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ABSTRACT We present a natively fixed-point filter design method that targets FPGA-based
Reconfigurable Finite Impulse Response (RFIR) filters for Software Defined Radio applications. The
Filter Designer is capable of reconfiguring cut-off frequencies on-the-fly at run-time; with other param-
eters, such as filter length and window type, configurable at compile-time. The ability to compute filter
coefficients directly on FPGAs is compelling, as much lower latencies can be achieved when compared
to RFIRs programmed with embedded processors. In this work we discuss several filter design techniques
from the literature and investigate their suitability for implementation on FPGAs. A hybrid method com-
bining window and frequency sampling methods is developed and implemented on a Xilinx Zynq-7000
SoC. We explore the limitations of designing filters in fixed-point arithmetic and consider the effects
filter length and wordlength have on filter quality. Results show that the proposed algorithm generates
good-quality filters that display stopband attenuation up to 88dB, transition bandwidths less than 1% of
the sample rate, and low resource utilisation. Most notably, we found that our method is up to three
orders of magnitude faster than an equivalent software implementation, with execution times as low as
2.52 µs, enabling radio applications in which latency is a principal constraint.

INDEX TERMS Digital filter design, FPGAs, Circuits and systems for software-defined radio.

I. INTRODUCTION

RECONFIGURABLE Finite Impulse Response (RFIR)
filters are an increasingly important component in mod-

ern Software Defined Radio (SDR) architectures, where
devices are required to support multiple wireless commu-
nication standards, while making efficient use of hardware
resources and available RF spectrum. Field Programmable
Gate Arrays (FPGAs) are well suited for these applica-
tions due to their inherent reprogrammability and parallel
structure.
A typical SDR system can require multiple FIR filters

for both transmit and receive paths. The ability for some,
or all, to be reconfigurable at run-time allows for a more
dynamic system. For instance, low-pass anti-alias filters may
be needed for decimation and interpolation stages, while
bandpass filters can help to avoid interference between adja-
cent channels. If the SDR is required to support multiple
bands or standards, the use of RFIRs can help reduce both

hardware resources and design complexity when compared
to systems that employ separate filters for each band, or
standard, they support.
RFIR filters are an active research topic, with many target-

ing FPGA-based hardware. For example, in [1] the authors
developed an RFIR filter architecture based on run-time
configurable look-up tables (LUTs). The filter can be recon-
figured with arbitrary coefficients, with wordlength and
filter length fixed at compile-time. In [2] an RFIR filter is
implemented using Wallace tree multipliers, resulting in an
increased maximum operating frequency, but to the detriment
of hardware resource usage. Other work focuses on keep-
ing resources and power consumption low. In [3] and [4]
an RFIR filter is designed using Vedic multipliers, which
reduces arithmetic operations to shifts and adds. In this
architecture, which primarily targets Application Specific
Integrated Circuits (ASICs), the filter length is readily
changed at run-time by switching off unused gates, reducing
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FIGURE 1. Block diagram depicting three methods of programming an FPGA-based RFIR. In (a) an off-chip embedded processor calculates the filter coefficients and passes
them to the FPGA via shared memory. In (b) an integrated embedded processor calculates the filter coefficients and passes them to the FPGA via memory-mapped registers. In
(c) the coefficients are calculated directly on the FPGA.

power usage. In [5] an RFIR filter is created based on
coefficient occurrence probability, where coefficients are rep-
resented as canonic signed digits and converted on hardware
as a way to reduce hardware resources. In [6] two architec-
tures are proposed using constant and programmable shifts
methods, both of which produce a reduction in power usage
and resource utilisation.
It must be noted, however, that the work in [1]–[6] focuses

primarily on the architecture of RFIR filters, with little atten-
tion given to the reconfiguration method employed or how
the fixed-point coefficients are calculated. Typically, the use
of pre-calculated, memory-stored coefficient lists is assumed.
In the remainder of this section we establish a clear moti-
vation for taking a radically different approach in which
the filter coefficients are dynamically calculated on the tar-
get device instead. Additionally, we discuss applications for
which this method is advantageous and highlight the research
contributions of the work presented in this paper.

