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Abstract. We present our open-source Python module Commics for the study of the
magnetization dynamics in ferromagnetic materials via micromagnetic simulations. It
implements state-of-the-art unconditionally convergent finite element methods for the
numerical integration of the Landau–Lifshitz–Gilbert equation. The implementation
is based on the multiphysics finite element software Netgen/NGSolve. The simulation
scripts are written in Python, which leads to very readable code and direct access to
extensive post-processing. Together with documentation and example scripts, the code
is freely available on GitLab.

1. Introduction

Micromagnetism is a continuum theory for ferromagnetic materials located between
Maxwell’s electromagnetism and quantum theory [32, 11, 56]. The magnetization distri-
bution is modeled as a continuous vector field, where nonlocal magnetostatic interactions
and local contributions are taken into account. Typical micromagnetic models exhibit
length scales ranging from nanometers to few micrometers, which is often infeasible for
atomistic spin dynamics simulations. In recent decades, micromagnetics evolved as a
computational field, that nowadays represents a successful tool for numerical studies in
materials science with important contemporary applications, e.g., data storage structures
like hard disk drives [76, 54], random access memories [61], or nanowires [73, 50], magne-
tologic devices [24], soft magnetic sensor systems [34], and high performance permanent
magnets [72, 23, 43].

1.1. Existing software. In recent years, advances in computer architecture, program-
ming environments, and numerical methods led to the development of several micromag-
netic codes, which aim at the numerical integration of the fundamental equation in micro-
magnetics, the Landau–Lifshitz–Gilbert equation (LLG), a well-accepted model for the
magnetization dynamics [58, 48]. Well-known simulation packages based on finite differ-
ence discretizations [63] on Cartesian grids are OOMMF [39], recently extended for GPU
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usage [46] and endowed with a user-friendly Python interface [27], MuMax3 (GPU) [78],
MicroMagnum [5] (CPU and GPU), magnum.fd [4], and Fidimag [31]. These implemen-
tations are both memory and computationally efficient owing to the uniform mesh and
the particularly advantageous utilization of the fast Fourier transform for the long range
field part [29, 9]. However, approaches based on the Finite Element Method (FEM) are
geometrically more flexible [71] and provided in the scientific codes MagPar [70], Tetra-
Mag [53] and its successor tetmag2, Nmag [44] and its successor Finmag [30], as well as
in commercial software like FastMag [35], FEMME [3], and magnum.fe [8].

1.2. Numerical analysis. For an introduction to the mathematical analysis of numer-
ical integrators for dynamic micromagnetic simulations, we refer to the monographs [66,
18], the review articles [57, 47, 36], and the references therein. The ultimate goal is the
development of unconditionally convergent integrators, i.e., numerical schemes for which
(a subsequence of) the output converges towards a weak solution of LLG in the sense
of [15] without requiring any restrictive CFL-type coupling condition on the temporal
and spatial discretization parameters. In our work, we consider two types of methods
characterized by such good theoretical properties: the tangent plane scheme [12, 13] and
the midpoint scheme [25]; see Section 3 for more details.

1.3. Contributions. This work presents our novel open-source Python module Com-
mics (COmputational MicroMagnetICS) to perform computational studies of the mag-
netization dynamics in ferromagnetic materials via micromagnetic simulations. The soft-
ware is based on the multiphysics finite element software Netgen/NGSolve [6] and is
made user-friendly by a high-level Python interface. While many existing codes popular
in the physics community are fairly performance optimized, they often lack a thorough
mathematical convergence analysis. In contrast to that, our implementation arises from
recent results in the numerical analysis of unconditionally convergent LLG integrators.
The code is freely available on GitLab [1] together with documentation and example
scripts.

1.4. Outline. This work is organized as follows: We fix the notation and the precise
micromagnetic setting in Section 2. In Section 3, the implemented algorithms are briefly
presented. Section 4 demonstrates the exemplary use of Netgen/NGSolve (NGS) and
discusses the integration of the boundary element library BEM++ [75]. Finally, Section 5
provides Python scripts for several benchmark problems, in order to verify our module
and to demonstrate its usage.

2. Micromagnetic setting

Let Ω ⊂ R
3 denote the volume occupied by a ferromagnet. In micromagnetics, the

quantity of interest is the magnetization M : Ω → R
3 (in A/m). If the temperature is

constant and far below the so-called Curie temperature of the material, the modulus of the
magnetization is constant, i.e., it holds that |M | = Ms with Ms > 0 being the saturation
magnetization (in A/m). Let m := M/Ms denote the normalized magnetization. The

2

Computational micromagnetics with Commics



magnetic state of Ω is described in terms of the magnetic Gibbs free energy (in J)

E(m) = A

∫

Ω

|∇m|2 dx − K

∫

Ω

(a ·m)2 dx + D

∫

Ω

(∇×m) ·m dx

−
µ0Ms

2

∫

Ω

Hs ·m dx − µ0Ms

∫

Ω

Hext ·m dx.

