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Superradiant atomic recoil lasing with orbital-angular-momentum light
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We analyze the collective light scattering by cold atoms in free space of a pump-laser beam possessing orbital
angular momentum. We derive a set of coupled multiparticle equations for the atomic motion in which the
vacuum-mode field is adiabatically eliminated. The resulting equations describe collective recoil as due to either
transfer of linear momentum or orbital angular momentum. For a transverse annular atomic distribution the
initial equilibrium with uniform atomic phases and no scattered field is unstable. The atoms are set in rotation
and bunched in phase at different harmonics depending on the pump azimuthal index � and on the ring radius.
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I. INTRODUCTION

Optomechanical collective effects in cold atomic systems,
where atomic density structures and optical fields evolve si-
multaneously under their mutual influence, have been a topic
of interest for several years now. In particular, the exchange
of (linear) momentum between the photons of an incident
optical pump and those of a back-scattered field in an optical
ring cavity has led to the concept of the collective atomic
recoil laser (CARL), predicted in the 1990’s [1,2] and sub-
sequently experimentally observed [3,4]. It is well known that
light may carry also spin angular momentum (SAM) [5] and
orbital angular momentum (OAM) [6] in addition to linear
momentum. Transfer of OAM from light to atoms was first
studied theoretically in [7], and has been studied extensively
ever since [8]. The idea of an analogous effect to CARL
involving collective exchange of OAM between a pump and
a scattered field was proposed in [9,10]. In this scheme, two
copropagating, counter-rotating Laguerre-Gaussian beams in-
cident on a gas of ultracold atoms give rise to a superradiant
instability in which orbital angular momentum is transferred
to the atoms and the probe field is amplified. The atoms
acquire angular momentum in discrete amounts of 2�h̄, where
� is the magnitude of the azimuthal index of the Laguerre-
Gaussian beams. The instability involves the development of
an azimuthal density modulation in the atomic distribution.
Since the pump and probe beams are copropagating, no net
exchange of linear momentum occurs in the scattering pro-
cess. Similar theoretical studies of superradiant scattering into
radially propagating end-fire modes from a pancake shaped
Bose-Einstein condensate (BEC) were performed in [11,12],
where the production of vortices in the BEC was predicted as
a consequence of the superradiant scattering process.

Recently, a multimode theory of CARL in free space
has been developed [13,14], where no assumption about the
scattered direction was made. Contrary to the usual CARL
phenomena, where the light scattering occurs effectively in

a single spatial mode defined by the axis of a ring cavity
or the major axis of an elongated atomic sample, in free
space the pump photons are initially scattered into the three-
dimensional (3D) vacuum modes, and only at later times the
dominant modes of the scattered light emerge naturally from
the collective process.

In this paper, we extend the multimode CARL theory for a
pump laser consisting of a hollow Laguerre-Gaussian beam
with azimuthal index �, without any assumption about the
scattered field. The model leads to a set of coupled equa-
tions for the atoms in which the scattered field is adiabatically
eliminated. This model describes a superradiant emission
process involving exchange of either linear momentum, in
units of p = h̄k, or OAM, in units of h̄�. In particular, we
investigate the dynamics of the atomic motion for an annu-
lar transverse distribution in which the longitudinal motion
along the pump direction is neglected. We find that the initial
equilibrium, with atoms uniformly distributed along the ring
and no scattered photons, is unstable. The atoms are set in
rotation and bunched in phase by a collective process, emitting
a field with a transverse pattern distribution depending on the
azimuthal index � and on the ring radius.

The paper is organized as follows. In Sec. II we present
the theoretical model, starting from the Hamiltonian of N
two-level atoms interacting with the OAM pump and the
vacuum-mode field. We derive from it the single-atom forces,
the OAM-CARL multimode equations, the superradiant equa-
tions describing the 3D atomic motion, and the scattered field.
In Sec. III we consider the motion in a transverse plane ne-
glecting the longitudinal motion. Section IV further reduces
the atomic motion to the case where the atoms are trapped in
a thin circular ring. In Sec. V we address the one-dimensional
dynamics of the atoms in a ring, calculating the equilibrium
and the linear stability. Numerical results for the nonlinear
evolution are presented in Sec. VI and conclusions are drawn
in Sec. VII.
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FIG. 1. Schematic of the experimental setup. The pump beam is
incident along the z axis on an annular atomic distribution.

II. MODEL

A schematic representation of the setup is shown in Fig. 1.
It consists of a collection of cold atoms in an annular config-
uration [15,16] in the plane (x, y), upon which a pump field
consisting of a Laguerre-Gaussian mode is incident along the
z direction. The atoms scatter the incident photon in all 3D
directions. In the following we introduce the equations de-
scribing the evolution of the center of mass of each atom under
the optical dipole force of the pump and scattered field, and of
the multimode scattered field. In free space the optical field
can be adiabatically eliminated, leading to a set of coupled
equations for the atoms.

A. OAM pump field

We assume a pump consisting of a hollow Laguerre-
Gaussian mode LG0� directed along the z axis and linearly
polarized, the electric-field component of which, expressed in
cylindrical coordinates, has the form [17]

E0(ρ, φ, z) = A0R(ρ)e
i(k0z+�φ−ω0t ) + c.c. (1)

We assume, without loss of generality, � > 0, and define

R(ρ) = e−ρ2/w2

(√
2ρ

w

)�

, (2)

A0 =
√

2�+1P0
πw2�!ε0c

, (3)

where w is the beam waist (assumed constant) and P0 is the
mode power.

