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a b s t r a c t

The generalized inverse Gaussian (GIG) Lévy process is a limit of compound Poisson
processes, including the stationary gamma process and the stationary inverse Gaussian
process as special cases. However, fitting the GIG Lévy process to data is computationally
intractable due to the fact that the marginal distribution of the GIG Lévy process is
not convolution-closed. The current work reveals that the marginal distribution of the
GIG Lévy process admits a simple yet extremely accurate saddlepoint approximation.
Particularly, we prove that if the order parameter of the GIG distribution is greater than
or equal to −1, the marginal distribution can be approximated accurately — no need
to normalize the saddlepoint density. Accordingly, maximum likelihood estimation is
simple and quick, random number generation from the marginal distribution is straight-
forward by using Monte Carlo methods, and goodness-of-fit testing is undemanding to
perform. Therefore, major numerical impediments to the application of the GIG Lévy
process are removed. We demonstrate the accuracy of the saddlepoint approximation
via various experimental setups.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In the family of pure-jump increasing Lévy processes, both the gamma process and the inverse Gaussian process
ave wide applications. This is mainly because their marginal distributions, namely the gamma and the inverse Gaussian
istributions, are convolution-closed and infinitely divisible. Therefore, these two Lévy processes can be easily extended
o model non-stationary time-series data [see, e.g., 1,2]. This work introduces and studies a very general Lévy process,
alled the generalized inverse Gaussian (GIG) Lévy process, which includes the gamma and inverse Gaussian processes as
pecial cases.
The GIG distribution was proposed by Étienne Halphen in 1941 and popularized by Ole Barndorff-Nielsen in the

970s. Barndorff-Nielsen et al. [3] proved that any GIG distribution with a non-positive power parameter is the distribution
f the first hitting time to level 0 for a time-homogeneous diffusion process with state space [0,∞). This fact suggests
he potential use of the GIG distribution as a lifetime distribution or the distribution for times between successive events
n a renewal process [4]. Halgreen [5] further showed that the GIG distribution is self-decomposable. Therefore, all GIG
robability density functions are unimodal [6]. The self-decomposability makes the GIG distribution suitable for option
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pricing [see, e.g., 7]. The GIG distribution is also a conjugate prior for the normal distribution when serving as the mixing
distribution in a normal variance-mean mixture [8].

Barndorff-Nielsen and Halgreen [9] proved that the GIG distribution has infinite divisibility, which implies that we
can construct a Lévy process from the GIG distribution, i.e., the GIG Lévy process. Applications of the GIG Lévy process
are reported in [10] for cloud/aerosol particle size modelling, Protassov [11] and Vilca et al. [12] for constructing mixture
distributions of heavy tail and skewness, Luciano and Semeraro [13] for modelling return processes in finance, Themelis
et al. [14] for time-adaptive group sparse signal estimation, etc. However, unlike the gamma and inverse Gaussian
processes, the GIG Lévy process has received very limited attention. This is mainly because the GIG distribution is not
convolution-closed. In other words, for a GIG Lévy process {Xt; t ≥ 0}, if Xt has a GIG density, then for any s ̸= t , the
random variable Xs does not have a GIG density. Moreover, the density function of Xs even does not have an analytic
form. Hence, applying the GIG Lévy process to areas where the gamma and inverse Gaussian processes have been
adopted is prohibitively daunting. The current work reveals that this problem can be solved by employing the saddlepoint
approximation.

Saddlepoint methods provide approximations to densities and probabilities, which are very accurate in a wide range of
settings. In particular, it is often the case that relative errors of these approximations stay bounded in the extreme tails, a
desirable property that is not shared by most other types of approximation. Saddlepoint approximations are constructed
by performing various operations on the cumulant generating function of a random variable. For the development and
discussion of saddlepoint methodology, see [15] for details of the density approximation, Lugannani and Rice [16] and
Daniels [17] for the discussion of a tail area approximation which has a uniform relative error, and Reid [18] and Goutis
and Casella [19] for a review of saddlepoint techniques.

The main objective of this paper is to show that the marginal distribution of the GIG Lévy process can be well
approximated by an analytical function and hence that the GIG Lévy process can be readily applied to model time series
data. The remainder of this paper is organized as follows. Section 2 introduces the GIG distribution and the GIG Lévy
rocess. Section 3 gives a detailed explanation of the saddlepoint approximation and its uniqueness. Section 4 reveals that,

although the saddlepoint approximation is fairly accurate, it is not exact, even after normalization. The saddlepoint density
is then modified to provide an improved approximation. Section 5 addresses the problems of parameter estimation,
random number generation and goodness-of-fit test. Section 6 explores the accuracy of the saddlepoint approximation
via simulation. Finally, Section 7 concludes with a summary and remarks.

2. GIG distribution & GIG Lévy process

The density function of the GIG distribution is given by

f (x; λ, a, b) =
(
√
a)λ

2(
√
b)λKλ(

√
ab)

xλ−1 exp
(
−

1
2
(ax+ bx−1)

)
, x > 0, (1)

where a > 0, b > 0, and the order parameter λ ∈ R; Kλ(·) is a normalizing constant (called modified Bessel function of
the second kind):

Kλ(v) =
1
2

∫
∞

0
xλ−1 exp

(
−
v

2
(x+ x−1)

)
dx.

Kλ(v) is an exponentially decaying function of v, diverges for all orders at v = 0, and has the property that K−λ(v) = Kλ(v).
Modified Bessel functions of the second kind of order {0, 1, 2, 3, 4, 5} are shown in Fig. 1. We let GIG(λ, a, b) represent
the GIG distribution (1). GIG distributions enjoy several nice probabilistic features. For example, if X follows the GIG
istribution GIG(λ, a, b), then its reciprocal 1/X follows GIG(−λ, b, a). The GIG distribution includes as special cases the
amma distribution (b = 0 and λ > 0), the inverse gamma distribution (a = 0 and λ < 0), the inverse Gaussian
istribution (λ = −0.5) and the hyperbolic distribution (λ = 0).
Owning to its infinite divisibility, we can construct a Lévy process from the GIG distribution, herein called GIG Lévy

rocess. We say that the process {Xt; t ≥ 0} is a GIG Lévy process, if the law of X1 is the GIG distribution GIG(λ, a, b). A
évy process can be fully determined by the characteristic function of Xt which is given by the Lévy–Khintchine formula.
n the manner of Dufresne et al. [20], it is easy to prove that

E[eiuXt ] = exp
(
t
∫

∞

0
(eiux − 1)Π (dx)

)
,

here Π(·) is called the Lévy measure. According to Barndorff-Nielsen and Shephard [21], the Lévy measure of the GIG
évy process is absolutely continuous with density

Π(dx) =
1
x

[
b
∫

∞

0
exp(−xz)gλ(2bz)dz +max{0, λ}

]
exp(−

a
2
x)dx,

where gλ(y) =
{ 1
2π

2y
[
J2
|λ|(

√
y)+ Y 2

|λ|(
√
y)
]}−1

, y > 0. J|λ|(·) is the Bessel function of the first kind, and Y|λ|(·) is the Bessel
function of the second kind [see Chapter 9 of 22]. For the GIG Lévy process, the arrival rate

∫
∞
Π(dx) is infinite [23].
0
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Fig. 1. Plot of the modified Bessel functions of the second kind: K0(v) (black), K1(v) (red), K2(v) (blue), K3(v) (green), K4(v) (purple), K5(v) (brown).

