
1 INTRODUCTION 

Ships of any type are structures that are operated 
through a network of systems, the majority of 
which operate interdependently for their correct 
functioning. The systems onboard ships are con-
nected to enable economic and efficient operations 
and maintenance of all equipment/systems. How-
ever, a challenge lies in failure of equipment that 
provides utility to other ship systems. Therefore 
maintenance efforts are directed to ensure these 
failures do not occur and if they do the impact can 
be managed efficiently (Lazakis & Ölçer, 2016). 
More so, when considered against the cost of rou-
tine maintenance which accounts for more than 
14 % of ships operating cost and increases as the 
ship age (Stopford, 2010). Therefore, when this 
cost is considered against the impact of unsched-
uled maintenance and the associated operational 
delays, it becomes a major concern for ship opera-
tors. Maintenance uncertainties on ships that be-
long to law enforcement agencies such as the navy 
and coast guard ships may not be measured in eco-
nomic terms but could be the difference  between 

life and death (Goossens & Basten, 2015). It then 
becomes necessary that ships maintenance adopts a 
flexible maintenance approach that ensures an effi-
cient and cost-effective ships operational availabil-
ity (Cheliotis et al., 2019).  In this regard other 
maintenance styles were introduced to overcome 
some of the challenges when using traditional 
maintenance (Gits, 1992). Similarly (Shafiee, 
2015) provides a review on maintenance selection 
strategies which highlighted the dynamics involve 
in maintenance selection, especially in a complex 
environment such as ships.  

Planned Maintenance System (PMS) has re-
mained the mainstay of ships maintenance for both 
civil and defence sectors (Lazakis et al., 2018,New, 
2012). Increasing number of research conducted on 
ship maintenance has shown that the prepared 
maintenance onboard ships is preventive mainte-
nance system followed by predictive maintenance 
system (Lazakis et al., 2018,Velasco-Gallego and 
Lazakis, 2020). Nonetheless, risk and criticality ap-
proach to ship system maintenance are increasingly 
used to overcome critical component failures or 
emergency failure events underway especially with 
advent of unmanned ships(Eriksen et.al 2021) 
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Therefore, based on the foregoing, there is the in-
terest to adopt more efficient maintenance systems, 
but the challenge is how these technologies can be 
incorporated by organisations and ship owners/op-
erators.  The challenges due to cost of technology 
can be attributed to installation of new sensors, sys-
tem upgrades and the cost of training to match new 
technologies (Mihanović et al 2016). Notwith-
standing the need to improve the flexibility of 
onboard maintenance and the current regulations 
towards reducing emissions and the strategy by 
some Original Equipment Manufacturers (OEM) to 
adopt remanufacturing which offers some discount 
for operators participating in the scheme would 
help change the dynamics of maintenance to be 
more efficient (International Resource Panel, 
2017,IACS Rec, 2018).Moreover, it has been es-
tablished that the cost of maintenance increases 
while the equipment ages which can be controlled 
with more optimised maintenance strategy 
(Lazakis et al., 2019).  
 

In this regard, this paper presents a methodology 
based on the combination of FMECA and ANN 
employing engine sensor records, maintenance, 
and repair data reports for a set of diesel generators. 
Therefore, the research provides a comprehensive 
criticality approach to fault and component reliabil-
ity that can be replicated onboard or shore mainte-
nance organisations to provide an efficient mainte-
nance practice.  

 
The paper is presented in 5 sections as follows: 

Section 1 provides an introduction to topic in hand; 
section 2 highlights a critical review of reliability 
analysis tools. Section 3 presents the paper meth-
odology while section 4 discusses the paper results  
as applied on a case study navy patrol vessel. Fi-
nally, the conclusion and feature work are pre-
sented in section 5.  

2 CRITICAL REVIEW ON RELIABILITY 
ANALYSIS TOOLS  

Reliability analysis has historically aided 
maintenance planning since the advent of organ-
ised maintenance approaches that evolved from 
breakdown of simple machines to condition moni-
toring based predictive analysis(Fred K, et al, 
2006). In this regard, several maintenance methods 
were advanced to address peculiar problems faced 
by organisations (Martin et al., 2017). In early 
maintenance planning, simple methods that can be 
used to calculate equipment reliability or availabil-
ity such as mean time to failure (MTTF), mean time 
between failure (MTBF) failure rates(λ) were used 
(Lazakis & Ölçer, 2016,Palmer, 2010 and Dhillon, 