B. Hamiltonian

We assume N two-level atoms with internal states |g j〉
and |e j〉, with positions and momenta r j and p j = Mv j (with
j = 1, . . . ,N), mass M, resonant frequency ωa, and dipole
d , interacting with a pump OAM field given by Eq. (1) and

scattering photons in the vacuum modes with wave number k
and frequency ωk . The system is described by the Hamiltonian

H = HL + HV . (4)

The first term of Eq. (4) describes the interaction of the atoms
with the pump laser, with

HL =
N∑
j=1

p2j
2M

+ h̄�0

2

N∑
j=1

R(ρ j )[σ
−
j e

i
0t−ik0z j−i�φ j

+ σ+
j e

−i
0t+ik0z j+i�φ j ], (5)

where �0 = dA0/h̄ is the pump Rabi frequency and 
0 =
ω0 − ωa is the pump-atom detuning. The internal dynam-
ics of the two-level atoms are described by the operators
σ z
j = |e j〉〈e j | − |gj〉〈g j |, σ+

j = |e j〉〈g j |, and σ−
j = |g j〉〈e j |.

The second term of Eq. (4) describes the interaction between
the atoms and the vacuum-mode field, with

HV = h̄
∑
k

gk[a
†
kσ

−
j e

i
kt−ik·r j + σ+
j ake

−i
kt+ik·r j ]. (6)

The vacuum modes, described by the operators ak, have wave
vectors k and frequency ωk with 
k = ωk − ωa, coupling rate
gk = d[ωk/(2h̄ε0Vph)]1/2, Vph being the quantization volume.
We disregard polarization and short-range effects, using a
scalar model for the radiation field.

The Heisenberg equations for the dipole operators σ−
j are

σ̇−
j = i

[
�0

2
R(ρ j )e

−i
0t+ik0z j+i�φ j +
∑
k

gkake
−i
kt+ik·r j

]
σ z
j .

(7)

Introducing σ j = σ−
j e

i
0t and neglecting the population of the
excited state (assuming weak field and/or large detuning 
0),
so that σ z

j ≈ −1,

σ̇ j =
(
i
0 − �

2

)
σ j − i�0

2
R(ρ j )e

ik0z j+i�φ j

− i
∑
k

gkake
−i(ωk−ω0 )t+ik·r j , (8)

where we added the spontaneous emission decay term
−(�/2)σ j , with � = d2k3/2πε0h̄ as the spontaneous decay
rate. Assuming � � ωrec, ωrec = h̄k2/2M being the recoil
frequency, we can adiabatically eliminate the internal degree
of freedom, taking σ̇ j ≈ 0 in Eq. (8):

σ j ≈ 1


0 + i�/2

[
�0

2
R(ρ j )e

ik0z j+i�φ j

+
∑
k

gkake
−i(ωk−ω0 )t+ik·r j

]
. (9)

The first term describes the dipole excitation induced by the
driving field, whereas the second term is the excitation in-
duced by the scattered field.
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C. Single-atom forces

The OAM laser beam induces on each atom a mechanical
force

FL j = −∇ jHL = Fz j + Fφ j + Fρ j, (10)

the components of which can be derived using Eq. (5), assum-
ing cylindrical coordinates and retaining only the first term of
Eq. (9):

Fz j = −ûz
∂HL

∂z j
= h̄k0

�


2
0 + �2/4

[
�0R(ρ j )

2

]2

ûz, (11)

Fφ j = − ûφ

ρ j

∂HL

∂φ j
= �h̄

�


2
0 + �2/4

[
�0R(ρ j )

2

]2 ûφ

ρ j
, (12)

Fρ j = −ûρ

∂HL

∂ρ j
= − 2h̄
0


2
0 + �2/4

[
�0R(ρ j )

2

]2

×
[

�

ρ j
− 2ρ j

w2

]
ûρ. (13)

The force Fz j is the usual radiation pressure force, directed
along the incidence direction of the laser beam, with k0 =
k0ûz. The azimuthal force Fφ j produces a torque directed
along the z axis, which put the atoms in rotation [7]. The radial
force Fρ j is zero for ρ j = w

√
�/2 [where R(ρ j ) is maximum]

and is focusing toward this maximum for 
0 < 0.

D. Multimode OAM-CARL model

Assuming the pump field detuning 
0 � �, we neglect
the multiple scattering processes. The resulting multimode
equations describing the collective recoil in the presence of
an OAM pump beam are (see Appendix A)

ṙ j, = p j

M
, (14)

ṗ j = ih̄gR(ρ j )
∑
k

(k0 − k){ake−i(k0−k)·r j−i�φ j−iδkt − H.c.}

− h̄g

{[
dR(ρ j )

dρ j
ûρ − i�

R(ρ j )

ρ j
ûφ

]

×
∑
k

ake
−i(k0−k)·r j−iδkt + H.c.

}
+ FL j, (15)

ȧk = −ig
N∑
j=1

R(ρ j )e
i(k0−k)·r j+i�φ j+iδkt , (16)

where j = 1, . . . ,N , δk = ωk − ω0, g = gk (�0/2
0), and the
sum in k is over all the vacuum three-dimensional modes.
In the right-hand side of Eq. (15), the first term is the force
proportional to the photon momentum exchange h̄(k0 − k)
[13], whereas the second term is the collective force propor-
tional to the gradient of the pump amplitude profile and of the
azimuthal phase. In the limit 
0 � � the single-atom force
(10) takes the form

FL j = �

[
�0R(ρ j )

2
0

]2(
h̄k0ûz + h̄�

ρ j
ûφ

)

+ h̄[�0R(ρ j )]2

2
0

[
�

ρ j
− 2ρ j

w2

]
ûρ. (17)

Equations (14)–(16) extend the single-mode OAM-CARL de-
scribed in [9], where the atoms are assumed to scatter the
pump photons in a copropagating, with k = k0, and counter-
rotating Laguerre-Gaussian mode LG0−� with the same beam
waist w. Furthermore, [9] assumes the atoms trapped in a thin
circular ring in the transverse plane such that the radial motion
is negligible, i.e., ρ j is constant and equal to ρ = w

√
�/2 [for

which R(ρ) is maximum]. In this case the evolution of the
atomic cloud is essentially one-dimensional, in the azimuthal
coordinate alone.

