternative policy, θalternativet ,
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considered in Sections 3.3.1–3.3.3.43 A positive relative performance measure implies that

the quality of the dynamically optimal hedge is on average higher than that of the alter-

native hedge, in which case we say that the dynamically optimal hedge outperforms the

alternative one.

3.3.1. Comparison with Pre-commitment Policy

We here investigate the performance of the dynamically optimal hedging policy as compared

with that of the policy that minimizes the hedging error variance at an initial date 0, as

considered in the literature (e.g., Duffie and Richardson, 1991; Schweizer, 1994; Musiela and

Rutkowski, 1998). As discussed in Section 3.2, the variance-minimizing hedger may find it

optimal to deviate from the latter policy at future dates unless she can pre-commit to follow

it, and henceforth we refer to it as the pre-commitment policy.

To our best knowledge, Duffie and Richardson are the only ones to provide an explicit

expression for this policy in the context of hedging with futures contacts and interest ac-

cruing on a futures margin account when the futures and non-tradable asset prices follow

GBMs. Therefore, we compare the two policies for the case of the non-tradable asset and

stock prices following GBMs:

dXt

Xt
= mdt+ νdwXt, (241)

dSt
St

= µdt+ σdwt, (242)

where m, ν, µ and σ are constants. The dynamically optimal hedge is obtained from

Proposition 3.1, while the pre-commitment hedge along the lines of Duffie and Richardson

(1991) adapted to our setup. Proposition 3.3 presents the two policies and a simple condition

for the dynamically optimal hedge to outperform.44

Proposition 3.3. The dynamically optimal and pre-commitment policies for GBM non-
43All our relative performance results in Sections 3.3.2–3.3.3 (Propositions 3.4–3.5) remain valid for a more

general, conditional relative performance measure given by vart[XT −W alternative
T ]/ vart[XT −W ∗T ]− 1.

44Proposition 3.3 does not report the variances of hedging errors under the two policies since this Section
focuses on relative rather than individual performances. These variances, however, can be deduced in the
proof of Proposition 3.3 in the Appendix.
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tradable asset and stock prices (241)–(242) are given by

θ∗t =
ρν

σ
Xte

(m−r−ρν(µ−r)/σ)(T−t), (243)

θcommitt =
ρν

σ
Xte

(m−r−ρν(µ−r)/σ)(T−t) (244)

− µ− r
σ2

(
(X0e

(m−r−ρν(µ−r)/σ)T −W0)ert − (Xte
(m−r−ρν(µ−r)/σ)(T−t) −W commit

t )
)
.

Furthermore, ∃ t̄ < T such that the relative performance ∆t > 0 for t > t̄, i.e., the dynami-

cally optimal hedge outperforms the pre-commitment hedge after a period of time.

Proposition 3.3 reveals that the dynamically optimal and pre-commitment hedges are

generically different. While the dynamically optimal hedge is a simple generalization of

the complete-market hedge (with ρ substituted in), the pre-commitment hedge inherits an

additional stochastic term (second term in (244)). To see why this term arises, we observe

that if the hedger follows the dynamically optimal policy from time t on, her expected

hedging error is (as shown in the Appendix)

Et[(XT −W ∗T )e−r(T−t)] = Xte
(m−r−ρν(µ−r)/σ)(T−t) −Wt. (245)

Hence, the second term in (244) hedges the deviations of the expected discounted hedging

error, Et[(XT −W ∗T )e−r(T−t)], from its time-zero value (compounded by a term reflecting

accrued interest in [0, t]). The hedger tries to keep this deviation close to zero because a high

variability in the expected hedging error implies a high time-zero hedging error variance

(from the law of total variance (234)). So, when the second term in (244) is positive,

the hedger reduces her stock holding, and hence her anticipated tradable wealth, thereby

increasing the future expected hedging error making it closer to time-zero hedging error; and

vise versa when the second term is negative. The structure of the pre-commitment policy

highlights the time-inconsistency of the problem. It shows that sitting at time t, the hedger

still behaves so as to maintain a low time-zero rather than time-t hedging error variance.

Proposition 3.3 also reveals that the dynamically optimal hedge always outperforms

the pre-commitment one after a certain period of time. Since the pre-commitment hedge

minimizes the time-zero hedging error variance, it performs better for small time periods
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Figure 3.1: Relative Performance of Dynamically Optimal and
Pre-commitment Hedges.

The figure plots the relative performance measure ∆t (equation (240)) as a function of time for vary-
ing levels of market price of risk. The dynamically optimal policy outperforms the pre-commitment
one whenever ∆t > 0. Correlation and horizon parameters are assumed to be ρ = 0.5 and T = 1.
The volatility parameter ν = 0.36 is taken from the estimate in Schwartz (1997), based on weekly oil
futures price data in January 1990–1995, while market price of risk range of [0.15, 0.6] is consistent
with the estimates in Mehra and Prescott (1985), Cogley and Sargent (2008), and others.

t. However, at later dates, the dynamically optimal hedge performs better since the time-

inconsistency makes the pre-commitment hedge suboptimal. In the case when the non-

tradable asset and stock prices follow GBMs, the relative performance measure, ∆t, can

explicitly be computed (as reported in the proof of Proposition 3.3). Conveniently, this

measure depends only on the correlation parameter ρ, non-tradable asset volatility ν, market

price of risk (µ−r)/σ, and the hedging horizon T−t. Since the relative performance measure

turns out to not be sensitive to ρ and ν, we focus below on its behavior with respect to T − t

and (µ− r)/σ.

We consider a specific example in which the non-tradable asset is oil and the stock repre-

sents the stock of an oil producing company. The GBM model for oil prices is a special case

of those in Gibson and Schwartz (1990) and Schwartz (1997) when the convenience yield

is assumed constant rather than mean-reverting. Figure 3.1 plots the relative performance

measure ∆t over time for different market prices of risk. It demonstrates that for plausible
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parameters and one-year hedging horizon, the dynamically optimal policy starts outperform-

ing the pre-commitment policy from mid-year on. Moreover, for lower market price of risk,

the relative performance measure gets closer to zero, reflecting the fact that the difference

between the two policies is reduced (as observed from the expressions (243)–(244)).

