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A B S T R A C T   

While maritime transportation is the primary means of long-haul transportation of goods to and from the EU, it 
continues to present a significant number of casualties and fatalities owing to damage to ship equipment; damage 
attributed to machinery failures during daily ship operations. Therefore, the implementation of state-of-the-art 
inspection and maintenance activities are of paramount importance to adequately ensure the proper func
tioning of systems. Accordingly, Internet of Ships paradigm has emerged to guarantee the interconnectivity of 
maritime objects. Such technology is still in its infancy, and thus several challenges need to be addressed. An 
example of which is data preparation, critical to ensure data quality while avoiding biased results in further 
analysis to enhance transportation operations. As part of developing a real-time intelligent system to assist with 
instant decision-making strategies that enhance ship and systems availability, operability, and profitability, a 
data-driven framework for the identification of steady states of marine machinery based on image generation and 
connected component analysis is proposed. The identification of such states is of preeminent importance, as non- 
operational states may adversely alter the results outlined. A case study of three diesel generators of a tanker ship 
is introduced to validate the developed framework. Results of this study demonstrated the outperformance of the 
proposed model in relation to the widely implemented clustering models k-means and GMMs with EM algorithm. 
As such, the proposed framework can adequately identify steady states appropriately to guarantee the detection 
of such states in real-time, whilst ensuring computational efficiency and model effectiveness.   

1. Introduction 

According to the fourth IMO Greenhouse Gas (GHG) Study 2020, 
emissions are projected to increase about 90–130% of 2008 emissions by 
2050 (IMO, 2021). Although these projections can fluctuate based on 
the impact of COVID-19, as well as long-term economic and energy 
scenarios, there is no doubt whatsoever about how critical the applica
tion of effective strategies is to contribute towards Net Zero goals. To 
address such a challenge, various technologies are being investigated, 
such as energy-saving technologies (Tacar et al., 2020), renewable en
ergies (Dong et al., 2021), alternative fuels (Balcombe et al., 2021), and 
ship speed (Taskar and Andersen, 2020). If maintenance approaches are 
considered, these have demonstrated their ability to enhance efficiency, 
reliability, profitability, and performance of the vessel, while facilitating 
the emissions reduction all along its operational lifetime (Cheliotis and 
Lazakis, 2018; Lazakis and Ölçer, 2016). Therefore, the analysis of smart 
maintenance is of preeminent importance to ensure marine vessels ef
ficiency, and thus reduce emissions and improve ships operational 

capacity. 
Maintenance activities are usually presented in three different ty

pologies: reactive maintenance, time-based maintenance, and 
Condition-Based Maintenance (CBM) (Lu et al., 2018; Emovon et al., 
2018). However, due to an increase in data utilisation and accessibility, 
the prosperity of CBM has been possible in order to enhance the antic
ipation of forthcoming failures in marine machinery, thus promoting 
cost diminution by averting random preventive maintenance and 
crisis-related reactive maintenance of critical machinery. Accordingly, a 
large number of sensors are installed alongside the most critical com
ponents and around the environment where the assets are operating in 
order to effectively monitor their condition (Jamshidi et al., 2018; Su 
et al., 2019; Zhu et al., 2019). As a consequence, the Internet of Ships 
(IoS) paradigm has emerged due to the need of smart interconnecting 
maritime objects applicable to monitor the assets’ condition (Lazakis 
et al., 2018; Raptodimos and Lazakis, 2018, 2019). Despite the unde
niable enhancements of IoS, there are several challenges that are yet to 
be addressed. Examples of these are related to satellite communications, 
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security and privacy, data collection, and data management and ana
lytics (Aslam et al., 2020), which preclude the data standards and 
quality required to provide reliable data analysis. 

Therefore, both the analysis and development of innovative data 
preparation approaches are critical to adequately consider the speci
ficities of the maritime industry. Although several studies have been 
performed in relation to data preparation (Cheliotis et al., 2019; 
Velasco-Gallego and Lazakis, 2020; Dalheim and Steen, 2020, Velas
co-Gallego and Lazakis, 2021), further analysis is required to promote 
the implementation of real-time intelligent systems in order to enhance 
ship availability, and thus increase company profitability. In this study, 
the steady states identification step is analysed, as raw data usually 
contain non-operational states that adversely alter the results outlined 
when performing data-driven tasks to assess the current and future 
health of marine machinery. Although the marine engines typically run 
under steady-state conditions, fluctuations may occur due to, for 
instance, environmental conditions or variations in the operating con
dition (Theotokatos et al., 2020). Therefore, if such states are not 
adequately addressed, a decrease in both computational efficiency and 
model effectiveness can be perceived. Consequently, we propose an 
innovative approach constituted by image generation of time series 
sensor data and connected component analysis to adequately determine 
such states. Additionally, to address the current demands in relation to 
the transition from historical analysis to real-time analysis, the real-time 
implementation of the proposed framework is also introduced. 

