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Abstract. Automated planning is able to handle increasingly complex applica-
tions, but can produce unsatisfactory results when the goal and metric provided
in its model does not match the actual expectation and preference of those using
the tool. This can be ameliorated by including methods for explainable planning
(XAIP), to reveal the reasons for the automated planner’s decisions and to provide
more in-depth interaction with the planner. In this paper we describe at a high-
level two recent pieces of work in XAIP. First, plan exploration through model
restriction, in which contrastive questions are used to build a tree of solutions to a
planning problem. Through a dialogue with the system the user better understands
the underlying problem and the choices made by the automated planner. Second,
strong controllability analysis of probabilistic temporal networks through solving
a joint chance constrained optimisation problem. The result of the analysis is a
Pareto optimal front that illustrates the trade-offs between costs and risk for a
given plan. We also present a short discussion on the limitations of these methods
and how they might be usefully combined.

1 Introduction

Automated Planning is the process of considering and organising actions to achieve
goals before starting to execute them. In automated planning, the actions that must be
performed are not predetermined by the goals, but are selected and scheduled from
a typically large number of alternative actions. The choice is guided by an effort to
achieve the goals whilst optimising various metrics. Ordering choices and resource al-
locations are made, and evaluated, as part of the selection process. The consequence
of this approach is that neither the number of actions in a plan, nor resource allocation
of the plan, are predetermined. This distinguishes planning from scheduling, where the
actions to be performed are predetermined but the timing of actions, and the allocation
of resources to them, are not [16].

As automated planning is being used in increasingly complex applications, expla-
nation plays an crucial role in building trust – both in automated planners and in the
plans that they produce. A plan is a set of instructions that can can be carried out by hu-
mans or autonomous agents. In either case, the plan conveys the means by which a goal
is to be achieved, but not the reasons for the choices it embodies. When the audience
for a plan includes humans then it is natural to suppose that some users might wish to
question the reasoning, intention and underlying assumptions that lead to those choices.
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As a result of this, there has been growing interest in investigating the explanation
of plans [3], developing various approaches to building trust and understanding in the
decisions made by an automated planner. Automated planning presents a distinct ad-
vantage in the context of explainable AI (XAI) in that it relies on the use of a model
of the available actions. The model supports both prediction of action effects on a state
and the identification of states from which the actions are applicable. However, in the
context of explanation, the model becomes a shared vocabulary between the system
and the user, enabling a depth and specificity of communication that is more difficult to
obtain when explaining the decisions of systems such as deep-neural nets [31].

In this paper we describe recent work in two distinct areas of explainable automated
planning (XAIP). First, in Section 2 we report on recent work in plan negotiation and the
use of constrastive explanations to explore a space of plans. Then, in Section 3 we report
on an approach to optimisation under one kind of uncertainty: temporal uncertainty
about how long actions will take to complete. This approach can be used to generate
analyses of the trade-offs between plan costs and risks. In Section 4 we discuss how this
approach might be embedded within iterative plan exploration.

Both of these approaches share the idea of exploring a space of solutions, and by so
doing gain a deeper understanding about the structure of the underlying problem. The
motivation behind these approaches is that the user, with increased understanding, will
either (i) gain trust in the decisions made by the automated planner, (ii) identify where
the planner is operating outside of its competency, or (iii) identify where the planner is
unaware of the user’s preferences. In whichever case, the process of automated planning
becomes a more useful interactive process that has the potential to converge towards a
more satisfactory plan. In Section 4 we discuss how these different strands could be
brought together to form a comprehensive suite of tools for plan explanation, which
could be used by a human operator to better understand the problem, constraints, and
converge to a more preferred solution.

1.1 Explainable AI Planning in Literature

Meuller et al. [26] provide an overview of the landscape of research into XAI. This
work spans several decades, and includes work carried out with intelligent tutoring
systems, XAI hypotheses and models, and explanation in expert systems. The early
work on explanation in expert systems provided causal explanation for conclusions,
often in the form of chains of rules contributing to the conclusion [38]. Recently, there
has been a resurgence of interest in explanation in XAI, both when the model is and is
not interpretable. This is, in large part, due to the difficulty of understanding the results
of deep learning systems [31].