A. MOTIVATION
Pre-calculated coefficient lists for FPGA-based RFIRs would
typically be stored using either distributed memory, in the
form of LUTs, or block random access memory (BRAM).
However, this method is not scalable for systems that
require high filter orders and fine-control over parame-
ters. For example, in the Xilinx 7-series FPGAs, BRAMs
are either 18 or 36 Kb, dependent on configuration [7].
Therefore, to store even a modest configuration of 100,
16-bit, 101-length filters would require at least five BRAMs.
Moreover, if arbitrary bandpass filter responses are required,
especially in applications that require high sample rates
and large bandwidths, storage requirements could easily
become a limiting factor. This signifies that, in some con-
ditions, calculating new coefficients at run-time is more
appropriate.
Both off-chip Digital Signal Processing (DSP) and embed-

ded processors are obvious choices for designing filter
coefficients on-the-fly at run-time, but require some form
of communication between processor and FPGA for the
RFIR to be reconfigured. This communication layer results
in inherent latencies, while off-chip, memory-based stor-
age and retrieval can be a bottleneck. Additionally, when

low latency and high-order filters are required, especially in
systems where the embedded processor is responsible for
other time-sensitive computations, it may be difficult for
smaller devices to meet these constraints.
Considering these limitations it is worth exploring the

potential for on-the-fly filter design directly on the FPGA
instead. In Fig. 1 we compare the architectural differ-
ences between this approach and two other methods of
reconfiguring FPGA-based RFIRs at run-time.
In Fig. 1a an embedded processor calculates the fil-

ter coefficients and stores them in shared memory. The
coefficients are then retrieved by a memory controller on
the FPGA before being converted and passed to the RFIR.
Fig. 1b depicts an architecture where the embedded pro-
cessor shares the same silicon as the FPGA, forming a
System-on-Chip (SoC). In this method coefficients are cal-
culated on the processor and passed to the FPGA via shared
memory-mapped registers. In devices such as Xilinx Zynq
SoCs this would be performed by either AXI (Advanced
eXtensible Interface) or AXI-Lite interfaces [8]. Finally, in
Fig. 1c, filter coefficients are calculated and passed to the
RFIR directly on the FPGA.
When comparing the method depicted in Fig. 1a to Fig. 1c

the benefits of the latter design are clear. It removes the
need for off-chip communication, is less complex in terms
of software and hardware requirements, and is likely to use
less power. The benefits of the direct FPGA approach over
the method depicted in Fig. 1b, however, are less apparent
as communication between FPGA and processor remains
on-chip. With that said, even without the requirement of
off-chip communication there are still potential bottlenecks
in this method worth considering. AXI-Lite is limited to
single transactions, which could lead to slow read/write
times for long length filters. Furthermore, while AXI burst
transactions do provide higher throughput, in this work
we show that the process of calculating filter coefficients
on embedded processors is also a significant source of
latency.
Another method is also possible where the FPGA is

controlled by software, such as MATLAB, running on an
external computer. In this method, the coefficients can be
calculated at high speed and passed to the FPGA via an
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Ethernet or serial connection. However, this method is cum-
bersome, requiring a reasonably powered computer to run
the software, and would be more suited to a prototyping
stage rather than incorporation into an embedded design.

B. APPLICATIONS
The design of filters directly on FPGAs reveals some
interesting possibilities for applications in SDR, partic-
ularly on devices such as the Xilinx Radio Frequency
System-on-Chip (RFSoC), where RF-speed data converters
are connected directly to the programmable logic [9]. On
these devices, multi-gigahertz bandwidths and large over-
sampling rates allow for better frequency planning to avoid
interference from spurious signals [10]. One possible sce-
nario would be where a tight filter is required around a
band of interest but, due to the current device configura-
tion, an interfering spur would be present. This interference
can be mitigated by adjusting the sample rate of the system
on-the-fly, but would require the filter to be redesigned to
match the new configuration.
Interference may also be present from external sources

such as jamming signals or transmissions from unlicensed
users. The ability to quickly redesign filters and reconfigure
the system to avoid these interfering signals would help
reduce the amount of down-time experienced on the network.
In scenarios like this, on systems where many frequency

bands are supported over gigahertz of spectrum, we can see
the benefits of on-the-fly filter design over pre-calculated
coefficients. Moreover, the ability to redesign the filter
directly on the FPGA not only allows the process to remain
on-chip, but the reconfiguration process can also be achieved
in significantly less time than an off-chip, or embedded,
solution.
These fast reconfiguration times enable radio applications