The following paragraphs are structured as follows. Section 2 pre
sents a critical investigation of steady states identification phase. Sec
tion 3 describes the proposed methodology. Section 4 reflects on the 
results obtained after implementing the proposed methodology through 
a case study and a comparative analysis. Lastly, in Section 5 the con
clusions and future work are outlined. 

2. Literature review 

Several efforts have been made to enhance the current practices in 
relation to Operations & Maintenance (O&M) activities within the 
shipping sector. Cao et al. (2020) presented an optimised Support Vector 
Machine (SVM) driven approach by Improved Artificial Bee Colony 
(IABC) as an effective state estimation method in ship system. Ellefsen 
et al. (2019) reviewed four well-established deep learning techniques 
applied in Prognostics and Health Management (PHM) systems: Deep 
Belief Network (DBN), Auto-Encoder (AE), Long Short-Term Memory 
(LSTM), and Convolutional Neural Network (CNN). Also, some of the 
benefits and challenges to be faced in relation to PHM based on Deep 
Learning (DL) were introduced. In relation to the benefits, the authors 
suggested that the provision of high-speed broadband connections to 
ships at sea would enable online PHM systems based on DL, which could 
facilitate autoships without onboard maintenance personnel and ach
ieve zero-downtime performance. Hence, it was thought that when PHM 
systems based on DL were introduced they could contribute to reduce 
errors occurring due to personnel, as systems were less dependant on 
prior knowledge and human influence. Brandsæter et al. (2017) pre
sented a cluster-based anomaly detection methodology. This was based 
on an original methodology that was divided into two main steps: signal 
reconstruction, through the implementation of Auto Associative Kernel 
Regression (AAKR), and residual analysis, by performing Sequential 
Probability Ratio Test (SPRT). The methodology was then modified to 
include two new steps: cluster analysis, by the utilisation of the k-means 
algorithm, and the selection of a set of closest points per cluster, which 
would replace the original dataset as training set to reduce the compu
tational cost. The proposed approach was assessed by analysing sensor 
signals on a marine diesel engine. Fault data were simulated to be 
implemented as the test set, as no fault data were available. The tech
nique demonstrated to be successful in detecting anomalies and the 
computation time was reduced in relation to the original methodology. 
The proposed methodology is expanded in Brandsæter et al. (2019), 

which introduced a comprehensive description of the generalisations 
and modifications performed in the original methodology. As 
mentioned, cluster analysis was applied to replace the original dataset 
with rectangular boxes that referred to different clusters. In addition, the 
distance measure was altered to treat the variables differently based on 
the credibility of the signal and to distinguish between explanatory and 
response signals. Credibility estimation was also performed. Cheliotis 
et al. (2020) combined Expected Behaviour (EB) models with the 
Exponential Weighted Moving Average (EWMA) for fault detection. 
Four different regression models were assessed: OLS single linear 
regression, multiple linear ridge regression, OLS single polynomial 
regression, and multiple polynomial ridge regression. Multiple poly
nomial ridge regression was identified as the most accurate to detect 
faults manifesting in both the main engine cylinder exhaust gas tem
perature and the main engine scavenging air pressure. As the collected 
data represented fault-free operating conditions, a total of four different 
fault cases were simulated in the form of a sensitivity analysis. The 
estimated residuals were analysed in an EWMA control chart that con
tained upper and lower control limits to detect faults. It was concluded 
that the proposed approach could successfully detect imminent faults by 
analysing the residuals from the recorded and expected occurrences. 
Data preparation was of paramount importance in this study due to the 
characteristics of the raw data and the models that were implemented. 
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) 
algorithm was applied effectively to remove outliers and transient states 
of operation, and thus induce its applicability when dealing with these 
types of data. Lazakis et al. (2019) proposed a methodology for the 
monitoring and detection of operating anomalies in ship machinery 
based on a one-class Support Vector Machine (SVM). The model was 
trained by using data that corresponded to the normal behaviour of a 
diesel generator under varying operating conditions. Abnormal data was 
simulated in the form of a sensitivity analysis. The proposed approach 
was effective for identifying anomalies. Tan et al. (2020) investigated 
the performance of the following one-class classifiers: One Class Support 
Vector Machine (OCSVM), Support Vector Data Description (SVDD), 
Global k-Nearest Neighbors (GKNN), Local Outlier Factor (LOF), Isola
tion Forest (IF), and Angle-Based Outlier Detection (ABOD). To that end, 
a real-data validated numerical simulator developed for a Frigate 
characterised by a combined diesel-electric and gas propulsion plant was 
utilised for a case study implementation. Based on the outlined results, 
the authors sorted the performance of the six analysed algorithms as 
follows: ABOD > OCSVM ≈ SVDD > GKNN > IF ≈ LOF. Coraddu et al. 
(2019) applied anomaly detection methods based on SVMs and k-NN to 
predict the hull condition using available parameters measured 
on-board. Data collected from the Research Vessel The Princess Royal 
was utilised to perform a case study, the results of which demonstrated 
the applicability and the effectiveness of the proposed methodology. 