While there is a long history of work on explanation in AI, most work on expla-
nation of plans (XAIP) is relatively recent. In a challenge paper, Smith [33] argues for
the importance of plan explanation in mission planning, and suggests that questioning
and explanation is part of an iterative process that helps elucidate and refine the prefer-
ences for a planning problem. Fox et al. [14] highlight contrastive ‘why’ questions as
being important for plan explanation, and describe a number of different types of these
questions and possible responses. Chakraborti et al. [3] survey recent work in XAIP and
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categorise the different approaches that have emerged in the last several years, including
three important areas:

– model reconciliation - namely, that the need for explanation is due to differences
between the agent’s and the human’s model of the planning problem. The planning
system therefore “suggests changes to the human’s model, so as to make its plan be
optimal with respect to that changed human model” [23, 2, 34].

– contrastive explanations - an approach answering local contrastive questions; ex-
plaining the reason that a contrast case B was not a feature of the plan by revealing
the consequences that would hold if B were the case [7, 20, 19, 1, 14, 22].

– and explanation of unsolvability for planning problems [9, 8, 35, 17].

2 Contrastive Explanations in Plan Exploration

Fundamentally, the need for plan explanation is driven by the fact that a human and a
planning agent may have different models of the planning problem and different com-
putational capabilities. In this section we describe our approach to plan explanation
through exploration. Through asking contrastive questions, a human user can impose
iterative restrictions upon the model of the automated planner in order to generate dif-
ferent plans. In so doing, the user gains a better understanding of the problem and
capabilities of the automated planner. An in-depth description of this process, including
a formal definition of model restrictions, is presented in Krarup et al. [21].

2.1 Planning Model and Capability

A standard modelling language for autonomous planning is the Planning Domain De-
scription Language (PDDL), originally developed in 1998 by a committee led by Drew
McDermott [25] and later extended to support more expressive features such as time [13,
6], preferences [15], continuous change and exogenous events [12]. To describe our ap-
proach to plan exploration, we’ll use PDDL2.1 as an example planning formalism. Our
definition follows the definition of PDDL2.1 given by Fox & Long [13], extended by a
set of time windows and explicit record of the plan metric. A more detailed description
can be found in Krarup et al. [21].

Definition 1 (Planning model). A planning model is a pair Π = ⟨D,Prob⟩. The do-
main D = ⟨Ps, V s,As, arity⟩ is a tuple where Ps is a finite set of predicate symbols,
V s is a finite set of function symbols, As is a set of action schemas, called operators,
and arity is a function mapping all of these symbols to their respective arity. The prob-
lem Prob = ⟨Os, I,G,M,W ⟩ is a tuple where Os is the set of objects in the planning
instance, I is the initial state, G is the goal condition, M is a plan-metric function from
plans to real values (plan costs) and W is a set of time windows.

A solution for a planning model is called a plan. A plan is a sequence of grounded
actions, π = ⟨a1, a2, . . . , an⟩ each with a respective time denoted by Dispatch(ai).
The execution of a plan consists of a sequence of happenings corresponding to the
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effects of actions and exogenous effects in the world [13]. This sequence describes a
trace of times, ti=0...k and states, si=0...k+1 such that s0 = I and for each i = 0 . . . k,
si+1 is the result of executing the happening at time ti from state si. The plan is valid
if sk+1 |= G (that is, the goal is satisfied in the final state reached by the plan).

We assume that the human’s planning model ΠH , and planning agent’s model ΠP

share the same vocabulary, namely the same predicate symbols Ps, function symbols
V s, and actions As from the domain D, and objects Os from the problem. However,
the action durations, conditions, and effects may be different, and the initial states I ,
goals G, and plan metric M may be different.

Even when a human and a planning agent have the same planning models ΠH =
ΠP , there are typically multiple plans satisfying this planning model. Although a plan-
ner is intended to optimise the plan with respect to the plan metric, it is common to
produce only one of the valid plans, rather than an optimal plan for a model. For some
problems a planner might even fail to produce a plan at all. In part, this is an inevitable
consequence of the undecidability of planning problems with numeric variables and
functions [18], but it is also a consequence of the practical limits on the computational
resources available to a planner (time and memory). These observations are equally
valid for automated and human planners. In order to discuss the process of developing
plan explanations, it is helpful to define the planning abilities of both the planner and the
user. We model the planning capability of an agent as a partial function from planning
models to plans:

Definition 2. The planning capability of an agent A (human or machine), is a partial
function, CA, from planning models to plans. Given the agent’s planning model, ΠA, if
CA(ΠA) is defined, then it is a candidate plan πA for the agent.

