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Abstract: Following the recent identification of a new category of thermovibrationally-driven 
particle attractors in dilute fluid-particle systems (M. Lappa, Phys. Fluids, 26(9), 093301 (2014); M. 
Lappa, Phys. Fluids, 31(7), 073303 (2019) and M. Lappa and T. Burel, Phys. Fluids, 32(5), 053314 
(2020)), some effort is provided to develop an integrated framework able to encompass earlier 
discoveries and account for new effects in a single treatment. In particular, we examine the 
alterations (‘corrugation’) that can be induced in the geometrically perfect particle structures 
pertaining to this class of phenomena as the percentage of dispersed solid mass is progressively 
increased. The related dynamics are explored within the framework of a two-way coupled model 
with respect to several parameters (solid mass load, density ratio, frequency and amplitude of the 
imposed vibrations). Ensuing results are interpreted by separating instantaneous and time-averaged 
contributions and using some ideas borrowed from the companion theory of bifurcations. We show 
that the back influence of particles on the carrier flow can lead to a variety of possible paths of 
evolution. While in some cases the original attractee can be overshadowed by particle-induced 
turbulence, in other circumstances new aggregates with heretofore unseen morphology show up. 
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1. Introduction 

 

Fluids with dispersed particles play an important role in numerous contexts. They really stand at the 

crossroad of fundamental physics (Schwabe and Mizev1; Gotoda et al.,2; Melnikov and Shevtsova3), 

astrophysics (Adams and Watkins4; Lappa5), chemistry (Knez et al.,6), biology (Wang and Xing7; 

Lappa8), materials science (Saeedi et al.,9) and thermal and mechanical engineering (Saghir and 

Mohamed10; Aksouh et al.,11; Bürger and Wendland12). Related problems include (but are not 

limited to) fluid-dynamic instabilities in complex fluids (Matas et al.,13; Lashgari et al.,14; Lappa15), 

the interaction of an immiscible phase with turbulent flow (Eaton and Fessler16; Saw17; Bragg18; 

Shim and You19), particle ordering in laminar convection (Yarin et al., 20; Tanaka et al.,21; Schwabe 

et al.,22; Ueno et al.,23; Pushkin et al.,24; Melnikov et al.,25; Gotoda et al.,26; Toyama et al.,27; 

Lappa28-31; Metcalfe,32 , Venditti et al.,33), and the fascinating prospect of using some of these 

phenomena to produce ‘active’ matter, i.e. parts or components that can recognize and bind to each 

other and form well-defined networks or systems9,5. Other intriguing directions of research originate 

from the possibility to interpret theoretically all these behaviors as they were the manifestation in 

the physical space of complex non-linear dynamics governed by overarching ‘attractors’ in the 

phase space (‘attractee’). The advantage relating to this point of view obviously lies in the ensuing 
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process of abstraction, by which specific cases (like the one addressed in the present work) can be 

used as a testbed for the definition of more general problems or fundamental questions. 

In such a context, it is worth highlighting that much attention has been attracted by turbulent flows 

given their ability to promote particle clustering via different possible routes and because of the 

myriad technological applications they are relevant to. The underlying mechanisms have been 

studied over many years (see, e.g., Ref17 and references therein) together with the tendency of these 

flow to induce diametrically opposite behaviors, i.e. particle scattering (see, e.g., Sommerfeld34). 

Although the variety and dispersion of these results still call for an effort to unify the information to 

general criteria, more recently, some physicists and engineers have placed their hopes in laminar 

(deterministic) flows as possible candidates for the identification of new particle attractors. Notably, 

this specific line of inquiry has succeeded in showing that remarkable exemplars can be found in the 

category of simply time-periodic flows (Lyubimov et al.,35; Haller and Sapsis36; Lappa5; Pushkin et 

al.,24).  

As the reader might have realized at this stage, obviously, the final goal of all this research is a 

more exhaustive (academic) characterization of all these phenomena (and, indeed, relevant 

theoretical explanations have been elaborated for the ability of particles to self-organize in both 

turbulent and laminar cases). In particular, it has been clarified that a large part of these mechanisms 

rely on purely topological relationships. While point tracers should in general be considered as 

mere abstractions, which do not reflect physical reality, real particles have finite size and often 

different density with respect to the fluid hosting them. For these reasons, their trajectories and the 

streamlines of the carrier flow do not overlap exactly. Since the small departures caused by particle 

drag, inertial effects and other body forces present in the considered system tend to accumulate, the 

distribution of particles can undergo significant changes as time elapses. This process can finally 

result in regions of clear fluid (with relatively small or negligible presence of solid matter) and, by 

contrast, dense clusters formed by the spontaneous accumulation of particles. Notably, as this 

behavior somehow resembles that of a gas undergoing changes in the local density due to 

significant gradients of velocity (this being often the case in typical problems of compressible 

aerodynamics), the dynamics of finite-size particles can be assimilated to that of a compressible 
medium (Pushkin et al.,24 Metcalfe,32 , Venditti et al.,33 and references therein).  

A typical fingerprint of this class of events in laminar flows is their extremely ordered appearance 

(as opposed to the fractal morphology of the disordered aggregates induced by turbulent flow). 

These patterns can display a variable number of dimensions depending on the considered 

circumstances. As an example, they are essentially one-dimensional (manifesting as a thread of 

particles) when the time-periodic nature of the carrier flow is due to the propagation of a wave 

along the axis of a basic roll (Tanaka et al.,21; Schwabe et al.,22; Pushkin et al.,24;  Capobianchi and 

Lappa,37-38), or two-dimensional if two counter-propagating waves are present. In the latter case, 

particles generally accumulate in those regions of the space where the amplitude of disturbance 

resulting from the combination of the two waves is negligible (Rossing39, Lappa31; Capobianchi and 

Lappa40).  
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They can take much more complex shapes if the time periodicity of the flow is due to other effects, 

and this is indeed the case of thermovibrational convection, i.e. fluid motion induced in a non-

isothermal liquid by the application of vibrations (Gershuni and Lyubimov41; Savino and Lappa42; 

Mialdun  et al.,43; Ahadi and Saghir44; Lyubimova et al.,45; Bourab et al.,46; Shevtsova et al.,47-48; 

Maryshev et al.,49; Lappa50; Vorobev and Lyubimova51; Boaro and Lappa52-53; Crewdson and 

Lappa54-55). Interestingly, the study of particles dispersed in a fluid undergoing this type of 

convection inside a compact cavity has revealed a zoo of particle structures with surprising 

geometrical perfection (such as cylinders, hyperboloids, ellipsoids and conical surfaces5,56-59), 

which suggests all these dynamics might be governed by hidden (not yet clarified) precise 

mathematical laws.  

Existing numerical works on the subject have added several pieces to this puzzle. It has been 

understood that the underlying mechanisms are essentially independent of inter-particle forces, i.e. 

particle-to-particle interactions are not required to justify the existence of attractors. This should be 

regarded as a notable difference with respect to other aggregates where vibrationally-induced 

hydrodynamic forces play a crucial role (such as those studied, e.g., by Tabakova and Zapruanov60; 

Wunenburger et al.,61; Ivanova et al., 62; Kozlov et al.,63). Attractive forces are not needed because 

the existence of accumulation loci, all having the shape of ‘quadrics’, is supported by a delicate 

phenomenon of synchronization between the inertial response of the dispersed particles to the 

variable acceleration produced by vibrations and the thermovibrational convective effect per se56-59. 

Most remarkably, this specific property allows the emergence of particle structures also in relatively 

dilute dispersions. 

As a fleeting glimpse into the existing literature would immediately reveal, the umbrella of on-

going research on this specific subject has essentially drawn on studying the influence of 

asymmetries present in the considered physical system on this synchronization process 

(asymmetries due to the shape of container57, due to the direction of vibrations with respect to the 
walls of the cavity58-59, or asymmetries spontaneously produced due to time-averaged convective 
effects,64 or other mechanisms enabled when the carrier thermovibrational flow displays a certain 

intrinsic degree of turbulence, Crewdson and Lappa65). No analysis has been devoted until now to 

explore another important question, that is, to what extent these delicate structures can survive in 

non-dilute fluid-particle mixtures. Given the essentially inertial nature of these phenomena, this is 

obviously a legitimate question. The volume fraction of dispersed mass should be considered as 

another relevant influential parameter.    

In order to address this problem, the present article presents findings that relate to the back 

influence that particles can exert on the carrier thermovibrational flow when a relative high ‘load of 

mass’ is considered (defined as the ratio of the overall solid mass to that of the fluid).  

The required theoretical-mathematical two-way coupling framework is elaborated in the following 

section together with a brief presentation of the main objectives of the overall study. 
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2. Objectives and Mathematical Model  

 

In order to meet the main goal discussed in the introduction, the intended outcomes of the present 

analysis are set as follows: 

 

 Develop and validate a generalized model for evolving particles in fluid flow described by a 

hierarchy of mathematical kernels based on the combination of Eulerian (for fluid flow) and 

Lagrangian (for particles) approaches, by which different degrees of coupling can be 

implemented for the solid and liquid phases. 

 Expand the space of parameters through explicit consideration of the solid mass load (or 

particle volume fraction) and perform a parametric study aimed at the identification of 

particle attractors (the “attractee”). 

 Determine the regions of this space where, using the attractors as ‘templates’ for the 

accumulation process, particles can effectively form recognizable structures. 

 Evaluate the impact of two-way coupling on the morphology and regularity of these 

structures (including the possible emergence of chaos or turbulence for some specific 

conditions). 
 

2.1 Geometrical model, particles and vibrational effects 
 

For consistency with earlier studies on the subject where dilute distributions of particles were 

examined (under the assumption of one-way coupled flow), here we focus on the same archetypal 

geometrical configuration considered by Lappa56, 59, namely a differentially heated cubic enclosure 

undergoing vibrations along a direction perpendicular to the imposed temperature difference (as 

shown in  Fig. 1, temperature difference and vibrations are along the z and y axes, respectively, 

while x plays the role of ‘spanwise direction’). 