However, if data preparation, specifically steady states identifica
tion, is considered, it can be perceived that the establishment of data- 
driven models for such a matter is not yet widely formalised. Of a 
total of 7 publications that consider the steady states identifications as a 
pre-processing phase, only 4 of them implemented data-driven models. 
Perera and Mo (2016) implemented Gaussian Mixture Models (GMMs) 
with an Expectation Maximization (EM) algorithm and Principal 
Component Analysis (PCA) to both classify and analyse frequent oper
ating regions of marine engines. Dalheim and Steen (2020b) developed a 
new computationally efficient method to identify those parts of the time 
series data that refer to steady states by assuming that the underlying 
system behaviour could be modelled by a deterministic linear trend 
model. Velasco-Gallego and Lazakis (2021) implemented the k-means 
clustering technique to identify substantial steady states. Although the 
results of such methodologies demonstrated promising results, the case 
studies implemented to analyse their performance were assessed by only 
considering different engine loads, although there are states other than 
engine operating regions that may need to be analysed, such as transient 
and idle states. Moreover, both k-means and GMM with EM require the 
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selection of its hyperparameters prior to the selection of the different 
states. This may be unfeasible when deploying this pre-processing step 
in real time, as new operating regions may arise. Accordingly, the 
hyperparameters that determine the number of clusters need to be 
updated, which lead to an increase of the computational time. There
fore, further studies need to consider both the need for labelling a large 
number of historical data with different states (such as engine loads and 
transient and idle states), and the current demand for transitioning from 
historical analysis to real-time analysis. In addition, several studies are 
still considering non-data-driven models to address this matter, which is 
more time consuming due to the need for human resources; thus, 
increasing the probability for human error. For instance, Ellefsen et al. 
(2020) manually divided the engine loads into five distinct operating 
conditions to perform multiregime normalization. However, the need 
for automating such a process was also indicated in this study, as new 
operating conditions may be encountered in real-life systems. Accord
ingly, an innovative approach for addressing the steady states identifi
cation phase through the implementation of image generation and 
connected component analysis is presented. Although time series im
aging has demonstrated promising results when applying forecasting (Li 
et al., 2020), such a matter has not been applied to the best of the au
thors’ knowledge. As such, the analysis of such techniques is explored 
within this enquiry in other to assess its possible potential in the iden
tification of steady states. Additionally, challenges such as the lack of 
availability in operations monitoring, the quality of raw data, and the 
provision of the information in real time are also considered for the 
methodology development. To assess its effectiveness, a case study is 
also presented where, not only different engine loads are presented, but 
transient and idle states are also perceived. Furthermore, a comparative 
study, in which both k-means and GMM with EM are also analysed for 
validation purposes. 

3. Methodology 

The proposed methodology is graphically represented in Fig. 1. The 
first step refers to the pre-processing of the input time series data, in 
which the overall time series is sectioned into sequences by applying the 
sliding window algorithm. Subsequently, each sequence is transformed 
into an image by estimating the transition matrix obtained from the 
implementation of the first-order Markov Chain. To adequately deter
mine the different regions identified in each of the images, connected 
component analysis is conducted and, consequently, post-processing is 
performed on the outcoming images to transform them into sequences. 
As the states are labelled per sequence, results from the preceding phase 
need to be also pooled to achieve the input time series with the resulting 
labels that specify the different steady states identified. 