The part of the function domain on which CA is defined determines the planning
competency of the agent – domain-problem pairs for which the agent cannot find a
plan lie outside this competency. Note that the planning competency of an agent can be
restricted by a bound on the computational resources the agent is allowed to devote to
the problem, as well as by the capabilities of the agent in constructing and adequately
searching the search space that the problem defines.

When A is an automated AI planner P , the computational ability is determined by
the search strategy implemented in the planner and the resources allocated to the task.
When A is a human planner H , the planning capability is determined by the understand-
ing that the human has of the planning model and the patience and problem-solving
effort they are willing to devote to solving the problem. It cannot be assumed that, if
CH(ΠH) is defined, that the human’s model ΠH accurately reflects the world, or that
the reasoning CH is sound. This means that the plan may not be valid.

One aspect of the process of planning and explanation is that the user can revise their
model ΠH as the process unfolds. However, it is also possible that the user can change
their planning capability CH , by coming to a greater understanding of the model, by
engaging in more reasoning, or by simply concluding that the solution provided by an
automated system is satisfactory. It is also possible that the planner responses lead to
the user changing their view of what might be a good plan to solve a problem, while
still not adopting the solution offered by the planner.
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2.2 Iterative Plan Exploration

We adopt the approach that the human user asks contrastive questions that impose ad-
ditional restrictions ϕ on the agent’s planning problem ΠP to generate a succession of
hypothetical planning problems. The object of these questions and the resulting hypo-
thetical plans is for the user to understand and ultimately arrive at a satisfactory plan.
We call this process Iterative Plan Exploration.

Given the planning models ΠH and ΠP , and planning capabilities CH and CP

of a human and planning agent, the two agents disagree when CH(ΠH) ̸= CP (ΠP ),
which can arise in the case that either of these terms is undefined, or if both terms
are defined and yield different plans. We assume that the user is able to inspect the
planner output and determine a question that will expose some part of the explanation
for this difference. By questioning why certain decisions were made in the plan and
receiving contrastive explanations the user can gain an initial understanding. As their
understanding of the plan develops they can ask more educated questions to gain a
deeper understanding or try to arrive at an alternative plan that they consider more
satisfactory. This process concludes when the user is satisfied with some plan.

We formalise the iterative process of questioning and explanation as one of suc-
cessive model restriction, in which the user asks contrastive questions in an attempt to
understand the planning agent’s plan and potentially steer the planning agent towards a
satisfactory solution. We suppose that, when CH(ΠH) ̸= CP (ΠP ), the user can con-
struct a foil, ϕ, in the form of a constraint that CP (ΠP ) does not satisfy, so that seeking
an explanation for the plan, CP (ΠP ), can be seen as seeking a plan for ΠP that also
satisfies ϕ. This requirement acts as a restriction on ΠP and is captured as follows.

Definition 3. A constraint property is a predicate, ϕ, over plans.
A constraint operator, × is defined so that, for a planning model Π and any con-

straint property ϕ, Π × ϕ is a model Π ′, called a model restriction of Π , satisfying
the condition that any plan for Π ′ is a plan for Π that also satisfies ϕ.

The process in which the user interacts with a planner is an iterative one – the user
successively views plans and seeks explanations by generating foils that impose addi-
tional restrictions on the planning problem. The collection of model restrictions forms
a tree, rooted at the original model and extended by the incremental addition of new
constraint properties, as shown in Figure 1. As the user inspects the result of applying
CP to a node in this tree, their own planning model and capability, ΠH and CH , may
change, reflecting accumulating understanding of the plans that can be constructed for
the model. It is worth emphasising that any constraint, ϕ, may be added to any model,
so that the user is not forced to develop a tree of models in any particular way to arrive
at the consequence of adding any specific constraint to a model.

It should be noted that, depending on the planning models and capabilities of the
two participants, there might not exist any constraint achieving a common solution. For
example, in the degenerate case in which CP produces no plan at all, for any value of
ϕ, then there can be no mutually satisfactory plan. Typically, the greater the differences
between the planning models and capabilities of the two agents, the more likely it will
be that there is no common satisfactory plan.

We formally capture the iterative process of model restriction and planning as:
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ΠP

ΠP × ϕ1 ΠP × ϕ2Π
P × ϕ3

ΠP × ϕ1 × ϕ4 ΠP × ϕ1 × ϕ5 ΠP × ϕ3 × ϕx

ΠP × ϕ1 × ϕ4 × ϕy

Fig. 1. A fragment of a tree of model restrictions for a planner P . Each node ni in the tree is a
model restriction of the model of it’s parent node ni−1, and a constraint ϕi.

