
Capacity Optimization of EV Charging Networks:
A Greedy Algorithmic Approach

Raka Jovanovic and Sertac Bayhan
Qatar Environment and Energy Research Institute

Hamad bin Khalifa University
Doha, Qatar

rjovanovic@hbku.edu.qa, sbayhan@hbku.edu.qa

I. Safak Bayram
Department of Electronic and Electrical Engineering

University of Strathclyde
Glasgow, United Kingdom
safak.bayram@strath.ac.uk

Abstract—In the recent years, there has been a steady increase
in the use of electrical vehicles (EV). Their further adoption is
becoming more dependent on the quality of service provided
by the charging infrastructure. In this paper, the focus is
on optimizing the charging infrastructure from the point of
minimizing the service drop modelled using the standard M/M/c/c
loss queue. To be exact, a mathematical model is proposed for
the problem of optimizing capacities at individual stations in an
EV charging network. The novelty is in considering the relation
of capacity of a charging station to its arrival rate. Due to the
non-linearity of the problem, a greedy algorithm combined with a
local search is developed for finding near optimal configurations
of the system. The new model is evaluated using real-world data
for population density and existing charging infrastructure for
metropolitan areas. The conducted computational experiments,
show that charging networks optimized using the proposed
model, significantly better reflect the state-on-the-ground than
standardly used models, while maintaining a low service drop
rate.

Index Terms—Electrical vehicles, Charging Infrastructure,
Greedy algorithm, Optimization

I. INTRODUCTION

In the recent years, there has been an astonishing increase
in the use of electrical vehicles (EV). EVs are essential for
the progressive decarbonisation of road transport and have a
positive impact on air quality in urban areas. Due to these facts,
many countries have provided a wide range of incentives to
ensure the expansion of EV use. Some examples are purchase
subsidies, free parking, use of carpooling lanes, support for the
provision of public charging networks, etc. Further adoption
of EVs is highly dependent on the development of the public
charging network [1], [2].

Although there is a similarity between the use of fuelling
stations for internal combustion engine (ICE) vehicles and
charging stations for EVs, there are also significant differences.
In case of ICE vehicles, refuelling is only possible by visiting
a gas station, while EVs have several options to recharge
due to availability of different charger types [3]. Firstly, it
is possible to use slow Level 1 chargers for home charging.
Medium speed Level 2 chargers are frequently used for out-
of-home charging at office and public parking lots, having a
wide range of positive impacts [4]–[6]. It should be noted that
smart scheduling of charging at such facilities can be used as
a demand management system [7]–[9].

Finally, the use of fast Level 3 or fast DC chargers, which
can fully charge a typical EV in around 30 minutes, has a
high level of similarity to petrol stations. The cost of such
chargers is typically up to ten times higher than Level 2
ones. Consequently, they are mostly installed by specialized
providers, who try to attract the maximal number of EVs
(costumers). Due to relatively longer charging times of EVs,
the quality of service at charging stations becomes of the
highest importance and is highly dependent on the available
charging infrastructure [10]. Because of the high cost of fast
public chargers, significant effort has been dedicated to opti-
mizing the capacity of such systems. One part of the related
research uses models based on location-allocation problems
[11]. The developed models frequently correspond to NP-Hard
problems that have been solved using different heuristic and
metaheuristics methods them [12]–[14].

Methods for finding optimal locations of charging stations
can focus on long distance and regional travel [15], [16] or on
infrastructure within a city [17], [18]. Except for finding the
optimal locations of electric vehicle charging stations (eCS),
it is also necessary to specify their capacities. Although these
two problems can be addressed jointly as in [19], [20], in
real- world applications the locations of the eCS are often
predetermined, due to some fixed outside factors, and there is
only a need to optimize their capacities.

This paper addresses the problem of optimizing the ca-
pacities in a charging network with known locations of the
eCS with-in a metropolitan area. In commonly used models
for this problem, the arrival rate to an eCS is predetermined
based on the locations and properties related to costumers like
population density, points of interest, origin/destination pairs
of trips, etc. The optimized networks acquired by such models
frequently have a large discrepancy to real-world charging
networks, some examples can be seen in [19], [20]. In this
paper, a new model is proposed that considers the relation
between the capacities of the eCSs in the network to the
arrival rates. Due to the non-linearity of the problem, a greedy
heuristic approach combined with a local search is proposed
for finding near optimal solutions for the modelled system.
The proposed model is used to analyse real-world charging
networks in metropolitan areas based on population density
and locations of the eCS.
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The paper is organized as follows. In Section II, the details
of the model are given. In the next section, the optimiza-
tion method is presented. Section IV, on the other hand,
is dedicated to the analysis of the conducted computational
experiments. The paper is finalized with concluding remarks.

