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Abstract—Transformers form a major part of a power 
system in transmission as well as distribution of power. 
Considering the criticality, finance, and time involved in 
repair, periodic condition monitoring and maintenance of 
transformers is the key to ensure electrical safety as well 
as stable operation of the large interconnected power 
system. Dissolved Gas Analysis (DGA) is an established 
tool used to determine the incipient faults within the 
transformer by analyzing the concentration of different 
gases in the transformer oil and giving early 
warnings/diagnoses. Currently, transformers worldwide 
utilise online sensors to monitor dissolved gases and 
moisture content in oil. The online DGA sensor uses a 
small amount of oil from transformer to perform real-time 
DGA analysis and gives the ppm content of dissolved gases 
for further course of action. Considering the large 
quantity of assets and the huge amount of data produced, 
it is imperative to develop a tool to aid the operators in 
assimilating the available data for diagnosis and proactive 
decision making. The present study improvises AI 
techniques to predict future dissolved gas concentrations 
using real time DGA data collected from the transmission 
utility of the country. The prediction helps to forecast the 
trend of development of incipient faults in the 
transformer. The complete project scope is to develop a 
highly reliable diagnostic tool to emulate the decision-
making ability of a human expert in transformer DGA 
analysis to enhance transformer life. In the present paper, 
models based on Auto-regressive Integrated Moving 
Average (ARIMA), Long Short-Term Memory (LSTM), 
and Vector Auto Regression (VAR) are implemented to 
predict DGA data of three in-service transformers. DGA 
data is forecast for up to 8 monthly samples in the future, 
and the accuracy of results is compared with each other. 
The LSTM-VAR combined model is seen to provide the 
best results among them.  

Keywords— Transformer, fault diagnosis, Dissolved gas 
analysis (DGA), long short-term memory (LSTM), time series 
forecasting. 

I. INTRODUCTION

Oil-filled transformer failures happen due to various 
reasons, including dielectric breakdown, internal/external 
short circuit faults, lightning and switching over-voltages, 
loose joints and hot spots, bushing and breather failure, 
etc. Utilities are reporting growing failures of the aging 
fleet of transformers and reactors, and rise in unwarranted and 
unexpected failures of even newly commissioned equipment. 
This increasing trend is observed in figure 1, which shows the 
number of transformer failures over a period between 2014 
and 2018. According to the report of the standing committee 
of experts on the failure of 220 kV and above voltage class 
equipment published by the government of India, 21 failure 
cases are said to have occurred between September 2015 and 
December 2016 [1], whereas 78 equipment failures are 
reported between April 1, 2018, and March 31, 2019 [2].  

Figure 1 Transformer failure cases during the years 2014-2018 

 The Dissolved Gas Analysis (DGA) is a tool used for 
determining the faults in a transformer by analyzing the 
concentration of different gases dissolved in the 
transformer oil [3]. The conventional DGA methods such 
as the Key Gas method and Duval triangle methods 
interpret fault gas concentrations or gas ratios depending 
on the experience of practical experts rather than 
quantitative evidence. A smart real time monitoring tool 
capable of alerting the operator, through early signs of 

Rishika K K 
Department of Electrical & Electronics 

TKM College of Engineering 
Kollam, Kerala, India, 
rishikakk5@gmail.com 

Online prediction of DGA results for intelligent condition monitoring of power transformers 
 

1



incipient faults or impending degradation in transformer, 
the most critical equipment in the transmission network, is 
required. Although conventional methods fail to provide an 
accurate analysis, especially at borders, the traditional 
approaches provide relevant input features and derived 
methodologies as a base for real time autonomous intelligent 
techniques.  The proposed real time tool is built upon the 
established DGA analysis technology in combination with 
the multi-fold development of artificial intelligence for 
proactive condition monitoring and to limit the damage to 
the transformer as minimum as possible while avoiding 
sudden catastrophic failures. 
 