where low latency is a principal constraint such as the auto-
motive, aviation, and mobile communication sectors. For
example, the user plane latency requirements of broadband
cellular networks have been steadily decreasing between gen-
erations, with 6G proposed to be as low as 0.1 ms [11]. With
this continuing trend, communication technologies where
spectrum allocation is more flexible and which benefit from
a high degree of reconfigurability, such as cognitive radio
and dynamic spectrum access, will require the low latency
that can be provided by FPGA-based filter design.
The design of FIR filter coefficients directly on FPGA

hardware, however, is non-trivial. Fixed-point arithmetic can
cause cumulative quantisation errors, while optimal design
methods—such as the Parks-McClellan algorithm—can
result in non-deterministic behaviour. These types of issues
are well documented in the works of Kodek [12]–[15],
among others, where limitations of finite wordlength filter
design were a consequence of the DSP hardware restrictions
of the time. The absence of FPGA-specific, fixed-point fil-
ter design algorithms from the literature provides further
motivation to investigate the practicality of this approach.

C. RESEARCH CONTRIBUTIONS
This work proposes an FPGA-based filter design algo-
rithm in which fixed-point filter coefficients are computed
on-the-fly at run-time. For testing purposes we target the FIR
Compiler v7.2 Intellectual Property (IP) core on a Xilinx
Zynq-7000 SoC, using the AXI-Stream protocol for filter
reconfiguration. However, our design attempts to be as uni-
versal as possible and could be readily modified to operate
on other FPGAs and FPGA-based RFIRs.
Our proposed design uses a hybrid of frequency sam-

pling and window filter design methods, calculated entirely
in fixed-point arithmetic. The Filter Designer allows for the
cut-off frequency to be reconfigurable at run-time, with other
parameters such as filter length and window type config-
urable at compile-time. The filters produced by this method
are shown to be deterministic and of good quality, with stop-
band performance and transition bandwidths well suited for
SDR applications. By performing filter computation directly
on the FPGA instead of an embedded processor, we are able
to greatly reduce the latencies incurred by calculation and
transfer of the coefficients, with our method demonstrating
execution times up to three orders of magnitude faster than
the software equivalents tested.
In summary, the contributions of this work are as follows.
• An FPGA-based Filter Designer capable of generating
deterministic, fixed-point, linear-phase filter coefficients
for RFIR filters; displaying both low resource utilisation
and frequency responses suitable for SDR applications.

• A filter design and reconfiguration algorithm that is
capable of execution times as short as 2.52 µs, suitable
for applications with very low latency requirements.

• A comprehensive analysis of the filters generated by this
method, which may act as a design guide for users.

• To the best of the authors’ knowledge, the only natively
fixed-point filter design method developed specifically
for FPGA hardware.

The rest of this paper is organised as follows. In Section II
we discuss several FIR filter design techniques, explore
their suitability for FPGA implementation, and detail the
algorithm used within this work. Section III details how
the algorithm was translated to a Hardware Description
Language (HDL) IP and integrated within a larger SoC
design. In Section IV we analyse the quality of filter
coefficients produced by the algorithm, provide details of
FPGA resource utilisation and execution times, and com-
pare these results to a processor-based approach. Finally,
the paper is concluded in Section V.

II. FILTER DESIGN TECHNIQUES
FIR filters have two useful properties which make them a
practical choice for SDR applications: they do not require
recursion, making them inherently stable, and they can be
easily constrained to achieve linear phase. An FIR filter has
linear phase if its impulse response displays either even or
odd symmetry, or even or odd anti-symmetry around its
middle point. This results in four linear phase filter types,
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FIGURE 2. Key components of a filter frequency response.

usually denoted I-IV [16], [17]. Type I is the most universal
and, for the purposes of this work, only low-pass Type I
filters will be considered.
The ideal frequency response of an FIR filter is denoted

as Hd(ω), where 0 < ω ≤ 2π , and can be written in the
form

Hd(ω) =
∞∑

n=−∞
hd(n)e

−jωn, (1)

which is an infinite series and non-causal, and therefore not
realisable. The actual filter, H(ω), must then be truncated to
a length, N, and shifted such that n ≥ 0, which then becomes