3.1. Data pre-processing 

To adequately apply pre-processing, a previous data understanding 
phase needs to be applied to establish the steps required based on the 
characteristics of the data set. A frequent challenge to be addressed 
when dealing with data of marine systems is data imputation, as missing 
values are usually encountered. In addition, data denoising is also 
applied due to the susceptibility of the time series to contain high noise. 
Accordingly, Exponentially Weighted Moving Average (EWMA) is 
applied. The last step applied in the data pre-processing step is the di
vision of the time series into sequences by the application of the sliding 
window algorithm. 

3.2. Image generation 

To adequately identify the different steady states all along the ana
lysed data set, the input time series is transformed into an image by the 
implementation of the first-order Markov chain. By applying such a 
process, it is determined that the occurrence at time t just hinges on the 

previous value and not on all values at time before t. Thus, if the time 
series values are clustered in a finite number of states, the first-order 
Markov chain transition matrix can be estimated, which will be 
considered as an image, and thus each of the pixels will be considered as 
an element of the matrix. 

To estimate such a matrix, the definition of the discrete time sto
chastic process is considered. A discrete time stochastic process, (Xn)n∈N, 
which takes values in a finite set S, is considered to have the Markov 
property if the probability distribution of Xn+1 at time n + 1 only hinges 
on the previous state Xn at time n, and not on all the past values of Xk for 
k ≤ n − 1. Thus, 

P(Xn+1 = j|Xn = in, Xn− 1 = in− 1, …, Z0 = i0) = P(Zn+1 = j|Zn = in) = p(i, j)
(1)  

where i0, i1, …, in, j ∈ S.The probability p(i, j) indicates the probability 
that the previous state i is followed by the current state j. All the possible 
transition probabilities of a process can be collected in a rxr matrix, 
where each (i, j) entry Pij is p(i, j), 

P =
(
Pij

)

1≤i, j≤r

⎛

⎜
⎜
⎝

p1,1 p1,2 ⋯ p1,r
p2,1 p2,2 ⋯ p2,r
⋮ ⋮ ⋱ ⋮
pr,1 pr,2 ⋯ pr,r

⎞

⎟
⎟
⎠ (2)  

and that satisfies 

0 ≤ Pij ≤ 1, 1 ≤ i, j ≤ r, (3)  

∑r

j=1
Pij = 1, 1 ≤ i ≤ r. (4)  

3.3. Connected component analysis 

By considering the transition matrix estimated in the preceding step 
as a collection of discrete cells, a.k.a., pixels, the transformation from 
time series to image is achieved. Thus, each pixel is associated with a 
pixel value, which lies between 0 and 1 (inclusive) and refers to the 
probabilities formerly estimated. 

In turn, to facilitate the implementation of connected component 
analysis, the image outlined is converted to a binary one with only two 
possible intensity values. Such a conversion is performed according to 
(Eq. (5)), in which the binary image is obtained by classifying the 
different pixel values into either 0, if the probability associated with the 
pixel is equal to 0, or 1, otherwise. Thus, those pixels that present in
formation about a transition between states can be efficiently identified. 

Pij= {
0, if Pij = 0
1, otherwise (5)  

By applying this conversion, the distinct transition clusters presented 
within the image can be labelled. Accordingly, pixel connectivity is 
analysed, which characterises the relationship between pixels. To 
consider that two neighbouring cells are connected, they must present 
the same pixel value. For this enquiry such a connectivity is formulated 
by applying the 4-neighbours adjacency criterion (see Fig. 2). Thus, the 
notation of neighbourhood for such a case is expressed hereunder. 