 

 
Figure 1: Cubic cavity with characteristic size L, delimited by solid walls (one at z=-0.5 cooled, the 
other at z=0.5 heated, adiabatic conditions on the remaining sidewalls). The vibrations are parallel 
to the y axis.  
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By modeling vibrations through a simple sinusoidal function (Shevtsova et al.,47,48), i.e. as 

  ntslab ˆt)bsin(   (where n̂  is the unit vector along the direction of shaking, b is the displacement 

amplitude and =2f is the related angular frequency), the time-varying acceleration affecting the 

entire system can directly be obtained by taking the second time derivative of s(t), that is, 
  ngtg ˆt)sin(  . These simple considerations lead to the identification of the first two 

independent problem variables, namely the frequency  and amplitude b of imposed vibrations. Of 

course, other degrees of freedom are represented by the nature of the fluid itself and the applied 

temperature difference.  

As usual, the complexity of the problem can be simplified if it is cast in terms of non-dimensional 

characteristic numbers. Indeed, in such a framework, the number of influential factors can be 

greatly reduced. They are the well-known Prandtl number (Pr=/ where  is the fluid kinematic 

viscosity and  its thermal diffusivity) depending on the considered fluid, the nondimensional 

vibration frequency (), the nondimensional acceleration amplitude () and buoyancy factor () 

defined as:  

 
2L


 ; 

2

32


 Lb

 ; and )( TT          (1) 

 

where T is the fluid thermal expansion coefficient. These parameters can be combined to form 

alternate characteristic numbers, namely, the classical (vibrational) Rayleigh number (Ra) and the 

so-called Gershuni number (Gs) 

 

Ra= /Pr            (2) 

 
2 222 2( ) ( ) 1 Pr

2 2 2 Pr 2
T T g Rab TL TLGs    
    
             

    
    (3) 

 

The latter plays an important role as it is often used as the characteristic number for the ‘mean’ 

(time-averaged) effects in thermovibrational convection, while Ra accounts for the amplitude of 

the time-varying part41-42. Along these lines, it is worth recalling that for the conditions considered 

in the present work, the velocity of the fluid will consist of two components, one oscillating in time 

about a mean value equal to zero (the so-called instantaneous velocity) and one steady 

(corresponding to the velocity averaged over one period of the imposed vibrations), which typically 

takes a non-zero value. While the former may be considered as a natural consequence of the 

imposed forcing (the vibrations), the latter should be regarded as a secondary effect produced by the 

non-linear nature of the governing equations (the Navier-Stokes equations). In general, it is known 

that if the frequency of vibrations is small, the time-averaged component of velocity is almost 

negligible, whereas its relative importance with respect to the instantaneous component grows 

significantly when  is increased. As stated above, the magnitude of these two (oscillatory and 
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steady) contributions can generally be related to the Rayleigh and Gershuni numbers, as defined by 

eqs. (2) and (3), respectively. 

The dimensionality of the space of parameters obviously further increases when the presence of the 

dispersed phase is considered. Clearly, it introduces additional degrees of freedom in the considered 

problem. Two of these degrees clearly relate to the particle radius and density. Relevant 

independent nondimensional parameters can be defined accordingly as the ratio of the particle to the 

fluid density,  

 

=P/             (4) 

 

and the particle Stokes number  

 
2

2

2

9
PRSt

L
             (5) 

 

where Rp is the particle radius (which implicitly indicates that we refer to spherical particles; for the 

sake of completeness it should also be noted that the alternate well-known definition of the Stokes 

number St, accounting for particle size and mass effect at the same time, may be recovered by 

multiplying St by , i.e. St= St). 

These initial arguments clarify the concept that, for the phenomena of interest, vibrations can affect 

particle dynamics via two independent but concurrent mechanisms, i.e. the force which is produced 

by the time-periodic acceleration field as a results of the different density of the particles with 

respect to the surrounding fluid (a purely inertial effect) and the flow of thermovibrational nature 

that tends to transport particles in a more or less efficient way depending on their radius (in turn, as 

explained before, the latter consists of two contributions, i.e. the aforementioned ‘mean’ and 

‘instantaneous’ velocity components). Obviously, another important parameter is the mass load, 

which (as explained in detail in Sect. 2.4) depends on the effective number of particles present in 

the fluid. 

 
2.2 Hybrid Eulerian-Lagrangian formulation  
 

A key observation regarding these problems is that experimental measurements aimed to get 

quantitative data are extremely difficult (almost impossible) in normal gravity conditions, given the 

disturbing presence of gravity (which would tend to demix particles from the fluid due to 

sedimentation of flotation). On the other hand, conducting tests in microgravity conditions is 

extremely expensive. In practice (while waiting for opportunities for space experiments, Lappa et 

al.,66), the most convenient way to gain an understanding of the underlying flow physics is to use 

numerical simulation. This explains why the existing literature on this subject relies to an unusual 

level on insights obtained via theoretical models and ensuing computations.  
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In such a context, however, the assumption of one-way coupled particle-fluid systems, which so 

much success has enjoyed in earlier works on the subject, should obviously be regarded as a non-

viable option. For the specific problem considered here, the numerical treatment of these processes 

shall necessarily imply adequate physical and mathematical modeling of the mechanisms relating to 

the transfer of momentum from the particles to the surrounding fluid and vice versa. This naturally 

leads to the aforementioned concept of “two-way” coupling, by which the two considered (solid and 

liquid) phases can experience a ‘mutual interference’.   

In principle, many approaches could be applied to meet the objectives set at the beginning of Sect. 2. 

These strategies can be split into three main classes according to the nature of the model used to 

track the dispersed phase: capturing (also known as moving grid or Lagrangian approach, see 

Uchiyama67), Eulerian (also known as fixed-grid approach, see, e.g., Bothe et al., 68) and combined 

‘hybrid’ techniques (see e.g., Mark et al.,69 for a review) by which special additional markers are 

tracked separately to reconstruct the interface between the different phases (see, e.g.,                 

Homma et al.,70) or the Eulerian governing equations in the fluid domain are ‘extended’ to the 

particle domain by constraining the motion inside the particles to a rigid motion (Haeri and 

Shrimpton71).  

Following already successful attempts (Pushkin et al.,24; Melnikov et al.,25; Lappa28-29, 56), here, in 

particular, we resort to a hybrid formulation by which, while fluid flow is approached in the 

framework of a Eulerian description (leading to the classical Navier-Stokes equations valid for a 

continuum), the transport of particles is handled on the basis of a Lagrangian method that can 

account for each particle as a separate entity interacting with the ‘environment’. The novelty of the 

present work with respect to earlier efforts (Lappa56-59,64) is obviously due to the two-way-coupled 

nature of the resulting approach, which (as we will illustrate in Sect. 2.3) requires proper physical 

reasoning and modifications or ‘additional terms’ to be considered for the Navier-Stokes equations.  

 

 2.3 Governing Equations 
 

In order to develop further the ideas discussed above, in the present section, we lay the foundation 

of the overall numerical approach by transcending specific cases and introducing the fundamental 

equations that govern the considered dynamics. Anyhow, for the convenience of the reader, 

advanced formal discussions are limited to a minimum and the problem is described with a 

relatively simple formalism (making reference to preceding works when additional layers of 

knowledge are particularly appropriate). 

The starting point for the fluid phase is obviously represented by the classical Navier-Stokes 

equations, which, for an incompressible fluid, can be cast in condensed form as 

 

 V 0            (6) 
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  2 2 ˆb sin( t) m
V p VV V n S
t

     


               (7) 

 

  2
v v

TC C VT T
t

  


              (8) 

 

where the vector V contains the variables [u, v, w] (u, v and w being its velocity components along 

the x, y and z directions), p is the pressure, T is the temperature and , ,  and Cv are the fluid 

density, dynamic viscosity, thermal conductivity and specific heat at constant volume, respectively.  

Moreover, the additional vector quantity Sm at the right-hand side of eq. (7) is the term required to 

properly couple the liquid and solid phases (notably, it makes the resulting approach formally 

similar to that implemented by Ref72 to investigate the dynamics of shock waves traveling in a dusty 

gas, as we shall further detail in Sect. 2.4).  

Using a Lagrangian approach, particles must obviously be considered as isolated, microscopic 

quantities compared with field variables. Nevertheless, the typical forces acting on them and the 

ensuing effects on particle motion can be taken into account solving the so-called Maxey-Riley 

equation. A short overview of this equation is given in the following, the reader being referred to 

Maxey and Riley73 and Kuhlmann et al.,74 for a more detailed discussion. In vector form this 

equation reads:  

 

    2
2

9
ˆ(Re ) b sin( t)

2 2
p p

pp p p
p

dV dVDV DVf V V n
dt Dt R Dt dt

      
 

       
 

  (9) 

 

where Vp =[up, vp, wp] is the particle velocity and Rep is the related instantaneous Reynolds number, 

defined as 

 



 pp
p

VVR 


2
Re

 
         (10a) 

f(Rep) is a corrective factor required to account for the departure of the drag from the classical 

Stokes law (Clift et al.,75):  

 
  687.0Re15.01Re ppf           (10b) 

 

Notably, assembled in this way, equation (9) can be seen as a balance of forces. Indeed, the four 

contributions at its right-hand side represent, respectively, the force exerted on the generic particle 

by the undisturbed flow, the drag, the virtual-added mass force and the time-varying buoyancy force 

resulting from the application of vibrations. The so-called Basset force is neglected as the 

considered flow frequencies are within the limits that allow doing so (see Ref30 and references 

therein for an extensive treatment of this aspect, which is not duplicated here for the sake of brevity). 
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The liquid velocity V appearing in this equation has to be ‘reconstructed’ at each particle location 

from the surrounding grid locations, which requires a proper interpolation scheme for problem 

closure (we will come back to this concept in Sect.3.1). 