2006). However, system complexity and the in-
creasing use of electrical components such diodes, 
valve and software made necessary to adopt other 
means for system reliability analysis to account for 
the nature of static failures which are not related to 
wear and tear. Accordingly, the  progressive ad-
vance in maintenance has been made possible 
through the use of reliability analysis tools in vari-
ous industries such as  aerospace and defence 
(NASA, 2002,Hillier, Price and Austin, 
2003,Kimera and Nangolo, 2020). On the other 
hand, maintenance within the shipping industry is 
increasingly getting scrutinised  due to regulations 
including climate change concerns; all this push for 
the adoption of advanced technologies would re-
quire ship operators to adopt additional reliability 
measures (IACS Rec, 2018,ISO 17359:2018, 
2018). Likewise Classification Societies require 
ships to have a standard maintenance documenta-
tion and strategy prior to certifying Class qualifica-
tion (ClassNK, 2017,ABS, 2016). 

 
Research in various fields of maintenance has 

shown that reliability analysis tools play a vital role 
in maintenance plaining (Chemweno et al., 2018, 
Kabir, 2017). The emergence of Reliability Cen-
tred Maintenance has brought to the fore the rele-
vance of risk and criticality in equipment mainte-
nance, which focuses maintenance on safety of 
operations and system reliability (Mokashi, Wang 
and Vermar, 2002,NASA, 2002). In this regard, au-
thors have provided in depth research on the appli-
cation of reliability analysis tools in the various in-
dustries. A criticality-based maintenance for coal 
power plant used FMECA to drive Risk Priority 
Number (RPN) aimed at identifying critical com-
ponents in the plant in order to avoid unplanned 
shutdown was presented (Melani et al., 2018). Sys-
tem reliability analysis using tools such as FTA and 
FMECA have found wide application in the nuclear 
industry especially in the  energy sector 
(Volkanovski et al., 2009). A great deal of research 
has been made in the maritime sector on the use of 
reliability tools to improve safety, risk reduction 
and achieving reliability for ships and offshore 
wind turbines(Lazakis et al., 2016,2018, Leimeister 
& Kolios, 2018).  

 
In the shipping industry and extensive use of 

Fault Tree Analysis (FTA), Reliability Block Dia-
grams, (RBD), Event Tree Analysis (ETA), Failure 
Mode Effect Analysis (FMEA) and other variants 
of these tools were used to ensure the emplacement 
of robust maintenance regimes. Therefore, the 
adoption of  method that combines 2 or more relia-
bility tools in order to overcome deficiencies or 
take advantage of the other tool as shown in 
(Lazakis et al., 2016,Raptodimos & Lazakis, 
2017,Emovon et al., 2018) is increasingly adopted 
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to improve robustness in analysis.  Identifying the 
critical component in system reliability is a domi-
nant area in maintenance research for instance 
Melani et al.( 2018) used FMECA for critical com-
ponent identification in coal fire power plant, while 
Cheliotis et al (2022) presented a combination of 
machine learning fault mapping and Bayesian Net-
works in order to assess increase ship machinery 
reliability. A combination of reliability tools and 
ANN was used to develop a predictive condition 
monitoring by  (Lazakis et al., 2018) which shows 
the competitive flexibility that can be driven to the 
use of reliability tools and numerical methods in 
system reliability analysis. The criticality of sys-
tem, component or event in FMEA is derived by 
the use of Risk Priority Number (RPN) (Cicek & 
Celik, 2013,Sharma & Rai, 2021,Fred & K. 
Geitner, 2006,Rausand et al., 2021).  Reliability 
analysis tools examine risk of failure by consider-
ing quantitative and qualitative aspects. These tools 
can be grouped into those that are deductive and or 
inductive based as shown in table 1. 

 
Table 1 -Deductive and Inductive Reliability analysis tools  
(adapted from (System Reliability Theory, 2021)  

Model/Method Deductive 

(Backward) 

Inductive 

(forward) 

FMECA Yes Yes 

Fault Tree Analysis Yes No 

Event Tree Analysis No Yes 

Reliability Block Diagram Yes No 

Bayesian Networks Yes Yes 

2.1 Failure Mode Effects and Criticality Analysis 
(FMECA) 

FMECA is a reliability evaluation technique to 
determine the effect of system and equipment fail-
ures. FMECA is composed of 2 analyses, FMEA 
and Criticality Analysis (CA). The FMEA is fo-
cused on how equipment and system have failed or 
may fail to perform their function and the effects of 
these failures, to identify any required corrective 
actions for implementation to eliminate or mini-
mize the likelihood of severity of failure. The UK 
MoD defines Criticality assessment as a means of 
establishing the risk to platform and personnel aris-
ing from the occurrence of a failure mode.  It is  

 
 
 
 
 
 
 
 
 
 

Figure 1-Methodology Developed 

based on a combination of the worst case conse-
quences of the event coupled with the probability 
of its occurrence and detection(MoD UK, 2000). 
Therefore, the Criticality of a failure is determined 
through a ranking method to obtain RPN which is 
a product of the risk factors Detectability, Severity 
and Likelihood.     