Recent developments in statistical machine learning has 
brought in various machine learning models for DGA 
interpretation and subsequent fault diagnosis [4]. DGA 
interpretation using a deep neural network is proposed in 
[5]. The Duval triangle method is carried out with a 
simulated dataset to supply sufficient data. The deep 
neural network is shown to outperform standard 
classification algorithms like the k-nearest neighbor. [6] 
states how fuzzy logic models can enhance DGA 
interpretation. 
 
The interpretation of DGA results for fault diagnosis 
employs methods that are subjective to the experts 
carrying out the observation. This creates some amount of 
risk for adverse events in the transformer. The availability 
of a reliable prediction of the DGA data for future 
instances can minimize this risk. The DGA data prediction 
is an application of time series forecasting. A model 
formed by combining artificial neural network (ANN) 
and autoregressive integrated moving average (ARIMA) 
is proposed in [7] to obtain time-series forecasts of data 
such as sunspot data and exchange rates. ARIMA gives 
forecast results as a linear function of the past values of 
the variable to be forecasted. ANN captures more 
information from the series and can predict non-linearities 
with good accuracy.  The combined model has the 
advantages of both these approaches, and it is observed to 
be the better approach among the three. An application of 
LSTM model in classification is discussed in [8]. In [9], 
LSTM networks are used for time series forecasting, and 
they even give reduced error in the forecast when 
compared with ARIMA. It is stated that there is no 
significant impact of the number of epochs on the 
prediction accuracy in the case of LSTM. 
 
From the existing studies regarding deep belief networks 
in DGA interpretation and fault detection, a deep 
recurrent belief network is proposed in [10] to carry out 
trend prediction of transformer DGA data, using time 
series theory. In [11], a multidimensional time series 
approach is followed to link the DGA values to the 
operating state of the transformer. Existing single time 
series forecasting methods like the backpropagation (BP) 
neural network and radial basis functions allow prediction 
by adjusting network weights and thresholds. A combined 
model of wavelet neural network (WNN), support vector 
machine (SVM) and graph neural network (GNN) are 
proposed to have an improved prediction result. [12] 
proposes long short term memory (LSTM) neural 

network for trend prediction of DGA data, which is said 
to have a higher accuracy of prediction when compared to 
the gray model, BP network model, and SVM model.  
 
Although a number of models have been proposed already 
for predicting the type of fault that can occur in 
transformers using DGA data, there have not been many 
attempts at forecasting the gas concentration values in 
DGA data, which can be used to estimate the incipient 
fault types. This paper proposes different machine learning 
models for forecasting DGA data of transformers and 
predicting the trend of development of incipient faults of 
the transformer to avoid serious events and minimize the 
loss. This will enable the operators to apply DGA 
interpretation techniques to these predicted values, which 
would give the indication of any incipient fault in the 
system. 
 
The DGA dataset for three in-service transformers was 
obtained from Power Grid Corporation of India Ltd 
(PGCIL). Models of Auto Regressive Integrated Moving 
Average (ARIMA), Vector Auto Regression (VAR), Long 
Short-Term Memory (LSTM) algorithms were 
implemented systematically, and the results of prediction 
are obtained with the lowest values of error.  
 

The paper is organised in such a way that the first section 
is about DGA, followed by the description of the models used 
in the paper. The methodologies followed for each of the 
models, the results and the future scope of work in this area 
are discussed thereafter. 

II. DISSOLVED GAS ANALYSIS 
 Faults occurring in transformers cause decomposition 

of oil/cellulose insulation. This produces several gases, 
like H2, CH4, C2H2, C2H4, C2H6,  CO, and  CO2,  
which get dissolved in the oil inside the transformer.  The 
quantity of these gases is measured normally by gas 
chromatography. It was recognized early that specific 
gases, or gas ratios, could be associated with specific fault 
types. So analysing the concentrations of various gases 
can enable detection of the fault and the type of it that has 
occurred in the transformer. Dissolved gas analysis 
(DGA) is the commonly used tool for detecting incipient 
faults in power transformers by establishing a relation 
between the amount of certain gases dissolved in 
transformer oil and a corresponding malfunction. Some of 
the faults that can be identified by DGA are partial 
discharge, thermal faults, arcing, and fault involving 
insulation.  