3.3.2. Comparison with Static Policy

We now examine the classic static hedging problem in finance where an initial hedge, chosen

to minimize the hedging error variance, is not readjusted throughout the hedging period.

Due to its tractability and intuitive appeal, the static minimum-variance hedge is widely

used by both practitioners and academics. The classic theory of the static hedge and its

real-life applications are presented in all the prominent textbooks in derivatives and risk-

management (e.g., Duffie, 1989; Siegel and Siegel, 1990; Stultz, 2003; Cvitanic and Zapatero,

2004; McDonald, 2006; Hull, 2008), as well as being employed in empirical works (e.g.,

Ederington, 1979; Rolfo, 1980; Figlewski, 1984; Kamara and Siegel, 1987; Kerkvliet and

Moffett, 1991;In and Kim, 2006). As discussed in Section 3.4.1, a generalization of the static

hedge to static mean-variance hedge (incorporating additionally the mean in the hedging

criterion) is also widely employed in the literature.

A static hedger minimizes the variance of the hedging error at the initial date 0, subject

to the static budget constraint

WT = W0e
rT + θ0(ST /S0 − erT ), (246)

and holds the initially chosen hedge, θstatic0 /S0, in units of stock, throughout the hedging

horizon. The solution to this problem is easily obtained and the time-t static hedge is given

by45

θstatict =
cov0(ST /St, XT )

var0[ST /St]
. (247)

The static hedge is simply driven by the comovement of the stock return and the non-

tradable asset payoff over the remaining hedging period. The hedge is positive when the
45Since the hedger holds the same number of units of stock over the horizon, θstatict = (θstatic0 /S0)St.
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stock is positively correlated with the asset payoff since then the stock better tracks the asset

payoff over the period. We observe that our optimal dynamic hedge (220) can equivalently

be rewritten as

θ∗t =
covt(dSt/St, dE∗t [XT e

−r(T−t)])
σ2
t

. (248)

Clearly, the dynamic hedge inherits the basic intuitive structure of the static hedge, but now

tracking comovement between the instantaneous stock return and the change in the hedge-

neutral asset payoff value, and so capturing the arrival of new information. The dynamic

hedge is positive for positive correlation between the stock and hedge-neutral value since

then the stock trading better replicates the non-tradable payoff.

One important difference between the static and dynamically optimal hedges is that

the static hedge in general does not provide a perfect hedge, even in dynamically complete

markets when ρ2 = 1 (with one notable exception as discussed below), in contrast to the

dynamic one. This is because the static hedge cannot adjust to the arrival of new information

as it does not rebalance the initially chosen policy. Consequently, the dynamic hedge always

outperforms the static one when the market is close to being complete. We next compare

the two hedges and their performances under popular price dynamics for which the relative

performance measure ∆t (expression (240)) can explicitly be computed. In addition to

considering the non-tradable and stock prices following GBMs (241)–(242), we also study

the cases of their following ABMs

dXt = m̄dt+ ν̄dwXt, (249)

dSt = µ̄dt+ σ̄dwt, (250)

with m̄, ν̄, µ̄, σ̄ constants, as well as the non-tradable asset following an OU process

dXt = λ(X̄ −Xt)dt+ ν̄dwXt, (251)

with X̄ and λ > 0 constants. Proposition 3.4 reports the results.

Proposition 3.4. The dynamically optimal and static hedges and their relative performances

under various non-tradable asset and stock price processes are as given in Table 3.1.
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Table 3.1
Optimal Dynamic and Static Hedges and Their Relative Performances

The table reports the dynamically optimal and static hedges and the sign of their relative performance
measure ∆t (equation (240)) when non-tradable asset and stock prices follow various stochastic
processes. We say that the dynamically optimal hedge outperforms the static one when ∆t is
positive, and underperforms when ∆t is negative. ABM, GBM and OU denote arithmetic Brownian
motion (equations (249)–(250)), geometric Brownian motion (equations (241)–(242)) and Ornstein-
Uhlenbeck mean-reverting (equation (251)) processes, respectively. In all cases, we assume ρ 6= 0,
since otherwise the stock cannot hedge the non-traded asset and all the hedges are trivially zero.

Optimal Hedges Performance Processes

dynamic θ∗t static θstatict sign ∆t asset X stock S

ρνSt
σ

ρνSt
σ 0 ABM ABM

ρνXt
σ e(m−r−ρν

µ−r
σ )(T−t) X0St

S0

eρνσT−1
eσ2T−1

e(m−µ)T

{
+ ρ > 0
+/− ρ < 0 GBM GBM

ρνSt
σ

λe−λ(T−t)+rer(T−t)

λ+r
ρνSt
σ

1−e−λT
λT + OU ABM

ρν
σ e

−(λ+r)(T−t) ρνσSt
λS0

1−e−λT
eσ2T−1

e−µT + OU GBM

The dynamically optimal and static hedges coincide in the special case of the non-

tradable asset and stock prices both following ABMs. This is because, with random walk

prices, the non-tradable asset and stock price variances and covariances are deterministic

and hence the new information released over time does not help predict them better than

the information available at the initial date, and therefore the hedging problem is effectively

static by its nature. The two policies are considerably different, however, in the other settings

where the dynamic hedge typically outperforms the static one. In particular, when the non-

tradable asset and stock prices follow GBMs, the dynamically optimal policy outperforms

the static one when the correlation parameter ρ is positive. With a positive asset-stock

correlation, the stock process better imitates the fluctuations in the non-tradable asset price,

which improves the quality of hedging. When the correlation is negative, the dynamically

optimal hedge always outperforms after a certain period of time (as demonstrated in the

Appendix) but may underperform in the beginning if the stock market price of risk is

implausibly high. Finally, when the non-tradable asset price follows an OU process, the

dynamic hedge always outperforms. With the predictability in the non-tradable asset price
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present, the dynamic hedge better accounts for the arrival of new information over time,

and hence performs better.