                                                    
Stamatis ( 2003)presented a system of ranking 

of risk factors to obtain the RPN using numerical 
scale alongside discrete linguistic terms to reduce 
ambiguity in linear scale ranking between 1-5 or 1-
10. The scale is the same irrespective of which one 
is used however for uniformity, is best not to com-
bine the scales i.e. 1-5 or 1-10 in one study or anal-
ysis. Moreover FME(C)A is a team activity, it is 
important that everyone understand what is re-
quired as regards the inputs to provide. On the other 
hand, a system to account for different experience 
level in a team is equally important, as skills, com-
petence and knowledge usually comes with train-
ing, age in service, and exposure to certain respon-
sibilities. Therefore, Liu et al., (2016) presented a 
system of RPN ranking integrating linear scale with 
linguistics meaning to address the subjectiveness of 
FMEA team members. Similarly (Sharma and Rai, 
2021,Ilbahar et al., 2018)provided a methodology 
of evaluating FMECA using linear scale RPN and 
provides weights to account for importance for in-
dividual inputs. Linear approach alongside discre-
ate linguistic terms for conducting FMECA are  
widely used especially in risk analysis in various 
field covering humanities to engineering to help 
improve the clarity and reduce subjectiveness (Tan 
et al., 2011, Liu et al., 2016,Mutlu and Altuntas, 
2019). Accordingly, the flexibility with which 
FMECA can be interpreted   has made it widely ac-
cepted across many disciplines from engineering, 
humanities to medical sciences.  

2.2 Artificial Neural Network 
ANN are widely used for statistical analysis and 

data modelling commonly applied as alternatives to 
standard nonlinear regression or cluster analysis. 
Hence, their extensive use in classification, fore-
casting such as diagnosis, signal processing,  
speech and image recognition (Gurney, 
1997,Mandic & Chambers, 2001). ANN can be de-
fined as interconnected assembly of simple pro-
cessing elements (units or nodes) whose function-
ality is loosely based on the animal brain neural. 
The networks have a processing ability stored in the 
interunit connection strengths, weights, obtained 
by a process of adaptation to , or learning from, a 
set of training patterns (Gurney, 1997). The com-
putational models or nodes are connected through 
weights that are adapted during use or training to 
improve performance (Mandic & Chambers, 
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2001). Therefore the ability of the ANNs to learn, 
identify patterns and predict them has made their 
application in the field maintenance very widely, ( 
Raptodimos & Lazakis, 2018, Vanem & 
Brandsæter, 2019,Stetco et al., 2019,Lugosch et al., 
2020). The process involves the basic node which 
provides a linear combination of N weights 
𝑤1……,𝑤𝑁 and N inputs 𝑥1,…..𝑥𝑁 and passes the re-
sult through a nonlinearity Փ as show in equation 
1. 

 
𝒚 = ∑ 𝑤𝑖 ∗𝑁

𝑖=1 𝑥𝑖 +   𝑤0                (1)  
 

2.2.1 ANN Self Organising Maps  
 
ANN Self Organising Maps (SOM) have been 

applied in the field of maintenance for machinery 
health analysis and prediction of machinery condi-
tion by various authors. As an unsupervised learn-
ing method ANN SOM are effective for data anal-
ysis and clustering as presented in (Yu et al., 2015) 
and used for identifying nonlinear latent features 
from high dimensional data. Therefore, riding on 
the existing success and procedures in the use of 
ANN for machinery data analysis, this research 
will employ ANN for fault classification and detec-
tion, fault/condition prediction and machinery re-
maining useful life analysis (Wu et al., 2007). ANN 
approach for fault detection was applied with FTA 
to identify critical component of a diesel generators 
in a research presented by (Raptodimos & Lazakis, 
2017). In some cases, machinery fault data are rec-
orded without identifying the fault signals, there-
fore this requires data clustering. Clustering is a 
form of unclassified machine learning which is ap-
plied for machinery diagnostics (Gkerekos et al., 
2019). The advantages of using clustering models 
help identify possible clusters as well as the most 
influential clusters in the data. SOM consists of 
competitive layer which can classify a dataset of 
vectors with any number of dimensions as the num-
ber neurons in the layer and are good for dimen-
sionality reduction as presented in (Raptodimos & 
Lazakis, 2018 ,Ponmalai & Kamath, 2019).  