Gas IEEE C.57.104 IEC 60599 

Hydrogen 100 60-150 

Methane 120 40-110 

Ethane 65 50-90 

Ethylene 50 60-280 

Acetylene 1 3-50 

Carbon monoxide 350 540-900 

Carbon dioxide 2500 5100-13000 

Table 1 Acceptable limits of fault gases in ppm 
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The table 1 shows the acceptable limits of gases in 
parts per million (ppm) in transformers according to two 
standard specifications. 

The conventional DGA methods like Key Gas, 
Duval Triangle, Duval Pentagon, etc. are widely used to 
detect the faults in the transformers. However, these 
methods are heavily dependent on expert opinions for 
fault diagnosis. This has led to many Artificial 
Intelligence (AI)-based methods being developed in 
order to overcome the drawbacks and improve fault 
detection based on ANN, SVM, fuzzy systems, and 
expert systems, among others. But there has not been 
enough work done using machine learning models for 
forecasting gas concentration values. This paper 
attempts to overcome this deficiency by proposing such 
a model after implementing and evaluating different 
approaches. 

III. MODEL DESCRIPTION 

A. ARIMA 
ARIMA is the abbreviation for Auto-regressive 

Integrated Moving Average. It is a time series 
prediction algorithm based on the concept that information 
contained in historical values of time series can be utilised 
for predicting the future. This class of models shows a given 
time series according to its past values, i.e. its own lags and 
the lagged forecast errors. The ARIMA model is 
characterised by three terms ‘p’, ‘d’ and ‘q’.The ‘p’ 
represents the order of the Auto-regressive term, ‘d’ 
represents the order of the differencing term and ‘q’ denotes 
the order of the moving average term, where these 
parameters are substituted with integer values to indicate 
the specific ARIMA model to be used quickly. 

 
The Autoregression term ‘AR’ uses the dependence of 

any given observation on a specific number of lagged 
observations i.e. it predicts future values based on linear 
combination of past values based on equation (1). 

 
    𝑌𝑡 = α + 𝛽1𝑌𝑡−1 + 𝛽2𝑌𝑡−2 + ⋯ +  𝛽𝑝𝑌𝑡−𝑝 +  𝜀1         (1) 
 

In above eq. (4), 𝑌𝑡  is a function of the lags of forecasted    
values, α is a constant value or the intercept term, 𝛽1 is the 
coefficient of first lag value, 𝑌𝑡−1 is the first lag value of the 
time series data and 𝜀1 is the error term. The Integrated term  
‘I’ denotes the difference between the current observation 
and the preceding time step to make the time series 
stationary. 
The Moving Average ‘MA’ term uses the dependency of 
an observation on a residual error of a moving average 
model applied to lagged observations based on equation 
2. 

 
         𝑌𝑡 = α + 𝜀𝑡 +𝜙1𝜀𝑡−1 + 𝜙2𝜀𝑡−2 + ⋯ +  𝜙𝑝𝜀𝑡−𝑞     (2) 

 
   The overall mathematical equation of Arima model is 
represented by equation 3. 
 

𝑌𝑡 = α + 𝛽1𝑌𝑡−1 + 𝛽2𝑌𝑡−2 + ⋯ +  𝛽𝑝𝑌𝑡−𝑝 +  𝜙1𝜀𝑡−1 + 

             𝜀𝑡−2 + ⋯ +  𝜙𝑝𝜀𝑡−𝑞        (3) 

 

B. VECTOR AUTO-REGRESSION 
Vector auto-regression (VAR) is a model used to 

utilize the relationship between multiple quantities over 
time to predict future values of the quantities. VAR 
models enhance the univariate autoregressive model, 
such as the ARIMA model, by allowing for multivariate 
time series analysis. Each variable in the VAR model is 
modeled as a linear combination of its own previous 
values and those of other variables in the system. It is 
used when there are multiple time series that influence 
each other.  These series are modeled into a system of 
equations with one equation for each time series.   

C. RECURRENT NEURAL NETWORK 
A recurrent neural network (RNN) is a class of 

artificial neural networks in which a network is 
constructed along a temporal sequence using 
connections between nodes. RNN has a memory, for 
storing all information about what has been calculated. 
RNNs use their memory to process input sequences of 
variable lengths. Long short-term memory is a popular 
RNN algorithm that can be used for time series 
forecasting. 