II. MODEL

In this section, the model for optimizing the capacity
of eCSs in a charging network within a metropolitan area
is presented. The optimization is done by minimizing the
blocking probability, based on the standard M/M/c/c queue,
using the Erlang B formula. Generally, in models of this type,
it is considered that the arrival rate to an eCS depends on the
location and properties related to costumers like population
density, points of interest, origin/destination pairs of trips, etc.

In the proposed model, the influence of the capacity of an
eCS on the arrival rate is also considered. The reason for
this is that an eCS with high capacity, has a large number
of customers and becomes attractive for other business like
convenience stores, fast food restaurants and similar. This
is frequently observed in case of gas stations. Due to the
significantly longer time needed to charge an EV compared
to ICE vehicles, it is expected that this becomes even more
relevant for the former. On the other hand, the existence
of such business attracts more costumers to the eCS. The
mathematical rationale behind can be explained by statistical
gains. For instance, as outlined in [21], larger serving capacity
leads to better performance when compared to the case where
serving capacity is distributed to multiple facilities.

Based on these assumptions, the corresponding model is
defined as follows. Firstly, the details of the model in which
the arrival rates are independent of the capacity of the charging
station is presented. Later, this model is extended to include the
previously mentioned dependence, in which larger facilities are
assumed to attract more customers. Let us assume there are |C|
charging stations, in relation let us define C = {1, . . . , |C|} as
the set of all charging stations. Let N be the total number of
chargers that can be distributed among them. It is also assumed
that each eCS has at least one charger and that there is a
maximal capacity M that an eCS can not exceed. In relation,
let us define variables nc for each charging station c ∈ C
which indicate the capacity, or in other words, the number of
chargers at the eCS. Let us use the notation n for the vector
n = (n1, . . . n|C|) containing this information for all the eCSs.
The vector n satisfies the following constraint.∑

c∈C
nc = N (1)

Next, let there be a set of P of population centers (PC). Each
population center p ∈ P has a weight (population size) wp. It
is assumed that the distances between each population center
p ∈ P and charging station c ∈ C is known in advance and is
equal to dpc. The first step in specifying the model is to define
which part of the population of PC p uses a charging station
c ∈ C. It is natural to assume that this distribution is close
related to the distance dpc between this charging station and

the population center. In the proposed model, it is assumed that
this relation is inversely proportional to the quadratic distance
between the PC and the charging station. Let us now define
wpc as the part of the population of PC p that uses eCS c as
follows.

tp =
∑
x∈C

1

d2px
(2)

wpc = wp
1

d2pc

1

t
(3)

In (2), tp is used to simplify the notation for the normalization
of the weight distribution, it is simply equal to sum of all
inverse square distances of population center p to all the
charging stations x ∈ C. The part of the PC p that used
CS c, wpc, is proportional to the weight wp and inversely
proportional to square distance dpc. This value is normalized
using t. Now, the population that uses charging station c ∈ C
can simple be defined as

λc =
∑
p∈P

wpc (4)

Eq. (4) states that the total size of the population that uses
the eCS c, λc, is equal to the sum of all the users from each
population center that use the charging station. The following
step is specifing the blocking probability in the system based
on the values of λc. The standard way of calculating blocking
probability (or loss of service) is by minimizing the following
sum:

F (n) =
∑
c∈C

λcE(nc,
λc
µ
). (5)

In (5), λc is weight related to the amount of users visiting
the charging station c ∈ C. Decision variables nc show how
many chargers should be placed at the charging station c.
E is the Erlang B formula where the first parameter is the
number of used resources (or chargers) and λc

µ is the load
intensity. Note that since λc represents the arrival rate of EVs,
µ denotes the average service (charges per hour) rate. The
objective is to minimize the sum of blocking probabilities
scaled by the population that is effected by the blocking for
all charging stations. The notation F (n) is used for the value
of the blocking probability in the system that takes values
between 0 and 1.