3.3.3. Comparison with Myopic Policy

Finally, we compare the dynamically optimal and myopic hedges. At each point in time,

a myopic hedger hedges the instantaneous changes in the non-tradable asset price via the

instantaneous changes in tradable wealth. Hence, the myopic hedge can be viewed as the

static hedge over an infinitesimally small hedging horizon, repeated over time. The myopic

hedge retains the tractability of the static hedge which makes it appealing for practitioners

and academics (e.g., Kroner and Sultan, 1993; Lioui and Poncet, 2000; Brooks, Henry and

Persand, 2002).

The myopic hedger at each point of time minimizes the variance of the hedging error

over the next instant

min
θt

vart[dXt − dWt], (252)

subject to the budget constraint (218). The variance of this instantaneous hedging error

can explicitly be computed to be given by a quadratic function of a hedging policy. The

minimization of this variance leads to the following explicit expression for the optimal myopic

policy:

θmyopict =
ρνt
σt
Xt. (253)

The myopic hedge is simply the instantaneous version of the static hedge and is in general

different from the dynamically optimal hedge (220). In particular, the myopic hedge ignores

the potential impact of mean-returns on the hedging error variance since the first term in

the asset dynamics (216) is conditionally riskless over next instant. As a result, the myopic

policy in general does not provide a perfect hedge even in dynamically complete markets,

just like the static one. Consequently, it underperforms the dynamically optimal hedge when

the market is close to being complete. As in the previous Section, we compare the myopic

and dynamically optimal hedges for popular price processes, including GBMs (241)–(242),
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Table 3.2
Dynamically Optimal and Myopic Policies and Their Relative Performances

The table reports the dynamically optimal and myopic hedges and the sign of their relative perfor-
mance measure ∆t (equation (240)) when non-tradable asset and stock prices follow various stochas-
tic processes. We say that the dynamically optimal hedge outperforms the myopic one when ∆t is
positive, and underperforms when ∆t is negative. ABM, GBM and OU denote arithmetic Brownian
motion (equations (249)–(250)), geometric Brownian motion (equations (241)–(242)) and Ornstein-
Uhlenbeck mean-reverting (equation (251)) processes, respectively. In all cases, we assume ρ 6= 0,
since otherwise the stock cannot hedge the non-traded asset and all the hedges are trivially zero.

Optimal Hedges Performance Processes

dynamic θ∗t myopic θmyopict sign ∆t asset X stock S

ρνSt
σ

ρνSt
σ 0 ABM ABM

ρνXt
σ e(m−r−ρν

µ−r
σ )(T−t) ρνXt

σ


0

m− r
ν

= ρ
µ− r
σ

+ ρ > 0,
m− r
ν

> ρ
µ− r
σ

+/− ρ < 0 or
m− r
ν

< ρ
µ− r
σ

GBM GBM

ρνSt
σ

λe−λ(T−t)+rer(T−t)

λ+r
ρνSt
σ + OU ABM

ρν
σ e

−(λ+r)(T−t) ρν
σ + OU GBM

ABMs (249)–(250), and OU (251). Proposition 3.5 reports the two hedges under these

settings, as well as their relative performances.

Proposition 3.5. The dynamically optimal and myopic hedges and their relative perfor-

mances under various non-tradable asset and stock price processes are as given in Table 3.2.

The myopic and dynamically optimal hedges coincide under the random walk environ-

ment of ABM since the hedging problem is effectively static by its nature, as discussed in

Section 3.3.2. In the other environments, the two hedges generically differ, with the dy-

namically optimal hedge typically outperforming the myopic hedge. With predictable OU

non-tradable asset prices, the dynamically optimal policy better incorporates the arrival of

new information and hence outperforms the myopic one, as in static case of Section 3.3.2.

When the asset and stock both follow GBMs, the two hedges coincide in the very special

case of the non-tradable asset market price of risk equalling that of the stock (adjusted by
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correlation ρ). The reason is that in this case the tradable wealth better tracks the non-

tradable asset price since the myopic hedge not only minimizes the instantaneous hedging

error variance but also matches the risk premia on the non-tradable asset and tradable

wealth.46 The dynamically optimal hedge, however, outperforms for positive asset-stock

correlation and relatively high asset market price of risk, and otherwise can outperform or

underperform. As an example, consider the case of hedging gas prices that follow GBM

with parameters m = 0.836 and ν = 0.59 (approximated from OU gas log-prices estimated

in Jalliet, Ronn and Tompaidis (2004)). In this case, the dynamically optimal policy out-

performs the myopic one for positive correlation and plausible stock market prices of risk of

[0.15, 0.6].

3.4. Extensions

We now generalize the results on minimum-variance hedging derived in Section 3.2 along

two dimensions. First, we consider a more general model in which the hedger is guided

by a linear mean-variance criterion over the hedging error. Second, we demonstrate that

the minimum-variance hedging model can easily be extended to a richer environment with

multiple non-tradable assets and stocks.

3.4.1. Mean-Variance Hedging and Benchmark Tracking

We here consider a hedger who also accounts for the mean hedging error, and trades it off

against the hedging error variance. Such a mean-variance hedging criterion is commonly

employed in a variety of, primarily static, settings (e.g., Anderson and Danthine, 1980, 1981,

1983; Hirshleifer, 1988; Duffie, 1989; Duffie and Jackson, 1989). Our analysis in this Section

is also related to the literature on portfolio management with benchmarking. In this liter-

ature, money managers are evaluated relative to a benchmark portfolio and are concerned

about their tracking error, defined as the deviation of a manager’s performance from that of

the benchmark. The mean-variance tracking error model amounts to mean-variance hedging
46More generally, it can be shown that the dynamically optimal and myopic hedges coincide whenever

(mt − r)/νt = ρ(µt − r)/σt. The intuition is the same as in the case of GBM asset and stock prices.
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if we relabel the non-tradable asset X as the benchmark portfolio and observe that tracking

error is the negative of hedging error. Roll (1992), Jorion (2003), Gomez and Zapatero

(2003), Cornell and Roll (2005) discuss the implications of such benchmarking on portfolio

efficiency and asset pricing. Chan, Karceski and Lakonishok (1999) and Costa and Paiva

(2002) discuss the implications of estimation risk and robust portfolio selection with bench-

marking. These works all employ a static mean-variance framework by either minimizing

the tracking error variance for a given mean, or maximizing the tracking error mean for a

given variance.