 

2.4 Two-way coupling aspects 
 

The so-called “one-way” class of numerical methods24-25, 28-29, 31, 56,74,76 relies on the assumption that 

the particle mass loading = (ratio of the overall solid mass and liquid mass, where  is the ratio 

of the volume globally occupied by the particles and the volume of the computational domain, i.e. 

the ‘volume fraction’) is so small that the influence of the dispersed phase on the liquid can be 

ignored. In such a context, one is therefore allowed to account for the effect of the local fluid-phase 

velocity on particle motion, whereas vice versa is not mandatorily required. If  is relatively high 

(typically if 10-6, Elgobashi77; see also Bodnar et al.,78), however, return effects must be properly 

taken into account, this being accomplished via the presence of the interphase coupling terms S in 

Eq. (7). In order to make the overall approach physically consistent, this term must obviously be 

determined for each control volume. This leads to the need for an algorithm able to identify the 

particles present at a given instant in any computational cell of the domain. Formally speaking, by 

denoting this number as nijk (i, j and k being the representative indexes of the x, y and z directions, 

respectively), the interphase term can be expressed (see, e.g., Eaton79; Bianco et al.,80) for each 

computational cell as 

 

 
1

1 ijkn
p

m pijk
fluid

dV
S m

dt 

 
  


  

       (11a) 

 
34

3fluid ijk ijk pn R               (11b) 

 

The sign minus in front of the summation simply indicates that an acceleration of particles 

(dVp/dt>0) is reflected in a corresponding deceleration of the thermovibrational flow (V/t<0) and 

vice versa. The quantities mp and ijk are the mass of the generic particle and the volume of the 

computational cell containing it, namely, 3

3

4
ppp Rm   , ijk x y z     . Moreover, fluid  

represents the amount of fluid contained in the computational cell. By simple geometrical 

considerations this quantity can formally be obtained by subtracting the volume of all particles 
located in the cell to ijk x y z     . 

An important assumption underlying this modus operandi, however, is the condition that the 

volume of the generic particle is smaller than the volume of the computational cell, i.e. <1 where 
34

/
3 pR x y z     . In practice, this is formally needed to justify that particles can be treated as 

microscopic quantities compared with the size of a typical mesh cell. Notably, this requirement may 
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also be regarded as a mathematical constraint for the maximum tolerable number of grid points used 

to discretize the problem, or alternatively for the maximum possible diameter of the particles for a 

given grid resolution (the interested reader being referred to Lappa et al.,72 for additional 

elaboration of these concepts). 

Another important quantity is the total number of particles. This number, obviously, is not arbitrary 

but depends on three distinct factors, namely, the considered mass loading  and particle size and 

density. Such inter-dependences can be expressed mathematically as: 
34

3part p pN R 






  

34
3

part

p

N
R


 


         (12) 

where  is the overall volume of the three-dimensional (3D) domain that is initially seeded with 

particles.  

Other key observations concern the lack of coupling terms to be considered for eqs. (6) and (8), 

which also requires proper physical reasoning and justification.  

An explanation for the absence of a mass coupling term can be elaborated in its simplest form on 

the basis of the argument that, while the liquid and the dispersed solid mass exchange momentum 

(indeed, most of the dynamics presented in this work stem from this effect), there is no 

corresponding mass exchange between these two phases (the overall mass of liquid and that of 

particles are conserved separately). To elucidate further the significance of this observation, one 

may consider that the mass of the present particles is fixed, i.e. they do not undergo any mass 

decrease or increase in time.  

The corresponding justification for the energy equation is a little bit more elaborated. It requires 

introducing the global heat capacity of each phase as the product of its specific heat coefficient and 

mass and the ratio of these capacities for the solid and liquid phases: 

 
3

( )

( )

4
3part p p

p solid
c

p liquid

N RC
H

C

 



 


   

where

 

( )

( )

p solid

p liquid

C
C

 
 

 and 



    (13)

 
 

For most of existing liquids the specific heat coefficient is almost one order of magnitude larger 

than the corresponding value for a solid, e.g., for water at 20 °C it is Cp=4186 JKg-1K-1 whereas for 

glass (the material used for the particles that will be used for the space experiments described in 

Ref66) it is 840 JKg-1K-1. Therefore, assuming =O(10-1), =O(1) and =O(10-2) (this being the 

worst case in terms of particle volume fraction , as further discussed in Sect. 2.5), it follows that    

Hc=O(10-3)<<1. The next step of this logical process consists of taking into account the link 

between the notion of heat capacity and that of thermal inertia. The latter is generally defined as the 

degree of slowness with which the temperature of the considered phase reaches that of the 

surroundings or, in an equivalent way, as the capacity of the phase to store heat and to delay its 
transmission. Given these premises, the simple estimates reported above lead to the straightforward 
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conclusion that in many circumstances the solid phase can be considered in thermal equilibrium 

with the liquid one (which alleviates the user form the burden of solving an extra Lagrangian 

equation for the transport of heat associated with particles and adding a corresponding interphase 

term to eq. (8)).  

Another key point concerns the thermal expansion coefficient. This is assumed to be one order of 

magnitude smaller for the solid (e.g., T=2.07x10-4 and 0.255 x10-4 K-1, yet at 20 °C, for water and 

glass, respectively), which explains why the dependence of the solid density on temperature is not 

taken into account in the present study.   

 
2.5 Boussinesq approximation and Nondimensional formulation  
 

In line with earlier efforts in the literature for the specific case of thermovibrational flow50, 42, we 

assume as reference length, velocity and time, the cavity size (L), the thermal diffusion velocity 

(/L) and time (L2/), respectively (where =/Cp is the fluid thermal diffusivity). Moreover, the 

temperature scaled by a reference values Tref, is made non-dimensional as (T- Tref)/T. With such 

choices and using the Boussinesq approximation to account for the dependence of the density on 

temperature (all the other liquid physical properties being considered constant), all the relevant 

Eulerian and Lagrangian equations involved in the present computational framework can finally be 

cast in non-dimensional form as  

  

 V 0            (14) 

 

  2 ˆPr Pr sin( ) m
V p VV V Ra T t n S
t 

 


              (15) 

 

  2T VT T
t




               (16) 

 

   1 Pr 3 3 1
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1/ 2 2 2 1/ 2
p

pp

dV dVf V V V V t n
dt St dt

  
 

          


   (17) 

 

Equation (17) includes the viscous drag forces (first term at the right hand side) and the added mass 

effect relating to the material derivative of the fluid velocity (second and third terms).  

Moreover, the following relationships hold: 

 
1/2

Re 3 2
Pr pp

St V V            (18)
 3/2 *

* 3/2
9 2

9 2
part

part

N St
N

St
  




  


       (19)
 

(* being the non-dimensional cavity volume /L3) and  
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 

 


       (20) 

 
(where, for consistency, * 3/ijk x y z L     ). 

A necessary pre-requisite for the applicability of this approach concerns the particle Stokes number, 

which must be very small, i.e. St<<1 (Kuhlmann et al.,74). Moreover, the following two additional 

inequalities must be satisfied:  

 
3/2

* * *

9 2
1

St
x y z
  

    
          (21)

 
 

3/2
2

*
9 2 (10 )partN St

O 


  


         (22)
 

 

where, as explained before, the first condition is equivalent to stating that particles are microscopic 

( being the ratio of the volume of a single particle and of the generic computational cell). In line 

with earlier works on the subject (Greifzu et al.,81 and references therein), the second independent 

constraint (involving , i.e. the ratio of the volume globally taken by the particles and the volume of 

the entire computational domain) is needed to satisfy the assumption that particle-to-particle 
interactions (collisions, lubrication forces or other effects resulting from particle mutual 

interference, also known as four-way coupling) can be neglected. Although, strictly speaking, this 

inequality has been found to hold for isotropic turbulence and some authors have shown that 

constraints based on this type of flow can be overly conservative for simply time-periodic flows 

such as those considered in the present work (Capobianchi and Lappa38), we consider it as a 

limiting conditions for our model. 

 

2.6 Initial and Boundary conditions  
 

The governing equations must be complemented by the initial and boundary conditions required to 

close the problem from a mathematical point of view. 

As initial conditions for the fluid we consider: 

 
t=0:   V (x,y,z=0, T(x,y,z z    (23) 

 

where V=0 implies u=v=w= 0, i.e. the liquid is motionless with a linear temperature profile along 
the z coordinate (the temperature is TCold = 0 on the cold sidewall and THot = 1 on the other side). 

Moreover, at t=0, particles are distributed uniformly and with zero velocity. 
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The boundary conditions for t>0 consist of the classical no-slip constraint on all the walls, i.e.  

 

u=v=w= 0 on             (24) 

  

Isothermal conditions at z=0 and z=1. 

 

T= 0 for z=0             (25a) 

 

T= 1 for z=1                       (25b) 

 

and adiabatic conditions for the other walls.  

For what concerns the particles, in line with earlier studies56,57, these are assumed to interact in a 

non-elastic fashion with walls, i.e. they can approach the solid boundary until at a distance not 

smaller than their radius is achieved; thereafter, they are allowed to slide along the boundary until 

the wall-normal velocity component changes sign (allowing the particles to leave the wall). 

 

3. The Numerical Method   

 

After building an appropriate mathematical representation of the considered system, the next step 

obviously relates to the selection of an adequate numerical procedure to solve the underlying 

equations. 

 

3.1 The Projection method  
 

As solution technique we have implemented a projection method based on the use of primitive 

variables (namely, velocity, pressure and temperature). The mathematical prerequisite at the basis 

of this class of methods has its origin in the so-called decomposition theorem for vector fields (the 

so-called Hodge theorem, see, e.g., Ladyzhenskaya82). According to this theorem, a general vector 

field can always be decomposed into a part of given divergence and the gradient of a scalar 

potential function; thereby, the mathematical problem relating to the need to determine a velocity 

field that satisfies the continuity equation and develops vorticity (as required by the viscous nature 

of the fluid) can be articulated in a numerical procedure where these two aspects are formally taken 

into account separately (in practice, this process is mediated by the relationship between the 

pressure and the velocity fields as further illustrated below). 