H(ω) =
N−1∑

n=0

h(n)e−jωn, (2)

meaning that the ideal filter can only ever be approximated
by the actual filter [16]. This approximation problem causes
undesirable effects in the frequency response such as ripple
in the passband, a decrease in stopband attenuation, and an
increase in transition bandwidth, as shown in Fig. 2.
Various filter design techniques have been developed over

the years which attempt to minimise the effects caused
by approximation to within acceptable levels for a given
application, while keeping N small enough to be viable for
implementation on hardware. These factors are even more
significant when considering filter design techniques viable
for FPGAs, where arithmetic is generally limited to fixed-
point, and wordlengths may need to be restricted to prevent
unlimited bit growth. These restrictions can cause quantisa-
tion errors to accumulate (e.g., product roundoff, overflow)
therefore care must be taken to minimise these effects by
allowing reasonable bit growth where possible, and deciding
in what manner values should be quantised.
In the case of filter design, these quantisation errors will

move H(ω) further from Hd(ω), which will result in poorer
performance in the stopband—though these errors can be
somewhat reduced by various forms of rounding [18]–[21].
Moreover, an increase in filter length will result in a larger
overall error, which then must be mitigated by increasing
the wordlength. All these factors must be taken into account
when considering an appropriate filter design technique for
FPGAs.

The goal of this work then is to find a filter design
technique that can satisfy three conditions.

1) It can produce low-pass filters with deterministic
frequency responses, programmable at run-time.

2) It is suitable for implementation on FPGA hardware.
3) The execution time is deterministic at compile-time

(i.e., at IP generation).

This section considers both optimal and sub-optimal filter
design techniques, which we use to determine a suitable
algorithm that can both minimise the above mentioned effects
and satisfy all three conditions.

A. OPTIMAL ALGORITHMS
Optimal design techniques, such as the Parks-McClellan and
Least Squares (LS) algorithms [16], look at filter design as
an optimisation problem, where the error between the desired
response, Hd(ω), and the actual response, H(ω), is minimised
to find an optimal fit.
These methods can produce high quality filters and are the

most versatile. However, the algorithms required to compute
the filters are inherently unsuited to FPGA implementation,
so will only be briefly stated here.
In the case of the Parks-McClellan algorithm, an iterative

approach is taken where the filter is recalculated until a solu-
tion is found. The iterative nature of the algorithm can result
in long convergence times or, in some cases, no convergence
is possible. This issue of convergence can be overcome by
restricting the number of iterations, or introducing less strict
parameters. However, this can result in low-quality filters
and only allows there to be an upper limit of execution
time, rather than being absolutely deterministic, thus failing
Condition 3. Furthermore, the Parks-McClellan algorithm
is not computable with wordlength restrictions [13] and,
although it is possible to reduce the effects of quantisation
errors when converting to fixed-point, it is still necessary to
compute the original algorithm first.
The LS algorithm relies on a linear algebra pseudo-inverse

calculation that is inherently difficult to achieve on FPGAs
due to the division operation, which is both costly and slow.
Moreover, the size of the matrices required for long length
filters can also be a limiting factor, failing Condition 2 [22].
It has also been shown that optimal finite wordlength

filters can be computed using integer programming [13],
simulated annealing [23], and genetic algorithms [24] but,
again, these methods rely on optimisation techniques that
fail to satisfy Condition 3.

B. SUB-OPTIMAL ALGORITHMS
Two of the most common methods of sub-optimal filter
design are the frequency sampling and window methods.
Both approach the problem of filter design from the same
perspective, where an ideal response is truncated to result in
a realisable form. These methods typically have a reduced set
of parameters to be tuned, and require longer length filters
to achieve comparable quality to the optimal methods.
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TABLE 1. Characteristics of various window functions, where ωs is the sampling
frequency in radians/sample. Replicated from [17].

As neither of these sub-optimal methods use recursive
algorithms, they do not suffer from the same problems as
the optimisation techniques. Therefore, it is worth looking at
the window and frequency sampling methods more closely
to determine their suitability for FPGA implementation.