Definition 4. Iterative Model Restriction For a planner P , and a user H: Let CP and
ΠP be the planner’s underlying capability and planning model and CH

0 and ΠH
0 be the

initial capability and planning model of H . Let ϕi be the set of user imposed constraints,
which is initially empty, i.e. ϕ0 = ∅. Each stage, i (initially zero), of this process starts
with the planner producing a plan πP

i = CP (ΠP
i ) for the model ΠP

i = ΠP × ϕi.
The user responds to this plan πP

i by potentially updating their capability and model
to CH

i+1 and PiHi+1 and then either terminating the interaction, or asking a question that
imposes a new constraint ϕi+1 on the problem. This results in the planner solving a new
constrained problem ΠP

i+1 = ΠP × ϕi+1 at the next step.

We have assumed here that the planner’s underlying capability and planning model
CP and ΠP do not evolve during the process. While this is not strictly necessary, pos-
sible evolution or improvement of the planner capabilities and model based on the se-
quence of user questions and the resulting ϕi is an issue we do not consider here. In
contrast, the user’s capability and planning model CH and ΠH are assumed to evolve,
but in unknown ways. Again, we do not attempt to model the user’s learning process.

The exploration process could end in a variety of different ways. One way that the
exploration can end is that the plan produced for the final model yields a plan that is
acceptable to the user, so that the user adopts this plan for the original model. Alterna-
tively the user, having explored the plans for several models, is persuaded in this process
that the first plan produced by the planner for the original model is actually the desired
plan. The exploration can also result in the selection of a plan somewhere between these
two extremes, in which the user decides to adopt a plan produced for some intermediate
model in the exploration. Finally, the exploration can end when the user explores the
space and then rejects all of the plans the planner offers. In this case, the user might
modify their planning model and capability as a consequence of what they observe and
they might or might not conclude the process with a satisfactory plan for the original
model. Krarup et al. [21] explore the hypothesis that the user will usually find value in
the exploration and conclude in one of the three cases in which a mutually agreed plan
is identified.
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2.3 Temporal, Numeric, and Probabilistic Model Restrictions

The Iterative model restriction process presents a natural method to explore a space of
plans through dialogue with the system, but does not succinctly represent more complex
constraints in the space of solutions that arise from the interaction between numeric and
probabilistic parts of the model. For instance, the trade-offs between two different re-
wards that the human user wishes to capture in the model’s metric could be iteratively
refined so that the user can see the outcome of different weightings between those re-
wards - but this is not an efficient way to represent what could be visually presented
immediately with a Pareto-optimal set of solutions - if such a thing is possible to pro-
duce given the automated planner’s capability.

In addition to this, our process does not account for uncertainties that might alter
the plan during execution, which is a natural occurrence when executing a plan in the
real world. While comparing different plans allows the user to understand the space of
solutions to the planning instance, it might not reveal differences in how those plans
might be realised in an uncertain environment.

3 Optimisation under Temporal Uncertainty

In many applications, the activities that need to be performed are already known, but
there remains the problem of deciding when to perform those activities in order to meet
constraints and optimise reward. As an example, consider the problem of 5G network
slicing. Containerised components are hosted on pods in nodes within a data center
(DC). Each pod is an allocation of a component’s required share of resources. Multiple
components can be linked to provide a service which satisfies the requirements defined
in the service level agreement (SLA) reached between the provider and customer. How-
ever a number of events can occur which may result in the service configuration no
longer being valid. Congestion at component input, for example, can result in packet
drops such that the terms outlined in the SLA are no longer satisfied. Under such a sce-
nario it may be necessary to reconfigure how the components are hosted within the DC.
The decision of when to reroute traffic is influenced by two conflicting factors: the in-
creased cost of migrating components early, and the risk associated with the probability
distribution describing the SLA violation.

It is not known by the decision maker a-priori which combination of risk and cost is
desired. The problem can be considered a bi-objective optimisation problem in which
the solution is a Pareto optimal set of schedules optimising risk and cost. The relation to
plan exploration is clear: the problem has many possible solutions with different char-
acteristics, and the decision maker can benefit from exploring this space of solutions.