A dynamic mean-variance hedger chooses an optimal hedge, trading-off lower variance

against higher mean of hedging error, by solving the dynamic problem

max
θt

Et[XT −WT ]− γ

2
vart[XT −WT ], (254)

subject to the budget constraint (218), where the parameter γ captures the hedger’s attitudes

towards risk. The optimal quality of the hedge is measured by the value function Jt, given

by the criterion in (254) evaluated at the optimal policy. As in Section 3.2 we consider the

time-consistent solution to problem (254) obtained by dynamic programming. Proposition

3.6 reports the dynamically optimal hedging policy along with the value function.

Proposition 3.6. The dynamically optimal mean-variance hedge, θ∗t , and the corresponding

value function, Jt, are given by

θ∗t =
ρνt
σt
Xt
∂E∗t [XT e

−r(T−t)]
∂Xt

+ St
∂E∗t [XT e

−r(T−t)]
∂St

− µt − r
γσ2

t

e−r(T−t) (255)

+
ρνt
σt
Xt

∂E∗t

[(∫ T
t

1
γ

(
µs−r
σs

)2
ds
)
e−r(T−t)

]
∂Xt

+ St
∂E∗t

[(∫ T
t

1
γ

(
µs−r
σs

)2
ds
)
e−r(T−t)

]
∂St

,

Jt = −γ
2

(1− ρ2)Et
[∫ T

t
ν2
sX

2
s

(∂E∗s [XT +
∫ T
s

1
γ

(
µτ−r
στ

)2
dτ
]

∂Xs

)2
ds
]

(256)

+ E∗t

[
XT e

−r(T−t)
]
−Wte

r(T−t) +
1
2
E∗t

[∫ T

t

1
γ

(
µs − r
σs

)2

ds
]
.

Proposition 3.6 reveals that the dynamically optimal mean-variance hedge is comprised

of three types of terms. The first two terms in (255) comprise the variance-minimizing
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hedge of Section 3.2, reflecting the hedger’s aversion towards hedging error variance. The

third term is the speculative demand, as referred to in the related works (e.g., Anderson

and Danthine, 1980, 1981; Duffie, 1989), and arises due to the hedger’s desire for high mean

hedging error. Finally, the last two terms in (255) are the intertemporal hedging demands,

familiar in the portfolio choice literature. These demands arise due to the fluctuations in

the non-tradable asset and stock mean returns and volatilities, and in our framework are

simply given by the sensitivities of the hedge-neutral value of anticipated speculative gains.

The optimal hedge (255) can explicitly be computed for specific stochastic environments,

as in the case of the minimum-variance hedge. However, in this case, the computations are

more involved, and the hedge depends on the hedger-specific parameter γ. Moreover, in

contrast to the minimum-variance hedge, the dynamically optimal mean-variance hedge, in

general, differs from its associated pre-commitment one even in complete markets. Fur-

thermore, even though the hedging problem can be reduced to one with a time-consistent

criterion under some conditions as in Section 3.2.4, the solution from such a criterion does

not, in general, coincide with the actual one (255), unlike in the minimum-variance case.

The value function (256) that measures the quality of the optimal hedge implies a better

hedge with a higher value. However, it can be verified that unlike the minimum-variance

hedge, the optimal mean-variance hedge does not provide a perfect hedge (i.e., having zero

hedging error variance) even in complete markets because the hedger forgoes lower hedging

error variance for higher mean.

3.4.2. Multi-dimensional case

We now demonstrate that the results of Section 3.2 can be extended to the case with

multiple non-tradable assets and stocks. We consider an economy in which uncertainty

is generated by two multi-dimensional Brownian motions wX = (wX1, ..., wXN)> and w =

(w1, ..., wK)>. By ρ we denote the N × K correlation matrix with elements ρ = {ρnk}

representing correlations between the Brownian motions wXn and wk.
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There are N non-tradable assets whose prices, X = (X1, ..., XN)>, follow dynamics

dXit

Xit
= mi(Xt, t)dt+ νi(Xt, t)>dwXt, i = 1, ..., N, (257)

where mi and νi are deterministic functions of X. We let m = (m1, ...,mN)> and ν =

(ν1, ..., νN)> denote the vector of mean returns and the volatility matrix whose elements ν =

{νni} represent covariances between the non-tradable asset returns and Brownian motion

wX . At future date T , the hedger is committed to hold a portfolio of non-tradable assets

with payoff φ>XT , where φ = (φ1, ..., φN)> denotes the vector of units held in assets. An

asset that is not held by the hedger (φi = 0) may still affect the dynamics of the assets held

and can be relabeled to be a state variable, such as economic conditions, temperature or

precipitation level.

The risk associated with the portfolio of non-tradable assets can be hedged by trading

in a riskless bond with constant interest rate r and K tradable securities with prices S =

(S1, ..., SK)> that follow the dynamics

dSjt
Sjt

= µj(St, Xt, t)dt+ σj(St, Xt, t)>dwt, j = 1, ...,K, (258)

where µi and σi are deterministic functions of S and we let µ = (µ1, ..., µK)> and σ =

(σ1, ..., σK)> denote the vector of mean returns and the volatility matrix of stock returns,

assumed invertible, respectively. The hedger chooses a hedging policy, θ = (θ1, ..., θK), where

θt denotes the vector of dollar amounts invested in stocks at time t. The tradable wealth

W then follows the process

dWt = [rWt + θ>t (µt − r)]dt+ θ>t σtdwt. (259)

The hedger’s dynamic optimization problem is as in Section 3.2. At each time t, she mini-

mizes the variance of her hedging error, φ>XT −WT , subject to the budget constraint (259).

The optimal policy is then derived by dynamic programming as in Section 3.2. Proposition

3.7 reports the dynamically optimal hedge and its associated quality.