Hence, the GIG Lévy process is a limit of compound Poisson processes, composing of an infinite number of infinitesimal
jumps.

The GIG Lévy process includes the stationary gamma process and inverse Gaussian process as special cases. If {Xt; t ≥
0} is a stationary gamma process (resp., inverse Gaussian process), ∀ t > 0, Xt always follows the gamma distribution
(resp., the inverse Gaussian distribution). However, for the GIG Lévy process, only X1 follows the GIG distribution. ∀
0 ≤ s < t , if t − s ̸= 1, then Xt − Xs does not follow the GIG distribution. This is because the GIG distribution is not
closed under convolution. In other words, if two random variables Z1 and Z2 both follow the GIG distribution GIG(λ, a, b),
then their sum Z1 + Z2 does not follow a GIG distribution. This undesirable feature has restrained the application of the
GIG Lévy process in areas where the gamma process and inverse Gaussian process have been employed.

To make the GIG Lévy process a practical model, we need to formulate the density function of Xt for any t > 0, which
can be derived via the Fourier inversion formula. ∀ t > 0, let fXt (x;θθθ ) denote the density function of Xt , where θθθ = (λ, a, b).
The characteristic function of a GIG random variable X is

E[eiuX ] =
(

a
a− 2iu

) λ
2 Kλ(

√
(a− 2iu)b)

Kλ(
√
ab)

,

where u ∈ R. Hence, we have

fXt (x;θθθ ) =
1
2π

∫
+∞

−∞

exp(tϕ(u)− iux)du, (2)

where ϕ(u) is the logarithm of E[eiuX ]:

ϕ(u) =
λ

2
[log(a)− log(a− 2iu)] + log(Kλ(

√
(a− 2iu)b))− log(Kλ(

√
ab)).

pparently, recovering the density function fXt (x;θθθ ) from its characteristic function is not possible explicitly. Hence, in
he following section we introduce the saddlepoint method for constructing a closed-form approximation to fXt (x;θθθ ).

. Saddlepoint method

.1. Brief explanation

For readability, we introduce here the formal calculations to derive the saddlepoint approximation. Suppose X is a
ontinuous random variable with density f (x). Let ψ(u) denote the moment generating function: ψ(u) =

∫
∞

−∞
euxf (x)dx.

ia the Fourier transform, we have

f (x) =
1
2π

∫
∞

−∞

e−iuxψ(iu)du =
1
2π

∫
∞

−∞

exp(log(ψ(iu))− iux)du.

ubstituting iu with u and applying the Closed Curve Theorem, we have

f (x) =
1

∫ i∞

exp(log(ψ(u))− ux)du =
1

∫ τ+i∞

exp(log(ψ(u))− ux)du,

2π i −i∞ 2π i τ−i∞

3
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where τ is within the interval of convergence for ψ(u) which we assume to contain the origin as an interior point. Define
k(u, x) as k(u, x) = log(ψ(u)) − ux. In what follows, we let k′(u, x) and k′′(u, x) respectively denote the first and second
derivative w.r.t. u. Approximate k(u, x) by its Taylor expansion:

k(u, x) ≈ k(û, x)+ k′′(û, x)
(u− û)2

2
,

here û satisfies k′(û, x) = 0 and k′′(û, x) > 0. Then we have

f (x) ≈
1

2π i

∫ τ+i∞

τ−i∞
exp(k(û, x)+ k′′(û, x)

(u− û)2

2
)du =

1
2π i

∫ i∞

−i∞
exp(k(û, x)+ k′′(û, x)

u2

2
)du,

in which, again availing the Closed Curve Theorem, we have set τ = û. Substituting u with iu and employing the idea of
Laplace approximation, we have

f (x) ≈ exp(k(û, x))
1
2π

∫
+∞

−∞

exp(−k′′(û, x)
u2

2
)du =

1√
2πk′′(û, x)

exp(k(û, x)).

That is,

f (x) ≈
1√

2πk′′(û, x)
exp(log(ψ(û))− ûx), (3)

which is the saddlepoint approximation for f (x). Note that log(ψ(u)) is called the cumulant-generating function of the
random variable X .

3.2. Saddlepoint density for fXt (x;θθθ )

Let Hλ(u) denote the cumulant generating function of X1 (i.e., t = 1): for u < a
2 ,

Hλ(u) = log(E[euX1 ]) =
λ

2
[log(a)− log(a− 2u)] + log(Kλ(

√
(a− 2u)b))− log(Kλ(

√
ab)). (4)

Then the cumulant generating function of Xt is tHλ(u). Following (3), the saddlepoint density approximation to fXt (x;θθθ )
is:

f̂Xt (x;θθθ ) =
1√

2π tH ′′

λ (û)
exp(tHλ(û)− ûx), (5)

where H ′′

λ (u) represents the second derivative of Hλ(u) w.r.t. u, and û is the saddlepoint satisfying tH ′

λ(û) − x = 0. Note
that û = û(x, t) is a function of x and t . The first derivative of Hλ(u) is

H ′

λ(u) =
λ

a− 2u
−

K ′

λ(
√
(a− 2u)b)

Kλ(
√
(a− 2u)b)

√
b

a− 2u
,

here

K ′

λ(v) = −
1
4

∫
∞

0
(xλ + xλ−2) exp

(
−
v

2
(x+ x−1)

)
dx = −

1
2
[Kλ+1(v)+ Kλ−1(v)]. (6)

Hence, û is obtained by solving w.r.t. u

λ

a− 2u
−

K ′

λ(
√
(a− 2u)b)

Kλ(
√
(a− 2u)b)

√
b

a− 2u
=

x
t
. (7)

The second derivative of Hλ(u) is

H ′′

λ (u) =
2λ

(a− 2u)2
−

K ′

λ(
√
(a− 2u)b)

Kλ(
√
(a− 2u)b)

√
b

(a− 2u)3

+
K ′′

λ (
√
(a− 2u)b)Kλ(

√
(a− 2u)b)− K ′

λ(
√
(a− 2u)b)2

Kλ(
√
(a− 2u)b)2

b
a− 2u

, (8)

where

K ′′

λ (v) = −
1
2
[K ′

λ+1(v)+ K ′

λ−1(v)] =
1
4
[Kλ+2(v)+ 2Kλ(v)+ Kλ−2(v)].