E. Superradiant OAM-CARL model

In free space we can assume the Markov approximation
and adiabatically eliminate the multimode radiation field ak in
Eqs. (14)–(16) (see Appendix B). The resulting equations are

ṙ j = p j

M
, (18)

ṗ j = �h̄k0

(
�0

2
0

)2

R(ρ j )
∑
m �= j

R(ρm)

{
(ẑ − r̂ jm)

sin[k0(r jm − z jm) − �φ jm]

k0r jm
− r̂ jm

cos[k0(r jm − z jm) − �φ jm]

(k0r jm)2

}

+ h̄�

(
�0

2
0

)2

R(ρ j )

[
�

ρ j
− 2ρ j

w2

] ∑
m �= j

R(ρm)
cos[k0(r jm − z jm) − �φ jm]

k0r jm
ûρ

+ �h̄�

(
�0

2
0

)2R(ρ j )

ρ j

∑
m �= j

R(ρm)
sin[k0(r jm − z jm) − �φ jm]

k0r jm
ûφ + FL j, (19)

where φ jm = φ j − φm, r jm = |r j − rm|, and r̂ jm = (r j −
rm)/r jm, which is the unit vector along the distance between
r j and rm. The first term of the right-hand side of Eq. (19) is

due to the collective momentum recoil, weighted by the radial
profile R(ρ) of the pump field; the second term is a collective
radial force, due to variation of the radial profile of the pump;
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and the third one is the collective azimuth force, proportional
to the gradient of the OAM pump phase. It is possible to
return to the results obtained for CARL in free space in [13],
where the atoms are driven by a plane wave, by considering
the first term only, with R(ρ j ) = 1 and � = 0. We outline that
the model described by Eqs. (18) and (19) assumes classi-
cal atomic motion, considering the atoms as point particles
with well-defined position and momentum. Generally, this
condition is realized when the superradiant scattering rate is
larger than the recoil frequency [18]. Furthermore, we neglect
the thermal motion, assuming the temperature low enough
such that we can neglect the Doppler broadening induced by
the thermal velocities.

F. Scattered field

The scattered intensity in the far-field limit, for r � r j , is

Is(k) = I1N
2|M(k, t )|2, (20)

where I1 = (h̄ω0�/8πr2)(�0/2
0)2 is the single-atom
Rayleigh scattering intensity and

M(k, t ) = 1

N

N∑
j=1

R(ρ j )e
i(k0−k)·r j (t )+i�φ j (t ) (21)

is the “optical magnetization,” or “bunching factor.” The di-
rection of the scattered field is determined by the wave vector
k in Eq. (21), which depends on the spatial distribution of the
atoms.

III. ATOMS IN A TRANSVERSE PLANE

We are interested in the case where the atoms are confined
in the transverse plane, with z j = 0. Then Eq. (19) becomes

ṗ j = −�h̄k0

(
�0

2
0

)2

R(ρ j )
∑
m �= j

R(ρm)

{
sin[k0ρ jm − �φ jm]

k0ρ jm
+ cos[k0ρ jm − �φ jm]

(k0ρ jm)2

}
û jm + h̄�

(
�0

2
0

)2

R(ρ j )

×
[ |�|

ρ j
− 2ρ j

w2

] ∑
m �= j

R(ρm)
cos[k0ρ jm − �φ jm]

k0ρ jm
ûρ + �h̄�

(
�0

2
0

)2R(ρ j )

ρ j

N∑
m=1

R(ρm)
sin[k0ρ jm − �φ jm]

k0ρ jm
ûφ + Fρ j, (22)

where û jm = (r⊥ j − r⊥m)/ρ jm, with ρ jm =
√

ρ2
j + ρ2

m − 2ρ jρm cosφ jm and r⊥ j = ρ j cosφ j ûx + ρ j sin φ j ûy. The last term in
Eq. (22) is the single-atom radial force exerted by the pump:

Fρ j = h̄[�0R(ρ j )]2

2
0

(
�

ρ j
− 2ρ j

w2

)
ûρ. (23)

We have neglected the longitudinal radiation pressure force Fz j and included the azimuthal force Fφ j in the last sum over m of
Eq. (22), with the term m = j. This is a rather surprising result which will have important consequences in the occurrence of the
azimuthal CARL instability, and it will be discussed in Sec. V.