Initially, a simplified momentum equation where pressure is neglected is solved: 

 

 
*

2 2 ˆPr Pr Pr sin( )
n

m
V VV V V Ra T t n S
t             

   (26) 
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where the superscript ‘n’ indicates the time step. Obviously, this leads to a velocity field that has no 

physical meaning (nevertheless, from a purely mathematical point of view, it possesses the correct 

amount of vorticity as the pressure gradient does not directly contribute to the curl of the velocity 
field, i.e. V ). 

As second stage, an additional elliptic equation resulting from the substitution of the velocity field 

Vn+1 into the continuity equation is integrated: 

 
*2 1p V

t
  


   (27) 

 

and the intermediate (non-physical) velocity field is corrected using the resulting pressure to 

account for the conservation of mass: 

 
1 *nV V t p        (28) 

 
Such a two-step procedure provides a velocity field that is solenoidal ( 0V  ). Moreover since 

1 *nV V    , this flow has also the correct content of vorticity as required by the original 

version of the momentum balance equation (Eq. 15). Given the theoretical implications of the 

“inverse theorem of calculus”, the resulting field can be considered unique from a mathematical 

point of view and consistent from a physical standpoint (the interested reader being also referred, 

e.g., to Shen83; Armfield and Street84; Lee et al.,85; Guermond et al.,86).  

As indicated by eqs. (26)-(28), we have implemented this numerical technique using schemes 

explicit in time. In particular, given the extremely small velocities involved in the present problems, 

the convective and diffusive terms appearing in both the momentum and the energy equations have 

been discretized with standard central differences. In order to improve the coupling between 

pressure and velocity (see, e.g., Choi et al.,87-88), however, a staggered arrangement has been used 

for these two quantities, that is, while the components of velocity u, v and w occupy the center of 

the cell face perpendicular to the x, y and z axes, respectively (see, e.g., Refs89-90), pressure is 

located in the center of each computational cell. 

The particle tracking equation re-arranged to have dVp/dt appearing only at the left-hand side (as 

made evident by eq. (17)) has been integrated with an explicit in time 4th order Runge-Kutta scheme. 

The fluid velocity at the generic particle location, needed for the integration of this equation has 

been determined at each time step starting from nodal values on the staggered grid and resorting to 

simple linear interpolation64. As similar approach (linear interpolation relying on the available 

values at the points of the fixed Eulerian grid) has been used for the material derivative DV/Dt 
(required for evaluating the force exerted by the undisturbed flow on the particle and the virtual-

added mass force). Put simply, the nodal values taken by this quantity determined as  
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nV V VV
t


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   (29) 

 

have been stored at each time step in a dedicated array, in order to be used for the derivation of 

DV/Dt at the particle position via linear interpolation.   

For all the simulations, the time integration step has been kept smaller than St/Pr in order to resolve 

properly the particle relaxation time. Moreover, a grid refinement study has been carried out to 

ensure grid-independence. In line with the mesh refinement study conducted by Ref50, a resolution 

corresponding to 80 grid points along each spatial direction has been found to be more than 

sufficient (this finding reflects the known fortunate absence of boundary layers in thermovibrational 

flow for the range of values of the Gershuni number considered in the present work).  

 

3.2 Validation: 
 

Given the nature of the problem addressed in the present study, finding relevant results produced by 

other authors to be used for validation purposes was not straightforward as one would imagine. For 

this reason, after unsuccessfully sifting through plenty of existing studies available in the literature 

with different (non relevant) foci, we decided to validate the overall theoretical architecture 

illustrated in Sects. 2.1-2.6 and 3.1 through comparison with the outputs of simulations conducted 

using a different computational platform (for the same circumstances considered in the present 

work). As independent software, in particular, we have considered ANSYS Fluent given the 

availability of a reliable two-way coupled approach for particle tracking directly coded into this 

package.  

For incompressible flow, ANSYS Fluent is based on a primitive-variable method pertaining to the 

same category of projection techniques described in Sect. 3.1, namely, the so-called SIMPLE 

(Semi-implicit Method for Pressure Linked Equations) method (see Patankar91). In place of the 

staggered arrangement of variables (described in Sect. 3.1), however, this software is dependent on 

a collocated grid approach, which means that all the physical quantities of interest are defined in the 

center of the grid cells. For this reason, (in order to resolve properly the physical coupling of 

velocity and pressure), ANSYS Fluent relies on the special interpolation schemes by Rhie e Chow92.  

We have used this package to solve the classical set of balance equations for mass, momentum and 

energy reported in Sect. 2.3 using 2nd order upwind schemes for all convective terms (standard 

central differences have been employed for the diffusive terms only). With ANSYS Fluent all these 

terms are typically handled implicitly (with the sole exception of the buoyancy contribution, the 

only entity being treated explicitly). Moreover, in order to accelerate convergence, this software 

takes advantage of a classical Algebraic Multigrid scheme (AMG) with standard parameters (the so-

called Gauss-Seidel smoother, see, e.g., Hutchinson and Raithby93. 

A dedicated discussion is also needed for the particle motion equation. Fluent integrates it in its 

original formulation (eq. (9)) with a 5th order Runge-Kutta scheme (Cash and Karp94). While the 
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particle velocity appearing in the drag contribution is treated in an implicit way, all the other terms 

are dealt with explicitly (which might be regarded as another difference with respect to the 

implementation described in Sect. 3.1, where all terms present in both the Navier-Stokes and the 

Maxey-Riley equations were handled in the framework of a time-explicit scheme).  

For what concerns the evaluation of the forces acting on particles, we have selected the following 

options available in Fluent: the “barycentric method” to reconstruct the fluid velocity at the 

instantaneous positions occupied by particles (needed to evaluate the drag), and bi-linear 

interpolation and first order Euler schemes to determine the material derivative DV/Dt (needed to 

account for the force exerted by the undisturbed flow on the particle and the virtual-added mass 

force).   

The accuracy control implemented naturally by Fluent allows the use of different time steps for the 

particle motion equation and the Navier-Stokes equations. By setting the accuracy control to 10-5 

we have enforced an integration time step lower than the relaxation time of the particles. With such 

settings, in particular, particles have been forced to perform ‘at least’ 3 steps in a cell for every time 

step relating to the integration of the Navier-Stokes equations. 

Results produced with Fluent are reported in Fig. 2 where they are directly compared with the 

equivalent ones yielded by the computational platform described in Sect. 2 and 3.1. The reader is 

directly referred to the figure caption for detailed information about the representative cases for 

which simulations conducted with the two platforms have been compared. 
 

    
 

    
(a), t10 
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(b) t10 

    
 

    
(c) t5 

Figure 2: Comparison of numerical results (two-way coupling) obtained with the present 
computational platform and ANSYS Fluent for Pr=6.11, St=5x10-6, Ra= 105 and different values 
of ,  and . For each case, four snapshots are shown; in particular, the left and right frames relate 
to two different values of the particle volume fraction (namely, =3.6x10-3 and =2.8x10-2), while 
the top and bottom frames represent results obtained with the present platform and ANSYS Fluent, 
respectively: a) =0.5, =1x108, =5x103; b) =2.0, =1x108, =5x103; c) =1.5, =5x108, =104. 
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All simulations have been initialized with a uniform distribution of particles. The minor visible 

differences between the present and the Fluent-based results should be ascribed to the slightly 

different initial positions considered for particles and/or to the fact that the snapshots do not relate 

exactly to the same times (due to the different time integration steps required by the two platforms) 

and/or to the different interpolation schemes used by Fluent and the present code. The very good 

agreement made evident by these figures (despite the significant differences in the underlying 

numerical strategies) should be regarded as a good indicator of the lack of implementation errors 

and the physical relevance of the findings. As a concluding remark for this section, we wish to 

highlight that other comparisons demonstrating consistency were also considered for the 3D cases 

(not shown). 

 

4. Results 

 

As already explained to a certain extent in the introduction, the present work stems from the 

argument that a dense distribution of solid particles in a fluid undergoing thermovibrational 

convection may disturb the underlying transport mechanisms, thereby setting an upper limit (in 

terms of parameter  for fixed particle size and density) to the effective formation of ordered 

particle structures.  

In this section the potential of the proposed new framework is demonstrated by considering a series 

of representative cases of practical complexity and relevance (i.e. suitable for the definition of real 

experiments to be conducted in space) and the ensuing results are presented following a specific 

order, which reflects the need to implement a precise analysis hierarchy. In particular, two 

important intertwined issues are addressed, i.e. the concurrent possibilities to influence the particle-

forming mechanisms by increasing the density of particles or their overall amount, i.e. the volume 

fraction (both leading to an increase in the mass load).  

As we will illustrate in the remainder of this section, vibrated particle-fluid systems can be 

extremely sensitive to these parameters and produce spontaneous ‘asymmetries’. Resolving these 

questions therefore also requires estimating the role played by the dimensionality of the problem 

(that is the number of space dimensions involved). This is the reason why some of the explorative 

simulations are also conducted in a two-dimensional (2D) framework (we will come back to this 

important concept later).  