The pseudo code in Algorithm 1 summarizes the steps for evaluating the saddlepoint density function f̂Xt (x;θθθ ) at any
point x.
4
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Algorithm 1 Evaluating the saddlepoint density f̂Xt (x;θθθ ).

1: Solve the saddlepoint equation (7), w.r.t. u, to obtain the saddlepoint û;
2: Replace u in Eq. (8) with û to calculate H ′′

λ (û);
3: Replace u in Eq. (4) with û to calculate Hλ(û);
4: Calculate f̂Xt (x;θθθ ) by evaluating the right hand side of Eq. (5).

3.3. Existence and uniqueness of the saddlepoint

The feasibility of the saddlepoint approximation depends on the existence and uniqueness of the solution û to
tH ′

λ(u) = x and on û satisfying H ′′

λ (û) > 0. In this section we discuss the existence and properties of the real root of
the equation

H ′

λ(u) = ξ .

Proposition 1. There is no real root of the equation H ′

λ(u) = ξ whenever ξ ≤ 0.

Proof. Define a function M(u, ξ ) as

M(u, ξ ) = eHλ(u)−uξ
=

∫
+∞

0
eu(x−ξ )f (x; λ, a, b)dx,

hich exists only for u < a
2 . Taking partial derivative of M(u, ξ ) w.r.t. u, we have that

M ′(u, ξ ) = [H ′

λ(u)− ξ ]e
Hλ(u)−uξ , (9)

and that

M ′(u, ξ ) =
∫

+∞

0
(x− ξ )eu(x−ξ )f (x; λ, a, b)dx. (10)

Here and in Proposition 2, we implicitly utilize the dominated convergence theorem to exchange derivatives and integrals.
It is clear that the integrand eu(x−ξ )f (x; λ, a, b) and its partial derivative w.r.t. u are integrable functions of x.

From Eq. (10) we know that, when ξ ≤ 0, M ′(u, ξ ) > 0 for any u < a
2 . Hence, from Eq. (9) we know that, when ξ ≤ 0,

H ′

λ(u)− ξ > 0 for any u < a
2 ; that is, H

′

λ(u)− ξ = 0 has no real root when ξ ≤ 0. □

roposition 2. For any ξ > 0, if there exists a root of the equation H ′

λ(u) = ξ , then the root is simple and unique and satisfies
H ′′

λ (û) > 0. A necessary and sufficient condition for the equation to have a root for all ξ > 0 is that limu→ a
2
H ′

λ(u) = +∞.

Proof. Note that M ′(u, ξ ) is strictly increasing with u, because

M ′′(u, ξ ) =
∫

+∞

0
(x− ξ )2eu(x−ξ )f (x; λ, a, b)dx > 0.

Then for any root û of the equation H ′

λ(u) = ξ , we have M ′′(û, ξ ) = H ′′

λ (û)e
Hλ(û)−ûξ > 0, and therefore H ′′

λ (û) > 0, and û is
a simple root.

When ξ > 0, we rewrite Eq. (10) into:

M ′(u, ξ ) =
∫ ξ

0
(x− ξ )eu(x−ξ )f (x; λ, a, b)dx+

∫
+∞

ξ

(x− ξ )eu(x−ξ )f (x; λ, a, b)dx.

For the first integration, we have

lim
u→−∞

∫ ξ

0
(x− ξ )eu(x−ξ )f (x; λ, a, b)dx = −∞.

For the second integration, let m denote the maximum value of f (x; λ, a, b) over the interval (ξ,+∞). Because f (x; λ, a, b)
is integrable over the interval (0,+∞), we must have limx→+∞ f (x; λ, a, b) = 0, and hence m is finite. Then

0 ≤ lim
u→−∞

∫
+∞

ξ

(x− ξ )eu(x−ξ )f (x; λ, a, b)dx ≤ lim
u→−∞

m
∫

+∞

ξ

(x− ξ )eu(x−ξ )dx = 0.

Therefore, limu→−∞ M ′(u, ξ ) = −∞ for any ξ > 0, and we conclude that M ′(u, ξ ) is strictly increasing from −∞. If
lim a M ′(u, ξ ) < 0, then M ′(u, ξ ) < 0 (and hence H ′ (u) − ξ < 0) for all u < a . If lim a M ′(u, ξ ) > 0, then there is
u→ 2 λ 2 u→ 2

5
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a

−

W

W

only one point û at which M ′(û, ξ ) = 0; that is, if limu→ a
2
M ′(u, ξ ) > 0, then the equation H ′

λ(u)− ξ = 0 has one and only
one root.

Eq. (9) indicates that limu→ a
2
M ′(u, ξ ) > 0 for all ξ > 0 if and only if limu→ a

2
H ′

λ(u) = +∞. □

Proposition 3. We have limu→−∞ H ′

λ(u) = 0 for any fixed λ, and that H ′

λ(u) is a strictly increasing function of u.

Proof. We note that, for large values of v, the asymptotic approximation of Kλ(v) is
√

π
2v exp(−v), and therefore

lim
v→∞

Kλ+1(v)
Kλ(v)

= lim
v→∞

Kλ−1(v)
Kλ(v)

= 1.

Then it follows from (6) that:

lim
u→−∞

H ′

λ(u) = lim
u→−∞

{
λ

a− 2u
+

1
2
Kλ+1(

√
(a− 2u)b)+ Kλ−1(

√
(a− 2u)b)

Kλ(
√
(a− 2u)b)

√
b

a− 2u

}

= lim
u→−∞

λ

a− 2u
+ lim

u→−∞

√
b

a− 2u
= 0.

According to Proposition 2, for any ξ > 0, if there exists a root of the equation H ′

λ(u) = ξ , then the root is unique and
atisfies H ′′

λ (û) > 0. To prove that H ′

λ(u) is a strictly increasing function, we only need to prove that H ′′

λ (u) > 0 for any
u < a

2 . Let ξ0 be the point at which limu→ a
2
M ′(u, ξ0) = 0. On one hand, for any 0 < ξ < ξ0, we have

lim
u→ a

2

M ′(u, ξ ) = lim
u→ a

2

∫
+∞

0
(x− ξ )eu(x−ξ )f (x; λ, a, b)dx > lim

u→ a
2

M ′(u, ξ0) = 0,

nd therefore there is a unique root to the equation H ′

λ(u) = ξ for any 0 < ξ < ξ0. On the other hand, recall that M ′(u, ξ )
is strictly increasing with u; if limu→ a

2
M ′(u, ξ0) = 0, then M ′(u, ξ0) < 0 for all u < a

2 , and therefore H ′

λ(u)− ξ0 < 0 for all
u < a

2 ; that is, we have 0 < H ′

λ(u) < ξ0 for any u. Therefore, we can claim that H ′

λ(u) is a bijection from (−∞, a
2 ) to (0, ξ0).