3. Methodology 
The methodology is provides a holistic mainte-

nance strategy to cover the entire ship system in a 
manner that enables flexibility in assigning compo-
nent maintenance priority or scheduling. The com-
bination of systems onboard ships makes it unsuit-
able to have a single approach to maintenance. This 
is more so, when additional consideration is given 
to ship operators in developing countries where ac-

cess to technology and original equipment manu-
facturers is limited and, in some cases, restricted; 
leading to extended downtime for some critical on-
board equipment usually ignored in most cases. In 
this regard, the present methodology provides an 
efficient approach to component/equipment failure 
and degradation analysis. This is because the nature 
of failure and equipment performance degradation 
varies a lot from component, equipment, or sub-
system as such the need to consider multiple anal-
ysis tools to enable a more efficient and flexible 
methodology. Figure 1 shows the overall method-
ology of the research. In this paper, Failure Mode 
Effect and Criticality analysis is used to identify 
Mission Critical component to ship operations. 

3.1 FMECA 
FMECA has been widely adopted in many fields 

beyond engineering to analyse what can wrong, 
how it could go, why it goes wrong, and how it can 
be corrected or addressed. The Criticality Analysis 
(CA) provides a means of identifying the events, 
occurrence or components that need more attention 
to avoid more serious or catastrophic situations. 
FMECA is a bottom-up approach which provides a 
systematic methodology to gain deep insight on 
failures and their course on an equipment or sys-
tem. Therefore, measuring criticality in FMECA 
helps to explicitly bring out the most critical com-
ponent failure which can assist in maintenance ac-
tions and planning. 

 
Therefore, the criticality ranking based on risk 

use a combination of the consequence (severity) of 
the failure and the anticipated likelihood of the con-
sequence occurring (ABS, 2015). Criticality analy-
sis will highlight failure modes with probability of 
occurrence and severity of consequence, allowing 
corrective actions to be implemented where they 
produce greatest impact. Given the overall lack of 
reliability data for many marine systems and com-
ponents, performing an assessment on qualitative 
level based on experience and knowledge of the 
system is sometimes the only means by which to 
achieve a meaningful criticality assessment. Ac-
cordingly, research presents the combination of 
FMECA and ANN for the investigation of mission 
critical components of a marine diesel generator. 
For the FMECA a survey was conducted based on 
presented in the form of common failures that con-
tributes to about 40 per cent in DGs non availabil-
ity. Therefore, respondents were asked to rank 
faults/failures based on 3 criteria on a linear scale 
from one (1) to ten (10). These criteria were Criti-
cality, Severity and Likelihood as define below: 
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Table 2- Sample FMECA table 

 
 
 
 
 
 
 
 
 
 
 
 
Criticality: Criticality determines the immediate 

impact of failure event to the equipment availability 
and functions. Therefore, a failure mode due to which 
the ship will not achieve one or more of the mission’s 
targets and /or the safety of whole vessel is at risk un-
til the failure is rectified (NASA, 2008).  
 

Severity: Severity assesses how the failure impacts 
on the operational availability of the equipment or 
system regarding normal operation and the duration it 
takes to be repaired or restored to normal operational 
levels. Severity is described as the worst potential 
consequence of the failure determined by the degree 
of injury, property damage or system damage that 
could occur (System Reliability Theory, 2021).  

 
Likelihood: This refers to the failure rate of the 

component including possibility and frequency of the 
fault occurring over a certain time frame (MIL-STD 
1629A, 1980).  

3.1.1 Estimated RPN 
 
The RPN was calculated from the obtained popu-

lation mean by multiplying each criterion based on 
the assigned weights according to the seniority of the 
respondents as a percentage of the original value us-
ing equation 2 and 3. The linear values used for the 
criteria was between | 1 – 10 | therefore was 0 ≤RPN 
≥ 300. In this regard to obtain the Mission Criticality 
the RPN was normalised to ≤100 using the min-max 
normaliser equation 4. 