(1)

The energy in (1) is the sum of exchange energy, uniaxial anisotropy, bulk Dzyaloshinskii–
Moriya interaction (DMI), magnetostatic energy, and Zeeman contribution, respectively.
The involved material parameters and physical constants are the exchange stiffness con-
stant A > 0 (in J/m), the anisotropy constant K ≥ 0 (in J/m3), the easy axis a ∈ R

3

with |a| = 1 (dimensionless), the DMI constant D ∈ R (in J/m2), and the vacuum per-
meability µ0 = 4π · 10−7N/A2. Moreover, Hext and Hs denote the applied external field
(assumed to be unaffected by variations of m) and the stray field, respectively (both
in A/m). The stray field (sometimes also referred to as demagnetizing or dipolar field)
solves the magnetostatic Maxwell equations

∇ · (Hs +MsmχΩ) = 0 in R
3, (2a)

∇×Hs = 0 in R
3, (2b)

where (mχΩ)(x) =m(x) in Ω and (mχΩ)(x) = 0 elsewhere. Stable magnetization con-
figurations are those which minimize the magnetic Gibbs free energy (1). The dynamics
towards equilibrium of the magnetization is governed by LLG

∂tm = −γ0m×
[

Heff(m) + T (m)
]

+ αm× ∂tm in (0,∞)× Ω, (3a)

∂nm = −
D

2A
m× n on (0,∞)× ∂Ω, (3b)

m(0) =m0 with |m0| = 1 in Ω. (3c)

In (3), γ0 = 2.212 · 105m/(A s) is the gyromagnetic ratio of the electron, α ∈ (0, 1] is the
dimensionless Gilbert damping parameter, and n : ∂Ω → R

3 with |n| = 1 denotes the
outward-pointing unit normal vector to ∂Ω. The effective field Heff(m) is related to the
functional derivative of the energy with respect to the magnetization and takes the form

Heff(m) : = −
1

µ0Ms

δE(m)

δm

=
2A

µ0Ms

∆m+
2K

µ0Ms

(a ·m)a−
2D

µ0Ms

∇×m+Hs +Hext.

Finally, the term T (m) collects all nonenergetic torque terms, which arise, e.g., when
an electric current flows in a conducting ferromagnet. For instance, the Oersted field
T (m) =Hc (in A/m) is described by the magnetostatic Maxwell equations

∇ ·Hc = 0 in R
3, (4a)

∇×Hc = JeχΩ in R
3, (4b)

where Je denotes the electric current density (in A/m2). Two other prominent examples
are related to the so-called spin transfer torque [74, 28], which arises in the presence of
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spin-polarized currents. The Slonczewski contribution [74], which takes the form

T (m) =
~|Je|G(m · p, P )

eµ0Msd
m× p,

with G(m · p, P ) =

[

(1 + P )3(3 +m · p)

4P 3/2
− 4

]

−1

,

(5)

is used for the simulation of switching processes in structures with current-perpendicular-
to-plane injection geometries, e.g., magnetic multilayers. The involved physical quantities
are the reduced Planck constant ~ > 0 (in J s), the elementary charge e > 0 (in A s),
a dimensionless polarization parameter P ∈ (0, 1), a dimensionless unit vector p ∈ R

3

representing the magnetization of a uniformly-magnetized polarizing layer (the so-called
fixed layer), and the thickness d > 0 of the so-called free layer (in m). The Zhang–Li
contribution [79, 77] is used for the simulation of the current-driven motion of domain
walls in single-phase samples characterized by current-in-plane injection geometries and,
according to [79] (resp., [77]), takes the form

T (m) = −
1

γ0
[m× (u · ∇)m+ ξ(u · ∇)m], (6a)

with u = −
PµB

eMs(1 + ξ2)
Je

(

resp., u = −
PgeµB

2eMs

Je

)

. (6b)

The involved physical quantities are the spin velocity vector u ∈ R
3 (in m/s), the dimen-

sionless ratio of nonadiabaticity ξ > 0, the Bohr magneton µB > 0 (in Am2), and the
dimensionless g-factor of the electron ge ≈ 2.

In (1) and (3), to fix the ideas, we considered the case of the bulk DMI as a prototype
for chiral interactions [40, 64]. However, our implementation also covers the case of the
interfacial DMI; see, e.g., [37, 68]. If D = 0 (no chiral interaction), then the boundary
conditions (3b) become homogeneous Neumann boundary conditions.

3. Algorithms

The algorithms implemented in our Python module Commics employ a uniform parti-
tion of the time interval with constant time-step size ∆t > 0. For the spatial discretiza-
tion, we consider a tetrahedral mesh Th of the ferromagnet Ω with mesh size h > 0. The
associated FEM space of piecewise affine and globally continuous functions reads

Vh := {ϕh : Ω → R continuous : ϕh|K is affine for all elements K ∈ Th}. (7)

For each time-step n = 0, 1, 2, . . . , we seek for approximations

(Vh)
3 ∋mn

h ≈m(n∆t) such that |mn
h(z)| = 1 for all nodes z of Th,

i.e., for any time-step, the approximate magnetization satisfies the unit-length constraint
|m| = 1 at the nodes of the mesh.