Combining with the fact that H ′′

λ (û) > 0 everywhere, we can conclude that H ′

λ(u) is a strictly increasing function of u,
mapping (−∞, a

2 ) to (0, ξ0), where ξ0 is the point at which limu→ a
2
M ′(u, ξ0) = 0 (or, equivalently, ξ0 = limu→ a

2
H ′

λ(u)). □

Theorem 1. If limu→ a
2
H ′

λ(u) = +∞, then with ξ increasing from 0 to +∞, the unique root û increases monotonically from
∞ to a

2 . We have

lim
u→ a

2

H ′

λ(u) =
{

+∞, if λ ≥ −1;
−b

4(λ+1) , if λ < −1.

For equation H ′

λ(u) = ξ ,

• when λ ≥ −1, there is a unique simple root for any ξ > 0;
• when λ < −1, there is a unique simple root for any 0 < ξ < −b

4(λ+1) , but no root for any ξ ≥
−b

4(λ+1) .

Proof. When λ > 0, we have

lim
u→ a

2

H ′

λ(u) = lim
u→ a

2

{
λ

a− 2u
+

1
2
Kλ+1(

√
(a− 2u)b)+ Kλ−1(

√
(a− 2u)b)

Kλ(
√
(a− 2u)b)

√
b

a− 2u

}
≥ lim

u→ a
2

λ

a− 2u
= +∞.

hen λ = 0, we have

lim
u→ a

2

H ′

λ(u) = lim
u→ a

2

{
1
2
Kλ+1(

√
(a− 2u)b)+ Kλ−1(

√
(a− 2u)b)

Kλ(
√
(a− 2u)b)

√
b

a− 2u

}

≥ lim
u→ a

2

{
1
2
Kλ+1(

√
(a− 2u)b)

Kλ(
√
(a− 2u)b)

√
b

a− 2u

}

≥ lim
u→ a

2

1
2

√
b

a− 2u
= +∞.

hen λ < 0 and λ ̸= −1, define v =
√
(a− 2u)b and we have

H ′

λ(u) =
bλ
2 +

1 K|λ+1|(v)+ K|λ−1|(v) b
,

v 2 K|λ|(v) v

6
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where we have utilized the property that K−λ(v) = Kλ(v). For small values of v, the asymptotic approximation of Kλ(v) is
1
2Γ (λ)( 12v)

−λ for λ > 0, and therefore

lim
v→0

K|λ+1|(v)+ K|λ−1|(v)
K|λ|(v)

= lim
v→0

Γ (|λ+ 1|)( 12v)
−|λ+1|

+ Γ (|λ− 1|)( 12v)
−|λ−1|

Γ (|λ|)( 12v)
−|λ|

.

Hence, when −1 < λ < 0, we have

lim
u→ a

2

H ′

λ(u) = lim
v→0

{
bλ
v2

+
1
2
Γ (λ+ 1)( 12v)

−λ−1
+ Γ (1− λ)( 12v)

λ−1

Γ (−λ)( 12v)
λ

b
v

}

= lim
v→0

Γ (λ+ 1)4λ

Γ (−λ)v2λ+2 b = +∞.

When λ < −1, we have

lim
u→ a

2

H ′

λ(u) = lim
v→0

{
bλ
v2

+
1
2
Γ (−λ− 1)( 12v)

λ+1
+ Γ (1− λ)( 12v)

λ−1

Γ (−λ)( 12v)
λ

b
v

}
=

b
4
Γ (−λ− 1)
Γ (−λ)

< +∞.

When λ = −1, we have

H ′

λ=−1(u) = −
1

a− 2u
+

1
2
K0(

√
(a− 2u)b)+ K2(

√
(a− 2u)b)

K1(
√
(a− 2u)b)

√
b

a− 2u
.

For small values of v, the asymptotic approximation of K0(v) is − log(v). Therefore, we have

lim
u→ a

2

H ′

λ=−1(u) = lim
v→0

{
−

b
4
log(v)

}
= +∞.

To conclude, we have

lim
u→ a

2

H ′

λ(u) =
{

+∞, λ ≥ −1;
−b

4(λ+1) , λ < −1. □

Theorem 1 also explains why the inverse Gaussian distribution, i.e. λ = −0.5, can be (exactly) approximated by the
saddlepoint density [24].

4. Saddlepoint density modification

4.1. Approximation error

In many applications, the saddlepoint density does not integrate to one, and hence needs to be normalized. We here
point out that generally the saddlepoint approximation for fXt (x;θθθ ) is not exact, even after normalization.

We prove by calculating the ratio f̂Xt (x;θθθ )
fXt (x;θθθ )

. If the ratio is not 1, then we can conclude that the saddlepoint approximation

f̂Xt (x;θθθ ) is not exact. Moreover, if the ratio changes with x, then we can conclude that even the normalized saddlepoint
approximation is not exact. Note that, on one hand, only fX1 (x;θθθ ) has an explicit expression. On the other hand, if the
normalized f̂X1 (x;θθθ ) is not exact, then for any t > 0, the normalized f̂Xt (x;θθθ ) is not exact either. Therefore, we only need

to examine the ratio
f̂X1 (x;θθθ )
fX1 (x;θθθ )

for x > 0.
In Fig. 2 we plot the ratio for different values of (a, b), with λ fixed at value 2. In each row, b takes a value from

{0.1, 1, 10}, while in each column, a takes a value from {0.1, 1, 10}. The x-axis represents the value of x, and the y-axis

represents the value of the ratio
f̂X1 (x;θθθ )
fX1 (x;θθθ )

. Fig. 3 repeats the procedure with λ fixed at value −0.75. Both figures indicate

that the saddlepoint approximation f̂Xt (x;θθθ ), even after normalization, is not exact. Moreover, in Fig. 2, all the ratios are
above 1, while in Fig. 3, all the ratios are below 1. All the ratio curves are bounded. Note that the relative difference
between f̂X1 (x;θθθ ) and fX1 (x;θθθ ), as measured by the ratio, increases with x; however, with x increasing, the true value
fX1 (x;θθθ ) quickly converges to 0. Hence, if we plot the two density functions, they are visually the same (see Section 6). In
fact, via exhaustive numerical study, we find that the saddlepoint approximation f̂Xt (x;θθθ ) has the following property:

Proposition 4. The saddlepoint approximation f̂Xt (x;θθθ ) is exact only when λ = −0.5. When λ ̸= −0.5, it is not exact even

after normalization. When λ > −0.5, the ratio f̂Xt (x;θθθ )
fXt (x;θθθ )

is larger than one for any x > 0, and increases with x. When λ < −0.5,

the inverse ratio fXt (x;θθθ ) is larger than one for any x > 0, and increases with x.

f̂Xt (x;θθθ )

7
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t

R

Fig. 2. Plot of the ratio
f̂X1 (x;θθθ )
fX1 (x;θθθ )

for different values of a and b, with λ fixed at 2. In each row, b takes a value from {0.1, 1, 10}; in each column, a
akes a value from {0.1, 1, 10}. The x-axis represents the value of x.