 
𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑤 =

∑ 𝑤𝑖𝑋𝑖
𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

                                              ( 2) 

𝑅𝑃𝑁 =  ∑ 𝐶𝑤𝑖  ×  𝑆𝑤𝑖𝑖=≤1 ×  𝐿𝑤𝑖                                            ( 3) 

 
𝑅𝑃𝑁𝑛𝑜𝑟𝑚 =

𝑋−𝑚𝑖𝑛 (𝑋)

𝑚𝑎𝑥(𝑋)−𝑚𝑖𝑛(𝑋)
  =  𝑀𝑖𝑠𝑠𝑖𝑜𝑛 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑖𝑡𝑦           (4) 

3.2 Artificial Neural Network Clustering 
In general, there are 2 types of machine learning 

namely supervised and unsupervised learning 

(Mahantesh Nadakatti, 2008, Cipollini et al., 2018). 
The supervised machine learning is used to train a la-
belled model using a labelled that, that is the features 
to be looked out are already know there  the input data 
(Gkerekos et al., 2017). On the other hand, unsuper-
vised learning deals with unlabelled data which 
means the algorithm will identify the unique features 
in the data and partition it accordingly (Coraddu et al., 
2016,Vanem and Brandsæter, 2019). Unsupervised 
learning is useful for exploring data in order to under-
stand the natural patten of the data especially when 
there is no specific information about significant in-
cidents in the data that can easily point to some fault 
indicators(Cipollini et al., 2018). The data collected 
included hourly machinery log of the DGs hence with 
no indication of failure or maintenance periods. 
Therefore, the best method to get the information was 
to conduct cluster analysis, consequently ANN SOM 
was used for dimensionality reduction and clustering 
in the collected data from the case study ship. 

 
Implementing SOM requires the initial training 

which composes of three phases namely, competition, 
cooperation and adaption (Kohonen, 2013). The neu-
rons are trained during the competition by competing 
with each other, whereby the neuron having weight 
vector closest to the input signal vector is declared as 
the winner neuron or the Best Matching Unit (BMU). 
The process can be demonstrated thus; taken the input 
signal vector to be represented by I = [ I1, I2, I3 ….In ]T 
and the weight vector is represented by W = [ 
W1,W2,W3. . . .  Wn]T.  The difference between the 
weight vector and input signal vector is computed as 
the Euclidean Distance (E) between them given by 
equation 5. 

 

𝐸 = ∥ 𝐼 − 𝑊 ∥ √∑(𝐼𝑖 − 𝑊𝑖 )
2

𝑛

𝑖=1

                             ( 5) 

 
The above equation determines the neuron with the 
smallest E, which is also the BMU. This is followed 
by the cooperation phase where the direct neighbour-
hood neurons of the BMU are identified. The third 
phase is the adaptation process which neurons are se-
lectively tuned to adopt a specific pattern on the lat-
tice that corresponds to a specific feature of the input 
vector.  The tuning function is written as: 
 

𝑊(𝑡 + 1) = 𝑊(𝑡) + 𝛼(𝑡)𝜃(𝑡)[𝐼(𝑡) − 𝑊(𝑡)]           (6) 

Where 𝛼(𝑡) is the tuning rate and 𝜃(𝑡)  is the expo-
nential neighbour function; 𝛼(𝑡) decrease exponen-
tially with further iteration hence refining the training 
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process, this can be represented in the following equa-
tion. 

 

𝛼(𝑡) = 𝛼0𝑒
(−

𝑡

𝜆
)
                                  (7) 

where α0 is the initial learning rate and λ is the time 
constant given by. 

 
𝜆 =

𝑁

    𝜎0

                                                            ( 8) 

In the above equation N is the total number of 
training samples and σ0 is the radius of the map. The 
radius is calculated as the Euclidean distance between 
the coordinates of the outmost neuron and the centre 
neuron  

 
𝜎0 = ∥ 𝑇𝑜𝑢𝑡𝑚𝑜𝑠𝑡 − 𝑇𝑐𝑒𝑛𝑡𝑟𝑒 ∥                                   (9) 

In equation 9, Toutmost and Tcentre stands for the co-
ordinate of the outmost and central neurons respec-
tively. The overall process is an iterative one to iden-
tify the closest neuron to the BMU, thereby fitting the 
data to required cluster using θ(t) equation 10. 

 
𝜃(𝑡) = (

∥𝑇𝑗− 𝑇𝐵𝑀𝑈∥2

2𝜎(𝑡)2
)                                                ( 10) 

𝜎(𝑡) =  𝜎0𝑒𝑥𝑝 (
−𝑡

𝜆
)                                              (11) 

In equation 10  𝑇𝑗 = [𝑡𝑗
1 𝑡𝑗

2] which denotes the co-
ordinates of each neuron in a 2D map, TBMU is the co-
ordinate of the best matching unit and σ(t) is the ra-
dius of the neighbourhood as shown in equation 11. 
Therefore, the neurons will keep on updating to get 
the BMU; In this respect, SOM uses unsupervised 
learning to produce a map of the input thus providing 
a good solution for interpreting highly dimensional 
data making it a good candidate in machinery fault 
diagnosis 

4. Results and Discussions 
A case study to demonstrate the proposed ap-

proach was conducted on an OPV power generation 
plant consisting of 4 diesel generators. All generators 
are rated at load speed of 1800rpm and maximum out-
put 400KW with an overload capacity of 110% for 1 
hr in 12hrs. The DGs are 4-stroke, 12-cylinder, V-
type, direct injection, sea water intercooled turbo-
charge and water cooled. All DGs are capable of in-
dependent operation or in parallel and can as well 
change over automatically in case of failure. Overall 
machinery health monitoring is achieved via as set of 
sensors capable of shutting the DG or setting up an 
alarm at certain threshold as shown in table 3. 
 