3.1. Tangent plane scheme. Tangent plane schemes (sometimes also referred to as
projection methods) are based on variational formulations of the equivalent form of LLG

α ∂tm+m× ∂tm = γ0(Heff(m) + T (m))− γ0[(Heff(m) + T (m)) ·m]m.
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The orthogonality m · ∂tm = 0, which characterizes any solution of (3a), is enforced at
the discrete level by considering the discrete tangent space

Kh(m
n
h) := {ϕh ∈ (Vh)

3 : ϕh(z) ·m
n
h(z) = 0 for all nodes z of Th} ⊂ (Vh)

3.

For each time-step, one has to solve a constrained linear system to compute vnh ≈
∂tm(n∆t) in Kh(m

n
h). With mn

h and vnh at hand, one then computes

mn+1
h ∈ (Vh)

3 by mn+1
h (z) :=

mn
h(z) + ∆tvnh(z)

|mn
h(z) + ∆tvnh(z)|

for all nodes z of Th.

The original tangent plane scheme from [12] is formally first-order in time and was
analyzed for the energy being only the exchange contribution. The scheme was ex-
tended to general lower-order effective field contributions [14, 33], DMI [52], and the
coupling with other partial differential equations, e.g., various forms of Maxwell’s equa-
tions [60, 19, 59, 42], spin diffusion [10], and magnetostriction [20]. A projection-free
version of the method was analyzed in [10, 67]. In a variant from [13, 38], the formal
convergence order in time has been increased from one to two. Effective solution strate-
gies and preconditioning for the resulting constrained linear system have recently been
proposed in [55].

3.2. Midpoint scheme. The midpoint scheme is based on a variational formulation of
the Gilbert form (3a) of LLG. It consists of two fundamental ingredients: the implicit
midpoint rule in time and the mass-lumped L2-product in space, defined as

〈ϕ,ψ〉h :=

∫

Ω

Ih(ϕ ·ψ)dx ≈ 〈ϕ,ψ〉
L2(Ω) for all ϕ,ψ : Ω → R

3 continuous. (8)

Here, Ih is the standard nodal interpolant associated with Th. The resulting scheme is
second-order in time, inherently preserves the unit-length constraint and the energy of

the solutions, but requires the solution of one nonlinear system for m
n+1/2
h := (mn+1

h +
mn

h)/2 ∈ (Vh)
3 per time-step. The midpoint scheme was proposed and analyzed in [25].

The scheme was extended to lower-order terms [65], the coupling with the Maxwell equa-
tion [17], and a variant of LLG in heat-assisted magnetic recording [21, 22]. The resulting
nonlinear system is usually solved with constraint-preserving fixed-point iterations, which,
however, spoil the unconditional convergence.

3.3. Magnetostatic Maxwell equations. For the computation of stray field and Oer-
sted field, i.e., for the numerical solution of the magnetostatic Maxwell equations (2)
and (4), we follow a hybrid FEM-BEM approach, which combines FEM with the bound-
ary element method (BEM); see [45, 51]. The method uses the superposition principle
and computes the magnetic scalar potential u such that Hs = −∇u and the Oersted field
Hc by splitting the problem into two parts, where BEM techniques for the evaluation of
the double-layer potential are employed; see, e.g., [65, Chapter 4.1] for details.

4. Implementation

Our Python module Commics is based on the Netgen/NGSolve [6] (NGS) FEM soft-
ware and provides a tool to perform micromagnetic simulations with the algorithms de-
scribed in Section 3 for a variety of energy contributions and dissipative effects. It is
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purely Python-based, provides extensive simulation data for reproducibility and post-
processing, and automatically takes care of, e.g., the definition and the assembly of
underlying (bi)linear forms as well as the numerical solution of the arising linear and
nonlinear systems. Although not needed for the use of Commics, this section advertises
some of the core features of NGS, as well as the coupling of NGS with BEM++.

4.1. Basic features. Geometry handling, mesh-generation, FEM spaces, and assembly
routines are intentionally hidden from the user of Commics and are internally covered in
the NGS framework. For instance, given an NGS object mesh, representing a tetrahedral
mesh of the domain Ω, the discrete vector-valued product space (Vh)

3 is simply generated
by

Vh3 = VectorH1(mesh , order=1)

where the syntax VectorH1 indicates that Vh3 is a proper subspace of the vector-valued
Sobolev space (H1(Ω))3.

4.2. Symbolic (bi)linear forms. Although the use of Commics requires minimal knowl-
edge of NGS, we shortly describe one feature of the library, namely the definition of
(bi)linear forms: NGS allows the symbolic definition of (time-dependent) (bi)linear forms.
For instance, given the space Vh3 defined in Section 4.1, the LLG-specific cross-product
bilinear form

〈mn
h ×ψh,ϕh〉L2(Ω) for all ϕh,ψh ∈ (Vh)

3 (9)

is symbolically defined on the Python level by the following code snippet:

# grid -, trial - and testfunction

psi = Vh3. TrialFunction ()

phi = Vh3. TestFunction ()

m = GridFunction (Vh3)

# bilinear form

LHS = BilinearForm (Vh3)

ir = IntegrationRule (TET , order=3)

LHS += SymbolicBFI (Cross(m, psi) * phi , intrule =ir)

In the last line, SymbolicBFI with the test function phi and the trial function psi realizes
the bilinear form (9) and adds it to the left-hand side LHS for further handling. Note
that via the intrule option, the order of the quadrature is explicitly set to 3, since the
realization of the bilinear form corresponds to the exact integration of piecewise cubic
polynomials on tetrahedra, hence also the parameter TET. For the midpoint scheme, the
corresponding bilinear form employs the mass-lumped L2-product from (8), i.e.,