Proposition 3.7. The optimal hedging policy and the corresponding variance of hedging
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error are given by

θ∗t = (νtρ>σ−1
t )>IXt

∂E∗t [φ>XT e
−r(T−t)]

∂X>t
+ ISt

∂E∗t [φ>XT e
−r(T−t)]

∂S>t
,(260)

vart[φ>XT −W ∗T ] = Et

[∫ T

t

∂E∗s [φ>XT ]
∂Xs

νsIXs(I − ρ>ρ)IXsν
>
s

∂E∗s [φ>XT ]
∂X>s

ds
]
, (261)

where IXt and ISt are square matrices with the main diagonals X1t, ..., XNt and S1t, ..., SKt,

respectively, I a K ×K identity matrix, and E∗t [·] denotes the expectation under the unique

hedge-neutral measure P ∗ on which are defined N -dimensional Brownian motion w∗X and

K-dimensional Brownian motion w∗ with correlation ρ such that the process for the non-

tradable assets, X, and stock prices, S, are given by

dXit

Xit
=

(
mit − ν>it ρ>σ−1

t (µt − r)
)
dt+ ν>it dw

∗
Xt, i = 1, ..., N,

dSjt
Sjt

= rdt+ σ>jtdw
∗
t , j = 1, ...,K,

and the P ∗-measure is defined by the Radon-Nikodym derivative

dP ∗

dP
= e−

1
2

∫ T
0 (µs−r)>(σsσ>s )−1(µs−r)ds−

∫ T
0 (σ−1

s (µs−r))>dws .

The dynamically optimal hedge (260) has the same structure as in the case of the sin-

gle non-tradable asset and stock, but now additionally incorporates the effects of cross-

correlations. This hedge can explicitly be computed for various stochastic investment op-

portunities, leading to a rich set of comparative statics. The expression (261) for the optimal

hedging error variance reveals that the dynamically optimal hedge provides a perfect hedge

when ρ>ρ = I, which generalizes the market completeness condition of Section 3.2.

3.5. Conclusion

This work tackles the problem of dynamic hedging in incomplete markets and provides

tractable optimal hedges according to the traditional minimum-variance criterion over the

hedging error. The optimal hedges are shown to retain both the simple structure of complete-

market hedges and the intuitive features of static hedges, and are in terms of the familiar
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Greeks, widely employed in risk management applications. Moreover, in contrast to the

existing literature, the hedges are derived via dynamic programming and hence are time-

consistent. The dynamically optimal hedges are shown to outperform the static and myopic

ones in plausible stochastic environments, coinciding with them only in the simple case of

both risky assets following ABMs. They also outperform the pre-commitment hedges after a

period of time, as demonstrated in the case of assets following GBMs. Due to its tractability,

the baseline analysis can easily be extended in various directions, as shown in the paper.
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3.6. Appendix: Proofs

Proof of Proposition 3.1. We obtain the optimal hedge (220) by following the method-

ology in Chapter 2 and applying dynamic programming to the value function Jt, defined

as

J(Xt, St,Wt, t) ≡ vart[XT −W ∗T ]. (262)

Suppose, the hedger rebalances the portfolio over time intervals τ . The law of total variance

(234) substituted into (262) yields a recursive representation for the value function:

Jt = min
θt

Et[Jt+τ ] + vart[Et+τ (XT −WT )]. (263)

We next substitute WT in (263) by its integral form

WT = Wte
r(T−t) +

∫ T

t
θs(µs − r)er(T−s)ds+

∫ T

t
θsσse

r(T−s)dws, (264)

obtained from the budget constraint (218), and take into account that optimal hedges θ∗s ,

s ∈ [t+τ, T ], are already known at time-t from backward induction. Letting the time interval

τ shrink to zero and manipulating (263), we obtain the continuous-time HJB equation

0 = min
θt

Et[dJt] + vart[dGt − d(Wte
r(T−t))], (265)

with the terminal condition JT = 0, where Gt is defined by

G(Xt, St,Wt, t) ≡ Et[XT −
∫ T

t
θ∗s(µs − r)er(T−s)ds]. (266)

We note that θ∗t , Jt and Gt do not depend on wealth Wt. To verify this, we substitute WT

in (264) into the variance criterion and observe that the variance criterion is not affected by

Wt, and hence θ∗t , Jt and Gt depend only on Xt, St and t. Applying Itô’s lemma to Jt, Gt

and Wte
r(T−t), substituting them into (265) and computing the variance term, we obtain

the equation

0 = DJt + ν2
tX

2
t

(∂Gt
∂Xt

)2
+ 2ρνtσtXtSt

∂Gt
∂Xt

∂Gt
∂St

+ σ2
t S

2
t

(∂Gt
∂St

)2

+ min
θt

[
θ2
t σ

2
t e

2r(T−t) − 2θtσt
(
ρνtXt

∂Gt
∂Xt

+ σtSt
∂Gt
∂St

)
er(T−t)

]
, (267)

155



Chapter 3: Dynamic Hedging in Incomplete Markets: A Simple Solution

subject to JT = 0. The minimization in (267) has a unique solution

θ∗t =
ρνt
σt
Xt
∂Gt
∂Xt

e−r(T−t) + St
∂Gt
∂St

e−r(T−t). (268)

Substituting (268) back into (267), we obtain the following PDE for the value function

DJt + (1− ρ2)
(
νtXt

∂Gt
∂Xt

)2
= 0, (269)

with the terminal condition JT = 0. The Feynman-Kac solution (Karatzas and Shreve,

1991) to equation (269) is then given by

Jt = (1− ρ2)Et
[∫ T

t

(
νsXs

∂Gs
∂Xs

)2
ds
]
. (270)

To complete the proof it remains to determine the process Gt in terms of the exogenous

model parameters. By applying the Feynman-Kac theorem to (266), we obtain a PDE for

Gt. Substituting θ∗t from (268) into this PDE, we obtain the equation

∂Gt
∂t

+
(
mt−ρνt

µt − r
σt

)
Xt
∂Gt
∂Xt

+rSt
∂Gt
∂St

+
1
2

(
ν2
tX

2
t

∂2Gt
∂X2

t

+2ρνtσtXtSt
∂2Gt
∂Xt∂St

+σ2
t S

2
t

∂2Gt
∂S2

t

)
= 0,

with the terminal condition GT = XT . Its Feynman-Kac solution is then given by

Gt = E∗t [XT ], (271)

where the expectation is under the unique probability measure P ∗ on which are defined two

Brownian motions w∗X and w∗ such that under P ∗ the asset X and stock S follow the pro-

cesses given in (222). Substituting (271) into (268) and (270) yields the optimal hedge (220)

and the hedging error variance (221), respectively. To find the Radon-Nikodym derivative

dP ∗/dP , we decompose the Brownian motion wX as dwXt = ρdwt +
√

(1− ρ2)dw⊥t , where

w⊥t ≡ (wXt − ρwt)/
√

(1− ρ2) is a Brownian motion uncorrelated with wt. Applying the

Girsanov’s theorem (Karatzas and Shreve, 1991) to the two-dimensional Brownian motion

(wt, w⊥t )> yields the Radon-Nikodym derivative (223).