Pattern formation in these processes is described here with respect to particle motion, related 

structures, and the convective multicellular patterns arising as a consequence of vibrational 

buoyancy forces. The following values or ranges of the characteristic parameters (defined in Sect. 2) 

are considered: Prandtl number (Pr=6.11 corresponding to pure water at ambient temperature), non-

dimensional vibration angular frequency 103104, Rayleigh number 104Ra105, non-

dimensional acceleration amplitude 1085x108, density ratio 0.12and St=5x10-6 (all these 

non-dimensional parameters reflect the space hardware and materials described in Ref66, namely 

cubic fluid containers with size L= 1cm, T  in the range 0.5 – 15 °C, vibrations with frequency 
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spanning the interval 1 – 2.8 Hz, acceleration amplitude between 2.8 and 9.6 m/s2 and particles 

made of glass, with various densities and diameter 90 m). Though, for consistency with the 

companion study conducted by Lappa and Burel64, the Stokes number is fixed to St=5x10-6, the 

volume fraction of particles is allowed to span a relatively wide interval, which combined with the 

considered set of values of , leads to a wide range of mass loads (). We wish also to recall that, as 

illustrated by Refs56,57, if the density of the particles is set equal to the density of the liquid, no 

particle attractors exist. Particles would remain uniformly distributed in the fluid, which explains 

why the case =1 is not considered. 

 

4.1 The quadrupolar field 
 

Continuing in a similar vein to Ref64, most conveniently, we start from a short description of the so-

called time-averaged flow, i.e. the convective effects that are produced in addition to the 

instantaneous ones when the Gershuni number takes relatively high values and vibrations are 

perpendicular to the imposed temperature gradient.   

In ideal conditions, that is, with no particles being dispersed in the fluid that can disturb it (see Fig. 

3), this type of convection typically gives rise in rectangular cavities to the so-called quadrupolar 
field, i.e. a set of four rolls satisfying conditions of symmetry with respect to the horizontal and 

vertical axes. Such symmetry can be broken if the direction of vibrations is not perpendicular to the 

imposed temperature gradient and/or if the Gershuni number exceeds a given threshold. In such 

conditions, the original perfectly centro-symmetric distribution of rolls is taken over by a single roll 

pervasive throughout the physical domain with two small counter-rotating cells located in opposing 

corners of the cavity (Khalloufet al.,95; Lappa96; Lappa and Burel64).  

 

a)  b) 
Figure 3: Typical time-averaged flow in thermovibrational convection (water, 2D computations): a) 
Ra=105, =104  Gs= 305 (quadrupolar field), b) Ra=106, =104  Gs=3.05x104 (single roll 
field). 
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Apart from displaying a quadrupolar pattern, the time-averaged flow for relatively small values of 

Gs, is also steady and relatively weak. This means that if, at the same time, the Rayleigh number (eq. 

(2)) is high, the oscillatory components of the velocity field are dominant [as implicit in eq. (3), for 

high Ra, conditions of small Gs can be attained if the angular frequency of the vibrations is 

sufficiently large].  

In particular, as illustrated by Ref56, the dominant instantaneous flow (for a square enclosure, small 

Gs and high Ra) simply consists of a single roll occupying the entire cavity, which continuously 

changes its sense of rotation (from the clockwise to the counter-clockwise orientation) in a 

consistent way with respect to the direction of the time-varying acceleration. 

Without particles, indeed, the flow response to the applied vibrations is, in general, perfectly 

synchronous, that is, if the forcing has non-dimensional frequency , the signal measured by a 

generic probe put in the fluid in terms of instantaneous velocity or temperature will display exactly 

the same frequency (and/or frequencies that are multiples of , i.e. higher order harmonics). The 

signal will obviously also include a time-averaged component, which, as explained before, can take 

negligible or appreciable values depending on the specific regime considered. As shown, e.g., by 

Savino and Lappa42, the detectable steady component in the signal is close to zero if  is relatively 

small (in such conditions the flow is dominated by the instantaneous component of velocity). As 

stated before, however, the relative importance of the time-averaged flow can be weakened also for 

high  provided Gs is sufficiently small (i.e. Ra is large). As anticipated in Sect. 2.1, while the 

amplitude of the instantaneous velocity grows with Ra, the magnitude of its time-averaged parts 

increases with Gs56. 

Since the interplay between the non-symmetric pattern shown in Fig. 3b and the emerging particle 

structures has been already examined in a companion work64, in the present study we will limit 

ourselves to considering values of Gs O(103) for which the time-averaged flow is weak and it 

always corresponds to the classical quadrupolar pattern depicted in Fig. 3a.  

 

 

4.2 Fluid and particles under the effect of vibrations 
 
The preliminary descriptions elaborated in Sect. 4.1 (dealing only with purely fluid-dynamic aspects) 

logically pave the way to the present section, where particles are added to the fluid. As the main 

criterion to judge on the ability of two-way coupled particles to influence the overall system 

dynamics, in particular, we consider the perturbations that they can create in the flow spatio-

temporal behavior. As a testbed for such analysis (without loss of generality), we consider again the 

classical two-dimensional square cavity (Figs. 4-10). 
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a) b) c) 
 
Figure 4: Snapshots of particle distribution (2D computations) for =5x108, Ra=105, =104 
(Gs=305) and =0.5 at  t5: a) one-way coupling,  b) two-way coupling and =3.6x10-3, c) two-
way coupling and =2.8x10-2. 

 

As an example, Fig. 4 shows the outcomes of the numerical simulations carried out neglecting the 

back influence of particles on fluid flow (see, e.g., Fig. 4a for =0.5) together with equivalent 

computations conducted in the frame of the two-way coupling model (Figs. 4b). As outlined above, 

this extension to 1-way coupled results is intentionally used to verify by cross-comparison the 

efficacy of particles in disturbing the carrier thermovibrational flow. In such a context, indeed, it is 

worth recalling that with the one-way coupled approach inertial particles are ‘merely’ transported, 

i.e. their number has no impact on the characteristics of the carrier flow (a high number of particles 

being used only to reveal the perfection of the underlying attractors which behave as ‘templates’ for 

their accumulation, Fig. 4a). Along the same lines, we also allow (see Fig. 4c) the volume fraction  

to exceed the limit for which a four-way coupling approach would be required. This ‘license’ 

(which we take only for the 2D results, as all the 3D results presented in the remainder of this study 

obviously obey the constraint <O(10-2)) is intentionally used to determine in a simplified 

framework the conditions in which, even by filtering out the disturbing particle-to-particle effects, 

the back influence of particles on fluid flow would be so large to eventually prevent the 

manifestation of the sought attractors.     

Given these premises, some initial insights follow naturally from a comparison of Figs. 4a and 4b. 

While Fig. 4a shows the classical two accumulation loops already extensively reported in previous 

studies (the flow being insensitive to the amount of particles56-59), in Fig. 4b, it can be seen that for 

particle volume fraction =3.6x10-3, the perfect symmetry and high-resolution appearance of the 

structures is taken over by a less ordered distribution. Though the existence of attracting regions is 

still recognizable, a series of ‘disturbances’ can be detected. These disturbances manifest 

themselves in the form of ‘eruptions’ of swarms of particles occasionally leaving the (left and right) 

accumulation regions (visible in Fig. 4b as horizontal jets, i.e. distribution of particles elongated in 

the direction of the applied vibrations). 

Notably, by changing  there are an uncountable number of such patterns, which differ in the 

degree of disorder. This is the reason why, to elucidate further the impact of this parameter, we have 

increased it by one order of magnitude (the limiting case with =2.8x10-2 shown in Fig. 4c). This 
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figure is useful as it reveals that, even if particle interaction and related effects are neglected, a too 
high mass load can definitely prevent particles from being accumulated. This is equivalent to 

stating that an upper boundary in terms of  (or ) must be put on the region of existence of 

attractors potentially identifiable in the frame of one-way coupling models. In other words, this 

means that the ‘attractee’ can effectively manifest in the form of well-recognizable structures of 

particles only if  does not exceed a certain threshold value.  

Following up on the previous point, as a fruitful alternative for obtaining additional insights into 

these behaviors we have examined the velocity signals measured by a numerical probe located in a 

representative point (the geometrical center of the cavity). These are shown in Fig. 5. 

 

a)   b) 
 

c) 
 
Figure 5: Fluid velocity component along the z direction in the center of the cavity as a function of 
time (2D computations, two-way coupling) for =5x108, Ra=105, =104 (Gs=305) and =0.5: a) 
=3.6x10-3, b) =2.8x10-2;c) frequency spectra for the signals shown in panels (a) and (b).   
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This figure is instrumental in demonstrating that the back influence of particles on the fluid can 

make the resulting flow essentially non-periodic. Indeed, a series of long period disturbances can be 

recognized in Fig. 5a while Fig. 5b displays a much more complex frequency spectrum.  

These plots can also be used for another interesting interpretation. Figure 5c (containing the 

frequency spectra related to the signals shown in Figs. 5a and 5b), indeed, demonstrates that the 

average amplitude of the velocity signal can significantly be increased for a fixed value  on 

making  larger. We can readily see the physical significance of this finding by reflecting on the 

transfer of momentum between solid particles and fluid. Under the effect of vibrations, particles can 

gain momentum directly as a result of the induced acceleration and their different density with 

respect to the surrounding liquid. Part of this momentum is transferred (via viscous effects, i.e. 

particle drag) from particles to fluid, thereby energizing the fluid flow.  

Put simply, the presence of particles plays the role of an extra source of momentum for the fluid 

(formally represented by Sm in eq. (15)) in addition to the classical buoyancy term 
( ˆPr sin( )Ra T t n  ). This feedback mechanism can therefore be seen as the root cause for the 

increase in the amplitude of the signal visible in Fig. 5b (corresponding to the red line in Fig. 5c), 

the manifestation of which (in terms of patterning behavior) is the recognizable strong asymmetry 
in the distribution of particles (Fig. 4c). 

Another meaningful way to think about the back influence of particles is to consider the effect they 

can exert on the fluid from a time-averaged standpoint. This aspect is quantitatively and 

qualitatively substantiated by Fig. 6 for =3.6x10-3.  

Though the classical four cells typical of the quadrupolar field can somehow still be identified, their 

morphology is highly distorted. Moreover, topological defects such as cracks, cusps and 

discontinuities start to affect the streamlines. They witness directly the ability of particles to 

exchange momentum with the fluid; in Fig. 6 it can also be seen that the quadrupolar field for the 

considered value of Gs is no longer time-independent, i.e. it changes with time.  