Fig. 3. Plot of the ratio
f̂X1 (x;θθθ )
fX1 (x;θθθ )

for different values of a and b, with λ fixed at −0.75.

emark 1. We can relate the GIG density (1) to the inverse Gaussian density f (x;−0.5, a, b) by writing

f (x; λ, a, b) =
xλ+0.5

f (x;−0.5, a, b),

E[Xλ+0.5]

8
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where

f (x;−0.5, a, b) =

√
b
2π

exp(
√
ab)x−3/2 exp

(
−

1
2
(ax+ bx−1)

)
,

and the expectation is taken w.r.t. f (x;−0.5, a, b). The saddlepoint density can exactly approximate f (x;−0.5, a, b), and
E[Xλ+0.5

] is independent of x. Therefore, the approximation error is introduced by the exponentiation xλ+0.5. When λ
increases from −1 to infinity, the change of the difference f̂Xt (x;θθθ )− fXt (x;θθθ ) from negative to positive may be caused by
the exponentiation xλ+0.5, which changes from a decreasing function to an increasing function.

4.2. A modified approximation

Proposition 4 indicates that if we want to improve the approximation f̂Xt (x;θθθ ), we have to multiply it by a non-
constant factor. Following Section 3.1, let ψ0(w) denote the moment generating function of an appropriate distribution
that admits an analytic density function f0(x). Define k0(w, x) = log(ψ0(w)) − wx, and let ŵ be the unique root of
k′0(w, x) = 0. Instead of approximating k(u, x) by a truncated Taylor expansion, Ait-Sahalia and Yu [25] approximated
it by k(û, x)+ k0(w, x)− k0(ŵ, x):

k(u, x)− k(û, x) ≈ k0(w, x)− k0(ŵ, x).

Both k(u, x) and k0(w, x) are strictly convex. Hence, u = û if and only if w = ŵ. Now it is clear that the appropriateness
of the benchmark density f0(x) means that ψ0(w) is defined on a non-trivial interval, and ŵ exists whenever û exists.
Moreover, the two local functions, k(u, x) − k(û, x) around û and k0(w, x) − k0(ŵ, x) around ŵ, are expected to behave
alike.

Now we can treat u as a function of w. By differentiating twice the above equation and setting w to be ŵ, we have

u′(ŵ) =

√
k′′0(ŵ, x)
k′′(û, x)

.

hen we have

f (x) =
1

2π i

∫ û+i∞

û−i∞
exp(log(ψ(u))− ux)du

≈ exp
(
k(û, x)− k0(ŵ, x)

) 1
2π i

∫ ŵ+i∞

ŵ−i∞
exp(log(ψ0(w))− wx)u′(w)dw

≈ u′(ŵ) exp
(
k(û, x)− k0(ŵ, x)

) 1
2π i

∫ ŵ+i∞

ŵ−i∞
exp(log(ψ0(w))− wx)dw

=

√
k′′0(ŵ, x)
k′′(û, x)

exp
(
[log(ψ(û))− ûx] − [log(ψ0(ŵ))− ŵx]

)
f0(x),

r, equivalently,

f (x) ≈
1√

2πk′′(û, x)
exp

(
log(ψ(û))− ûx

) f0(x)
1√

2πk′′0 (ŵ,x)
exp(log(ψ0(ŵ))− ŵx)

.

e notice that 1√
2πk′′0 (ŵ,x)

exp(log(ψ0(ŵ))− ŵx) is the saddlepoint approximation for f0(x).

For the GIG Lévy process, one candidate of f0(x) for fXt (x;θθθ ) is given by

f0(x) =
(
√
a)λ

2(
√
bt2)λKλ(

√
abt2)

xλ−1 exp
(
−

1
2
(ax+ bt2x−1)

)
,

hich simply replaces b in Eq. (1) with bt2. Hence, the quantities ŵ, ψ0(ŵ) and k′′0(ŵ, x) can be readily calculated following
ection 3.2. Let f̄Xt (x;θθθ ) denote the modified saddlepoint approximation for fXt (x;θθθ ). According to Section 3.2, we have

f̄Xt (x;θθθ ) =

√
k′′0(ŵ, x)

tH ′′

λ (û(x, t))
(
√
a)λ

2(
√
bt2)λKλ(

√
abt2)

xλ−1 exp(−
1
2
(ax+ bt2x−1))

× exp
(
[tHλ(û(x, t))− û(x, t)x] − [log(ψ0(ŵ))− ŵx]

)
.

hen t = 1, f0(x) is identical to fX1 (x;θθθ ), and hence f̄X1 (x;θθθ ) is exact. Note that, when λ = −0.5, f0(x) is the marginal
density function of the inverse Gaussian process.

We examine the similarity between f0(x) and fXt (x;θθθ ), and for ease of exposition we let t = m be an integer. Let i.i.d.
random variables {Y , . . . , Y } follow the GIG distribution (1), and i.i.d. random variables {X , . . . , X } follow the inverse
1 m 1 m

9
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g
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a

H
f

(

d

Gaussian distribution f (x;−0.5, a, b). Then the summand
∑m

i=1 Yi follows the distribution fXm (x;θθθ ) with the moment
enerating function given by

E[exp(u
m∑
i=1

Yi)] =
m∏
i=1

E[exp(uYi)] =
m∏
i=1

E[Xλ+0.5
i exp(uXi)]

E[Xλ+0.5
i ]

=
E[(

∏m
i=1 Xi)λ+0.5 exp(u

∑m
i=1 Xi)]

E[(
∏m

i=1 Xi)λ+0.5]
.