 

 

Table 3 – DG Operating parameters 

Parameter Abbre 
viation Operating Ranges Alarm 

    Min Max   

Lubricating 
Oil Pressure LoP 0.4 Mpa 0.55 Mpa >0.6 

Cooling 
Fresh Water 
Tempera-
ture 

FWT(A/B) 75 OC 80 OC >85 OC 

Lubricating 
Oil Temper-
ature 

LoT 30 OC 110 OC > 120 OC 

Fresh water 
pressure FWP 0.02 Mpa 0.25Mpa >0.3 

Exhaust Gas 
temperature EGT(A/B) 220 OC 400 OC >520 

Engine 
Speed RPM 1789 

RPM 
1850 
RPM 

2052 
RPM 

Power Out 
Put KW 0 440KVA 440Kva 

Generator 
running 
hours 

HRS ≥ 
2000hours     

 
A survey was conducted to get the opinion of oper-

ators and administrators in an organisation with a 
fleet strength of more about 40 ships of various sizes 
mainly used for security patrols. The survey consisted 
of about 20 questions on various types of faults and 
failure conditions covering DG system including the 
alternator. Overall, there were 22 respondents of 
mixed experience and qualification, mainly consist-
ing of 2 specializations; Marine Engineering and 
Weapon Electrical Engineer. The approach is adopted 
in order to account for expert knowledge, organisa-
tional peculiarities, and challenges to do with access 
to original equipment manufacturers representatives.  

The experience level of respondents varies be-
tween 4 to 28 years of service considering position 
occupied. In this regard appropriate statistical models 
were used to gain insight to the data. The survey was 
conducted mainly to quantify the 3 criteria needed for 
the calculating the RPN which are Criticality ( C ), 
Severity (S) and Likelihood (L) (MIL-STD 1629A, 
1980). Thereafter, the sample and population of mean 
of the seven groups were taken using equation 12.  

 
𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑚𝑒𝑎𝑛 𝜇 =

∑ 𝑥

𝑁
               12 

Where µ is the population mean, x = data values, N = 
number of samples 
 
Table 4 shows the ranks and weights applied to the 
groups. Therefore, to accommodate other operational 
peculiarities mission critical will be used to replace 
criticality for evaluating the critical components as 
compared to the traditional way of measuring critical-
ity by evaluating detectability, severity, and likeli-
hood. In the context of the research criticality is look-
ing at the immediate impact of the failure event on the 
equipment or platform availability and readiness.  
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Table 4 - Rank and Weights method 

Ranks Exp. 
(years) No. W* Positions W* Total  

A 
Total 

B 
Ap-

plied 
weight  

(%) 
Slt 0–5 2 50 WKO/WKD Non 50 Non 0.5 
Lt 5–11 2 60 WKDWEO/MEO 10 60 70 0.6 
Lt Cdr 11–15 4 60 WEO/MEO 10 60 70 0.7 
Cdr 15–20 5 65 FSWEO/ 

FSMEO 15 65 80 0.8 
Capt 20–24 3 70 FSMO/FSG 

CMDR 20 70 90 0.9 
Cdre 24–28 2 80 FSMO/ 

FSG CMDR 20 80 100 1 
R/Adm 28–35 2 100 FSG CMDR Non 100 100 1 
*W= Weights 

 
A summary of the FMECA result is presented ta-

ble 5 Presented are 22 out of about 81 failures ana-
lysed due to paper space limitations. The presented 
failure represents top 50 per cent of the analysed fail-
ures on the diesel generator, this ranking provides 
very important information on how the failure add to 
the Mission Criticality of the component.  
 

An important case is the cylinder head bolts which 
has a very short TTR however have very high CA and 
RPN scores, this underscores the importance of 
FMECA in maintenance analysis. A further look at 
the table indicates that failures with longer TTR had 
higher RPN  than those with lower score, again this 
can provide some guidance to operators on the need 
to look at skills, type of spare parts holding onboard 
and procurement prosses.  Therefore, the CA score 
and the RPN provide a strong base for the next aspect 
of the analysis which is geared towards identifying 
features in the machinery health parameters. 
 