 

    
 
Figure 6: Time-averaged fluid velocity field for =5x108, Ra=105, =104 (Gs=305), =0.5 and 
=3.6x10-3 (2D computations, two-way coupling, four snapshots evenly spaced in time, time = 
0.25,  min=-0.08, max=0.08) .  

 

Another related key observation concerns the strength of the time-averaged convection, which tends 

to be higher when particles are present (max=8x10-2 in place of max=1x10-2 without particles). 
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This provides additional independent confirmation that on average there is a net transfer of 
momentum from particles to the fluid.  

The situation dramatically changes when  is increased by one order of magnitude (=2.8x10-2 in 

Fig. 7). The quadrupolar field is longer recognizable. The time-averaged convection is characterized 

by the continuous nucleation of cells that with time coalesce or split resulting in a more or less 

chaotic behavior (Fig. 7). 

 

    
 
Figure 7: Time-averaged fluid velocity field for =5x108, Ra=105, =104 (Gs=305), =0.5 and 
=2.8x10-2 (2D computations, two-way coupling, four snapshots evenly spaced in time, time = 
0.25,  min=-0.2, max=0.2) .  
 
 

a)  b)  c) 
 
Figure 8: Snapshots of particle distribution (2D computations) for =5x108, Ra=105, =104 
(Gs=305) and =1.5 at t5: a) one-way coupling,  b) two-way coupling and =3.6x10-3, c) two-way 
coupling and =2.8x10-2. 
 

Continuing with the description of the numerical results, Fig. 8 may be regarded as the analog of 

Fig. 4 for a value of the density ratio larger than one (=1.5), i.e. for particles denser than the fluid. 

Direct comparison with the situation where =0.5 indicates that the disturbing effect exerted by 

particles for a fixed value of the particle volume fraction  can be enhanced by increasing the 

density ratio. This obvious finding simply reflects the corresponding increase in the mass load =. 

Along these lines, what is emphasized in Fig. 9 is still the inter-relatedness of the disorder 

detectable in the particle distribution and the velocity signals and related frequency spectrum.  

By taking a look at the vertical axes, the reader will easily realize that the fluid motion is yet 

energized by the interplay with the dispersed solid mass. The frequency spectrum, however, is more 
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involved, which indicates that the disturbances preventing the flow from taking a regular behavior 

are more complex and intense (compare the red lines in Figs. 9c and 5c). This trend is further 

confirmed by the patterns reported in Figs. 10 and 11 for =3.6x10-3 and  =2.8x10-2, respectively. 

 

 

a)   b) 

 

 

c) 

 
Figure 9: Fluid velocity component along the z direction in the center of the cavity as a function of 
time (2D computations, two-way coupling) for =5x108, Ra=105, =104 (Gs=305) and =1.5: a) 
=3.6x10-3 and b) =2.8x10-2;c) frequency spectra for the signals shown in panels (a) and (b) 
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Figure 10: Time-averaged fluid velocity field for =5x108, Ra=105, =104 (Gs=305), =1.5 and 
=3.6x10-3 (2D computations, two-way coupling, four snapshots evenly spaced in time, time = 
0.25,  min=-0.15, max=0.15).  

 

 
 

Figure 11: Snapshot of time-averaged fluid velocity field for =5x108, Ra=105, =104 (Gs=305), 
=1.5 and =2.8x10-2 (min=-0.25, max=0.25).  

 
4.3 Symmetry breaking and three-dimensional effects 
 

The simplification to two dimensions at the basis of all the results presented in the preceding two 

sections may seem natural at first sight because of the intrinsic symmetries of the system sketched 

in Fig. 1. Nevertheless, it should expressly be pointed out that, since the two-way coupled evolution 

of a non-isothermal fluid and dispersed solid particles under the effect of vibrations has not been 

investigated until now56-59, there is no reason to think a priori that this interplay should not hide 

completely unknown mechanisms somehow involving the spanwise direction. This is the reason 

why we have intentionally based the present work on an analysis hierarchy implemented through a 

characteristic path of progression from 2D to 3D simulations. First two-dimensional simulations 

have been executed (where any processes that depend on the details of the third direction are 

excluded, Sect. 4.2), then, three-dimensional simulations have been conducted (present section) to 

reveal heretofore unseen 3D effects via intentional cross-comparison with the equivalent 2D ones.  

Following the same approach undertaken in Sect. 4.2, in particular, in this section, first we discuss 

cases for which particles are lighter than the external fluid and then we focus on situations with >1. 
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Along these lines, the outcomes of the 3D simulations for the same circumstances already 

considered in Fig. 4b are reported in Figs. 12 (3D snapshot of particle distribution) and Fig. 13 

(related time evolution).  

 
 
 

a) b) 
 

c) d) 
 
 
Figure 12: Snapshot (3D views for t5) of particle structures for =5x108, Ra=105, =104 
(Gs=305), =0.5 and =3.6x10-3: a) perspective perpendicular to the yz plane, b) perspective 
perpendicular to the xz plane, c) perspective perpendicular to the xy plane, d) combined 3D view 
showing particles and isosurfaces of the fluid velocity component in the spanwise direction.  
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 a) b) 
 
Figure 13: Evolution in time of 3D effects for =5x108, Ra=105, =104 (Gs=305), =0.5 and 
=3.6x10-3: a) parameter Q+, b) Fluid velocity component in the spanwise direction probed in the 
center of the cubic cavity. 
 

As a fleeting glimpse into Fig. 12 would confirm, symmetry breaking phenomena with respect to 

the spanwise direction can effectively occur when particles have an additional spatial degree of 

freedom (i.e. they can move freely along x). This behavior becomes very evident if the distribution 

of particles is inspected by taking a look at it along an axis perpendicular to the xz (Fig. 12b) and xy 

(Fig. 12c) planes, respectively. Particles do not remain uniformly distributed along x (as the 

assumption of 2D behavior would require); rather they display some preferred planes of 

accumulation. More specifically, three disjoint main planes supporting clustering dynamics can be 

distinguished in Fig. 12b and 12c, one approximately located at the center of the cubic enclosure 

and two located in proximity to the walls delimiting it along the x direction.  

The 3D self-organization of the particles also implies remarkable changes in the pattern that can be 

seen considering the projection of the solid mass distribution in the yz plane (compare e.g. Fig. 12a 

with Fig. 4b). Particles do still tend to cluster forming structures that an external observer (looking 

at the fluid domain along the x axis) would recognize. However, the morphology of these 

aggregates is quite different; the areas where solid matter is concentrated have an irregular 

triangular shape (in place of the elongated elliptical accumulation regions visible in Fig. 4b).  

To put these results in a broader perspective, in the following we will attempt an interpretation of 

such variations in the morphology of the particle structures on the basis of the ‘bifurcation theory’. 

Indeed, it is widely recognized in fluid-dynamics (and more in general in the field of non-linear 

systems) that the loss of symmetry implies the existence of a new solution that bifurcates from a 

pre-existing one due to the selection and ensuing amplification of disturbances (in this regard the 

solution shown in Fig. 4b could be regarded as the ‘basic 2D state’ from which the 3D state shown 

in Fig. 12 originates as time increases). 

Although the analogy with the classical concept of bifurcation in fluid dynamics should effectively 

be considered as a possible key for the interpretation of these results, the identification of the related 

physical ‘disturbances’, that is, the cause-and-effect mechanisms responsible for the symmetry 



Accepted for publication in the Physics of Fluids on 20th April 2022 
 

29 
 

breaking process, however, is not straightforward as one would assume. Since for the considered 

value of the Gershuni number no 3D instability occurs in pure thermovibrational flow (i.e. when no 

particles are considered) or when the back influence of the dispersed solid matter on the carrier flow 

is not taken into account (one-way coupling), we argue that its mechanism implicitly relies on the 

two-way coupling between fluid flow and particle motion, that is, the 3D disturbances take their 
energy from such an interplay.  

Interestingly, this may be regarded as another typical example of systems where separated entities 

can produce collective behaviors more complex than those of the individual components (see, e.g., 

Lappa and Ferialdi97). As revealed by the present 3D simulations, two-way coupled particles can 

provide these vibrated dispersions with the required internal feedback loops by which they can 

develop their own capacity for transformation, requiring only the right conditions for activation. As 

already described to a certain extent in Sect. 4.2, these processes (able to feed information back into 

the system where it is iterated, or used multiplicatively), are established in terms of momentum 
exchange.  

The continuous exchange of momentum between fluid and particles enabled by particle drag and 

inertial effects can make these processes extremely sensitive to their (even though very small) 

internal variations allowing the amplification of initially extremely small disturbances. A clear 

separation should therefore be considered between these results and those previously obtained in the 

frame of the one-way approach by Lappa and Burel64, where the observed 3D phenomena were 

essentially a consequence of the three-dimensional nature of the time-averaged field established 

inside the cavity for relatively high values of the Gershuni number (Gs=O(104)).  

A snapshot of the numerically computed disturbances for the present case (that we represent in 

terms of the time-averaged fluid velocity component along the spanwise direction) can be seen in 

Fig. 12d. The highly-localized nature of these fluid-dynamic perturbations further supports our 

interpretation about the role played by the exchange of momentum between fluid and particles in 

inducing the 3D instability (indeed, the regions of the physical space where the fluid velocity 

spanwise component is significant closely mimic the distribution of particles).  

The related temporal evolution is shown in Fig. 13. There the growth of 3D disturbances as time 

increases is presented in terms of the quantitative global measure already used by Ref98 to account 

for the global displacement of particles transported by thermal plumes of gravitational nature      
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where upart is the velocity taken by particles along the x direction. From a practical standpoint, the 

quantity Q± may be seen as the instantaneous positive or negative momentum possessed by all 

particles along the spanwise direction, normalized by the total solid mass. It should not be confused 
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with the quantity plotted in Fig. 13b, which instead represents the (Eulerian) velocity of the fluid in 

the center of the cavity.   