Finally, we derive the representation (225) for E∗t [XT e
−r(T−t)] by first taking the expec-

tation of (264)

Et

[
W ∗T −Wte

r(T−t)
]

= Et

[∫ T

t
θ∗s(µs − r)er(T−s)ds

]
, (272)

and then substituting (271) and (272) into (266).
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Proof of Corollary 3.1. Under the probability measure P ∗, the process (226) becomes

dXt = (λ+ ρν̄)
( λX̄

λ+ ρν̄
−Xt

)
dt+ ν̄dw∗Xt, (273)

for which the conditional moments are well-known (e.g., Vasicek, 1977), yielding

E∗t [XT ] =
λX̄

λ+ ρν̄
+
(
Xt −

λX̄

λ+ ρν̄

)
e−(λ+ρν̄)(T−t).

Substituting this into the expressions in Proposition 3.1 yields the desired expressions (228)–

(229).

Q.E.D.

Proof of Corollary 3.2. Under the probability measure P ∗, the process (230) follows

dynamics

dXt =
(
λ+ ρν̄(µ− r)

)( λX̄

λ+ ρν̄(µ− r) −Xt

)
dt+ ν̄

√
Xtdw

∗
Xt. (274)

The conditional expectation of XT is well-known (e.g., Cox, Ingersoll, and Ross, 1985) to

be

E∗t [XT ] =
λX̄

λ+ ρν̄(µ− r) +
(
Xt −

λX̄

λ+ ρν̄(µ− r)
)
e−(λ+ρν̄(µ−r))(T−t).

Substituting this into the expressions in Proposition 3.1 yields (232)–(233). Q.E.D.

Proof of Proposition 3.2. First, we derive a variation of the law of total variance.

From the law of total variance (234) with an infinitesimally small interval τ , we obtain the

following equality in differential form:

0 = Et

[
d vars(XT −WT ) + vars(dEs[XT −WT ])

]
. (275)

Integrating (275) from t to T yields

vart[XT −WT ] = Et

[∫ T

t

vars(dEs[XT −WT ])
ds

ds
]
. (276)

From the assumption µt − r = 0 and the integrated budget constraint (264), it follows

that Et[WT ] = Wte
r(T−t). Hence, by Itô’s lemma

dEt[XT −WT ] = (...)dt+ νtXt
∂Et[XT ]
∂Xt

dwXt + σtSt
∂Et[XT ]
∂St

dwt − θtσter(T−t)dwt. (277)
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Substituting (277) into (276) and computing vars(dEt[XT −WT ]), we obtain:

vart[XT−WT ] = Et

[∫ T

t

(
θsσse

r(T−s)−ρνsXs
∂Es[XT ]
∂Xs

−σsSs
∂Es[XT ]
∂Ss

)2
+(1−ρ2)

(∂Es[XT ]
∂Xs

)2
ds
]
.

(278)

Minimizing the expression under the integral in (278) gives the global minimum to the

variance criterion, yielding the hedge (235). Finally, we observe that for µt − r = 0, the

dynamically optimal hedge (220) coincides with the hedge (235) since the Radon-Nikodym

derivative (223) equals unity, and hence the the variance criterion is time-consistent.Q.E.D.

Proof of Corollary 3.3. The hedging criterion (238) can be represented in integral form

(276) in which all the expectations and variances are under the measure P η (223). By

definition of a risk-neutral measure P η, the stock mean return equals r, and hence Eηt [WT ] =

Wte
r(T−t). Then, along the same lines as in the proof of Proposition 3.2, replacing at each

step Et[·] and vart[·] by Eηt [·] and varηt [·], respectively, it can be shown that the criterion

(238) is time-consistent and the solution is given by (220). Q.E.D.

Proof of Proposition 3.3. We first compute the optimal hedges and hedging error vari-

ances, and then derive the properties of the performance measure ∆t. From Proposition

3.1, under the measure P ∗ the process X is a GBM with mean return (m − ρν(µ − r)/σ)

and volatility ν, which then yields

E∗t [XT ] = Xte
(m−ρν(µ−r)/σ)(T−t). (279)

Substituting (279) into Proposition 3.1, we obtain the dynamically optimal hedge (243) and

the associated hedging error variance

vart[XT −W ∗T ] = (1− ρ2)ν2X2
t e

2(m−ρν µ−r
σ

)(T−t) e
(ν2+2ρν µ−r

σ
)(T−t) − 1

ν2 + 2ρν µ−rσ
. (280)

The optimal pre-commitment hedge (244) for the case of r = 0 and W0 = 0 has been

obtained by Duffie and Richardson (1991) in the context of futures hedging.47 To obtain
47For the case of r > 0, Duffie and Richardson provide the optimal pre-commitment hedge assuming

interest accrues to a futures margin account, and so such a hedge will be different from that in our economic
setting.
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it for our case of r > 0 and W0 > 0, we observe that the budget constraint (218) can

equivalently be rewritten as

dW̃t = θtµ̃tdt+ θtσ̃tdwt, (281)

where W̃t = Wte
r(T−t) −W0e

rT , µ̃t = (µ − r)er(T−t), σ̃t = σer(T−t). The hedging problem

with the budget constraint (281) reduces to the case with r = 0 and W̃0 = 0, and hence the

pre-commitment hedge (244) is easily obtained from the solution in Duffie and Richardson.