〈mn
h ×ψh,ϕh〉h for all ϕh,ψh ∈ (Vh)

3. (10)

This bilinear form can be defined in the same way as above specifying the corresponding
quadrature rule on the reference tetrahedron conv{0, e1, e2, e3}:

ir = IntegrationRule (points =[(0,0,0), (1,0,0), (0,1,0), (0,0,1)], \

weights =[1/24, 1/24, 1/24, 1/24])
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4.3. Coupling with BEM++. For the approximate computation of the magneto-
static fields with the hybrid FEM-BEM approach from Section 3.3, the evaluation of the
double-layer potential is required. To that end, we incorporate into Commics the corre-
sponding functionality of the BEM software BEM++ [75], including matrix compression
techniques [49]. The coupling of NGS and BEM++ is done on the Python level with the
ngbem module [2]; see Appendix A.

5. Using Commics: Standard problems and numerical experiments

In this section, we present some numerical experiments performed with Commics.
For each proposed example, we also include the executable Python script to run the
simulation.

5.1. Using Commics. To run a micromagnetic simulation with Commics, the user has
to define an object of class commics.Integrator and call its Integrate method.

The essential inputs to initialize such an object are the geometry as a commics.Geometry
object defining the ferromagnetic domain and the meshing strategy (see Section 5.2), as
well as an object of type commics.Parameters specifying, among other things, material
parameters, an applied field or current, the initial magnetization state, and the time
discretization strategy. Moreover, the desired time integration scheme has to be chosen.
The algorithms for the numerical integration of LLG implemented in Commics described
in Section 3 can be selected in the following way:

• The first-order tangent plane scheme from [12] with explicit integration of the
lower-order terms in time [14, 33] is provided as TPS1.

• The projection-free tangent plane scheme (with explicit integration of the lower-
order terms in time) from [10, 67] is provided as TPS1PF.

• The second-order tangent plane scheme from [13] and its improved version from [38]
are available as TPS2 and TPS2AB, respectively.

• The midpoint scheme from [25] and its improved version from [65] are provided
as MPS and MPSAB, respectively.

Various example scripts are provided subsequently in this section. Further details can be
accessed with the Python built-in help() function available for Commics classes.

5.2. Geometry specification and meshing. Commics provides several ways to spec-
ify a geometry and to generate a corresponding mesh:

• For complex geometries, the submodule netgen.csg of NGS provides a rich num-
ber of possibilities to define geometries; see [6].

• For geometries often encountered in micromagnetics, e.g., cuboids and disks, one
can simply provide the dimensions of the sample, a scale factor, and the desired
maximum mesh size; see, e.g., the code snippets in Section 5.3.1 and Section 5.6.
Then, netgen.csg will automatically be used with appropriate settings.

• Existing NGS meshes/geometries (stored as .vol-files) can simply be loaded; see,
e.g., the code snippet in Section 5.3.2.

Meshes automatically generated by NGS are unstructured and obtained by the advancing
front method; see [69] for details. However, due to mesh quality and shape optimizations,
these meshes do not necessarily satisfy the prescribed maximum mesh size. Commics
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Figure 1. Uniform decomposition of a cube into six tetrahedra.

provides two possibilities to bypass this drawback: For cuboidal geometries, setting the
Commics option structuredMesh=True allows for structured meshes. First, the sample
is uniformly split into cuboidal cells of prescribed size. Then, each cell is split into six
tetrahedra in such a way that any tetrahedron has three mutually perpendicular edges;
see Figure 1. This strategy is for example used in Section 5.4. For general geometries,
Commics provides the means to repeatedly generate a new mesh (by prescribing a smaller
and smaller mesh size each time) in NGS, until the initial mesh size specification is
satisfied. This strategy can be enabled by setting forceNetgenMeshSize=True as done
in Section 5.6.

5.3. µMAG standard problem #4. To describe the key aspects of a Commics script,
we consider the µMAG standard problem #4 [7].

The objective is the simulation of the magnetization dynamics in a thin permalloy film
of dimensions 500 nm× 125 nm× 3 nm under the influence of a constant applied external
field. We split the experiment into two parts: In the first stage, we obtain the so-called
equilibrium S-state, which is saved to serve as the initial configuration for the second
stage, where the switching dynamics is simulated.

5.3.1. Obtaining the S-state. We consider a structured tetrahedral mesh of the given
cuboid into cells of size hx×hy×hz , which are decomposed into tetrahedra as depicted in
Figure 1. The dimension of the cells is chosen as hx = hy = 125/69nm and hz = 1.5 nm.
This corresponds to 228 528 elements with diameter h = 2.97 nm, 58 170 vertices, as well
as 78 936 surface elements. The material parameters of permalloy read Ms = 8 · 105A/m,
A = 1.3 · 10−11 J/m, D = 0 J/m2, and K = 0 J/m3. To speed up the process, we
deliberately choose the large value α = 1 for the Gilbert damping parameter. For the
simulation, we use a constant time-step size ∆t = 0.1 ps.