N4(p) = {(x+ 1, y). (x − 1, y), (x, y+ 1), (x, y − 1)} (6) 

All possible neighbouring pixel connectivity is evaluated to deter
mine the distinct sets of connected pixels, a.k.a. connected components. 
Therefore, the last step of this phase, named connected components 
labelling, is achieved, in which the different connected components are 
clustered to identify the different states, and in turn determine those that 
only refers to steady states. A graphical representation of such a phase is 
expressed in Fig. 3. 
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Fig. 1. Graphical representation of the proposed methodology.  
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3.4. Data post-processing 

As the results outlined in the preceding section are structured in the 
form of images, the pixel values of which pertaining to the labels ob
tained from the connected component analysis, inverse transformation 
needs to be applied in order to convert such images into distinct time 
series sequences. Thus, each sequence instance is associated with a 
temporal label, as different timestamps can be contained in more than 
one resulting sequence. Thus, such sequences need to be pooled to 
obtain a unique label per instance of the input time series. To that end, 
the following approach is applied: if all the temporal labels for a 

particular instance present the same value, that instance is part of a 
steady state. Otherwise, if the temporal labels associated with a specific 
instance differ in regards to their respective values, it is assumed that the 
instance could not be related to a particular state, and thus such an 
instance can not be considered for further analysis. A graphical repre
sentation of such a process is described in Fig. 4. 

4. Case study and results 

Having explored the methodology being analysed to identify the 
different steady states widely observed when dealing with critical ma
rine machinery, a case study is presented to assess its performance. As 
such, the power parameter collected from a total of three diesel gener
ators of a tanker ship is considered. 

The analysed parameter has been collected in a 1-minute frequency 
and includes more than 65,000 instances in all scenarios. Figs. 5–7 
represent graphically the time series of such a parameter for the Diesel 
Generator 1 (DG1), Diesel Generator 2 (DG2), and Diesel Generator 3 
(DG3), respectively. The descriptive statistics are also presented in 
Table 1. 

As observed, distinct typologies of states can be perceived in the time 
series being analysed. For instance, idle states, transient states, and 
operational states of machinery are presented. Additionally, various 
adjustments between operational states can also be distinguished due to 
either contractual agreements between the charterer and the shipowner 
in relation to the vessel speed and the fuel oil consumption per day or 
environmental conditions. Accordingly, all the proposed scenarios can 
be effectively applied in order to evaluate the performance of the pro
posed methodology. 

Fig. 2. Graphical representation of the 4-connected neighbourhood.  

Fig. 3. Connected component analysis phase representation.  

Fig. 4. Graphical representation of the post-processing phase.  
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Prior to the estimation of the transition matrix by the implementa
tion of the first-order Markov chain, the pre-processing step is applied. 
After analysing different configuration for the effective application of 

the sliding window algorithm, a time step of 1 and a sequence length of 
60 is considered for this enquiry. EWMA is also implemented to reduce 
the high noise that time series data collected from marine machinery 
usually contains. Subsequent to the data pre-processing phase, the image 
generation, the connected component analysis, and the data post- 
processing steps are applied. Results that outline the identification of 
the steady states are expressed in Figs. 8–10. 

Overall, various parameters and sequences were examined for DG1, 
DG2, and DG3. However, due to the journal paper extent limitations, the 
analysis of a total of three sequences including the DG power parameter 
for each case study is further presented below to visually evaluate and 
discuss how efficient the performance of the proposed methodology is. 
In this respect, Table 2 describes the different instances that each 
sequence contains. 

As observed in Fig. 11, the proposed methodology identified 

Fig. 5. DG1 power parameter time series plot.  

Fig. 6. DG2 power parameter time series plot.  

Fig. 7. DG3 power parameter time series plot.  

Table 1 
Descriptive statistics of the monitored parameters.   

DG1 Power DG2 Power DG3 Power 

Count 66,207 65,947 65,943 
Mean 151.67 151.41 227.24 
Std. 159.15 157.56 176.99 
Min. 0.00 0.00 0.00 
25% 0.00 0.00 0.00 
50% 177.95 183.95 261.22 
75% 273.30 277.85 373.93 
Max. 555.93 546.76 597.86  
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efficiently the total of four steady states perceived in DG1 sequence. 
There is a large steady state that initiates at the first instant and persists 
over half of the recorded time where the values are stabilised between 

200 and 300 kW. Subsequently, an abrupt adjustment is observed to 
enable the transition from the first steady state to the second steady 
state. Such a transition is adequately identified and labelled as not 
steady. This state remains for roughly 200 min and then another tran
sition, which is effectively identified, occurs. Subsequent to this transi
tion the third state is achieved, the values of which are stabilised at 
approximately 300 kW. To achieve the last steady state, an abrupt 
adjustment is originated, which is adequately identified as not steady. 
The latter state refers to an idle state, which is usually also identified as 
not steady, as isolated pixels are also considered to be not steady to 
avoid repeated values in subsequent analysis. Thus, after steady states 
identification, a simple filter can be applied to avoid both idle states and 
states that are mainly constituted by repeated values. 