In this section we provide a background on the temporal network formalism and
definitions of controllability. Then we discuss the Relaxable Chance Constrained Prob-
abilistic Simple Temporal Network (r-cc-PSTN) which was introduced by Yu et al. [41].
We show that this can be expressed as a Joint Chance Constrained Optimisation Prob-
lem (JCCP) for which a rich suite of solution methods exist. Finally we discuss the
potential for this to be incorporated within a bi-objective optimisation framework capa-
ble of generating the Pareto optimal set of schedules.
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3.1 Temporal Networks and Controllability

Simple Temporal Networks (STN) [5] are used to represent temporal domains and rea-
son about decisions under the influence of temporal constraints. An STN is a graph in
which the nodes correspond to time-points and the edges (links) correspond to dura-
tions between the time-points. A solution to an STN is a schedule at which to execute a
number of time-points such that the temporal constraints are satisfied. As such they are
a natural formalism to represent scheduling problems such as 5G network slicing.

Simple Temporal Networks with Uncertainty (STNU) were introduced [39] to cap-
ture uncertainty in the problem through the inclusion of set-bounded contingent links,
over which the operator has no control. In STNU semantics, a distinction is made be-
tween contingent links, for which the duration of the interval is uncertain and require-
ment links for which we can choose the duration.

Definition 5 (STNU). A STNU is a tuple, SU = ⟨Tc, Tu, C,G⟩ where b1, b2, ..., bB ∈
Tc is the set of controllable time-points and e1, e2, ..., eE ∈ Tu is the set of uncon-
trollable time-points, such that t1, t2, ..., tn ∈ {Tc ∪ Tu}. The set C, is the set of tem-
poral requirement constraints between two time-points, normally written in the form
c(tj , ti) = tj − ti ∈ [lcij , u

c
ij ]. The set G is the set of contingent links given in the form

g(ei, bi) = ei − bi ∈ [lgi , u
g
i ]. Here, lc∨g, uc∨g denote the lower and upper limits for

the constraint or contingent link respectively. Let s (b) ∈ R+ be the assignment of a
value to the controllable time-point b. Let o (e) ∈ R+ be the value observed by an
uncontrollable time-point e. A projection of a contingent link gi is ωi := o(ei)− s(bi).

The challenge in scheduling STNUs lies in the fact that the set of contingent links
may take any random value within their bounds, and therefore an effective execution
strategy must consider all possible projections for each contingent link.

When dealing with uncertainty in temporal networks it is typical to classify the
problem in terms of controllability [40], which can be considered as a way of classifying
how much control the agent has over the outcome of the network [40]. Controllability of
an STNU is typically separated into 3 categories (strong, dynamic, weak). In a strongly
controllable network, there exists an assignment to all controllable time-points that can
be determined a-priori and will satisfy all constraints no matter the outcome of the
contingent links.

Definition 6 (Strong Controllability). Denote Ω, the space of projections of the con-
tingent links: Ω = ×g∈G[l

g, ug]. Let the schedule δ, be the assignment s (b), ∀b ∈ Tc.
An STNU S is said to be strongly controllable if: ∃δ | ∀ω ∈ Ω, δ satisfies all con-
straints.

We denote: Cu ⊆ C, the set of uncontrollable constraints containing an uncon-
trollable time-point. One can substitute e = b + ω for the contingent link preced-
ing/succeeding the uncontrollable constraint. To check whether an STNU, SU is SC,
it is sufficient to check that the uncontrollable constraints are satisfied for the worst
possible projection of the contingent links. i.e. min{c | ω ∈ [lg, ug]} ≥ lc, max{c |
ω ∈ [lg, ug]} ≤ uc for every c ∈ Cu.

Where sufficient data is available, it is often more representative to model the space
of possible projections of a contingent link by a probability density function [36, 11],
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creating a Probabilistic Simple Temporal Network (PSTN). This allows the scheduling
process to focus on the durations most likely to be realised at execution.

Definition 7 (PSTN). A PSTN is a tuple, SP = ⟨Tc, Tu, C,D⟩, where Tc, Tu and C
are as per the STNU. The set of probabilistic constraints, D are in the form d(ei, bi) =
ei − bi = Xi, where Xi is a random variable with a set of outcomes Ωi, probability
density function f(ωi) and cumulative probability function F (ωi).