Further pursuing the possible analogy with the typical mechanisms of amplification of disturbances 

envisaged by the linear stability analysis (where the growth of perturbations is assumed to follow an 

exponential law, see, e.g., Ref96), Q+ has been reported in Fig. 13a using a logarithmic scale. As the 

reader will easily realize, using such a scale the perturbations indeed grow following an apparently 

linear law, which confirms the exponential behavior of the disturbance growth process. This figure 

is useful as it also shows that after an initial transient time, disturbances saturate their amplitude and 

a new stable state is attained, which is consistent with the theory of bifurcations. 

To do justice to these interesting findings, the next section is entirely devoted to a characterization 

of this bifurcation and identification of the conditions that make it possible. 

 

4.4 The role of inertial effects 
 

Starting from the arguments elaborated in the preceding section about the essentially inertial nature 

of the instability producing transition to 3D flow, the next natural step towards a complete 

characterization of this phenomenon would require proper assessment of the sensitivity of the 

symmetry breaking process to typical problem parameters, especially those that can exert an 

immediate impact on the momentum exchange between the two phases (namely the particle volume 

fraction () , the acceleration amplitude (), the density ratio (), and the Rayleigh number (Ra)). 

As shown in Fig. 14a, a decrease in the volume fraction of dispersed solid mass for a fixed value of 

 can change the time required for disturbance saturation, which provides additional important clues 

regarding the essentially inertial nature of the instability.  
 

a) 
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b)  
 
Figure 14: (a) Evolution in time of the Q+ parameter for =5x108, Ra=105, =104 (Gs=305), =0.5 
and three different values of the particle volume fraction , (b) Combined 3D view showing 
particles and isosurfaces of the fluid velocity component in the spanwise direction for =4.5x10-4 
and  t5.  
 
 
 

Most interestingly, making  smaller can even lead to conditions for which the emerging structure 

recovers the perfect geometrical morphology of the underlying attractors determined in the 

framework of 1-way coupled numerical studies (Fig. 14b to be compared with Fig. 8a). This figure 

also quantitatively substantiates the scarce role played in this case by the time-averaged fluid 

velocity component in the spanwise direction (it being limited in strength and present only in very 

localized regions).  

Notably, similar effects can be obtained by properly tuning the acceleration amplitude. In this 

regard, Fig. 15 is extremely instructive as it proves that other situations exist for which the 3D 

disturbances are not excited and the pattern can retain its essentially two-dimensional configuration. 

These figures refer to the same value of the density ratio and particle volume fraction already 

considered for Fig. 12 (=0.5  and =3.6x10-3), i.e. the same mass load (=), but a smaller values 
of  and   (=1x108, =5x103).  
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 a) b) 
 
 
 

c) 
 

Figure 15: Evolution in time of 3D effects for =1x108, Ra=105, =5x103 (Gs=1220), =0.5 and 
=3.6x10-3: a) parameter Q+, b) fluid velocity component in the spanwise direction probed in the 
center of the cubic cavity, c) combined 3D view showing particles and isosurfaces of the fluid 
velocity component in the spanwise direction for t10.   
 

We did not detect any symmetry breaking process for such conditions (the reader being directly 

referred to Fig. 15a and 15b for evidence of the essentially 2D behavior, witnessed by the order of 

magnitude of Q+ and of the fluid velocity in the center of the cavity, respectively). Though a 3D 

disturbance exists (Fig. 15a), its amplitude and magnitude are relatively limited (O(10-2)); moreover, 

it displays no tendency to be amplified as time increases even if the simulation is prolonged up to 

10 times the thermally diffusive reference time (for a cubic cavity having a size of 1 cm, this would 

correspond to a physical time of approximately two hours).   

Along these lines, further understanding of the specific equilibrium conditions attained in this case 

can be gained by considering again simulations conducted under the constraint of two-dimensional 

flow (Figs. 16-18).  
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a)  b)  c) 

 
Figure 16: Snapshots of particle distribution (2D computations) for =1x108, Ra=105, =5x103 
(Gs=1220) and =0.5 at t10: a) one-way coupling,  b) two-way coupling and =3.6x10-3, c) two-
way coupling and =2.8x10-2. 
 

a) b) 
 
Figure 17: Fluid velocity component along the z direction in the center of the cavity as a function 
of time (2D computations, two-way coupling) for =1x108, Ra=105, =5x103 (Gs=1220) and 
=0.5: a) =3.6x10-3 and b) =2.8x10-2. 
 

a)    b) 
 
Figure 18: Single snapshot of time-averaged fluid velocity field for =1x108, Ra=105, =5x103 
(Gs=1220), =0.5: a) =3.6x10-3 (min=-0.045, max=0.045), b) =2.8x10-2 (min=-0.05, max=0.05). 
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These results are meaningful as they can be used yet to easily get quantitative information on the 

inertial mechanisms at work in the considered process. As a quick look at Fig. 17a would 

immediately confirm, the response of the fluid-particle mixture to the applied forcing is very regular 

for =3.6x10-3. For the limiting condition represented by =2.8x10-2, though some spikes can 

occasionally be seen in the signal, the behavior is still essentially time-periodic (Fig. 17b). The 

conceptual ingredient needed to understand these results lies in considering the impact of the 

parameter  on particle acceleration (via eq. (17)) and on the associated momentum exchange term 

at the right hand side of the Navier-Stokes equations (represented by eq. (20)). By causing a 

decrease in the momentum transferred between the two phases, a decrease in  is beneficial in terms 

of stability behavior because it limits the disturbances that particles can induce in the underlying 

fluid flow. Similar concepts also apply to the time-averaged field. The quadrupolar field visible in 

Fig. 18a can clearly be recognized even if the particle volume fraction is largely increased (Fig. 

18b). These observations align with the trend visible in terms of patterning behavior in Fig. 16.  

By limiting the energy that the system can use for the amplification of disturbances, a decrease in  
can make the overall system stable, this argument being fully supported by the 3D simulations (Fig. 

15c). 

There is also another interesting extension that attaches to this interpretation. An increase in  

should, indeed, exert an opposite influence on the dynamics, i.e. it should promote the onset and 

growth of disturbances for a fixed value of  (that is why in the reminder of this section we also 

probe the role of this factor). As an example, the outcomes of the 2D simulations for Ra= 105, 

=1x108, =5x103 and =2 are summarized in Figs. 19-20.   

 

a)  b)  c) 
 

Figure 19: Snapshots of particle distribution (2D computations) for =1x108, Ra=105, =5x103 
(Gs=1220) and =2 at t10: a) one-way coupling,  b) two-way coupling and =3.6x10-3, c) two-
way coupling and =2.8x10-2. 
 

As evident in these figures, for the same value of the acceleration amplitude, vibration frequency, 

Rayleigh number, and particle volume fraction (=3.6x10-3), but a higher value of  (corresponding 

to four times the mass load relating to Fig. 16b), the feedback loop by which disturbances can be 

excited starts to be effective. This is consistent with the presence of jets of particles being erupted 

from the structures in Fig. 19b and by the alterations undergone by the classical quadrupolar field 
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(see Fig. 20, interestingly, in these circumstances, the back influence of particles on fluid flow 

causes quite regular periodic coalescence and separation of time-averaged rolls located in opposing 

corners).       
 

     
 
 
Figure 20: Time-averaged fluid velocity field for =1x108, Ra=105, =5x103 (Gs=1220), =2  and 
=3.6x10-3 (2D computations, two-way coupling, three  snapshots evenly spaced in time, time = 
0.5,  min=-0.075, max=0.075) .  
 

 

 

a) 
 

b) 
 
 
Fig. 21 – continued (see next page for figure caption) 
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c) 
 

d) 
 

e) 
 
Figure 21: Snapshots (3D views) of particle structures for =1x108, Ra=105, =5x103 (Gs=1220), 
=2.0 and =3.6x10-3 (left column: perspective perpendicular to the yz plane, center column: 
perspective perpendicular to the xz plane, right column: perspective perpendicular to the xy plane): 
a) t3, b) t5, c) t7, d) t10, e) combined 3D view (two different perspectives: perspective 
perpendicular to the yz plane, and perspective perpendicular to the xy plane) showing particles and 
isosurfaces of the fluid velocity component in the spanwise direction for t7. 
 
The increased interference that dispersed mass has on the spatio-temporal behavior of the fluid-

dynamic field is confirmed by the 3D simulations (Figs. 21 and 22). As shown by Fig. 21, an initial 

transient phase exists where disturbances exhibit a more or less two-dimensional nature, resulting in 
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the eruption of jets of particles in a direction parallel to the imposed vibrations (Fig. 21a, left panel) 

already seen in the 2D simulations. At a certain stage, however, the ‘curse’ of dimensionality starts 

to affect the dynamics and 3D disturbances tend to be amplified. The related stages of evolution 

(yet collected in Fig. 21) are extremely interesting. 

In particular, as made evident by the views along a direction perpendicular to the xz plane (central 

panels of Fig. 21), the set/distribution of particles, initially uniformly spread along the spanwise 

direction, with time tends to split into two main distinct ‘swarms’. Initially the two swarms are very 

close each other (giving the illusion of a single spatially extended bunch of floating particles 

occupying the center of the cavity, Fig. 21b, central panel). As time passes, however, the two 

groups of particles come apart (their separation along the x direction tends to increases). This 

process is accompanied by a reorganization of the dispersed mass, which progressively collapses 

into two thin accumulation regions stretched in the direction of vibrations, i.e. the y axis (hereafter 

simply referred to as ‘accumulation planes’, see Fig. 21c, central panel). The distance between these 

two planes keeps increasing with time. As a result, the two thin accumulation regions are 

progressively displaced towards the two walls delimiting the cavity along the x direction. Finally, 

(when the amount of clear fluid located between the thin accumulation regions and these walls 

becomes relatively small, i.e. when the accumulation planes occupy a position relatively close to the 

endwall), the particle-dense regions lose their elongated shape and are turned into two ‘blobs’ 

located in opposite corners of the cubic cavity (as seen in the xy plane, Fig. 21d, right panel for 

t=10). Moreover, an observer looking at the fluid container along the x direction at this time would 

see triangular-like structures resembling those already found for =5x108, =104, =0.5, =3.6x10-3 

(Fig. 21d, left panel).  
 