Analogously, the steady states are effectively identified in the 
remaining sequences (see Fig. 12 and Fig. 13). However, unlike the 

Fig. 8. Steady states identification for the DG1 power parameter.  

Fig. 9. Steady states identification for the DG2 power parameter.  

Fig. 10. Steady states identification for the DG3 power parameter.  

Table 2 
Sequence selection for visual analysis.   

Starting sequence 
instance 

Ending sequence 
instance 

Total of instances in 
sequence 

DG1 
sequence 

46,000 47,400 1400 

DG2 
sequence 

35,400 37,750 2350 

DG3 
sequence 

24,000 26,500 2500  
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preceding sequence, the current ones present several instances, the ty
pology of which is unclear. Despite their lack of clarity, it can be 
perceived that such instances are just prior or subsequent to a not steady 
state. Moreover, the length of these sequences is limited. Therefore, such 
unclear instances can be automatically identified subsequent to the 
steady states identification by applying a regular filter. 

Additionally, to assess the effectiveness of the proposed methodology 
a comparative study is performed. To that end, k-means and GMMs with 
EM algorithm are implemented, which have been previously analysed to 
perform the steady states identification task within the maritime in
dustry. k-means was successfully applied by Velasco-Gallego and Laz
akis (2021) when dealing with short-term time series data collected from 
a main marine engine. Such a technique was applied under the 
assumption of identifying substantial groups of data, the records of each 
group being analogous to one another but differing significantly with the 
ones clustered in the remaining ones. To adequately select the optimal 
number of clusters, both the Silhouette and Davies-Boulding indices are 
applied to select the most appropriate number of clusters. The outlined 
results from the application of k-means are expressed in Figs. 14–17. 

As perceived in Fig. 14, the number of clusters selected in all three 
scenarios is two, one of them referring to the idle states. The remaining 
states are clustered altogether in the remaining group. Thus, as observed 
in Fig. 15, the idle states are adequately differentiated from the 
remaining ones. However, the distinct operational states contained 
along the different sequences (see Figs. 15–17) cannot be differentiated 
amongst them, as these are not considered as particular substantial 
groups of data by the technique implemented. Moreover, the labelling 
approach differs from the proposed methodology, and thus the different 
steady states cannot be automatically detected. Expert knowledge is 
then required to relabel the outlined labels according to the labels 
initially defined (steady, and not steady). Due to all these preceding 
considerations, it is determined that k-means is unfeasible to perform 

the steady states identification task when dealing with long-term time 
series data. However, various modifications in the framework can be 
applied to enhance its performance by either implementing the sliding 
window algorithm to only consider short-term time series data or 
perform multiple iterations in each of the substantial groups identified. 

Analogous results are perceived when implementing the GMMs with 
EM approach, as it is described in Figs. 18–21. To select the optimal 
number of components, four different types of covariance are assessed 
(full, tied, diagonal, and spherical), in accordance with Pedregosa et al. 
(2011), and a range between 1 and 10 (inclusive) of mixture models are 
also analysed. For this case, the total number of components selected is 
three in all cases. Thus, as perceived in Figs. 19–21, the different oper
ational states are more effectively selected than the k-means approach. 
However, unlike the proposed approach, the steady and not steady states 
are not identified automatically, and thus expert knowledge is required 
to assess all the identified clusters and determine if they refer to either 
steady or not steady states. Moreover, the transition between states is 
not properly defined. 

Therefore, the proposed methodology outperformed the other ana
lysed approaches to apply the steady states identification tasks. Unlike 
the techniques utilised for comparative purposes, the proposed 
approach can be effectively applied for both long-term and short-term 
time series data. Furthermore, the steady states are automatically 
identified and differentiated from other states (e.g., idle states, and 
transient states), and thus it can be adequately deployed in real time. 
Accordingly, such an approach can be implemented in a real-time 
intelligent system for the application of smart maintenance strategies 
to adequately determine the pertinent instances to be further analysed, 
as raw data may contain non-operational states that may be irrelevant 
for further analysis. Hence, if such states are adequately identified and 
discarded, an increase in both the system performance and the compu
tational efficiency are expected, which will promote an enhancement in 

Fig. 11. Steady states identification for DG1 power parameter sequence based on the results obtained from the proposed methodology.  