It should be noted that it is often impossible to find a SC schedule robust to all
possible outcomes of an unbounded distribution. As a result, it is typical to squeeze
the distribution by neglecting the extreme, unlikely outcomes in the tails of the distri-
butions, i.e: Ω∗

i = [ldi , u
d
i ]. We denote d∗(ei, bi), the restricted probabilistic constraint,

and performing this restriction transforms the probabilistic constraint to a contingent
link, i.e. d∗(ei, bi) = ei − bi = X∗

i ∈ [ldi , u
d
i ] ≡ g(ei, bi). Applying this transforma-

tion to all d ∈ D is equivalent to transforming the PSTN, SP to an equivalent STNU,
SU∗. However the schedule is now only robust to the outcomes considered in SU∗. The
probability mass excluded by performing this transformation is the risk of SP .

Definition 8 (Robustness and Risk). We denote ΩR ⊆ Ω and c(ω) the value of each
constraint c ∈ C given an outcome ω. If ω ∈ Ω and for every c ∈ C, c(ω) ∈ [lcij , u

c
ij ]:

then ω ∈ ΩR. The robustness R, is P (ΩR), while the risk ∆, is P (Ω̄R), where Ω̄R

denotes the complement of the set ΩR.

Since the joint probability function P (Ω̄R) is non-trivial, it is typical to treat uncon-
trollable constraints independently and bound above the risk using Boole’s inequality.
The risk can of then be approximated through: ∆ =

∑|Cu|
i F (ldi ) + (1 − F (ldi )). The

values of ud
i and ldi are determined through the SC relationships outlined previously,

through substituting lg, ug for ld, ud.

3.2 PSTN Strong Controllability and Risk in Literature

Tsamardinos [36] takes a risk minimisation approach to PSTN SC, and makes use of
various assumptions to leverage Sequential Quadratic Programming. Likewise, Santana
et al. [32] and Lund et al. [24] make varying assumptions to permit the use of LPs to
allocate risk in PSTNs. Fang et al. [11] introduced the notion of chance constrained
PSTNs (cc-PSTN); by enforcing an allowable tolerance on the risk as a constraint in
the system, such as ∆ ≤ α, where α ∈ [0, 1]. Some other objective function could then
be optimised, while ensuring that the schedule risk does not exceed α.

In some instances the risk required to enforce SC can be deemed too high. Yu et al.
[41] extended the chance-constrained framework to the relaxable chance constrained
probabilistic simple temporal network (r-cc-PSTN) by permitting the use of soft con-
straints which can be relaxed. A cost is then paid relative to the amount of relaxation.
This enables solutions to be found for over-constrained cc-PSTNs. The r-cc-PSTN is
very general, and is solved by Yu et al. using a nonlinear solver, combined with a con-
flict detection mechanism based on identification of negative cycles in STNUs. Nonlin-
ear optimization problems are solved to eliminate these cycles.

Towards temporally uncertain explainable AI planning
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To the best of the authors’ knowledge, all previous SC approaches for PSTNs ei-
ther use Boole’s inequality to bound above the risk [11, 41, 32, 24], or solve a generic
non-linear optimisation problem [36]. Using Boole’s inequality permits the use of Lin-
ear Programming solvers, however it can be overly conservative - particularly when
the number of uncontrollable constraints is large. Whereas posing the problem in a
generic non-linear setting can either be computationally expensive or offer no guaran-
tee of global optimality.

.

Fig. 2. Figure showing the Pareto optimal front generated using Boole’s inequality (left) in com-
parison to the equivalent Monte-Carlo risk (right)

In Figure 2, an example r-cc-PSTN was solved for strong controllability with Boole’s
inequality bounding the risk. Following this, the schedules obtained for each cost were
simulated using a Monte-Carlo execution approach enabling the cost to be plotted
against the true risk. As can be seen, the Pareto front obtained using Boole’s inequality
is not guaranteed to be the true Pareto optimal solution for cost and risk. Likewise as the
number of uncontrollable constraints increases, the Boole’s risk is not guaranteed to be
bounded within [0, 1]. As such it is not interpretable and gives little useful information
to the human required to reason over the Pareto front.

3.3 On Pareto Optimal Schedules to PSTNs

In this section we discuss in greater detail the r-cc-PSTN [41] and highlight how these
can be solved as a Joint Chance Constrained Optimisation Problem (JCCP) enabling
the evaluation of true Pareto optimal solutions.