The problem description suggests to obtain the S-state by applying a slowly reducing
external field pointing in the (1, 1, 1)-direction. We start with a uniform initial state
m0

h ≡ (1, 0, 0) and let the magnitude |Hext| of the external field decrease linearly from
30/µ0 to 0mT over a period of 1 ns. In Commics scripts, non-constant fields can be
described using time- and space-dependent Python lambda-functions. Further, we relax
the system for 1 ns without applying any external field and store the obtained S-state as
sp4sState.vtk for later use.
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from commics import *

# specify geometry and parameters

h_xy , h_z = 125/69, 1 .5

geo = Geometry (geometry =Cuboid(500, 125, 3), meshSize =(h_xy , h_xy , h_z), \

structuredMesh =True , scaling =1 e- 9)

par = Parameters (A=1 .3 e- 11, Ms=8 e+ 5, K=0, D=0, gamma0=2 .2 11 e+ 5, \

alpha=1 .0 , m0=(1 .0 , 0 .0 , 0 .0), \

T_start=0, T_end=1 e- 9, timeStepSize =0 .1 e- 12)

# define time dependent applied field via lambda function

from math import sqrt

field = lambda t,x,y,z : (par.T_end - t) / (par.T_end - par.T_start) \

* 30 .0 e- 3 / par.mu0 / sqrt (3 .0)

par.H_ext = (field , field , field)

# define integrator and run simulation from T_start to T_end

sp4 = Integrator (scheme=TPS2AB , geometry =geo , parameters =par)

sp4.Integrate ()

# Relax for another nanosecond and save the mesh and the result

sp4.Integrate (duration =1e- 9, relax=True )

sp4.SaveMesh ("sp4mesh ")

sp4. SaveMagnetization ("sp4sState")

5.3.2. Switching. We assume that the folder data contains the two files sp4sState.vtk
and sp4mesh.vol saved from the simulation described in Section 5.3.1. As stated in
the problem description, we choose α = 0.02 and set the external field to Hext =
(−24.6, 4.3, 0)/µ0 mT. Then, we run the simulation for 3 ns.

from commics import *

# specify geometry and parameters

geo = Geometry (geometry ="data /sp4mesh .vol", scaling=1 e- 9)

par = Parameters (A=1 .3 e- 11, Ms=8 e+ 5, K=0, D=0, gamma0=2 .2 11 e+ 05, \

alpha=0 .0 2, timeStepSize =0 .1 e- 12, m0="data /sp4sState.vtk")

par.H_ext = (-2 4 .6 e- 3/par.mu0, 4 .3 e- 3/par.mu0, 0 .0)

# define integrator and run simulation

sp4 = Integrator (scheme=TPS2AB , geometry =geo , parameters =par)

sp4.Integrate (duration =3e- 9)

For comparison, the desired output of this benchmark problem is the evolution of the x-,
y- and z-component of the spatially averaged magnetization. Figure 2 shows, that our
results match those computed by the finite difference code OOMMF [39] available on the
µMAG homepage [7]. Further, Figure 3 visualizes the magnetization at the time when
the x-component of the spatially averaged magnetization first crosses zero.

5.3.3. Meshing strategy and integrator. In Section 5.3.1, we considered a structured mesh
and the TPS2AB integrator from [38]. To compare the results, we additionally repeat
the simulation on an unstructured mesh using the midpoint scheme: To simulate the
dynamics on an unstructured mesh generated by NGS, we replace the definition of the
geometry in Section 5.3.1 by

geo = Geometry (geometry =Cuboid(500, 125, 3), meshSize =3, scaling =1 e- 9)

This results in an unstructured mesh containing 48 792 elements, 16 682 vertices and
33 360 surface elements, which corresponds to an actual mesh size of 5.19 nm. To repeat
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Figure 2. µMAG standard problem #4 from Section 5.3: Time evolu-
tion of the spatially averaged magnetization components computed with
Commics (TPS2AB and MPS) compared to the results of OOMMF.
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Figure 3. µMAG standard problem #4 from Section 5.3: Snapshot of the
magnetization when the x-component of the spatially averaged magnetiza-
tion first crosses zero (t = 138.2 ps).

the simulation using the midpoint scheme from [25], we replace the definition of the
integrator in Section 5.3.1 and Section 5.3.2 by

sp4 = Integrator (scheme=MPS , geometry =geo , parameters =par)

Although the mesh size is close to the exchange length of the material (5.69 nm), quali-
tatively the results match those computed by OOMMF well; see Figure 2.