We next determine vart[XT −W commit
T ] by deriving the first and second moments of an

auxiliary process Ht which coincides with the hedging error at t = T and is defined as

Ht ≡ Xte
(m−r−ρν µ−r

σ
)(T−t) −W commit

t er(T−t). (282)

Substituting the pre-commitment hedge (244) into the budget constraint (218) and applying

Itô’s lemma to Ht we obtain:

dHt =
(µ− r

σ

)2
(H0−Ht)dt+

µ− r
σ

(H0−Ht)dwt+
√

1− ρ2νXte
(m−ρν µ−r

σ
)(T−t)dw⊥t . (283)

Integrating (283) from t to τ and taking the time-t expectation on both sides yields a simple

linear integral equation for Et[Hτ ], the unique solution to which is given by

Et[Hτ ] = H0 + (Ht −H0)e−(µ−r
σ

)2(τ−t).

To find the second moment of Ht, we apply Itô’s lemma to (Ht −H0)2:

d(Ht−H0)2 = −
((µ− r

σ

)2
(Ht−H0)2−(1−ρ2)ν2X2

t e
2(m−ρν µ−r

σ
)(T−t)

)
dt+(...)dwt+(...)dw⊥t .

Integrating both sides from t to τ and then taking the time-t expectation we obtain Et[(Hτ−

H0)2] as the solution to a linear integral equation given by

Et[(Hτ −H0)2] = (Ht −H0)2e−(µ−r
σ

)2(τ−t)

+ (1− ρ2)ν2X2
t e

2(m−ρν µ−r
σ

)(τ−t) e
(ν2+2ρν µ−r

σ
)(τ−t) − e−(µ−r

σ
)2(τ−t)

ν2 + 2ρν µ−rσ + (µ−rσ )2
.

Given the first two moments of Ht and taking into account that HT = XT −W commit
T , we

obtain:

vart[XT −W commit
T ] = (Ht −H0)2e−(µ−r

σ
)2(T−t)

(
1− e−(µ−r

σ
)2(T−t)

)
(284)

+ (1− ρ2)ν2X2
t e

2(m−ρν µ−r
σ

)(T−t) e
(ν2+2ρν µ−r

σ
)(T−t) − e−(µ−r

σ
)2(T−t)

ν2 + 2ρν µ−rσ + (µ−rσ )2
.
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Since the second moments of Xt and Ht are determined explicitly, it is straightforward

to explicitly compute E0[vart(XT −W ∗T )] and E0[vart(XT −W commit
T )]. The relative perfor-

mance measure (240) is then given by:

∆t =
ν2 + 2ρν µ−rσ

ν2 + 2ρν µ−rσ + (µ−rσ )2
e−(µ−r

σ
)2(T−t)

(
e(ν2+2ρν µ−r

σ
+(µ−r

σ
)2)(T−t) − 1

e(ν2+2ρν µ−r
σ

)(T−t) − 1

+
1− e−(ν2+2ρν µ−r

σ
+(µ−r

σ
)2)t

e(ν2+2ρν µ−r
σ

)(T−t) − 1

(
1− e−(µ−r

σ
)2(T−t)

))
− 1. (285)

Letting t go to T in (285), it is easy to show that ∆T > 0, and hence there exists a time t̄

such that ∆t > 0 whenever t > t̄.

Finally, we derive relation (245) by rearranging terms in (225) and substituting (279).Q.E.D.

Proof of Proposition 3.4. First, we consider the case when both risky assets follow

ABMs (249)–(250). From Proposition 3.1, the process for X under the measure P ∗ is given

by

dXt = (m̄− ρν̄ µ̄− rSt
σ̄

)dt+ ν̄dw∗Xt.

Integrating from t to T and taking the expectation E∗t [·] on both sides we obtain:

E∗t [XT ] = Xt +m(T − t)− ρν̄ µ̄(T − t)− St(er(T−t) − 1)
σ̄

.

Substituting this into Proposition 3.1 yields the optimal hedge reported in Table 3.1. Since

X and S follow ABMs, cov0(XT , ST ) = ρν̄σ̄T and var0(ST ) = σ̄2T . Substituting these into

θstatict in (247), we obtain the static hedge, which coincides with the dynamic one, and hence

∆t = 0.

When the risky asset prices follow GBMs (241)–(242), the dynamically optimal hedge

and its corresponding hedging error variance are given by (243) and (280), respectively. The

static hedge reported in Table 3.1 is obtained from (247) by observing that since X2
t , S2

t

and XtSt follow GBMs,

vart[XT ] = Xte
2m(T−t)(eν

2(T−t) − 1), vart[ST ] = Ste
2µ(T−t)(eσ

2(T−t) − 1), (286)

covt(XT , ST ) = XtSte
2(m+µ)(T−t)(eρνσ(T−t) − 1). (287)
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Substituting W static
T from the static budget constraint (246) into the hedging error vari-

ance we obtain

vart[XT −W static
T ] = vart[XT ]− 2

θstatic0

S0
covt(XT , ST ) +

(θstatic0

S0

)2
vart[ST ]. (288)

We now show that for ρ > 0 the performance measure (240) is positive in this GBMs

case. We note that the static hedging error variance (288) is a quadratic function of θ0, the

minimization of which along with the expressions (286)–(287) gives the lower bound for the

static hedging error variance:

vart[XT −W static
T ] ≥ X2

t e
2m(T−t)

(
eν

2(T−t) − 1− (eρνσ(T−t) − 1)2

eσ2(T−t) − 1

)
. (289)

We next rewrite the dynamically optimal hedging error variance (280) in integral form and

find its upper bound for ρ > 0 as:

vart[XT −W ∗T ] = X2
t (1− ρ2)ν2e2m(T−t)

∫ T

t
e−2ρν µ−r

σ
(T−s)eν

2(s−t)ds (290)

≤ X2
t (1− ρ2)ν2e2m(T−t)

∫ T

t
eν

2(s−t)ds = X2
t (1− ρ2)e2m(T−t)(eν

2(T−t) − 1).