D. LSTM 
The Long Short-Term Memory network, or LSTM 

network, is a RNN trained using backpropagation through 
time, overcoming the vanishing gradient problem. It can be 
used to create large recurrent networks which can be used to 
address complex sequential problems in machine learning 
and obtain accurate results. LSTM networks consists of 
memory blocks ,instead of neurons, that are connected 
through the layers. 

Figure 2 represents the architecture of the LSTM 
neural network. It is composed of several memory 
blocks, or cells, as represented by the rectangles in the 
figure. The information that is passed from one cell to 
the next is two states, called cell state (x) and hidden 
state (h). the memory blocks remember or forget 
information using three mechanisms, called gates. 

IV. METHODOLOGY 
The DGA data of 3 in-service power transformers 

recorded over a period of 9 years, from 31-05-2011 to 20-05-
2020 is available for the analysis. The dataset includes 
several parameters, from where only the relevant features, 
which are values of gas concentrations, winding temperature, 
and load were extracted for this purpose.  The dataset was 
cleaned to filter out duplicate rows. The number of samples 
in each transformer dataset was limited in the range of 35 and 
the data points were at unevenly spaced with time. A 
resampling process is applied to tackle the class imbalance. 

Figure 2 LSTM Architecture 
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Up-sampling is a procedure where synthetically generated 
data points are injected into the dataset by which the 
frequency of data points available in a dataset is increased. It 
is carried out by interpolating values in between the existing 
data points to get monthly data points. Linear interpolation 
was done to preserve the characteristics of the original 
dataset, as a non-linear interpolation like polynomial 
interpolation would bring in new crests and troughs in the 
existing dataset values. Through up-sampling, the dataset 
was made to consist of 109 monthly samples of time series 
data. The various machine learning models used in the 
project are discussed hereafter. 

A. ARIMA Model 
The ARIMA model gives univariate prediction 

utilizing the past values of C2H2, C2H4, C2H6, CH4, H2, 
CO2 and CO gases. ARIMA (4,2,0) was used for this 
purpose. The data was split into train and test data in a 
ratio of 80:20. From the results, we concluded that the 
proposed ARIMA model provides a good accuracy in 
predicting the immediate future values of gases. The 
ARIMA model is a univariate time series model; we 
cannot solely depend on this model because gases such as 
CO and CO2 evolved during incipient fault depends on 
other parameters such as load, winding temperature etc. 
Also, the prediction often tends to saturate into a linear 
regression. Thus, a multivariate time series model 
could be a more reliable approach. 

B. LSTM Model 
For applying the LSTM model, the data was 

transformed into one that consists of lag values of the 
features as inputs, and the gas concentration in the next 
time step as output. Before training the LSTM model we 
normalized the datasets using MinMax Scaler and 
converted the datasets to a supervised learning dataset. 
The MinMax scaler is a feature transformation tool that 
converts all values in the dataset to those within a 
specified range, such as between 0 and 1 in this project. 
Train and test data were assigned in a 70:30 ratio. We 
designed a single layer LSTM model in which the 
network contains a visible layer of 50 LSTM units. A 
single unit dense layer follows this.  RMSprop optimizer 
was used. The training was for 50 epochs, and a batch size 
of 1 is used. Finally, we generated the predictions using 
this LSTM model for the test input data to visualize the 
model's performance.  

The proposed LSTM model can be used to obtain 
single-step prediction only because it is a supervised 
learning approach. Two approaches were used to obtain 
predictions for multiple time steps - an encoder-decoder 
model and a combined LSTM-VAR model. 