5.4. µMAG standard problem #5. The spintronic extensions of LLG from [79, 77]
are the subject of the µMAG standard problem #5 [7]. The sample under consideration
is a permalloy film with dimensions 100 nm×100 nm×10 nm aligned with the x, y, and z
axes of a Cartesian coordinate system, with origin at the center of the film. We consider
the same material parameters as in Section 5.3 and α = 0.1. The initial state is obtained
by solving (3) with T ≡ 0 and m0(x, y, z) = (−y, x, R)/

√

x2 + y2 +R2 with R = 10nm
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and maximal damping α = 1 for 1 ns, which is a sufficiently long time for the system to
reach equilibrium. Given PJe = (1 · 1012, 0, 0) A/m2 and ξ = 0.05, we set T according to
the expression in (6a). Then, we solve (3) with the relaxed magnetization configuration
as initial condition for 8 ns, which turns out to be a sufficiently long time to reach the
new equilibrium; see Figure 4 and Figure 5. We consider a structured tetrahedral mesh
of the given cuboid into cells of size hx × hy × hz, which are decomposed into tetrahedra
as depicted in Figure 1. The dimension of the cells is chosen as hx = hy = hz = 5/3 nm.
This corresponds to 129 600 elements with diameter h = 2.89 nm, 26 047 vertices, as well
as 17 280 surface elements.

from commics import *

# specify geometry and parameters

h = 5 / 3

geo = Geometry (geometry =Cuboid (( -5 0,-5 0,-5 ), (50,50,5)), meshSize =(h,h,h), \

structuredMesh =True , scaling =1 .0 e- 09)

par = Parameters (A=1 .3 e- 11, Ms=8 .0 e+ 05, K=0 .0 , gamma0=2 .2 11 e+ 05, alpha=1.0 , \

spintronicsCoupling ="zhangLi ", g=2 .0 , P=1 .0 , \

Je=(1 .0 e+ 12, 0 .0 , 0 .0), xi=0 .0 5, \

timeStepSize =0 .1 e- 12, T_start =-1 .0 e- 09)

# space dependent initial condition (scaled domain); normalized automatically

from ngsolve import x, y

par.m0 = (-y, x, 10 .0)

# define integrator and relax configuration

sp5 = Integrator (scheme=TPS2AB , geometry =geo , parameters =par)

sp5.Integrate (duration =1.0 e- 09, relax=True)

# set damping alpha and run simulation with specified current

sp5. SetParameter_alpha (0.1 )

sp5.Integrate (duration =8.0 e- 09)

5.5. Standard problem for ferromagnetic resonance simulations. Ferromagnetic
resonance (FMR) is a well-established experimental technique for the study of ferromag-
netic materials. A typical application of FMR consists in perturbing the magnetization of
a system from its equilibrium by a sufficiently weak excitation and studying the induced
magnetization dynamics, which is basically made of damped oscillations around the ini-
tial equilibrium. The resulting resonance frequencies and the eigenmodes of the system
give some insights on the magnetic properties of the material and are used, e.g., for the
experimental measurement of model parameters like the Gilbert damping constant or the
saturation magnetization [41, 62].

In this section, we compute with Commics a problem for FMR simulations recently
proposed in [16]. The computational domain is a cuboid of permalloy with dimensions
120 nm × 120nm × 10 nm. The material parameters are the same as in Section 5.3.
During the first stage, we set α = 1 and consider a constant applied external field of
magnitude |Hext| = 8 · 104A/m pointing in the direction (1, 0.715, 0). We initialize the
system with a uniform ferromagnetic state m0

h ≡ (1, 0, 0) and let the system evolve for
5 ns. The resulting state is then used as initial condition for the second stage, in which
we set α = 0.008, change the direction of the applied external field to (1, 0.7, 0) but keep
|Hext| = 8 · 104A/m , and let the system evolve to the new equilibrium for 20 ns. We
consider a structured tetrahedral mesh of the given cuboid into cells of size hx × hy × hz,
which are decomposed into tetrahedra as depicted in Figure 1. The dimension of the cells
is chosen as hx = hy = hz = 2nm. This corresponds to 108 000 elements, 22 326 vertices,
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t=0.0ns t=0.5ns t=1.0ns

t=1.5ns t=2.0ns t=8ns

0

0.5

1

mz

Figure 4. µMAG standard problem #5: Magnetization in the xy-plane
viewed from the top at different times. Starting from the relaxed config-
uration at t = 0.0 ns, the vortex (red) follows a spiral-like motion. After
t = 8.0 ns no further movements are observed.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
−0.4

−0.2

0

0.2

0.4

Time [ns]

OOMMF 〈mx〉 Commics 〈mx〉
OOMMF 〈my〉 Commics 〈my〉

Figure 5. µMAG standard problem #5: Evolution of the spatially aver-
aged x- and y-component of m.

as well as 16 800 surface elements, and yields a mesh size of h = 3.46 nm. We compare
our results obtained with Commics to those presented in [16]. There, the authors use
the finite difference code OOMMF [39] and investigate the evolution of the y-component
of the spatially averaged magnetization, as well as its power spectrum Sy. The power
spectrum is obtained by a discrete Fourier transform as described in [16, Section 2.3.1].
Our results match well with those of [16]; see Figure 6 and Figure 7.
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from commics import *

# specify geometry and parameters

geo = Geometry (geometry =Cuboid(120, 120, 10), meshSize =(2,2,2), \

structuredMesh =True , scaling =1 .0 e- 09)

par = Parameters (A=1 .3 e- 11, Ms=8 .0 e+ 05, K=0 .0 , gamma0=2 .2 10173 e+ 05, \

alpha=1 .0 , timeStepSize =0 .1 e- 12, T_start=-5 .0 e- 9, \

m0=(0, 0, 1))

# define integrator , choose number of threads , specify folder for results

fmr = Integrator (scheme=TPS2AB , geometry =geo , parameters =par , numthreads =8)

fmr. SetResultsFolder ("FMR_Result ")