Definition 9 (r-cc-PSTN). A r-cc-PSTN is a tuple SR = ⟨Tc, Tu, Cc, Cu, D,W,α⟩,
where Tc, Tu and D are as per the definition of PSTN. The set of requirement constraints
C is partitioned into a set of controllable constraints Cc: c(bj , bi) = bj−bi ∈ {lcij , uc

ij}
and uncontrollable constraints Cu: c(ej , bi) = ej−bi ∈ {lcij uc

ij}∨c(bj , ei) = bj−ei ∈
{lcij , uc

ij}. There exists some subset Cc,s ⊆ Cc and Cu,s ⊆ Cu which are considered
soft constraints. We introduce the lower and upper relaxation variables: r̆ij , r̂ij ∈ R+

for each constraint in {Cc,s ∪ Cu,s}: c(tj , ti) = tj − ti ∈ {lcij − r̆ij , u
c
ij + r̂ij}. The
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relaxation weight w ∈ W , associated with relaxing constraint c ∈ {Cc,s ∪Cu,s} is the
relative cost of relaxing the constraint by one time unit, such that the relaxation cost
k is calculated as the linear sum: k = wr̆ + wr̂. Finally, α ∈ [0, 1] is the risk bound
representing the maximum allowable probability of failure across all c ∈ Cu.

To elucidate the key characteristics of such a problem, we return to the motivating
example of 5G slicing. First we describe an example situation (Figure 3), and then the
example PSTN problem that results (Figure 4). In Figure 3, we consider two nodes. A

Fig. 3. Diagram showing data center configuration before (left) and after
(right) migrating traffic.

b0

b1 b2

e1 b3 e2

b4 b5

Resources
Available

[5− rl, 10 + ru]

Reroute to POD 3
[5, 5]

[0,∞]

Begin SLA
Violation
N (10, 2)

End SLA
Violation
N (20, 2)

[0,∞]

[0,∞]

Reroute to POD 2
[5, 5]

[0,∞] [0,∞]

Fig. 4. Example PSTN showing data center problem.

service consisting of two components, payload (PL) and service controller (SCtrl), is
hosted in the DC. Traffic is processed by PL and then by SCtrl before exiting through
the exit gateway. We consider three conditions outlined in the SLA: latency of the path,
the percentage of packet drops, and the cost of hosting the pods on the nodes. The rental
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of Node 2 is higher than that of Node 1, and the latency of the path POD1 → POD3
is larger than that of POD1 → POD2. Initially, PL and SCtrl are hosted in POD1 and
POD2 of Node1 such that the terms in the SLA are met.

At some point in the day, increased traffic to the service requires a scaled up SC-
trl for which there is insufficient resources available in the current configuration using
POD2. If SCtrl continues to be hosted in Node 1 POD2, then packets cannot be pro-
cessed at the rate of arrival, resulting in increased packet drops and consequently a
violation of the SLA. The penalty associated with packet drops is greater than the in-
creased contributions from latency and the cost of rental. The decision is made to spin
off another pod (POD3) in Node 2 before the SLA violation occurs and reroute the
traffic from SCtrl in Node 1 to PL in Node 2. The traffic should then be rerouted back
to the original configuration after the violation has ended. We assume that moving the
component from ”Node 1 POD2” to ”Node 2 POD3” and back both take 5 time units.
The SLA violation due to the congestion can take place any time in the future but with
a distribution of N (10, 2). The end of the SLA violation can also be described with a
probability distribution of N (20, 2).

The time at which to move the component is constrained by the availability of re-
sources in Node 2, modelled by the constraint b0 → b1 in Figure 4. Between 5 and 10
units after b0, there exists sufficient resources for PL to be spun on Node 2. The ideal
decision would be to move the component as early as possible to minimise the probabil-
ity that the SLA violation penalty will be incurred. We can choose to schedule b1 = 5,
however this means that the component will not be activated on Node 2 until b2 = 10
and thus the resulting strongly controllable schedule will have only a 50% chance of
success (if the SLA begins prior to the mean of 10 units, the penalty will be incurred).

The availability of resources is a soft constraint that we can relax from [5, 10] to
[0, 10] incurring some cost associated with relocating existing components. This relax-
ation allows b1 to be scheduled earlier, decreasing the risk of the SLA violation. The
relaxation cost is a function of the amount by which we relax the constraint. The opti-
mal scheduling decision therefore becomes a trade-off between the relaxation cost and
the risk associated with incurring the SLA violation cost.

To solve this problem, a bi-objective optimisation framework such as the ϵ-constraint
method [4] can be used to generate the Pareto optimal front minimising both risk and
cost. Within this framework, one of the objectives (i.e. the risk) can be treated as a
constraint by imposing a limit which is subsequently varied and the other objective
(i.e. cost) is optimised until the problem becomes infeasible. The underlying prob-
lem of minimising cost subject to the constraint on risk can be considered as a JCCP:
minx{cTx | Ax ≤ b, P (Tx+ q ≥ ξ) ≥ 1− α}.