By projecting Eq. (22) along the radial and azimuthal directions, we obtain

ρ̈ j =
∑
m �= j

f jm
ρ jm

(ρ j − ρm cosφ jm) + hj + ρ j φ̇
2
j , (24)

2ρ̇ j φ̇ j + ρ j φ̈ j =
∑
m �= j

f jm
ρ jm

ρm sin φ jm + g j, (25)

with

f jm = −�
h̄k0
M

(
�0

2
0

)2

R(ρ j )R(ρm)

{
sin(k0ρ jm − �φ jm)

k0ρ jm
+ cos(k0ρ jm − �φ jm)

(k0ρ jm)2

}
, (26)

h j = h̄�

M

(
�0

2
0

)2

R(ρ j )

[
�

ρ j
− 2ρ j

w2

]{∑
m �= j

R(ρm)
cos(k0ρ jm − �φ jm)

k0ρ jm
+ 2
0

�
R(ρ j )

}
, (27)

g j = �
h̄�

M

(
�0

2
0

)2R(ρ j )

ρ j

N∑
m=1

R(ρm)
sin(k0ρ jm − �φ jm)

k0ρ jm
. (28)

We observe that the first term on the right-hand side of Eq. (22) gives both a radial and azimuthal contribution to the force
[term f jm in Eqs. (24) and (25)], whereas its second term and the pump gradient force Fρ j give a purely radial force [term h j in
Eq. (24)]. Finally the third term of the right-hand side of Eq. (22) gives an azimuthal force proportional to the index � [term gj

in Eq. (25)].
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Considering the emission only in the transverse plane,
with k = k0 cos θ ûx + k0 sin θ ûy, the optical magnetization
becomes

M(θ ) = 1

N

N∑
j=1

R(ρ j )e
−ik0ρ j cos(θ−φ j )+i�φ j . (29)

We observe that its phase is modulated by the different atomic
positions in the transverse plane. Using the identity

eiz cosφ =
+∞∑

m=−∞
imJm(z)e

imφ, (30)

where Jm(z) is the mth-order Bessel function, we can write

M(θ ) =
+∞∑

m=−∞
P�,me

imθ , (31)

where

P�,m = (−i)m
1

N

N∑
j=1

R(ρ j )Jm(k0ρ j )e
i(�−m)φ j . (32)

Hence, the angular distribution of the scattered intensity is
determined by the radial and azimuthal atomic positions.

IV. ATOMS ON A RING

Let us consider the case where the atoms are trapped in a
thin circular ring in the transverse plane such that the radial
motion of the atoms is negligible, i.e., ρ j = ρ is constant.
Then, the evolution of the atomic motion is essentially one-
dimensional in the azimuth angle φ j . By considering ρ jm =
2ρ| sin(φ jm/2)|, together with Eqs. (24) and (25), we obtain
the azimuthal equation

φ̈ j = ωr�

(
�0

2
0

)2 R2(ρ)

(k0ρ)2

{
−

∑
m �= j

cot(φ jm/2)

[
sin[2k0ρ| sin(φ jm/2)| − �φ jm] + cos[2k0ρ| sin(φ jm/2)| − �φ jm]

2k0ρ| sin(φ jm/2)|
]

+�

N∑
m=1

sin[2k0ρ| sin(φ jm/2)| − �φ jm]

k0ρ| sin(φ jm/2)|

}
. (33)

We observe that, if ρ = w/
√
2 = 1/kθ , the torque on the j

atom is proportional to the angular recoil frequency ωθ =
h̄k2θ /2M rather than to the recoil frequency ωr . When ρ j is
constant the optical magnetization can be written as

M(θ ) = R(ρ)

N

N∑
j=1

e−ik0ρ cos(θ−φ j )+i�φ j

=R(ρ)
∑
m

(−i)mJm(k0ρ)�m−�e
imθ , (34)

where

�n = 1

N

N∑
j=1

e−inφ j (35)

is the azimuthal bunching on the nth harmonic. In the case of a
uniform distribution of the phases φ j , its expression becomes

M(θ ) = R(ρ)(−i)�J�(k0ρ)e
i�θ , (36)

so that |M(θ )| = R(ρ)|J�(k0ρ)| and the scattered intensity is
isotropic in the transverse plane. This is true also if the phases
are perfectly bunched around a single value, φ j = φ0:

M(θ ) = R(ρ)ei�φ0−iρ cos(θ−φ0 ), (37)

with |M(θ )| = R(ρ). More generally, M(θ ) is a superposition
of different harmonics.

V. AZIMUTHAL OAM-CARL MODEL

We study the azimuthal motion of the atoms in the two-
dimensional transverse plane, described by Eqs. (33). To avoid

the singularity for φ jm → 0, we introduce a cutoff ε such that

|sin(φ jm/2)| →
√
sin2(φ jm/2) + ε2 ≡ q jm. (38)

Furthermore, since ρ is kept constant, we rescale the time t
into the dimensionless time t ′ = βt , with

β =
√

ωr�

(
�0

2
0

R(ρ)

k0ρ

)
. (39)

Hence, the working equations are

d2φ j

dt ′2
= −

∑
m �= j

sin(φ jm)

2q2jm

×
{
sin[2k0ρq jm − �φ jm] + cos[2k0ρq jm − �φ jm]

2k0ρq jm

}

+ �

N∑
m=1

sin[2k0ρq jm − �φ jm]

k0ρq jm
. (40)

For a single atom, in the limit ε → 0 the unscaled equation for
the single atom with phase φ is

φ̈ = 2� β2 = �
h̄�

Mρ2

(
�0R(ρ)

2
0

)2

. (41)

It can be written in terms of the atomic angular momentum
along the z axis, Lz = Mρ2φ̇:

L̇z = �h̄�

(
�0R(ρ)

2
0

)2

= Tz, (42)

where Tz is the torque exerted by the OAM pump, in agree-
ment with [7]. In the scattering force, the pump photon also
transfers, other than its linear momentum h̄k0, its angular
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momentum (h̄�)ẑ, and the torque Tz is equal to the photon
angular momentum h̄� times the scattering rate.