# obtain initial condition

amplitude = 80 .0 e+ 03

e = (1 .0 , 0 .7 15, 0 .0)

e_length = (sum(e[j]**2 for j in range(3)))**0 .5

H_ext = ( amplitude *e[0]/ e_length , amplitude *e[1]/ e_length , 0 .0)

fmr. SetParameter_H_ext (H_ext)

fmr.Integrate (duration =5 .0 e- 09)

# change direction of applied field and run simulation

fmr. SetParameter_alpha (0 .0 08)

e = (1 .0 , 0 .7 , 0 .0)

e_length = (sum(e[j]**2 for j in range(3)))**0 .5

H_ext = ( amplitude *e[0]/ e_length , amplitude *e[1]/ e_length , 0 .0)

fmr. SetParameter_H_ext (H_ext)

fmr.Integrate (duration =20 .0 e- 09)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0.58

0.585

0.59

Time [ns]

OOMMF 〈my〉
Commics 〈my〉

Figure 6. Ferromagnetic resonance simulation from Section 5.5: Time
evolution of 〈my〉 obtained with Commics compared to the results com-
puted with OOMMF.

5.6. Current-induced dynamics of skyrmions in nanodisks. With this experi-
ment, we aim to show how Commics can be used to numerically investigate the stability
and the induced dynamics of magnetic skyrmions in helimagnetic materials in response
to spin-polarized currents.

We consider a magnetic nanodisk of diameter 120 nm (x1x2-plane) and thickness d =
10nm (x3-direction). We use the material parameters of iron-germanium (FeGe), i.e.,
Ms = 3.84 · 105A/m, A = 8.78 · 10−12 J/m, D = 1.58 · 10−3 J/m2, and K = 0J/m3; see,
e.g., [26]. The initial condition for our experiment is obtained by relaxing a uniform
out-of-plane ferromagnetic state m0 ≡ (0, 0, 1) for 2 ns. For the relaxation process, we
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Figure 7. Ferromagnetic resonance simulation from Section 5.5: Power
spectrum Sy obtained by discrete Fourier transform of the spatially aver-
aged y-component of the magnetization 〈my〉.

choose the large value α = 1 for the Gilbert damping constant. The resulting relaxed
state is the skyrmion depicted in Figure 8.

Starting from this configuration, we apply a perpendicular spin-polarized current pulse
Je(t) = (0, 0, J(t)) of maximum intensity Jmax > 0 for 150 ps; see Figure 9. To model
the resulting spin transfer torque, we include T from (5). Then, we turn off the current
density and let the system evolve for 20 ns. In order to capture all possible excitation
modes during the application of the pulse and the subsequent relaxation process, we set
the value of the Gilbert damping constant to α = 0.002, which is considerably smaller
than the experimental value of α = 0.28 measured for FeGe; see [26].

In Figure 9, we plot the time evolution of the first component of the spatially averaged
magnetization of the sample after a current pulse with Jmax = 1 · 1012A/m2, p = (0, 1, 0),
and P = 0.4. The induced dynamics is a damped precession of the skyrmion around the
center of the sample; see Figure 8. We consider an unstructured tetrahedral mesh of
the nanodisk generated by NGS. For a desired mesh size of 7.5 nm, the automatically
generated mesh consists of 35 390 elements with maximum diameter h = 6.1 nm, 8436
vertices, as well as 9586 surface elements.

0 ps 80 ps 160 ps 240 ps 320 ps 400 ps 480ps 560 ps -1

0

1

mz

Figure 8. Snapshots of the skyrmion dynamics from Section 5.6: Mag-
netization in the xy-plane viewed from the top at different times. Starting
from the relaxed configuration at t = 0ps, the skyrmion is deflected from
the center of the disk by a current pulse. Then, the skyrmion oscillates
around the center of the disk with an observed period of approximately
400 ps. Due to damping, over the relaxation period of 20 ns the ampli-
tude of the oscillations decreases to almost zero, and the initial equilibrium
configuration is restored.
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Figure 9. Simulation of the skyrmion dynamics from Section 5.6. Struc-
ture of the applied current pulse (left). Time evolution of the x-component
of the spatially averaged magnetization (right).

from commics import *

# specify geometry and parameters

geo = Geometry (geometry =Disk (120 .0 , 10 .0), meshSize =7 .5 , \

forceNetgenMeshSize =True , scaling =1 .0 e- 09)

par = Parameters (A=8 .7 8 e- 12, Ms=3 .8 4 e+ 05, D=1 .5 8 e- 03, dmCoupling ="bulk ", \

spintronicsCoupling ="slonczewski ", d=10 .0 e- 09, P=0 .4 , \

p=(0 .0 , 1 .0 , 0 .0), \

alpha=1 .0 , timeStepSize =1 e- 13, theta=1 .0 , m0=(0, 0, 1))

# define integrator , choose number of threads

helimag = Integrator (scheme=TPS1, geometry =geo , parameters =par , numthreads =8)

# choose to save magnetization as .vtk -file every X seconds , run simulation

helimag. RecordMagnetization (every=10 .0 e- 12)

helimag. Integrate (duration =2 .0 e- 9, relax=True)