In the extended model, it is assumed that the population
visiting station c is dependent on the number of chargers
assigned to the stations in the system. Let use the simplified
notation λ̂c for the population that the eCS c attracts in the
extended model. Note that λ̂c is a function λ̃c(n) dependent
on the number of chargers at each of eCSs. In the proposed
model, it is assumed that the attractiveness of an eCS c is
proportional to its capacity nc. Based on this assumption let
us specify λ̂c(n) in the following text

t̂p =
∑
x∈C

nc
d2px

(6)

ŵpc = wp
nc
d2pc

1

t̂
(7)
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In (6), t̂p is used to simplify the notation for the normalization
of the weight distribution, it is equal to sum of all inverse
square distances of population center p to the charging station
x ∈ C multiplied with the number of chargers at that eCS
nc. The part of the PC p that uses eCS c, wpc, is proportional
to the weight wp and inversely proportional to square distance
dpc and proportional to the number of chargers at that eCS nc.
This value is normalized using t̂p. In the extended model, the
population λ̂c that uses the charging station c ∈ C is acquired
by substituting wpc with ŵpc in Eq. 4 as follows.

λ̂c =
∑
p∈P

ŵpc. (8)

The blocking probability of the system in the extended model
ˆF (n) is acquired by substituting λc with λ̂c,

F̂ (n) =
∑
c∈C

λ̂cE(nc,
λ̂c
µc

). (9)

III. OPTIMIZATION OF CHARGING CAPACITIES

In this section, the method for optimizing the capacity of
eCSs in the system is presented. The goal is to find the
capacity of each of the |C| stations, given n, based on the
objective functions F (n) and F̂ (n), dependent on the used
model. Due to the non-linearity of the problem, a heuristic
approach is used. To be exact, a greedy algorithm is developed
that iteratively expands the capacity of the eCSs. To further
improve the quality of a solution generated in this way, a local
search is also developed. In the following subsections, details
of these two steps are provided.

A. Greedy algorithm

The idea of the greedy algorithm is to start with an initial
distribution of chargers in the system. In the proposed ap-
proach, the initial solution is n′ = (1, . . . , 1), which represents
a system that has a singe charger at each station. The algorithm
iterative expands this solution by adding one charger to one
of the stations c ∈ C, or in other words, the value nc is
incremented by one. Let us use the notation n+c, defined for
each c ∈ C, as the configuration of the system acquired after
adding a single charger to eCS c. Now the set of all potential
stations for expansion for a partial solution n is,

Ĉ = {c | (c ∈ C) ∧ (nc < M)}. (10)

The goal of the heuristic function is to make it possible to
generate a solution that has a small value of the objective
function. Because of this a natural heuristic function for
selecting the best candidate for expansion of all c ∈ C is the
value of F (n+c) or ˆF (n+c). The proposed greedy algorithm
is best understood by observing its pseudocode given in Alg
1.

B. Local search

In this subsection, a local search for improving the quality
of solutions acquired by the greedy algorithm is presented. It
implements the simple idea of relocating a charger from an ori-
gin eCS o to a destination eCS d and testing if an improvement

Algorithm 1 Greedy Algorithm
Generate initial solution n = (1, ,̇1)
N ′ = N − |C|
while N ′ > 0 do

s = argminc∈ĈF (n
+c)

n = n+s

N ′ = N ′

end while

has been achieved. Let us define the function Move(n, o, d)
for a vector (system configuration) n and station indices o
and d. The function Move(n, o, d) returns a vector which is
equal to, n except for the o-th element which is decreased by
one and the d-th element which is increased by one. To be
able to specify the local search, it is also necessary to define
the set of all possible relocations. To be more precise, the set
P of origin/destination pairs (o, d) for which M(o, d, n) does
not result in an invalid configuration. Formally, the set P is
defined as

P = {(o, d) | (o, d ∈ C) ∧ (no > 1) ∧ nd < M}. (11)

Eq. (11), states that the number of chargers at the origin station
no is larger than one. In addition, the number of chargers at the
destination station nd must be less than the maximal capacity.
Using these definitions, the local search can be specified (see
Algorithm 2).

Algorithm 2 Local Search
repeat

Calculate P using Eq. (11)
for (o, d) ∈ P do

n′ =Move(n, o, d)
if F (n′) < F (n) then

n = n′

break;
end if

end for
until No Improve

In the Algorithm 2, it is assumed that n is the initial solution
acquired from the greedy algorithm. Each iteration of the main
loop attempts to find a relocation of a charger that produces
an improvement. Firstly, the set of valid relocations P is
calculated based on Eq. (11). Next, the inner loop iteratively
tests if any relocations (o, d) ∈ P produces an improvement.
In case this is true for relocation (o, d), it is applied to the
current best solution n and the inner loop is exited. This
procedure is repeated until no further improvement is possible.

