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Abstract—The impedance matching layer has a critical 
effect on ultrasonic transducer performance, but it is difficult 
to source materials that have the appropriate acoustical 
properties. A method that utilises effective property relations 
of composites and finite element analysis is used to design a 
hydrogel-steel based phononic crystal, quarter wavelength 
impedance matching layer that can match bespoke 
configurations. Phononic crystal band structures are calculated 
to determine an appropriate lattice scale length, and frequency 
domain studies are carried out to compare this novel type of 
matching layer with an ideal bulk layer. Transmitted pressure 
curves are as expected and suggest that this design type will be 
suited for fabrication and testing. 
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I. INTRODUCTION

An acoustic impedance matching layer (IML) is often 
attached to the front face of a bulk wave ultrasonic 
transducer (UT) to mitigate the large impedance mismatch 
between the piezoelectric element and the target medium. 
The reduction of a mismatch enhances efficient energy 
transfer and consequently, UT and system performance [1]. 
They can often be the limiting component of an entire system 
[2]. Developments to the IML will benefit many ultrasonic 
applications (e.g. biomedical therapy and diagnosis, 
underwater sonar, non-destructive testing, structural 
condition monitoring, industrial processing and control, and 
materials characterization [3]). 

There is a small selection of materials that can alleviate a 
UT-load mismatch and even those with a suitable 
impedance can be excessively attenuating, or unsuitable for 
mounting and deployment [1] [4] [5] [6] [7]. A cascade of 
intermediate IMLs increase the UT’s bandwidth [8] [9] [10] 
[11] but multiple sections compound the problem of
material scarcity and introduces the issue of joining with
adhesives. The adhesives are layers themselves, and
introduce inaccuracies, complexity in analysis, modelling
and fabrication, and undesirable losses [5].

Consideration of these issues suggest that it would be 
beneficial if an IML, composed of a single continuous body, 
with a particular, tuned impedance, could be manufactured 
using common fabrication tools. Different methodologies 
that have attempted to satisfy these criteria have been 
available in the literature [1]. Recent publications have 
shown that a phononic crystal (PhC) can operate as an IML 
[12] [13] [14] [15].

Phononic and sonic crystals (SC) have been used to
abate the propagation of waves, both vibrational [16] and 

acoustical [17], as well as for wave focusing [18], energy 
harvesting [19], frequency filtering [20], waveguiding [21], 
sound diffusion [22], liquid sensing [23] and as an acoustic 
diode [24]. 

In this work the aim is to fulfil the criteria given above 
and design a quarter-wavelength IML that simplifies or 
surpasses existing solutions and circumvents the typical 
problems [25] [26]. Simulations of a PhC with a hydrogel 
matrix and steel cylindrical scatterers is used to match PZT 
with a central operating frequency of 100 kHz to a water 
load. The method presented will allow for the tuning of 
properties to match bespoke UT-load configurations, and as 
additive manufacture become increasingly commonplace in 
the laboratory and workspace, one that end users can 
implement themselves. 

II. METHOD

A. Effective properties

In 2007, Mei et al used Multiple Scattering Theory
(MST) to derive expressions for the effective density and 
effective elasticity of fluid-solid and solid-solid composites 
composed of a matrix and scatterers in the long wavelength, 
or zero frequency, limit [27]. Their results that are pertinent 
to this work are summarised below. 

In the following, subscripts a denotes the scattering 
inclusion and b the background matrix, and f is the filling 
fraction. A sonic crystal (SC) with a fluid matrix has 
effective density ρeff = ρb × (ρa (1+f ) + ρb (1 ˗ f )) / (ρa (1 ˗ 
f ) + ρb (1 + f )) and effective bulk modulus 1 / Keff = 1 / Ka 
+ (1 ˗ f ) / Kb.

A phononic crystal with a solid matrix has effective
density ρeff = ρa f + ρb (1 ˗ f ) and effective first and second 
Lamé parameters λeff = (λb + μb ˗ μeff + S (μb + μeff)) / 1 ˗ S 
(where S = ((λa + μa) f ˗ (λb + μb) f )/ (λa + μa ˗ μb) is a 
simplifying term) and μeff = μb × ((μa + μb) + (μa ˗ μb) f ) / 
((μa + μb) – (μa ˗ μb) f ). 