The corresponding f0(x) for fXm (x;θθθ ) is

f0(x) =
(
√
a)λ

2(
√
bm2)λKλ(

√
abm2)

xλ−1 exp
(
−

1
2
(ax+ bm2x−1)

)
.

et Y be a random variable from f0(x), and X a random variable from fXm (x;−0.5, a, b) — a special case of fXm (x;θθθ ) and
lso the density function of

∑m
i=1 Xi. The moment generating function of Y is

E[exp(wY )] =
E[Xλ+0.5 exp(wX)]

E[Xλ+0.5]
=

E[(
∑m

i=1 Xi)λ+0.5 exp(w
∑m

i=1 Xi)]
E[(

∑m
i=1 Xi)λ+0.5]

.

We observe that the moment generating function of fXm (x;θθθ ) and that of f0(x) are alike. Hence, it is expected that the
modified saddlepoint density f̄Xt (x;θθθ ) will yield a better approximation.

5. Other issues

5.1. Parameter estimation

We now fit the GIG Lévy process to a time series dataset and estimate the unknown parameters. Let θ̂θθ denote the
maximum likelihood (ML) estimate of θθθ , and Θ a restricted parameter set: Θ = {(λ, a, b)|λ > −1, a > 0, b > 0}. Here
we presume that the true value of θθθ falls in Θ , as otherwise the saddlepoint method will fail. Although Θ is a restricted
set, it is still larger than the parameter sets of the gamma process and the inverse Gaussian process. Starting from time 0,
suppose we have data {x0, x1, x2, . . . , xm} collected at time points 0 = t0 < t1 < t2 < · · · < tm. Define ∆xi = xi − xi−1 and
∆ti = ti − ti−1 for i = 1, . . . ,m. Then the likelihood for observing ∆xi shall be fX∆ti

(∆xi;θθθ ) which, according to Eq. (2), is
difficult to evaluate.

We notice from Fig. 2 that the approximation error is quite small and uniformly bounded. In Section 6.1, we will
corroborate that the saddlepoint density approximates the true density nearly exactly. In fact, due to the round-off error,
numerical integration of f̂Xt (x;θθθ ) over the interval (0,+∞) even gives the value 1. Hence we might perform ML estimation
by directly maximizing the log-likelihood

∑m
i=1 log(f̂X∆ti

(∆xi;θθθ )):

θ̂θθ = argmax
θθθ∈Θ

m∑
i=1

{
−

1
2
log(H ′′

λ (û(∆xi,∆ti)))+∆tiHλ(û(∆xi,∆ti))− û(∆xi,∆ti)∆xi

}
.

ere, we use the notation û(x, t) to highlight that the root is a function of x and t . Maximizing the above log-likelihood
unction is undemanding: the root û(∆xi,∆ti) can be quickly found using, e.g., the bisection method, because H ′

λ(u) is a
strictly increasing function of u.

5.2. Random number generation for fXt (x;θθθ )

We generate data from f̂Xt (x;θθθ ) and treat them as sampled from fXt (x;θθθ ). Though we can evaluate f̂Xt (x;θθθ ) for any x,
the root û(x, t) does not have an analytic expression. Hence, there is no method available to directly draw i.i.d. samples
from f̂Xt (x;θθθ ). We here propose to adopt the Markov chain Monte Carlo (MCMC) technique to generate a sequence of
dependent samples, denoted by {Xi, i = 1, 2, . . .}, which is a Markov chain with the equilibrium distribution f̂Xt (x;θθθ ).
Then the Nth element (with N being sufficiently large), XN , can be used as a random sample from f̂Xt (x;θθθ ). Readers are
referred to the excellent texts of Chen et al. [26] and Meyn and Tweedie [27] and review papers by Tierney [28] and
Andrieu et al. [29] for more information on MCMC. We herein develop a sampler based on the Metropolis–Hastings (MH)
algorithm.

Let Xi = x denote the current state of the Markov chain. The MH sampler is composed of three steps: (1) Generate a
proposal sample ẍ from a proposal distribution g(ẍ|x). (2) Compute the acceptance probability α: α = min{1, f̂Xt (ẍ;θθθ )

f̂Xt (x;θθθ )
g(x|ẍ)
g(ẍ|x) }.

3) Accept the candidate sample with probability α. If ẍ is accepted, set Xi+1 = ẍ; otherwise, set Xi+1 = x. The proposal
distribution g(ẍ|x) is a conditional distribution that represents the probability of moving from x to ẍ. If the proposal
distribution satisfies the regularity conditions: irreducibility and aperiodicity, then the generated Markov chain converges
to the target distribution, i.e., f̂Xt (x;θθθ ) [28,30].

To fully develop an MH sampler, we need to specify the proposal distribution g(ẍ|x). Here we work with the Gaussian
istribution centred at the current value x with standard deviation σ (> 0). The value of σ should be subjectively
10
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determined to maintain the acceptance rate of proposals in a reasonable range. Note that the target distribution, f̂Xt (x;θθθ ),
does not have full support, while the Gaussian proposal distribution does. Hence, we need to work with a slightly different
proposal distribution — the truncated Gaussian distribution: g(ẍ|x) = φ( ẍ−x

σ )
Φ( x

σ ) , ẍ > 0, where φ(·) and Φ(·) are respectively
he density function and cumulative distribution function of the standard normal distribution. Then the acceptance
robability is simply α = min{1, f̂Xt (ẍ;θθθ )

f̂Xt (x;θθθ )

Φ( x
σ )

Φ( ẍ
σ )
}.

Remark 2. If the value of λ in f̂Xt (x;θθθ ) is not very large, we can apply the importance sampling with the proposal
distribution being the inverse Gaussian distribution (λ = −0.5) or the hyperbolic distribution (λ = 0). Importance
ampling is faster than the MH sampler, as the samples are independent.
Godsill and Kındap [31] recently developed a data-generation technique for the GIG Lévy process. They first constructed
bivariate point process having the GIG Lévy process as its marginal, and then developed an acceptance–rejection

ampling method for the bivariate point process. By contrast, our simulation method is much simpler.

.3. Goodness-of-fit test

To test the goodness of fit, we propose to employ empirical-distribution-function test statistics, e.g., the Kolmogorov–
mirnov test. The idea is to invoke the probability integral transformation and calculate yi = FX∆ti

(∆xi; θ̂θθ ) for i = 1, . . . ,m.
To calculate {y1, . . . , ym}, we need to be able to approximate FXt (x;θθθ ) for any t > 0. Again, this can be accomplished by
employing the saddlepoint method [16,17]:

F̂Xt (x;θθθ ) =

⎧⎪⎨⎪⎩
Φ(z)+ φ(z)

(
1
z −

1
û(x,t)

√
tH ′′
λ
(û(x,t))

)
, for x ̸= E[Xt ],

1
2 +

tH ′′′
λ
(0)

6
√
2π [tH ′′

λ
(0)]3/2

, for x = E[Xt ],

where z = sgn(û(x, t))
√
2[û(x, t)x− tHλ(û(x, t))].