The next aspect of the case study is the clustering 
analysis of the unlabelled DG machinery health data 
with ANN SOM, a summary of the data is presented 
in table 6. The analysis provides, insight on the main 
groups and the health parameters that can be used for 
further diagnostics analysis. The data range used for 
the SOM analysis is presented in table 7; as can be 
seen there are 2 abnormal ranges to account for Oper-
ator and OEM limits. This disparity was obtained    
from the operator and shows while the DGs are all 
rated at 450KW maximum output they were unable to 
sustain loads beyond 250KW, about 60 percent of the 
rated output. 
 
 
 
 
 
 
 
 

 
Table 5- Mission Criticality and RPN values 
Sub 
system 

Compo-
nent 

Failure 
Mode  

Time to re-
pair 

C S L RPN N. 
RPN 

Cylinder  
Block 

Crankcase 1.Cracking  1-3months 7 6 3 224 65 

Cylinder 
liner  

2. Cracks 1wk-
3months 
(spare 
parts avail-
ability) 

7 7 4 196 56 3. Scuffing 

4. Seizure 

Cylinder 
head  
bolts 

5. Loose 
1-3hrs 7 6 8 336 100 

6. Not tight 

Top  
Cylinder 
gasket 

7. Burnt 
10-24hrs 6 5 5 207 60 8. Material 

Failure 
Cylinder 
head  
O-ring 

9.Defor-
mation  

2 wk- 
2 months 7 6 5 207 60 

Power  
Take Off 

Crank  
Shaft 

10. Surface 
roughness 

1 month 7 7 3 200 58 
11. Mis 
alignment  

Journal 
Bearing 

12.Friction 
and sei-
zure 

6hrs-2 
days 

7 7 3 222 64 
1-2 
months 
(OEM to 
supply  
spares) 

Cooling  
System 

Heat Ex-
changer 
Tubes 

13. Scale 
build-up 30min-

6hrs 5 5 5 221 64 
14. Leak-
ages 

FW  
circulation 
pump 

15. No wa-
ter supply 2hrs- 

4weeks 6 6 4 180 51 
16. Drop in 
pressure  

SW pump 
assembly 

17. No SW 
supply 

2-4hrs 6 5 4 179 51 
18.Drop in 
pressure  

Fuel  
Quality 

19. Loss of 
power 

1- 
2weeks 6 6 7 196 56 

20. Erratic 
operation 
21.Filter 
blockage 
22. Sludge 
accumula-
tion in 
tanks  

 
 
Therefore, clustering will provide a hint on how 

these operating parameters are related to one another 
and possibly a clue to fault development. Normal data 
cleaning and filling of missing data was conducted in 
order to improve model quality. The initial training 
was conducted with 6 inputs as shown in table 7. The 
data consist of 1800 timestamp data points out parti-
tioned in to 70/30 for training and validation, training 
was completed after 200 epochs, due to the size of the 
data. Consequently, the generated topology presented 
5 distinct clusters which are good representation of 
the input data. A critical look at the table 5 it can be 
concluded that the DG has never exceeded 60 per cent 
of its rated output.  
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Table 6-Data Summary 

  RPM LoP FWTA FWTB LoT FWP EGTA EGTB HRS KW 
count 150 150 150 150 150 150 150 150 150 150 
mean 1800 0.5 66.1 68.8 84.4 0.08 334.7 317.6 2527 128 
std 2.9 0.1 3.4 3.8 4.7 0.01 39.3 38.9 2703 34.7 
min 1783 0.33 40.7 42.7 41.6 0.05 161.2 146.9 523 65 
25% 1799 0.38 65.2 67.7 82.4 0.07 310.2 287.5 603.3 100 
50% 1800 0.56 66.2 68.8 84.6 0.07 339.5 325.8 636.5 130 
75% 1801 0.57 67.4 70.3 86.4 0.08 352 337.5 6341 140 
max 1812 0.86 74.1 77.1 94 0.12 426.8 408.1 6379 240 
 
Table 7- DG health parameter range  
DG health 
 parameter 

Normal 
range  Abnormal range  Alarm   

Operator OEM  
Freshwater  
Temperature  
A/ B-Bank 

76-82 85 C 90 C  90-92 C 
Exhaust gas  
Temperatures  
A/B-Bank 

250-520 480 C 500 C 520 C 
Lub Oil 
 Temperature 40-95 90 110 113 
Lub oil  
Pressures  0.45-0.6 0.8 0.1 0.12 
Engine  
power output 
 (kilowatt) 