Let us write Eq. (40) in the form

d2φ j

dt ′2
=

N∑
m=1

G(φ j − φm) (43)

with j = 1, . . . ,N and where

G(x) = − sin x

2q(x)2

[
sin[2ρ ′q(x) − �x] + cos[2ρ ′q(x) − �x]

2ρ ′q(x)

]

+ �
sin[2ρ ′q(x) − �x]

ρ ′q(x)
, (44)

ρ ′ = k0ρ, and

q(x) =
√
sin2(x/2) + ε2. (45)

An important feature is that the force G(φ j − φm) on par-
ticle j due to particle m does not have the symmetry of a
force derivable from a two-body interaction potential, which
is a function solely of the separation between particles, i.e.,
G(φ j − φm) �= −G(φm − φ j ). As a consequence, the average
angular velocity 〈φ̇〉 = (1/N )

∑N
j=1 φ̇ j is not conserved in

time. The dynamics of Eqs. (43) are not derivable from an
underlying Hamiltonian, so that one may not associate an
energy function with the system [19].

The function G(x) can be derived from a potential V (x):

G(x) = − d

dx
V (x), (46)

where

V (x) = −cos[2ρ ′q(x) − �x]

ρ ′q(x)
. (47)

Therefore, Eq. (43) can be rewritten as

d2φ j

dt ′2
= − ∂

∂φ j

N∑
m=1

V (φ j − φm). (48)
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FIG. 2. sn vs n for � = 1 and 2, k0ρ = 1, and ε = 0.1.
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FIG. 3. sn vs n for � = 1 and 2, k0ρ = 10, and ε = 0.1.

A. Equilibrium

In the case the phases are uniformly distributed (no bunch-
ing), we consider φ j as continuous variables φ and we
approximate the sum in Eq. (48) by an integral:

d2φ

dt ′2
= − N

2π

∂

∂φ

∫ 2π

0
dφ′V (φ − φ′)

= N

2π

∫ 2π

0
dφ′ ∂V (φ − φ′)

∂φ′ . (49)

Changing the integration variable into x = φ − φ′ and using
the fact that V (x) is periodic between zero and 2π , we can
write

d2φ

dt ′2
= − N

2π

∫ φ+2π

φ

dx
dV (x)

dx

= − N

2π
[V (φ + 2π ) −V (φ)] = 0. (50)

0 1 2 3 4 5 6 7 8 9 10
10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

n=2
n=4
n=6

|Φ
n|

βt

FIG. 4. Bunching |�n| vs time βt , for k0ρ = 1 and � = 1. The
other parameters of the simulation are N = 100 and ε = 1.
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FIG. 5. Average angular velocity 〈ω〉/β and spread σω/β =√
〈ω2〉 − 〈ω〉2/β vs time βt , for k0ρ = 1 and � = 1.

Hence, if the distribution of the phases is uniform, the force
on every atom is zero and the system is in equilibrium. The
system is unstable under small perturbations of this initial
conditions, with a rate proportional to

√
N and a lethargy time

proportional to ln(N ), as it will be proved in the next section.

B. Stability analysis

We have proved that the azimuthal motion equa-
tion Eq. (43) has an equilibrium for φ j = φ

(0)
j , such that

∑
m

G
(
φ
(0)
j − φ(0)

m

) = 0 (51)

and φ̇ j = 0. Let us perturb the equilibrium, φ j (t ) = φ
(0)
j +

δφ j (t ), with δφ j � φ
(0)
j . Then, the linearized nth harmonic

azimuthal bunching

δ�n(t
′) = 1

N

∑
j

e−inφ(0)
j δφ j (t

′) (52)

grows in time as �n(t ′) ∝ eλnt ′ (see Appendix C), where

λn = ±in
√
NVn, (53)

and where Vn is the Fourier transform of the potential V (x):

Vn = 1

2π

∫ 2π

0
V (x)e−inxdx. (54)

Hence, the azimuthal superradiant rate for the nth harmonic
bunching is

�n =
√
Nβsn(k0ρ, �) =

√
ωr�N

(
�0

2
0

R(ρ)

k0ρ

)
sn, (55)

where

sn = n
∣∣Im√

Vn
∣∣. (56)

The corresponding frequency shift is

δ�n =
√
Nβδωn =

√
ωr�N

(
�0

2
0

R(ρ)

k0ρ

)
δωn, (57)

with

δωn = nRe
√
Vn. (58)

We observe that the superradiant rate scales as
√
N , typical

for superradiance in a classical system [18]. Figure 2 shows
sn as a function of n for k0ρ = 1, � = 1, and � = 2. The
cutoff is set to ε = 0.1. We observe that for a very focused
beam (k0ρ � 1) the maximum bunching occurs for the har-
monic n = �. However, things become more complex when
the ring radius is larger, for k0ρ � 1. Figure 3 shows sn as a
function of n for k0ρ = 10, with � = 1 and 2: In these cases
the harmonic distribution is wider, with a single maximum
around n = 7 for � = 1 and two relative maxima around n = 5
and 10 for � = 2. Finally, the condition in order to neglect
quantum effects in the atomic motion is that the superradiant
rate

√
Nβ must be larger than the azimuthal recoil frequency

ωφ = h̄/2Mρ2 = ωr/(k0ρ)2.
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FIG. 6. Optical magnetizationM(θ ) = |M(θ )| exp(iψ ) for k0ρ = 1 and � = 1, at βt = 8.5. (a) Polar plot of |M(θ )|. (b) Phase ψ vs θ . The
dashed line is a linear fit with ψ = −1.78 + 1.06 θ .
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FIG. 7. Bunching |�n| vs time βt , for k0ρ = 1 and � = 2.