 

 a) b) 
 
Figure 22: Evolution in time of 3D effects for =1x108, Ra=105, =5x103 (Gs=1220), =2.0 and 
=3.6x10-3: a) parameter Q+, b) Fluid velocity component in the spanwise direction  probed at the 
center of the cavity. 
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Remarkably, this entire process can directly be put in relation with the time-averaged component of 

fluid velocity in the spanwise direction. As witnessed by Fig. 21e, indeed, it is the time-averaged 

component induced by the transfer of momentum from particles to fluid that exerts a compressive 
action on the particles forcing them to cluster into regions of limited extension (small thickness) 

along the spanwise direction and determining the progressive displacement of these particle-dense 

regions towards the external walls.  

Having completed a sketch of the potential impact of the acceleration amplitude (), the particle 

volume fraction (), the particle-to-fluid density ratio () (and therefore the mass load =), we 

now turn to assessing the role of the last influential factor, that is the Rayleigh number (Ra).  

While the previous parameters were all directly affecting solid matter dispersed in the fluid, this 

number will be exerting an influence on the dynamics following a different cause-and-effect 

connection, i.e. due to its direct relationship with the motion of fluid. A decrease in this number will 

clearly produce a mitigation of the fluid flow strength and therefore weakening of the inertial forces 

at play in the considered dynamics.   

For the same values of ,  and  used for the simulations reported in Fig. 21 (namely =2,  

=3.6x10-3 and =1x108), consideration of smaller values of Rayleigh number and angular frequency 

(Ra = 104 and =103, respectively) can have (as expected) remarkable beneficial effects on the 

regularity and perfection of the emerging structures (Figs. 23-24). Although some 3D disturbances 

can still grow (Fig. 23), particles can successfully reveal the perfection of the underlying attractors 

(Fig. 24).  
 
 

 a)  b) 
 
Figure 23: Evolution in time of 3D effects for =1x108, Ra=104, =1x103 (Gs=305), =2.0 and 
=3.6x10-3: a) parameter Q+, b) Fluid velocity component in the spanwise direction probed in the 
center of the cubic cavity. 
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a) 
 

b) 
 

c) 
 
 
Fig. 24 – continued (see next page for figure caption) 
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d) 
 

Figure 24: Snapshots (3D views) of particle structures for =1x108, Ra=104, =103 (Gs=305), 
=2.0 and =3.6x10-3 (left column: perspective perpendicular to the yz plane, center column: 
perspective perpendicular to the xz plane, right column: perspective perpendicular to the xy plane): 
a) t5, b) t7, c) t9, d) Combined 3D view showing particles and isosurfaces of the fluid velocity 
component in the spanwise direction for t7. 
 

 

Interestingly, the particle distribution reorganization process follows a slightly different evolution 

path in this situation. Like the case discussed before (=1x108, Ra=105, =5x103, =2.0 and 

=3.6x10-3), as time passes, the initially continuous distribution of particles along the spanwise 

direction is broken into two different patches (the entire process may give the observer the illusion 

of a ‘cellular mitosis’, as evident in Fig. 24b, central panel). The formation of disjoint accumulation 

regions spanning the entire extension of the cavity in the direction of vibrations, however, does not 

occur in this case. The particle-dense regions are not stretched in the y direction. Rather, as a result 

of the entire process, two opposing blobs of particles emerge directly. As shown in Fig. 24c (right 

panel), each blob tends to occupy the corner between one of the walls limiting the cavity in the 

spanwise direction and another wall limiting it in the direction of vibrations. These two compact 

accumulation regions are mirror symmetric with respect to the diagonal direction x=y.   

As a concluding remark for this section, Figs. 25 and 26 witness that, in line with the various 

interpretations elaborated before, disturbances can be further mitigated by decreasing the density 

ratio. For  = 108,  =103, Ra = 104 and =0.5, particle structures can again manifest as 

geometrically perfect entities mirroring in the physical space the perfection of the corresponding 

attractors existing in the 1-way coupled space of phases. 
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 a)   b) 
Figure 25: Evolution in time of 3D effects for =1x108, Ra=104, =1x103 (Gs=305), =0.5 and 
=3.6x10-3: a) parameter Q+, b) Fluid velocity component in the spanwise direction probed in the 
center of the cubic cavity. 
 

a) b) 
 

c) 
 
Figure 26: Snapshot (3D views for t7) of particle structures for =1x108, Ra=104, =103 
(Gs=305), =0.5 and =3.6x10-3: a) combined 3D view showing particles and isosurfaces of the 
fluid velocity component in the spanwise direction, b) view perpendicular to the xz plane, c) view 
perpendicular to the xy plane).  
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5. Conclusions  

 

In earlier studies, the relationship between ‘particle attractee’ and thermovibrational flow has been 

investigated under the assumption of one-way coupling (which means that attractors have been 

determined as abstract entities playing the role of “templates” for the accumulation of passively 

transported inertial particles). Stripped to its basics, the present research scheme has envisioned a 

parametric investigation aimed to identify the conditions where these ideal entities can still manifest 

in the form of recognizable particle structures (with a more or less high degree of perfection) if the 

assumption of dilute dispersion ceases to be valid.  

At present there are no published papers examining this issue; hence, this is the first time that 

detailed data on the related phenomenology (morphology and range of existence of the structures, 

3D velocity disturbance growth rates and eventually complete transition to chaotic states) have been 

presented.  

Starting from the realization that earlier models used to address this problem had to be modified to 

allow for realistic particle structures to exist, the first objective of this work was to pursue modeling 

of a more complete and sophisticated theoretical and numerical framework. This has been achieved 

by properly coupling Eulerian (for fluid flow) and Lagrangian (for particle tracking) approaches in 

such a way to allow realistic inter-phase feedback effects. 

Besides purely mathematical and numerical aspects, we have implemented a specific analysis 

hierarchy by which the problem has partially been tackled under the unphysical constraint of two-

dimensional flow. These simulations have successfully been used as a workhorse to test the efficacy 

of two-way coupled dispersed particles in disturbing the carrier fluid flow. In particular, under this 

constraint, circumstances have been revealed where the back influence of dispersed solid mass on 

the carrier flow can even overshadow the underlying attractors (predicted on the basis of one-way 

coupling studies) and lead to completely chaotic particle dynamics.  

Remarkably, the 2D study has also been instrumental in unraveling interwoven or overshadowed 

processes, which would have otherwise been difficult to interpret, such as the unexpected rupture of 

symmetry occurring in the spanwise direction.  

Using a synergetic combination of 2D and 3D computations, we have conducted an analysis of the 

triadic relationship among the intensity of fluid convection, the amplitude of acceleration and the 

frequency of the vibrations. Notably, this interplay takes place within an interlocking ensemble of 

mutual interferences, where the primary relationship between the fluid flow and its ability to 

transport the particles (depending on their geometrical and physical properties, i.e. the Stokes 

number and density ratio) is mediated by the secondary influence that they have on the underlying 

fluid flow (where also the particle volume fraction starts to play a significant role), as well as the 

tertiary influence that the flow disturbed in such a way, in turn, has on the particles. 

In turn, the tertiary influence encompasses a new category of three-dimensional bifurcations. These 

are responsible for the emergence of a velocity component along the spanwise direction. This kind 

of instability is essentially driven by the momentum exchange between fluid and particles and the 
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ability of the latter to energize the carrier flow. In this regard, this process may be regarded as a new 

(inertial) mechanism able to produce symmetry breaking phenomena, which have nothing to do 

with the equivalent ones induced by the time-averaged flow when the Gershuni number is relatively 

high (effects which would be present even in the complete absence of dispersed particles, see, e.g., 

Lappa and Burel64). 

In order to obtain an indirect proof of such conceptual scenario, we have intentionally kept the 

value of the Gershuni number relatively small and changed the parameters potentially influencing 

the inter-phase exchange of momentum, namely the Rayleigh number, the acceleration amplitude 

and the particle density and volume fraction. Such analysis has led to the conclusion that while the 

3D instability can be promoted by an increase in the density ratio and/or the particle volume 

fraction, vice versa a decrease in the acceleration amplitude and/or Rayleigh number can stabilize 

the carrier flow.  

Discerning the role played by the effective percentage of mass dispersed in the fluid has contributed 

to our understanding of these dynamics and to the capacity to optimize future experiments planned 

for execution onboard the International Space Station. Perhaps most important of all has been the 

identification of new routes to as-yet unknown phenomena. We have shown that, as a result of the 

above-mentioned 3D instabilities, new types of structures can be formed, which differ from those 

reported in earlier work on the subject due to their prevailing triangular morphology (as seen by an 

observer taking a look at the flow along a direction perpendicular to the plane of vibrations and 

imposed temperature difference) and owing to their ability to collapse in planes of accumulation or 

‘blobs’ well separated along the spanwise direction. 

Future studies shall be devoted to the investigation of all these dynamics when two different 

mechanisms are at play at the same time and determine 3D flow, namely the phenomena of purely 

fluid-dynamic nature that are produced when the Gershuni number takes relatively high values (able 

to break the symmetry of the quadrupolar field and produce significant values of the time-averaged 

velocity component in the spanwise direction64) and the 3D bifurcations driven by fluid-particle 

(two-way) momentum transfer revealed by the present work.  
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