We might assume {y1, . . . , ym} are in ascending order. Denote by F̂m(y) the empirical distribution function of the data
{y1, . . . , ym}. The Kolmogorov–Smirnov statistic is defined by

K̂ 2
m =

√
m sup

0<y<1
|F̂m(y)− y| =

√
m max

(
max
1≤i≤m

(
i
m

− yi), max
1≤i≤m

(yi −
i− 1
m

)
)
;

he Cramér–von Mises statistic is defined by

Ŵ 2
m = m

∫ 1

0
[F̂m(y)− y]2dy =

m∑
i=1

(
yi −

i− 0.5
m

)2

+
1

12m
;

nd the Anderson–Darling (AD) statistic is defined by

Â2
m = m

∫ 1

0

[F̂m(y)− y]2

y(1− y)
dy = −m−

1
m

m∑
i=1

(2i− 1) [log(yi)+ log(1− ym+1−i)] .

e then employ the parametric bootstrap technique [32] to calculate p-values:

1. For i = 1, . . . ,m, draw an observation x∗i from f̂X∆ti
(x; θ̂θθ ) via the MH sampler.

2. Compute θ̂θθ
∗

= argmaxθθθ∈Θ
∑m

i=1 log(f̂X∆ti
(x∗i ;θθθ )).

3. Compute y∗i = F̂X∆ti
(x∗i ; θ̂θθ

∗

) for i = 1, . . . ,m, and then compute the values of the test statistics.
4. Repeat steps 1 to 3 for a large number of times to obtain the corresponding p-values.

. Numerical study

.1. Performance of the saddlepoint approximation

We examine the performance of the saddlepoint approximation by approximating fX2 (x;θθθ ), i.e., t = 2. To simulate
random value from fX2 (x;θθθ ), we simulate two random values from fX1 (x;θθθ ) and then add them together to obtain a

realization of X2. Repeat in this manner to simulate a dataset with size 100,000 from fX2 (x;θθθ ). Then the kernel density
plot of the simulated data provides an accurate graphical representation of fX2 (x;θθθ ). To examine the accuracy of f̂X2 (x;θθθ ),
we just need to plot f̂X2 (x;θθθ ) within the kernel density plot, which is illustrated in Figs. 4–6. In Figs. 4–7 and 12, the
lack curve represents the kernel density estimate, the red curve represents the saddlepoint density f̂X2 (x;θθθ ), and the
reen curve represents the modified saddlepoint density f̄X2 (x;θθθ ). In Fig. 4, we gradually increase b, with the other two
arameters being fixed. Similarly, in Figs. 5 and 6, we respectively gradually increase a and λ. In every panel, the three
11
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d
t

Fig. 4. Density plots of fX2 (x;θθθ ) (black), f̂X2 (x;θθθ ) (red) and f̄X2 (x;θθθ ) (green), when b increases.

Fig. 5. Density plots of fX2 (x;θθθ ) (black), f̂X2 (x;θθθ ) (red) and f̄X2 (x;θθθ ) (green), when a increases.

ensity plots are virtually indistinguishable, confirming that the saddlepoint density f̂X2 (x;θθθ ) can accurately approximate
he true density fX2 (x;θθθ ). The modified saddlepoint density f̄X2 (x;θθθ ) locates between f̂X2 (x;θθθ ) and fX2 (x;θθθ ), yielding a
slightly better approximation than f̂X2 (x;θθθ ).

We now investigate the impact of t on the performance of the saddlepoint approximation by fixing (λ, a, b) at (2, 2,
6). Likewise, to simulate an observation of X , we simulate t observations of X and then add them together. To plot the
t 1

12
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Fig. 6. Density plots of fX2 (x;θθθ ) (black), f̂X2 (x;θθθ ) (red) and f̄X2 (x;θθθ ) (green), when λ increases.

Fig. 7. Density plots of fXt (x;θθθ ) (black), f̂Xt (x;θθθ ) (red) and f̄Xt (x;θθθ ) (green), when t increases.

ernel density estimate, we simulate 100,000 data points for each value of t . Fig. 7 shows the results. Again, it is observed
hat the saddlepoint density f̂Xt (x;θθθ ) is fairly accurate for each value of t . Moreover, numerical integration of f̂Xt (x;θθθ ) over
he interval (0,+∞) gives the value 1 (due to round-off error). Fig. 12 covers more exhaustive parameter settings. Figs. 4,
–12 verify the competence of the saddlepoint approximation, which shall greatly simplify the inference procedure of the
IG Lévy process.
13
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Fig. 8. Box plots of the relative errors of the ML estimates â, with the value of b being known. In each column, λ takes in turn a value from {1, 3,
5, 7, 9}. In each row, b takes in turn a value from {1, 3, 5}. In each panel, a takes in turn a value from {0.5, 1, 3, 5, 7, 9}.

6.2. Parameter estimation

In this section, we examine the feasibility of directly maximizing
∑m

i=1 log(f̂X∆ti
(∆xi;θθθ )) for ML estimation. The time

series data with size m = 100 are simulated as follows. The time increments {∆t1,∆t2, . . . ,∆tm} are randomly sampled
with replacement from the set {1, 2, . . . , 9, 10}. Then randomly generate ∆ti (i = 1, . . . ,m) samples from the GIG
distribution GIG(λ, a, b) and set their sum as the realization of the increment ∆xi. A variety of parameter settings are
examined: a ∈ {0.5, 1, 3, 5, 7, 9}, b ∈ {0.5, 1, 3, 5, 7, 9} and λ ∈ {−0.75,−0.25, 0.5, 1, 3, 5, 7, 9}. Hence, there are in
total 288 different parameter settings. For each parameter setting, we repeat for 5000 times and hence obtain 5000 ML
estimates of the parameter vector (a, b, λ). The relative error of every ML estimate is calculated, which is the difference
(between the estimate and the true value) divided by the true value.

We remark that, with any one of the three parameters {a, b, λ} being known, the other two parameters can be
accurately estimated by directly maximizing

∑m
i=1 log(f̂X∆ti

(∆xi;θθθ )). We corroborate this statement via the relative-error
box plots in Figs. 8–10.

• The box plots in Fig. 8 characterize the variation of the relative error â−a
a , assuming that the true value of b is known.

For the five panels in each column, λ takes in turn a value from {1, 3, 5, 7, 9}. For the three panels in each row, b
takes in turn a value from {1, 3, 5}. For the six box plots in each panel, a takes in turn a value from {0.5, 1, 3, 5, 7, 9}.
It is observed that, for every box plot in Fig. 8, the distance between the 1st quantile and 3rd quantile is quite small.
For each combination of the values of the three parameters, with 5000 repetitions, the 5000 ML estimates scatter
symmetrically at the two sides of the true parameter value, and the median of the 5000 relative errors is virtually
zero.