When the scatterers are highly concentrated and have 
impedances considerably greater than the matrix, wave 
scattering effects and the wave path’s increased tortuosity 
reduce the wave speed relative to that of the matrix. The 
effective acoustic wave speed in an SC is ceff = (Keff / ρeff )1/2

and effective longitudinal and transverse wave speeds (for 
P- and S-waves) in a PhC are cL,eff = ((λeff + 2μeff) / ρeff )1/2 

and cT,eff = (μeff / ρeff )1/2. (Note that Mei et al use the relation
M = λ + μ for the P-wave modulus whereas here M = λ + 2μ
[12] [28]).
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The effect of f on these properties, as well as effective 
characteristic specific acoustic impedance Z0,eff = ρeff cL,eff, 
are presented in Fig.1 using mass densities and Lamé 
parameter values for a hydrogel matrix and steel scatterers. 
These values are, respectively, ρhg = 1070 kg m-3, λhg = 2.3 
GPa, and μhg = 0.24 MPa, and ρs = 7800 kg m-3, λs = 107.4 
GPa, and μs = 84.4 GPa [12]. Here, a hydrogel is also 
considered as a fluid. First, to compare PhC and SC 
expressions and second, because the water content of a 
hydrogel can become very high. To do so, the bulk modulus 
is expressed as K = λ + 2μ / 3 [28]. 

The impedances of the PZT transducer and water load 
are ZPZT = 33.50 MPa s m-1 and Zw = 1.48 MPa s m-1, 
respectively. For a quarter-wavelength IML, ZML = (ZPZT 

Zw )1/2 = 7.0 MPa s m-1 [1]. The filling fraction that generates 
the desired ZML value, and consequently effective density 
and wave speed, is calculated. For a PhC these values are 
0.73, 5.99 × 103 kg m-3 and 1.18 × 10 m s-1, and for a SC 
0.81, 4.43 × 103 kg m-3 and 1.59 × 10 m s-1.  

The ratio of cylindrical scatterer r to lattice constant a is 
extracted from the definition of f in square and hexagonal 
lattices— fsqr = πr2 / a2 and fhex = 2πr2 / √3a2. For a PhC 
these quotients r / a equal 0.48 and 0.45, and for a SC 0.51 
and 0.47, respectively. 

B. Band structure

The ω-k band structure of a crystal can be calculated
[29] (or measured [30]) and inspected to ensure that the UT
central operating frequency does not lie within any of the

crystal’s bandgaps, and to determine the onset of the long 
wavelength regime. Only in this regime are the effective 
property relations valid (because, to a wave with sufficiently 
large wavelength, the crystal appears homogenous). 

Here, the commercial FEM package COMSOL 
Multiphysics is used to carry out a 2D Frequency Domain, 
Eigenfrequency simulation of a unit cell [31]. The method is 
detailed by COMSOL but is described here in brief [32]. 
Floquet periodicity is applied to each pair of parallel faces 
on the unit cell boundary (which, in effect, transforms a cell 
into one of an infinite array that behaves identically). The 
components [kx, ky] of a parameter k are varied and the 
wavevector follows the perimeter of the Irreducible 
Brillouin Zone (IBZ) (the points ΓXMΓ and ΓKMΓ in the 
square and hexagonal reciprocal lattices). The 
eigenfrequencies of the system are calculated at each point 
in the k-path and plotted as a function of k to generate the 
band structure. 

The Bragg condition of destructive interference is 
satisfied when the distance between scatterers Δx = π / k, 
where c = ω / k [33]. Accordingly, in a phononic crystal, the 
lattice constant a ≈ 2πceff / ω. Shown in Fig.2 are the 
dispersion curves for a square lattice with a = 10 mm and f = 
0.5, and for a hexagonal lattice with a = 5 mm and f = 0.75. 
A dotted line shows the central operating frequency of 
100 kHz. Reducing a increases both the frequency at which 
the bandgap opens, and the extent of the long wavelength 
regime (i.e. where the first mode has a mainly linear 
gradient). An arbitrary reduction of a will cause 
manufacturing difficulties so it is suggested that a be on the 
scale of 1-2 mm. 

In all FEA studies here the hydrogel is considered as a 
fluid with cL,hg = ((λhg + μhg) / ρhg )1/2 = 1.47 × 103 m s-1. This 
is justified because of its high water content and because 
studies of a similar nature (i.e. the interaction between 
viscous fluids and solid structures) are often ill defined and 
prone to spurious solutions. 

C. Pressure wave propagation

With f and a known (or its upper and lower limits) the
efficacy of a PhC is validated using FEA in COMSOL. 