C. LSTM Encoder-Decoder Model 
The Encoder-Decoder LSTM is a recurrent neural 

network that is developed for sequence-to-sequence 
problem cases. This architecture comprises of two 
models. One model is for reading the input sequence and 
encoding it to a vector of a fixed length. The second one 
decodes the vector of fixed length and outputs the 
predicted  sequence. This model is named Encoder-
Decoder LSTM because of this special architecture 

mentioned above, and the model is specifically designed 
for sequence-to-sequence problems. This model consists 
of two parts: encoder and decoder. Firstly, the input 
sequence is made available to the network as a single 
encoded character at a time. Here we have used two 
LSTM layers having 25 neurons to implement the model. 
The output of the model is a fixed-size vector that carries  
the internal information of the input sequence. The 
decoder needs to transform this internal representation 
into the correct output sequence. These LSTM layers can  
also be used to construct the decoder model. This model 
takes information from the fixed sized output of the 
encoder model. A 100-unit dense layer followed by a 
single unit dense layer facilitates the output for the 
network. These weights can also be used to output each 
time step of the output sequence with the help of a Time 
Distributed wrapper. A repeat vector layer is used for 
fitting the encoder and decoder models together. The last 
8 DGA samples were predicted using this model. 

D. LSTM-VAR Model 
For each time step in the future, the inputs are chosen 

as the previous value of gas concentration obtained from  
the LSTM model, and winding temperature and load 
values of the previous time instance obtained from the  
VAR model of lag order 5, as shown in figure 3. This 
is continued until the prediction of the required 
number of time steps. Thus, winding temperature at 
time instance ‘t’ is taken as a linear function of values 
of winding temperature and load at previous time 
instances. 

The model is trained using the first 100 samples 
and is used to predict the last 8 samples in the test set. 
The results are validated  with actual values and error 
is calculated. 

 
Figure 3 LSTM-VAR model 

V. RESULTS AND DISCUSSIONS 
The results of prediction by the different methods 

used in the project are analysed by comparing with 
the actual values of DGA for each of the transformers. 
Root mean square error (RMSE) is the commonly sed  
error metric in regression problems including time series 
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forecasting. Here, the RMSE values of the models are 
compared to evaluate the performance of the models. 

Root mean square error is calculated by: 

                    𝑅𝑀𝑆𝐸 =  √∑
(𝑦𝑖̂−𝑦𝑖)2

𝑛

𝑛
𝑖=1                  (7) 

where  𝑦𝑖̂  represents the predicted value, 𝑦𝑖  is the actual 
value, and n is the number of values. 

A. ARIMA Model 
The ARIMA model was found to have lower magnitude of 
RMSE when it was used to predict the test data. The 
RMSE corresponding to different cases of predictions are 
shown in table 2. While these error values are quite low, 
this cannot be taken as a conclusive evidence to justify 
the performance of the model. There are two reasons for 
this. One, the gas concentrations in the dataset appears 
to be having a straight-line behavior towards the recent 
time instances, as observed in figure 4. Two, the ARIMA 
model is entirely dependent on the previous values of the 
gas concentration, and the prediction curve tends to 
saturate into a straight line, if no significant patterns are 
observed in the previous samples. Both these factors 
indicate that  this model is unreliable for prediction of 
future trends. 

H2 CH4 C2H2 C2H4 C2H6 CO CO2 

0.069 0.13 0 0.054 0.046 21.035 24.347 

 Table 2 RMSE (in ppm) of ARIMA Model 

This makes it necessary to implement a multivariate 
approach for prediction, and LSTM is used for this purpose. 

 

 
Figure 4 Predicted and actual values of CO2 using ARIMA model 

B. LSTM Model 
LSTM model gives single-step forecasts with a low 

value of error.  The RMSE values obtained are given in 
table 3.  Only one value is obtained at a time, and it 
requires all the features of prediction up to the previous 
value to obtain a prediction. Thus, the use of this 
method is very limited. 

H2 CH4 C2H4 C2H2 C2H6 CO CO2 

1.288 0.847 0.213 0.001 0.046 111.91 50.64 

Figure 5 Predicted and actual values of CO2 using LSTM model 

C. LSTM multiple-step prediction models 
To predict multiple steps of gas concentrations, the 

encoder-decoder model of LSTM and LSTM-VAR 
models were implemented. The LSTM-VAR combined 
model uses VAR to predict features, which are 
incorporated to LSTM in order to predict gas 
concentrations. The predictions obtained by both these 
multiple-step prediction models are compared in table 4, 
by means of the average RMSE of forecast in all three 
transformer datasets. A comparison of forecasts by both of 
these models of concentration of CO2 is shown in figure 
4. 