• The box plots in Fig. 9 describe the variation of the relative error b̂−b
b , assuming that the true value of λ is known.

For the five panels in each column, λ takes in turn a value from {−0.75, −0.25, 0.5, 1, 3}. For the three panels in
each row, a takes in turn a value from {1, 3, 5}. For the six box plots in each panel, b takes in turn a value from {0.5,
1, 3, 5, 7, 9}. We notice that, with a decreasing and λ increasing, the variance of the relative error increases. (This
is because, as verified in Fig. 11, when a is small and λ is large, the value of b has little impact on the GIG density
function.) However, the median of the 5000 relative errors is still close to zero, implying that the ML estimate b̂ is
unbiased.
14
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Fig. 9. Box plots of the relative errors of the ML estimates b̂, with the value of λ being known. In each column, λ takes in turn a value from {−0.75,
−0.25, 0.5, 1, 3}. In each row, a takes in turn a value from {1, 3, 5}. In each panel, b takes in turn a value from {0.5, 1, 3, 5, 7, 9}.

• The box plots in Fig. 10 describe the variation of the relative error λ̂−λ
λ

, assuming that the true value of a is known.
For the five panels in each column, a takes in turn a value from {1, 3, 5, 7, 9}. For the three panels in each row, b
takes in turn a value from {1, 3, 5}. For the six box plots in each panel, λ takes in turn a value from {0.5, 1, 3, 5, 7,
9}. Again, the 5000 ML estimates λ̂ scatter symmetrically at the two sides of the true parameter value, the distance
between the 1st quantile and 3rd quantile is quite small, and the median of the 5000 relative errors is virtually zero.

igs. 8–10 reveal that, with any one of the three parameters {a, b, λ} being known, the ML estimates of the other two
arameters obtained by directly maximizing

∑m
i=1 log(f̂X∆ti

(∆xi;θθθ )) are unbiased and efficient. Therefore, by fixing any
f the parameters {a, b, λ} at an arbitrary value within its domain, we can obtain a new two-parameter Lévy process
hich, via the saddlepoint technique, can be readily applied to practical problems. In other words, the set of applicable
ure-jump increasing Lévy processes has been significantly enriched.
In the general case, when all the three parameters {a, b, λ} are unknown, the ML estimate θ̂θθ undoubtedly will have

larger variance. Through comprehensive numerical study, we found that, when λ > 1, the ML estimate θ̂θθ obtained by
directly maximizing

∑m
i=1 log(f̂X∆ti

(∆xi;θθθ )) is unbiased. However, when λ ≤ 1, the ML estimate λ̂ tends to be larger than
he true value, and accordingly the ML estimate b̂ tends to be smaller than the true value. We will tackle this problem
through felicitous modifications of the saddlepoint approximation, which is left for future work.

7. Conclusions

We uncovered the simplicity of the GIG Lévy process by proving that, when λ ≥ −1, the marginal distribution of the
IG Lévy process admits an explicit form, which is a highly accurate approximation. The availability of the analytic and
ccurate approximation greatly simplifies the problems of parameter estimation, goodness-of-fit testing, random number
eneration, etc. Particularly, if any one of the three parameters is known, or if λ > 1, the unknown parameters can be
ccurately and efficiently estimated by directly maximizing the saddlepoint-approximation log-likelihood function. Due
o the generality of the GIG Lévy process, the set of practicable pure-jump increasing Lévy processes has been significantly
nriched. Our continued work on this process will propose a well-grounded modified saddlepoint approximation.
15
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Fig. 10. Box plots of the relative errors of the ML estimates λ̂, with the value of a being known. In each column, a takes in turn a value from {1,
3, 5, 7, 9}. In each row, b takes in turn a value from {1, 3, 5}. In each panel, λ takes in turn a value from {0.5, 1, 3, 5, 7, 9}.
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Appendix. Sensitivity analysis

We here examine the sensitivity of the GIG density function w.r.t. the parameter b. Density plots are given in Fig. 11:
for the eight panels in each row, λ takes in turn a value from {−0.75, −0.25, 0.5, 1, 3, 5, 7, 9}; for the six panels in each
column, a takes in turn a value from {0.5, 1, 3, 5, 7, 9}; in each panel, b takes in turn a value from {0.5, 1, 3, 5, 7, 9}. It
is clear from Fig. 11 that, when a is small and λ is large, the value of b has little impact on the GIG density function. For
example, when λ ≥ 5 and a ≤ 1, all the density curves for b in {0.5, 1, 3, 5, 7, 9} are virtually the same. Consequently, the
estimate of b, produced by any parameter estimation method, will have a large variance. Examination of the sensitivity of
the GIG density function w.r.t. the parameter λ reveals that (not shown here) when both a and b are large, a small value
of λ (e.g., λ ≤ 1) has little impact on the GIG density curve. To put it briefly, if the condition number of the log-likelihood
function

∑m
i=1 log(fX∆ti

(∆xi;θθθ )) w.r.t. θθθ is large, the ML estimate θ̂θθ will behave erratically.
Corresponding to Fig. 11, Fig. 12 includes saddlepoint approximations f̂X1 (x;θθθ ) (red) and f̄X1 (x;θθθ ) (green) to GIG(λ, a, b),

i.e., fX1 (x;θθθ ). In Fig. 12, for better visualization, b only takes two values: 0.5 and 9. Fig. 12 further verifies the exceptional
performance of the saddlepoint approximation, with the modified saddlepoint density f̄X1 (x;θθθ ) yielding a slightly better
approximation than f̂X1 (x;θθθ ). According to Fig. 12, we can claim that the Kullback–Leibler divergence from f̂Xt (x; θ̂θθ ) to
f (x;θθθ ) will be trivial, even if the condition number of the log-likelihood function

∑m log(f (∆x ;θθθ )) w.r.t. θθθ is large.
Xt i=1 X∆ti i
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v

Fig. 11. Density plots of GIG(λ, a, b). In each row, λ takes in turn a value from {−0.75, −0.25, 0.5, 1, 3, 5, 7, 9}. In each column, a takes in turn a
alue from {0.5, 1, 3, 5, 7, 9}. In each panel, b takes in turn a value from {0.5, 1, 3, 5, 7, 9}.

Fig. 12. Density plots of fX1 (x;θθθ ) (black), f̂X1 (x;θθθ ) (red) and f̄X1 (x;θθθ ) (green). In each row, λ takes in turn a value from {−0.75, −0.25, 0.5, 1, 3, 5,
7, 9}. In each column, a takes in turn a value from {0.5, 1, 3, 5, 7, 9}. In each panel, b takes values 0.5 and 9.
17
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