A sufficient condition for the dynamically optimal variance to be lower than the static one

is that the upper bound in (290) is below the lower bound in (289), which is equivalent to(eρνσ(T−t) − 1
ρνσ

)2
≤
(eσ2(T−t) − 1

σ2

)(eν2(T−t) − 1
ν2

)
. (291)

To show that inequality holds, we rewrite its left-hand side as a squared integral, estimate

it from above and then apply the Cauchy-Schwartz inequality:(∫ T

t
eρνσ(T−s)ds

)2
≤
(∫ T

t
e( ν

2

2
+σ2

2
)(T−s)ds

)2
≤
(∫ T

t
eσ

2(T−s)ds
)(∫ T

t
eν

2(T−s)ds
)
. (292)

Computing the integrals in (292) we obtain inequality (291), and hence ∆t > 0.

For ρ < 0 in the case of GBMs, we demonstrate that θ∗t still outperforms after a certain

period of time t̄. Substituting the dynamically optimal and static hedging error variances,

(280) and (288), into the performance measure (240), and taking limit as t goes to T we

obtain:

∆T =
E0[ν2X2

T − 2ρνσXTST
θstatic0
S0

+ σ2S2
T ( θ

static
0
S0

)2]

(1− ρ2)ν2E0[X2
T ]

− 1 ≡
E0[(ρνXT − ST θ

static
0
S0

)2]

(1− ρ2)ν2E0[X2
T ]

.
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Since ∆T > 0 there exists t̄ such that ∆t > 0 whenever t > t̄. For some parameter values of

ρ, σ, ν and T , the performance measure ∆t can become negative but only for implausibly

large (µ− r)/σ.48

The remainder of the results for the case when the asset X follows an OU process and the

stock S follows either an ABM or a GBM can be obtained along the lines of above. First,

we compute the optimal hedges and corresponding hedging error variances by applying

Proposition 3.1. Then, we characterize the static hedges by computing relevant moments

for the processes Xt, St and XtSt. Finally, we obtain a lower bound for the static hedging

error variance as above, and compare it with the dynamically optimal one or its upper

bound.
Q.E.D.

Proof of Proposition 3.5. The dynamically optimal hedges reported in Table 3.2 are

the same as in Table 3.1, while the myopic hedges are immediate from the expression (253).

Thus, it remains to compare the relative performances.

When the risky assets follow ABMs, the two hedges coincide and hence ∆t = 0. Turning

to the case when both X and S follow GBMs, we derive the myopic hedging error variance

using the expanded law of total variance (276) and compare it with the dynamically optimal

one. From the budget constraint in integral form (264) and the expression for the myopic

hedge we obtain:

Et[XT −Wmyopic
T ] = Xte

m(T−t)
(

1− ρν µ− r
σ

∫ T

t
e−(m−r)(T−s)ds

)
−Wte

r(T−t).

Applying Itô’s lemma, we derive dEt[XT − Wmyopic
T ], substitute it into the law of total

variance (276), and after some algebra determine the myopic hedging error variance:

vart[XT −Wmyopic
T ] = X2

t ν
2e2m(T−t)

∫ T

t
eν

2(s−t)
(

(1− ρ2)
(

1− ρν µ− r
σ

1− e−(m−r)(T−s)

m− r
)2

+ ρ2ν2
(m− r

ν
− ρµ− r

σ

)2(1− e−(m−r)(T−s)

m− r
)2)

ds. (293)

48For example, if ρ = −0.2, ν = 0.36, σ = 0.16 and T = 1, the static policy outperforms at time 0 only for
(µ− r)/σ > 0.6. If the parameter ρ increases in absolute value, the lower boundary for the market price of
risk also increases.
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We now show that if (m− r)/ν > ρ(µ− r)/σ, the dynamically optimal hedge outperforms

the myopic one. Comparing the dynamically optimal and myopic hedging error variances

given by (290) and (293) we observe that a sufficient condition for the dynamically optimal

hedge to outperform the myopic one is

1− ρν µ− r
σ

1− e−(m−r)(T−t)

m− r > e−ρν
µ−r
σ

(T−t).

This inequality can equivalently be rewritten as∫ T

t
e−ρν

µ−r
σ

(T−s)ds ≥
∫ T

t
e−(m−r)(T−s)ds,

which holds whenever condition (m − r)/ν > ρ(µ − r)/σ is satisfied. If this condition is

violated, the dynamically optimal hedge can outperform or underperform.

The remainder of the relative performance results for the case when the assetX follows an

OU process while the stock S is an ABM or a GBM are obtained similarly. The dynamically

optimal and myopic hedging error variances are obtained from the expressions (221) and

(276). It is then directly observed that the myopic hedging error variance exceeds the

dynamically optimal one for all parameters, and hence ∆t > 0. Q.E.D.

Proof of Proposition 3.6. The proof is similar to the proof of Proposition 3.1. The

hedging problem is solved via dynamic programming and the value function is defined as:

J(Xt, St,Wt, t) = Et[XT −W ∗T ]− γ

2
vart[XT −W ∗T ]. (294)

Applying the law of total variance along the same steps as in the proof of Proposition 3.1,

we obtain an HJB equation. To solve this equation, substituting the budget constraint in

integral form (264) into the hedger’s objective (254), we show that the objective is linear in

Wt and hence θ∗t and Gt do not depend on Wt. In contrast to the minimum-variance case,

the value function linearly depends on Wte
r(T−t) and can be represented as:

J(Xt, St,Wt, t) = Wte
r(T−t) + Ĵ(Xt, St, t).

Applying Itô’s lemma to the processes Ĵt, Gt and Wte
r(T−t) we obtain a PDE for the value

function and the optimal hedge in a recursive form. The optimal hedge in terms of exogenous
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parameters is then obtained by applying the Feynman-Kac theorem, as in Proposition 3.1.

Solving the PDE for Jt, we obtain the value function (256).
Q.E.D.

Proof of Proposition 3.7. Proposition 3.7 is a multidimensional version of Proposition

3.1 and can be proven along the same lines. Fist, using the law of total variance, we derive an

HJB equation and then the optimal hedge in a recursive form. Then, applying the Feynman-

Kac theorem we find the optimal hedge in terms of exogenous parameters. Finally, solving

the HJB PDE for the value function, we obtain the hedging error variance in closed form.
Q.E.D.
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