VI. NUMERICAL RESULTS

Equation (40) has been solved numerically for different
values of ρ and �. The parameters assumed have been N =
100 and ε = 1, in order to avoid numerical instabilities occur-
ring when two particles become too close to each other. In a
real system, with many atoms distributed in larger volumes,
this issue should be less critical, with few particles kicked off
by pair collisions. The results presented here, in an idealized
situation in which the atoms have negligible thermal motion
and are distributed on a ring of zero thickness, have the ob-
jective to show the typical features of the collective effects
observable by a laser beam possessing an OAM beam incident
on the atoms confined in a transverse annular volume. An
extension of the analysis including also the radial dynamics
and the temperature effects will be presented elsewhere.

First, we have considered a case of a tightly focused laser
beam, with k0ρ = 1. Figure 4 shows the azimuthal bunching
|�n| vs time for � = 1. The growth occurs for n = 2 and its
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10-1
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|Φ
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βt

FIG. 9. Bunching |�n| vs time βt , for k0ρ = 10 and � = 1.

first harmonics n = 4, 6, up to a value close to unity, corre-
sponding to the atoms bunched around two opposite phases,
with difference π . The atoms start to rotate counterclockwise
when the bunching |�2| becomes significant, as can be seen
in Fig. 5, showing the average angular velocity 〈ω〉/β vs
time (where ω j = dφ j/dt) (full red line) and the spread of
the angular velocity σω/β =

√
〈ω2〉 − 〈ω〉2/β. The phases are

accelerated up to an angular velocity of about 10β. Figure 6
shows the polar plot of |M(θ )| [Fig. 6(a)] and its phase ψ

[Fig. 6(b)] vs θ , whereM(θ ) = |M(θ )| exp[iψ (θ )]. The emis-
sion occurs in the transverse plane within two lobes, in a
typical bipolar distribution, rotating with the atomic average
angular velocity. We observe that the scattered field is, from
Eq. (34),

M(θ ) ∼ R(ρ)eiθ {J1(k0ρ)[1 − i�∗
2e

−2iθ ] − J3(k0ρ)�2e
2iθ }.
(59)

Since J3(k0ρ) � J1(k0ρ) and |�2| < 1, the phase is ψ (θ ) ∼
θ0 + θ with a modulation ∝ sin(2θ + θ02) [see Fig. 6(b)]. A
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FIG. 8. Optical magnetizationM(θ ) = |M(θ )| exp(iψ ) for k0ρ = 1 and � = 2, at βt = 8.5. (a) Polar plot of |M(θ )|. (b) Phase ψ vs θ . The
dashed line is a linear fit with ψ = −0.17 − 0.95 θ .

023526-8



SUPERRADIANT ATOMIC RECOIL LASING WITH … PHYSICAL REVIEW A 105, 023526 (2022)

0 1 2 3 4 5 6 7 8 9 10
10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

<ω>/β
   σω/β

βt

FIG. 10. Average angular velocity 〈ω〉/β and spread σω/β =√
〈ω2〉 − 〈ω〉2/β vs time βt , for k0ρ = 10 and � = 1.

similar behavior is observed for k0ρ = 1 and � = 2, in Figs. 7
and 8: Now the angular bunching is for n = 3 and for its
harmonics [see Fig. 7], whereas the field angular distribution
has three symmetric lobes [see Fig. 8(a)], meaning that the
atoms bunch around three phases separated by 2π/3. The field
in this case is

M(θ ) ∼ iR(ρ)e−iθ [J1(k0ρ)�
∗
3 + iJ2(k0ρ)e

3iθ

− J5(k0ρ)�3e
6iθ ]. (60)

Since J5(k0ρ) � J2(k0ρ) � J1(k0ρ) and |�3| < 1, the phase
is nowψ (θ ) ∼ θ0 − θ with a modulation as sin(3θ + θ03) [see
Fig. 8(b)].

Secondly, we consider a ring with a large radius, k0ρ = 10
in the example shown in Figs. 9–11. In this case more than one
mode is exponentially amplified (see for instance the result of
the linear analysis, Fig. 3). Figure 9, for � = 1, shows that two
modes, n = 4 and 5 with their harmonics, are amplified, with
a maximum value larger for the mode n = 4. Also in this case
the atoms are set in rotation with a maximum average angular

velocity of 〈ω〉 ∼ 10β (see Fig. 10). The angular distribution
and the phase of the field present a richer structure, as can
be seen from Fig. 11. In particular, we observe the presence
of four main lobes [see Fig. 11(a)] with a more complex
secondary structure. In general, we observe that by increasing
the ring radius we excite more and more modes. In the limit of
large radius we expect that the emission distribution will tend
to be isotropic in the transverse plane.

VII. CONCLUSIONS

We have presented a study of superradiant scattering of
an optical field possessing OAM by a cold atomic gas using
a multimode classical model in which no initial assumption
about the spatial structure of the scattered field is made. For
simplicity we restricted the analysis to the case where the
atoms are distributed in a thin ring and the atomic dynamics
involve azimuthal motion only. It was shown that a uniform
angular distribution of atoms throughout the ring becomes
unstable when illuminated with a far-detuned optical pump
field, and that the instability is superradiant in character, re-
sulting in spontaneous rotation of the gas and formation of
atomic bunches around the ring and scattered light the phase
profile of which is dependent on the pump OAM index, �. A
natural extension to the paper presented here is a relaxation
of some of the assumptions used, e.g., the restriction to solely
azimuthal dynamics to include also radial and even longitu-
dinal dynamics to describe more complex spatial structures,
and the extension to include polarization effects, as was done
for CARL in [14]. This would allow study of interactions
involving exchange of both OAM and SAM. Additionally,
extension from cold, thermal gases to quantum degenerate
gases opens up possibilities for new methods for creation of
vortices and persistent currents in BECs, in addition to those
described in [11,12].
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APPENDIX A: DERIVATION OF THE MULTIMODE EQS. (14)–(16)

The force acting on the jth atom is obtained from the Heisenberg equation:

ṗ j = 1

ih̄
[p j,HL + HV ] = F j, (A1)

where HL and HV are given by Eqs. (5) and (6). Using cylindrical coordinates, the force F j is

Ḟ j = h̄�0

2

{
σ j

[
ik0R(ρ j )ûz − dR(ρ j )

dρ j
ûρ + i�

R(ρ j )

ρ j
ûφ

]
e−ik0z j−i�φ j − H.c.