Fig. 12. Steady states identification for DG2 power parameter sequence based on the results obtained from the proposed methodology.  
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the transportation operations. To continue enhancing the identification 
of steady states, further research needs to be implemented. Thus, some 
of the aspects to be considered in the research agenda are listed 
hereunder.  

• Consider optimisation techniques for the selection of the different 
states of the transition matrix. Although the selection of such states 
by implementing trial and error has been satisfactory, the authors 
considered that the identification task can be enhanced by optimally 
selecting such states.  

• Evaluate the implication of different pre-processing steps prior to the 
implementation of the proposed methodology. For instance, it has 
been perceived that outliers, repeated values, and noise can have a 
negative impact in the adequate identification of the states, and thus 
these need to be adequately addressed precedingly.  

• Consider the performance of multiple iterations and the addition of 
ensemble methods to enhance the outcome of the proposed 
methodology.  

• Analyse a multivariate image generation approach. For this enquiry 
only the power parameter has been considered. However, the 
consideration of additional parameters, such as the speed the fuel 

Fig. 13. Steady states identification for DG3 power parameter sequence based on the results obtained from the proposed methodology.  

Fig. 14. Estimation of the Silhouette and Davies-Boulding indices for DG1, DG2, and DG3 power parameter, respectively.  

Fig. 15. Steady states identification for DG1 power parameter sequence based on the results obtained from the k-means application.  
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flow rate, or exhaust gas temperature, may need to be included to 
assess if the identification task is enhanced. 

• Apply additional metrics in the validation process. Due to the diffi
culties in utilising metrics for unsupervised approaches, further 
research needs to be performed to complement the visual analysis 
performed in this study with more tangible results.  

• Consider more complex pooling methodologies to analyse if the 
performance effectiveness of the proposed methodology increases. 

5. Conclusions 

By enhancing data accessibility, the implementation of data-driven 
models has been possible to empower strategies in relation to O&M 
activities. However, although the number of studies that consider such 
models has increased expeditiously within the maritime industry, data 
pre-processing has not yet been considered as essential, due to a lack of 
analysis and formalisation in this industrial sector despite the fact 
several studies promoting the importance of this phase. 

Fig. 16. Steady states identification for DG2 power parameter sequence based on the results obtained from the k-means application.  

Fig. 17. Steady states identification for DG3 power parameter sequence based on the results obtained from the k-means application.  

Fig. 18. Selection of the number of components for DG1, DG2, and DG3 power parameter, respectively.  
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Accordingly, this study presents a novel framework to perform the 
steady states identification task, which is one of the most fundamental 
steps of the data pre-processing phase when dealing with critical marine 
machinery. Such an approach is constituted by two main phases: image 
generation, which facilitates the transformation of the sequences into 
images through the estimation of their respective transition matrices by 
implementing the first-order Markov chain, and connected component 
analysis in order to determine the different regions identified in each of 
the images. Both data pre-processing and post-processing were 
comprehensive in describing the importance of applying such phases. 

To highlight the performance of the proposed methodology, a case 
study was presented, which referred to the power parameter collected 
from a total of three diesel generators of a tanker ship. Results demon
strated that the proposed methodology outperformed other techniques 
already analysed for identifying the distinct steady states within the 

maritime industry. GMMs with the EM algorithm approach presented a 
more effective performance than the k-means technique, although the 
results of which cannot be utilised in a smart maintenance tool deployed 
in real time. Moreover, multiple iterations may need to be performed to 
adequately determine the different steady states. The proposed meth
odology has demonstrated both its capability of identifying main steady 
states and its capability of being deployed in real time. However, its 
performance may decrease when time series contain high noise. More
over, the optimal selection of the number of states can be critical in 
ensuring a satisfactory performance of the proposed methodology for 
such a task. Therefore, to advance towards the implementation of smart 
maintenance within the shipping sector, some aspects need to be 
considered in the research agenda, including the analysis of multivariate 
image generation or the application of additional metrics in the vali
dation process. 

Fig. 19. Steady states identification for DG1 power parameter sequence based on the results obtained from the GMMs with EM algorithm application.  

Fig. 20. Steady states identification for DG2 power parameter sequence based on the results obtained from the GMMs with EM algorithm application.  

Fig. 21. Steady states identification for DG3 power parameter sequence based on the results obtained from the GMMs with EM algorithm application.  
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