IV. RESULTS

In this section, the results of the conducted computational
experiments are presented. Their goal is to evaluate the ef-
fectiveness of the extended dynamic model that considers the
relation between the charging capacities of eCS with-in the
system on the costumer arrival rates. The proposed model
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(a) Population density (b) Static model

(c) Dynamic model (d) Real-world

Fig. 1. Illustration of eCS capacities for Indianapolis, USA. The size of the red circles represents the capacity.

and optimization methods have been implemented in C# in
Visual Studio 2019. The computational experiments have been
performed on a personal computer running Windows 10 having
Intel(R)Xeon(R) Gold 6244 CPU @3.60 GHz processor with
128 GB memory.

The evaluation is conducted through case studies for the
cities of Indianapolis, IN and Orlando, FL both in the USA.
The case studies are based on real-world data for the eCS [22]
and population density [23]. The used data for the eCS is the
following: the number of chargers, and latitude and longitude.
Only eCS having fast (Level 3) chargers that are within a
rectangular area containing the entire city of interest are used.
The total number of chargers that is deployed in the systems
|C| is equal to the number of fast chargers that exists in the
real-world data. Next, the maximal number of chargers at a
station M is equal to the maximal number of chargers found
at a station in the real-world data.

The real-world population density data, from [23], has been
used for specifying the PC. This data provides the population

density over 30 meter cells. In the model, each population
center corresponds to a cell in a 40 × 40 rectangular grid
covering the entire metropolitan area. The location of the PC
p is equal to the center of the corresponding grid cell. The
population wp of PC p is equal to the sum of the population
of all the cells from the density data are inside it. The distance
between a PC p and eCS c is calculated directly based on
the corresponding latitude and longitude. The last step in
defining the model is specifying the normalization factor µ.
It is assumed that the drop of service rate is less than %5.
The value of µ is selected so that the drop rate, calculated
using objective functions F (n) and F̂ (n), acquired using the
proposed optimization methods, is less than the %5.

The results of the conducted computational experiments
can be seen in Figs. 1 and 2 for Indianapolis and Orlando,
USA, respectively. The time needed to optimize the charging
capacities was less than 15 seconds for both case studies. The
first thing that was observed that drop rate for the dynamic
model was around 10% lower than in case of the static one.
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(a) Population density (b) Static model

(c) Dynamic model (d) Real-world

Fig. 2. Illustration of eCS capacities for Orlando, USA. The size of the red circles represents the capacity.

It should be noted that this is not a direct comparison, since
different objective functions are used, but an indication that
the dynamic model better reflects the behavior of the EV
users in the sense of drivers avoiding eCS with a high level
of congestion. In case of both cities in the static model, the
number of chargers at each eCS is evenly distributed and
reflects the population density over the metropolitan area. This
is in high contrast to the state-on-the-ground, where there are
several eCS with large capacities and the rest of them have a
small number of chargers. The distribution of chargers, in the
dynamic model, has a structure that also has a small number
of eCS with a large capacity. The effect of the dynamic model
is most noticeable, in areas where there are several eCS with
a small area where most of the chargers are centralized at
one or two eCS. One of the noticeable difference between the
optimized networks using this model to the state on the ground
is the lack of high capacities eCS related to points of interest.
One example is the airport in Indianapolis. This indicates that
inclusion of this type of information in the model is needed
for real-world applications.

V. CONCLUSION

In this paper, a new model for optimizing the capacities
of eCS in a charging network within a metropolitan area
is proposed. The main novelty of the approach is that it
considers the impact of the capacity of an eCS as to its
attractiveness to EVs drivers, or in other words, to its arrival
rate. The model is used to optimize the charging network by
minimizing the drop rate calculated using the M/M/c/c queue
model. Near optimal network configurations are found using
a greedy heuristic approach combined with a local search.
The proposed optimization method is highly computationally
effective and solves problem instances for real-world systems
within a few seconds. The network configurations acquired in
this way much better reflect the state-on-the-ground compared
to the standard used models, while maintaining a low service
drop rate.

In the future, we plan to expand this model to include more
information about EV driver behavior like points of interest,
origin/destination pairs of trips, and similar. Another direction
of research is using more advanced tools for analysing the
service drop probability, for instance the hypercube model
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[24], [25].
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