}
+ ih̄

{
σ j

∑
k

k gka
†
ke

iδkt−ik·r j − H.c.

}
, (A2)

with δk = ωk − ω0. The Heisenberg equation for the multimode field operator ak is

ȧk = 1

ih̄
[ak,HV ] = −igke

iδkt
N∑
j=1

σ je
−ik·r j . (A3)

By inserting the expression of σ j , Eq. (9), in Eq. (A3), assuming 
0 � �, and neglecting the vacuum field-induced term in
Eq. (9), we obtain

ȧk = −igeiδkt
N∑
j=1

R(ρ j )e
i(k0−k)·r j+i�φ j , (A4)

with g = gk (�0/2
0). To obtain the force on the jth atom, we insert Eq. (9) in Eq. (A2), assuming 
0 � � and neglecting the
terms quadratic in the vacuum field ak. A straightforward calculation yields

F j = ih̄gR(ρ j )
∑
k

(k0 − k)
{
ake

−i(k0−k)·r j−i�φ j−iδkt − H.c.
}

−h̄g

{[
dR(ρ j )

dρ j
ûρ − i�

R(ρ j )

ρ j
ûφ

] ∑
k

ake
−i(k0−k)·r j−iδkt + H.c.

}
+ FL j, (A5)

where FL j is the force exerted by the laser beam, expressed by Eq. (17).

APPENDIX B: DERIVATION OF THE SUPERRADIANT EQS. (18) and (19)

In free space the light is scattered in the 3D vacuum modes. Following [13], we eliminate the scattered field by integrating
Eq. (16) to obtain

ak(t ) = ak(0)e
−i(ωk−ω0 )t − igN

∫ t

0
ρk0−k(t − τ )e−i(ωk−ω0 )τdτ, (B1)

with

ρq(t ) = 1

N

N∑
j=1

R(ρ j )e
i�φ j eiq·r j (t ). (B2)

The first term in Eq. (B1) gives the free electromagnetic field, i.e., vacuum fluctuations, and the second term is the radiation field
due to Rayleigh scattering. If Eq. (B1) is substituted into Eq. (15) for p j , we obtain

ṗ j = h̄g2N
∑
k

(k0 − k)
∫ t

0
dτR(ρ j )

[
ρk0−k(t − τ )e−i(k0−k)·r j−i�φ j e−i(ωk−ω0 )τ + H.c.

] + ih̄g2N
∑
k

∫ t

0
dτ

×
{[

dR(ρ j )

dρ j
ûρ − i�

R(ρ j )

ρ j
ûφ

]
ρk0−k(t − τ )e−i(k0−k)·r j e−i(ωk−ω0 )τ + H.c.

}
+ FL j, (B3)

where the first term of Eq. (B1) has been neglected. Then, transforming the sum over k into an integral and using Eq. (B2), we
attain the following expression:

ṗ j = h̄g2
Vph

8π3

∑
m �= j

R(ρ j )R(ρm)

[
e−ik0·(r j−·rm )−i�(φ j−φm )

∫ t

0
dτeiω0τ

∫
dk(k0 − k)eik·(r j−·rm )e−ickτ + H.c.

]
+ ih̄g2

Vph

8π3

∑
m �= j

R(ρm)

×
{[

dR(ρ j )

dρ j
ûρ − i�

R(ρ j )

ρ j
ûφ

]
e−ik0·(·r j−·rm )−i�(φl−φm )

∫ t

0
dτeiω0τ

∫
dkeik·(r j−rm )e−ickτ − H.c.

}
+ FL j, (B4)
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in which we used the Markov approximation so that r j (t − τ ) ≈ r j (t ). We use the results of [13] to write∫
dkeik·(r j−rm )e−ickτ = 4π2k20

c

1

ik0r jm
[δ(τ − r jm/c) − δ(τ + r jm/c)], (B5)∫

dkkeik·(r j−rm )e−ickτ = 4π2k30
c

{
1

ik0r jm
[δ(τ − r jm/c) + δ(τ + r jm/c)] + 1

(k0r jm)2
[δ(τ − r jm/c) − δ(τ + r jm/c)]

}
r̂ jm, (B6)

with r jm = r j − rm, r jm = |r jm|, and r̂ jm = r jm/r jm. By inserting these expressions into Eq. (B4), together with the definitions
of g and �, it is straightforward to arrive to the following expression of the force equation:

ṗ j = �h̄k0

(
�0

2
0

)2

R(ρ j )
∑
m �= j

R(ρm)

{
(ẑ − r̂ jm)

sin[k0(r jm − z jm) − �φ jm]

k0r jm
− r̂ jm

cos[k0(r jm − z jm) − �φ jm]

(k0r jm)2

}

+ h̄�

(
�0

2
0

)2 dR(ρ j )

dρ j

∑
m �= j

R(ρm)
cos[k0(r jm − z jm) − �φ jm]

k0r jm
ûρ

+ �h̄�

(
�0

2
0

)2R(ρ j )

ρ j

∑
m �= j

R(ρm)
sin[k0(r jm − z jm) − �φ jm]

k0r jm
ûφ + FL j, (B7)

with φ jm = φ j − φm. The first term is due to the collective momentum recoil, weighted by the radial profile of the pump field.
The second term is a collective radial force, due to variation of the radial profile of the pump. Notice that dR(ρ j )/dρ j =
R(ρ j )[�/ρ j − 2ρ j/w

2]. The third term is the collective azimuthal force, due to the winging phase of the OAM pump.