 
 
Figure 6 Comparison of CO2 concentration prediction 

    The RMSE for the encoder-decoder model is seen to be 
higher than that of the LSTM-VAR model for a majority 
of the gas concentrations. This is because the encoder-
decoder model relies on periodic patterns present in a 
dataset to give predictions. It gives lesser importance to 
the magnitude of values of the features used. Since the 
DGA dataset is devoid of such periodically repeating 
patterns, it does not give a good prediction. 
    The real-life DGA values corresponding to the sample 
date 30/11/2020, 6 months from the previously available 
dataset, were obtained from PGCIL. The proposed 

GAS LSTM-VAR ENCODER-
DECODER 

H2 1.62 2.10 
CH4 1.24 3.44 
C2H4 0.04 0.04 
C2H2 1.38 3.705 
C2H6 0.36 1.96 
CO 173.17 133.69 
CO2 256.78 266.10 

Table 4 Average RMSE (in ppm) of Multiple-step prediction models 

Table 3 RMSE (in ppm) of LSTM Model 
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multiple step prediction models were used to predict 
this sample and the results are shown in table 5. 
 

GAS ACTUAL 

VALUE 

(ppm) 

ARIMA 

(ppm) 

LSTM 

ENCODER-

DECODER(ppm) 

LSTM-

VAR 

(ppm) 

CH4 30 34.05 27.23 25.95 

C2H4 
5 6.05 4.92 5.43 

C2H6 8 8 6.35 7.98 

CO2 5710 5769 5375 5698 

Table 5 Comparison with actual data for 30-11-2020      

The ARIMA model predicts the given sample most 
accurately, followed by the LSTM-VAR model, as seen 
from the tables above. But since ARIMA is a univariate 
forecast algorithm, this low error value cannot be inferred 
to observe it as a reliable model, but it is due to the linear 
pattern of the dataset itself.  LSTM-VAR is already 
observed to be better at predicting non-linear variations. 

VI. CONCLUSION 
DGA is a commonly used tool for determining any faults in 
transformers from the values of dissolved gas concentrations 
in transformer oil. The paper proposes a time series 
forecasting approach for forecasting gas concentration values 
in DGA datasets of 3 in-service transformers, which can then 
be used to determine any incipient faults occurring in a 
transformer. Four types of machine learning models were 
used in a phased manner, and the performance of these was 
compared using root mean squared error (RMSE) as the 
accuracy metric. The Auto-Regressive Integrated Moving 
Average (ARIMA) model gives a univariate prediction with 
low RMSE, which is unreliable and often saturates to linear 
regression. A reliable forecasting model should incorporate 
multiple variables which determine the operating state of the 
transformer. A Long Short Term Memory (LSTM) model  
was proposed for multivariate forecasting, but it can only be 
used for a one-step prediction. The encoder-decoder model 
and LSTM combined with Vector Auto-Regression (VAR) 
were the two alternatives used in LSTM based multiple-step 
prediction. The former showed a dependency on repeating 
patterns, and thus LSTM-VAR proves to be a better 
approach. The accuracy of forecasting can improve when the 
available training data increases. The LSTM-VAR model is 
proposed for forecasting DGA concentrations for 6 months in 
the future, thereby helping to estimate any fault occurring in 
the transformer in advance, without depending on the data 
from the DGA sensors for the corresponding months. 

VII. FUTURE SCOPE 
DGA data for faulted transformers have been acquired from 
PGCIL. The proposed models are being implemented for 
these data as well to evaluate the performance. The utility of 
advanced forms of RNN such as bidirectional LSTM, and 

other approaches for multiple step prediction using LSTM 
can be explored. A model for reducing the error in prediction 
can be developed by giving the previous error in each step as 
feedback to the next prediction. Also, the determination of the 
fault type from the forecasted values of gas concentrations 
can be performed by building a machine learning model for 
classification, with the DGA parameters as inputs. 
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