The PhC sits between PZT and water, both of which are 
terminated by Perfectly Matched Layers. The PZT and 
water columns have heights 38.58 mm and 15 mm 
(corresponding to one wavelength at the central frequency), 
and a = 1.4 mm and r = 0.62 mm in the PhC. The PhC has a 
hexagonal lattice, and 4 and 11 vertical and horizontal 
layers. Consequently, the PhC is 5.0 mm deep and the whole 
assembly is 7.0 mm wide. 

Floquet periodicity is applied to the vertical boundaries 
of all domains, which, in effect, means only an internal 
section of the whole UT-IML-water structure is considered. 
The kx and ky components of the Floquet wavevector vary 
with study frequency (although kx = 0 as only normal 
incidence is considered). 

The mechanical parameters of steel and hydrogel are as 
before (and again, the latter is treated as a fluid). The mass 
density, Young’s modulus and Poisson’s ratio of PZT are 
7900 kg m-3, 58.9 GPa, and 0.424. The mass denity and 
speed of sound of water are 1000 kg m-3 and 1500 m s-1. 

Fig.1 The effect of filling fraction on (First) effective mass density, 
(Second) longitudinal wave speed, (Third) transverse wave speed and 
(Fourth) characteristic specific acoustic impedance is presented. The 
solid lines and solid lines with circular markers are for sonic and 
phononic crystals. Static values for steel and a hydrogel are shown 
using square and diamond markers. Note that (First) only has a linear 
scale. 
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To mimic the response of a UT, the PZT is split into two 
equal layers and the dividing line is excited with a velocity 
function, with vx = 0 m s-1 and vy = 1×108 m s-1, and 
oscillations are generated that propagate through the PhC 
into water. The resultant in water pressure is averaged. 

Finally, the PhC is replaced by a fluid bulk mass, that is 7.2 
mm deep and has mass density and sound speed equal to 
2500 kg m-3

 and 2902.8 m s-1. Their product is one 
permutation of an ideal matching impedance. 

III. RESULTS 
A comparison of the two pressure spectra generated 

using FEA in COMSOL is presented in Fig.3. Inspection 
shows that both types of IMLs maximise in water pressure 
at the expected frequency, and that the PhC is an effective 
medium in the long wavelength regime and is comparable to 
an ideal IML. 

IV. DISCUSSION 
Both spectra have a near canonical profile and clearly 

have maxima centred over the operating frequency, as 
desired. It has been shown clearly that a PhC can function as 
a finely tuned, quarter wavelength IML. However, the 
models here are reliant on simplifications, and these ideal 
transmission curves are likely to change as these are 
replaced with more physically realistic features. 

The first is the Floquet periodicity conditions: while this 
may represent an internal section of the structure well, 
physical boundaries are a necessity and will affect the 
response of all media. Certainly, by the way of reflections 
and potentially by excitation of structural modes which 
could generate resonant and anti-resonant features. 

Second, is the lack of damping or thermoviscous effects 
in the model. All physical materials dissipate energy and so 
these features must be included in a realistic model. This is 
particularly relevant here where the primary purpose is to 
enhance energy transfer. 

In the immediate future, these simplifications will be 
removed, and the effect of different length scales on the PhC 
IML’s capabilities will be investigated. It will be compared 
against different materials that are used in practice. A more 
realistic simulation of a piezoelectric UT will be included in 
the model. Later, analytical tools (e.g. the Plane Wave 
Expansion method, MST and Finite Difference Time 
Difference method) will be incorporated into the design 
process. 

Following more accurate modelling, the IML PhC will 
be fabricated and tested. The loss factor of both the hydrogel 
and the PhC can then be measured and included in FEA and 
improve the model’s accuracy. The validity of the hydrogel 
fluid assumption can also be tested.  

V. CONCLUSION 
The impedance matching layer has a critical effect on 

ultrasonic transducer performance and sometimes can be the 
limiting component of an entire system. It is difficult to 
source materials that have the appropriate acoustical 
properties and are suitable for deployment. 

Here, a method that utilises effective property relations 
of composites and finite element analysis has been proposed 
that will allow an end user to design a hydrogel-steel based 
phononic crystal impedance matching layer for bespoke 
configurations. 

The method circumvents standard phononic crystal 
analytical tools, which require a significant time investment 
to implement. As phononic crystals are simple to fabricate 
(relative to some other impedance matching designs) it is 
believed that this design type will be successful in operation. 
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