With some algebraic manipulation, r-cc-PSTNs can quite easily be expressed in this
form. The decision vector x ∈ Rn, would be the controllable time-points compris-
ing the schedule, combined with the relaxation variables for each soft constraint. The
controllable constraints can be encapsulated in the linear inequality: Ax ≤ b, where
A ∈ Rm×n are the constraint coefficients and b ∈ Rm are the upper bounds. Sim-
ilarly, the uncontrollable constraints can be captured in the joint chance constraint:
P (Tx+ q ≥ ξ) ≥ 1−α, where T ∈ Rp×n is the matrix of coefficients and q ∈ Rp are
the bounds. Here, ξ is a p dimensional random variable with mean vector, µ and covari-
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ance matrix, Σ and α ∈ [0, 1] is the joint bound on the probability of failure. Finally
any linear objective can be implemented within the objective function cTx, however we
consider that we wish to minimise the relaxation cost and thus c ∈ Rn, is the vector of
relaxation weights w associated with each relaxation variable.

Prekopa [27, 28] proved that if the probability distribution is log-concave, then the
cumulative probability function F (z) = P (ξ ≤ z) is also log-concave and thus the set
{z | − log(F (z)) ≤ − log(1−α)} is convex. Many interesting distributions contain this
characteristic [29]. The result is that r-cc-PSTN SC as JCCP is a convex optimisation
problem with a tractable evaluation of the global optimal schedule. More detail can be
found in a recent survey of solution methods [37, 10] and overview on the topic [30].

4 Discussion and Conclusion

In this section we briefly discuss three possible directions for future work that could
combine the approaches from Sections 2 and 3. A naive approach would be to use
iterative plan exploration to generate a plan π = ⟨a1, a2, . . . , an⟩, whose happenings
become the nodes of a PSTN. That PSTN could then be analysed for SC. The limitation
of this naive approach is that the plan exploration would not benefit from the additional
insight provided by the PSTN SC analysis. Below we describe three alternatives for
closer integration of the approaches.

Constrastive Explanations of Strongly Controllable Plans. In iterative plan explo-
ration, model restrictions are used to generate a hypothetical plan that embodies the
“what if” question posed by the user. Plans are compared against one another as a form
of explanation – the aim of which is to make explicit the impact of their suggestions. In
the user study carried out by Krarup et al. [21], plan metrics were directly compared,
assuming a single realisation of the plan’s time-points that was selected by the planner.
Instead, the approach presented in Section 3 could be used to provide a more in-depth
comparison between the two plans by comparing Pareto-optimal schedules for their
respective actions.

Iterative Restrictions to PSTNs. A direction for future work in explainable schedul-
ing would be to apply the paradigm of iterative plan exploration to the problem of
PSTN SC. Just as it is the case that the decision maker might have preferences that are
not completely captured by the planner’s model, it can also be the case that the Pareto
optimal frontier does not actually represent the complete set of solutions of interest.
By allowing the user to apply restrictions as new constraints in the PSTN the user will
be able to see the impact of restrictions that iteratively force solutions away from the
Pareto-optimal frontier. Just as in iterative plan exploration, this process could converge
in a schedule that better adheres to the user’s true preferences, or increase their trust in
the original set of solutions.

Plan Exploration in Discrete and Continuous Spaces. Krarup et al. [21] showed
that by using the most common restrictions requested by users – action inclusion, ex-
clusion, ordering, and temporal constraints – iterative model restriction can combine
these constraints to encapsulate more specific questions and eventually converge to any
valid plan. However, using successive queries to explore a continuous space such as
real-valued cost or risk would be very inefficient. This limitation could be tackled by
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embedding the analysis provided by the PSTN SC analysis into the plan exploration
tools developed by Krarup et al. This would extend the common restrictions above to
also include constraints on cost and risk that are drawn from observation of the Pareto-
optimal set of solutions. Unlike the iterative restrictions to PSTNs described above,
these constraints would be applied to a planning model in the current exploration tree
and used to generate a new plan that could potentially have a different set of actions. The
result would be that the user could efficiently explore the different trade-offs exhibited
by a variety of possible plans, before converging upon a chosen plan and schedule.
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