APPENDIX C: DERIVATION OF EIGENVALUES
OF EQ. (53)

The equations

φ̈ j =
N∑

m=1

G(φ j − φm) (C1)

with j = 1, . . . ,N have an equilibrium with φ j = φ
(0)
j such

that ∑
m

G
(
φ
(0)
j − φ(0)

m

) = 0 (C2)

and φ̇ j = 0. Let us perturb the equilibrium with φ j (t ) =
φ
(0)
j + δφ j (t ), with δφ j � φ

(0)
j , and

¨δφ j = −
N∑

m=1

K
(
φ
(0)
j − φ(0)

m

)
(δφ j − δφm), (C3)

where

K (x) = − d

dx
G(x) = d2

dx2
V (x). (C4)

The first term on the right-hand side of Eq. (C3) is zero since

N∑
m=1

K
(
φ
(0)
j − φ(0)

m

) → N

2π

∫ 2π

0
dφ′K (φ − φ′)

= − N

2π

∫ φ+2π

φ

dx
d

dx
G(x)

= N

2π
[G(φ + 2π ) − G(φ)]= 0, (C5)

and because G(x) is periodic in (0, 2π ). The linear stability is
governed by the equations

¨δφ j =
N∑

m=1

K
(
φ
(0)
j − φ(0)

m

)
δφm. (C6)

We write the potential V (x) as

V (x) = − 1

2ρ ′q(x)
(e−2iρ ′q(x)+i�x + c.c.) = α(x)ei�x + c.c.,

(C7)
where

α(x) = −e−2iρ ′q(x)

2ρ ′q(x)
, (C8)

so that

K (x) = V ′′(x) = [α′′(x) + 2i�α′(x) − �2α(x)]ei�x + c.c.

= γ (x)ei�x + c.c. (C9)

Introducing the linearized nth harmonic azimuthal
bunching as

δ�n(t ) = 1

N

∑
j

e−inφ(0)
j δφ j (t ), (C10)

from Eqs. (C6) and (C9) it follows that

¨δ�n = 1

N

∑
j

e−i(n−�)φ(0)
j

∑
m

γ
(
φ
(0)
j − φ(0)

m

)
e−i�φ(0)

m )δφm

+ 1

N

∑
j

e−i(n+�)φ(0)
j

∑
m

γ ∗(φ(0)
j − φ(0)

m

)
ei�φ

(0)
m δφm.

(C11)

We define

Fn
m =

∑
j

γ
(
φ
(0)
j − φ(0)

m

)
e−i(n−�)φ(0)

j , (C12)
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Gn
m =

∑
j

γ ∗(φ(0)
j − φ(0)

m

)
e−i(n+�)φ(0)

j , (C13)

so that

¨δ�n = 1

N

∑
m

Fn
me

−i�φ(0)
m δφm + 1

N

∑
m

Gn
me

i�φ(0)
m δφm. (C14)

In order to determine Fn
m and Gn

m, we transform the sums
over j into integrals considering φ

(0)
j and φ(0)

m as continuous
variables with uniform distribution:

Fn(φ) = N

2π

∫ 2π

0
γ (φ′ − φ)e−i(n−�)φ′

dφ′, (C15)

Gn(φ) = N

2π

∫ 2π

0
γ ∗(φ′ − φ)e−i(n+�)φ′

dφ′. (C16)

Changing the integration variable into x = φ′ − φ, we obtain

Fn(φ) = e−i(n−�)φ N

2π

∫ 2π

0
γ (x)e−i(n−�)xdx

= Nγn−�e
−i(n−�)φ, (C17)

Gn(φ) = e−i(n+�)φ N

2π

∫ 2π

0
γ ∗(x)e−i(n+�)xdx

= Nγ ∗
−(n+�)e

−i(n+�)φ, (C18)

where

γk = 1

2π

∫ 2π

0
γ (x)e−ikxdx (C19)

is independent on φ. Hence, we obtain in the discrete form

Fn
m = Nγn−�e

−i(n−�)φ(0)
m , (C20)

Gn
m = Nγ ∗

−(n+�)e
−i(n+�)φ(0)

m , (C21)

and

¨δ�n = N[γn−� + γ ∗
−(n+�)]δ�n. (C22)

The coefficient γk is

γk = 1

2π

∫ 2π

0

[
α′′(x) + 2i�α′(x) − �2α(x)

]
e−ikxdx. (C23)

By integrating by parts we obtain

γk = (k + �)2vk, (C24)

where

vk = − 1

2π

∫ 2π

0
α(x)e−ikxdx. (C25)

Assuming �n(t ) ∝ eλnt , then

λ2
n = N[γn−� + γ ∗

−(n+�)]. (C26)

Using Eqs. (C24), (C25), and (C7), we obtain

λn = ±n
√
N

√
vn−� + v∗

−(n+�) = ±in
√
NVn (C27)

where

Vn = 1

2π

∫ 2π

0
V (x)e−inxdx. (C28)

The growth rate and the frequency for the nth bunching are
|Re(λn)| and Im(λn), where the last expression refers to the
solution with Re(λn) > 0.
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