# prepare JeMax , alpha , and points in time

helimag. SetParameter_alpha (0 .0 02)

JeMax = 1 .0 e+ 12

T0, T1, T2, T3 = 0, 40 .0 e- 12, 110 .0 e- 12, 150 .0 e- 12

# set increasing current , run simulation

helimag. SetParameter_Je (lambda t,x,y,z : (t-T0)/(T1-T0)*JeMax)

helimag. Integrate (duration =T1-T0)

# set constant current , run simulation

helimag. SetParameter_Je (JeMax)

helimag. Integrate (duration =T2-T1)

# set decreasing current , run simulation

helimag. SetParameter_Je (lambda t,x,y,z : (T3-t)/(T3-T2)*JeMax)

helimag. Integrate (duration =T3-T2)

# final relaxation

helimag. Integrate (duration =20 .0 e- 9, relax=True)
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Appendix A. Coupling of NGS with BEM++

In this section we show how NGS, BEM++, and the ngbem module can be used to
perform stray field computations following the approach proposed in [45]:

• NGS is used for mesh generation and the FEM problems.
• BEM++ provides boundary integral operators and an interface for solving the

BEM problem.
• ngbem provides the means to extract a boundary element mesh from the volume

mesh together with a mapping between the corresponding degrees of freedom.

To test the procedure we consider the uniformly magnetized unit ball. Then, the stray
field is given by Hs(M) ≡ −M/3 in Ω. The complete code is provided in the following
Python script.

# Demonstration of the Fredkin -Koehler approach for stray field computations

# using ngsolve , ngbem , bempp

import ngsolve , ngbem , bempp.api , commics , numpy

# mesh , femSpaces , GridFunctions

geo = commics .Geometry (commics .UnitBall (), meshSize =0 .3)

geo.GetReady ()

mesh = geo.GetMesh ()

Vh3 = ngsolve .VectorH1(mesh , order=1)

Vh = ngsolve .H1(mesh , order=1)

VhD = ngsolve .H1(mesh , order=1, dirichlet ="bc_dirichlet ")

m = ngsolve .GridFunction (Vh3)

m.components [0]. vec.FV ().NumPy() [:] = 1 .0

u1 = ngsolve .GridFunction (Vh)

u2 = ngsolve .GridFunction (VhD)

hs = -u1.Deriv() - u2.Deriv()

# Neumann FEM problem

a1 = ngsolve .BilinearForm (Vh)

a1 += ngsolve .Laplace(1 .0 )

c1 = ngsolve .Preconditioner (a1, "local")

a1.Assemble ()

solverU1 = ngsolve.CGSolver (mat=a1.mat , pre=c1.mat)

phi1 = Vh.TestFunction ()

f1 = ngsolve .LinearForm (Vh)

f1 += ngsolve .SymbolicLFI (phi1.Deriv() * m)

measOmega = ngsolve.Integrate (ngsolve. CoefficientFunction (1 .0), mesh )

# BEM problem

bemSpace , op_NgToBem = ngbem.H1_trace(Vh)

op_NgToBem .eliminate_zeros ()

bemToNgIdx = numpy.full ( op_NgToBem .shape[0], fill_value = Vh.ndof , dtype=int)

bemToNgIdx [op_NgToBem .row] = op_NgToBem .col

bem_K = bempp.api.operators .boundary .laplace .double_layer (bemSpace , bemSpace , \

bemSpace )

bem_I = bempp.api.operators .boundary .sparse.identity (bemSpace , bemSpace , \

bemSpace )

bemRhsOp = bem_K - 0 .5*bem_I

bemLhs = bem_I

# Dirichlet FEM problem

a2 = ngsolve .BilinearForm (VhD)

a2 += ngsolve .Laplace(1 .0 )

c2 = ngsolve .Preconditioner (a2, "bddc ")

a2.Assemble ()

f2 = ngsolve .LinearForm (VhD)
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f2.Assemble ()

bvp2 = ngsolve .BVP(bf=a2, lf=f2, gf=u2, pre=c2)

# solve Neumann FEM problem

f1.Assemble ()

u1.vec.data = solverU1 * f1.vec

u1.vec.FV().NumPy() [:] -= ngsolve.Integrate (u1, mesh) / measOmega

# solve BEM problem

bem_u1 = bempp.api. GridFunction (bemSpace , \

coefficients =u1.vec.FV().NumPy()[bemToNgIdx ])

bem_rhs = bemRhsOp * bem_u1

bem_g = bempp.api.linalg. iterative_solvers .gmres(bemLhs , bem_rhs )[0]

# solve Dirichlet FEM problem

u2.vec.FV().NumPy()[ bemToNgIdx ] = bem_g.coefficients

bvp2.Do()

# check results

TOL = 0 .0 1

HS = ngsolve .GridFunction (Vh3)

for d in range(3): HS. components [d]. Set(hs[d])

passed = all(abs(-1/3 - HS.components [0].vec.FV().NumPy()) < TOL) \

and all(abs(HS. components [1]. vec.FV().NumPy()) < TOL) \

and all(abs(HS. components [2]. vec.FV().NumPy()) < TOL)

print("PASSED STRAYFIELD TEST :", passed)
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