100-350KW 240KW  400KW 440KW 
 

The weight input in Figure 2a shows an 8-by-8 
two-dimensional map of 100 neurons during the train-
ing. The colour variation in the map topology indi-
cates the strength of connection between the neurons; 
lighter colours indicate short and strong connections 
while darker colours indicate distant and weak con-
nections. Similarity, the difference in pattern colours 
indicates how correlated the data cluster are to one 
another. Accordingly, the cluster weights of Exhaust 
Gas Temperature B-bank (EGTB) and Fresh Water 
Temperature B-bank (FWTB) showed a strong corre-
lation which is not present in Fresh Water Tempera-
ture A-bank (FWTA) and FWTB. There is also a 
strong correlation between Power Output in Kilo 
Watts (KW) and Exhaust Gas Temperature A-bank 
(EGTA) and to an extent Lubricating Oil Tempera-
ture (LoT), therefore the 3 parameters provide a good 
set of health indicators for further analysis. On the 
other hand, the slight disparity between both EGT- 
A/B and FWT - A/B could be an indication of a more 
serious problem that operators may need to further in-
vestigate. Moreover, the fact the DGs are not able to 
generate beyond 60 per cent of the rated capacity 
could be due to over rating or dynamic in balance in 
the DGs. Overall, the SOM neighbourhood weight 
distances in figure 2b, shows relatively high dimen-
sional data with about 5 clusters as can be seen within 
the lower left centre having distinct clusters compare 
to the lower right end. In contrast the upper right is 
equally a different concentration of clusters, hence an 

indication of varying health parameters in the data 
that points to normal and abnormal data conditions. 
 

Figure 2a-Fisrt training set data 

 
Figure 2b- SOM Neighbour Weight Distance 

 
It further points to the variation presented in table 7, 
in that the OEM values may prove too high above the 
normal operating range, but could be confused by dif-
ferent operators. Nonetheless, the fact that DG has not 
been operated beyond 60 percent rated output means 
that at 50 % output which is about 200KW, the DGs 
health parameters are already at maximum load ca-
pacity. In this regard the darker clusters which indi-
cates weak connections are indication of abnormal 
readings within the data. Hence this could the reason 
why, the SOM Neighbour weight distance were het-
erogeneous and provides a useful indication on deg-
radation in DG performance.  

5. CONCLUSIONS AND FUTURE WORK 

In this paper a methodology combining modified 
approach of using FMECA RPN and ANN SOM to 
identify mission critical failure event and related as 
well as data clustering for anomaly dictation was pre-
sented using of Maintenance repair and overhaul data 
from a set of DGs onboard an OPV. A survey to get 

EGTB                     EGTA                    FWTB 

FWTA                     KW                      LoT 
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expert opinion was conducted to produce the critical-
ity, severity and likelihood scores therefore giving a 
strong credibility to obtained scores. In this regard a 
number of mission critical components and failure 
events were identified. A further analysis to investi-
gate DGs health parameters based on hourly log re-
cordings was conducted using ANN SOM. The clus-
tering analysis was conducted using 6 out of 10 
parameters collected from the DGs. The SOM neigh-
bourhood weight distance indicates a heterogenous 
data distribution showing about 5 distinct clusters that 
can be useful for future degradation and diagnostics 
analysis. Therefore, in this research, a method of us-
ing expert knowledge was implemented to conduct 
FMECA that was used to identify mission critical 
components on a DG. The cluster analysis with ANN 
SOM provided key insight into machinery health pa-
rameters that revealed some sharp contrasts between 
the exhaust gas temperature of A and B banks. Con-
versely a strong correlation in the features of KW, 
LoT and EGTA was identified which can be used for 
further analysis of the DG health parameters. Accord-
ingly, it can be gleaned from the FMECA results that 
the mission critical components are those influence 
by high temperature conditions. 

 
In this regard future research will focus on identi-

fying clusters and clearly mapping out the data point 
they represent. The outcome of mission criticality 
analysis will be used as input for a maintenance deci-
sion making analysis that can help prioritise spare 
parts holding onboard and shape future procurement 
choices. FMECA and ANN-SOM has proven to be a 
good combination of tools for reliability and machin-
ery health analysis in the context of this research and 
engineering field in general. Therefore, future re-
search direction will take a look into ANN-SOM ap-
plication for performance degradation and fault clas-
sification, while the FMECA analysis will be used for 
decisions support analysis using another tool. Moving 
forward this research has provided the data input for 
implementing machinery health condition monitoring 
and reliability analysis platform for onboard system 
and equipment with a focus on failure events and 
component criticality.   
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