1) THE WINDOW METHOD

In the case of the window method an ideal impulse response,
hd(n), is multiplied by a window function, w(n), of desired
filter length, N, to create a realisable filter, h(n),

h(n) = w(n).hd(n). (3)

In the case of a low-pass filter, hd(n) is the sinc function
and can be written in the form

hd(n) = sin(ωcn)

πn
, (4)

where ωc is the cut-off frequency in radians/sample.
The simplest case is to just truncate (4) to N

samples—equivalent to multiplying by the rectangular win-
dow. However, this typically results in poor quality filters,
where the abrupt discontinuities cause excessive pass-
band ripple and low stopband attenuation (i.e., Gibbs
Phenomenon [25]), regardless of filter length. The most
popular windows used in this technique are the gener-
alised cosine windows, such as the Hamming, Hanning,
and Blackman. These windows display a smooth curve that
decays towards zero more gradually which, when multiplied
by hd(n), helps to both reduce passband ripple and increase
stopband attenuation [16].
Each window has its own well-defined characteristics,

where the trade-off is usually between transition bandwidth
(BW) and stopband attenuation. The characteristics of the
four windows mentioned in this section are tabulated in
Table 1.
As most modern FPGAs contain an abundance of dedi-

cated DSP slices (containing both multipliers and accumula-
tors) [26], multiplication can be considered a trivial operation
to implement. Moreover, if we constrain the filter length to
be fixed at compile-time, the number of cycles required
to complete the multiplication will also be fixed, therefore
satisfying Condition 3.
The window characteristics in Table 1 allow us to predict

the effects these windows will have on the filter at compile-
time, which indicates that this method is able to satisfy
Condition 1 by producing consistent quality filters. However,
if we consider Condition 1 where the parameter ωc must be
tunable at run-time, an interesting problem arises. In the

case of (3), the length of w(n) is fixed and does not include
the ωc term, therefore its coefficients can be readily stored
in memory. However, in the case of (4), hd(n) requires a
division operation and, due to the ωc term being present, it
is not possible to compute and store these values at compile-
time. While it is possible to implement division operations
on FPGAs, it is costly in both resources and clock cycles,
causing it to fail Condition 2.

2) THE FREQUENCY SAMPLING METHOD

In the case of the frequency sampling method the ideal
frequency response, Hd(ω), is sampled at equally spaced
frequencies, ωk = 2πk

N , where k = 0, 1, . . . ,N − 1, and can
be written in the form

Hd(ωk) =
N−1∑

n=0

hd(n)e
−j2πkn/N, (5)

which equates to the Discrete Fourier Transform (DFT).
Therefore the time-domain coefficients can be retrieved by
computing the inverse transform [27].
However, because the sampled, ideal response from (5) is

only defined at the sample points, the spaces between the
points are effectively interpolated. This becomes an issue in
areas of the response that change amplitude abruptly, most
notably at the transition band, which can result in undesirable
filter properties [16]. This can be compensated for by the
use of transition coefficients, as described in [28], but the
algorithm to calculate these coefficients requires a minimax
optimisation technique that would be difficult to implement
on an FPGA, failing to satisfy Condition 2.
Furthermore, for long length filters the DFT is impractical

and thus the FFT algorithm must be used. This then raises
another problem where the filter length would generally be
limited to power-of-2 values, both severely restricting the
flexibility of the filter designer, and eliminating the possi-
bility of odd-symmetry Type I filters. It should be noted
that algorithms do exist that can compute non-power-of-2
FFTs, but these are typically less efficient (i.e., slower) and
can increase design complexity. That being said, it has been
shown that under certain conditions non-power-of-2 FFTs
can result in a reduction in hardware resources and power
consumption [29].

C. A HYBRID APPROACH
In practice, the frequency sampling and window methods
can be combined to produce filters with frequency responses
suitable for most applications. In this work we define this
combination of the two techniques a hybrid approach, and
use it to create a filter design algorithm that can satisfy all
three conditions, allowing it to be implemented on FPGA
hardware.
Initially, the desired frequency response is sampled

at equally spaced frequencies of length NFFT , where
log2(NFFT) is an integer value, and is symmetric about
NFFT/2 in order to retain phase linearity. The inverse FFT
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FIGURE 3. Simplified block diagram of the Filter Designer model developed in System Generator [30]. Note that n is the number of bits dependent on system configuration,
and no is the number of bits constrained at compile-time.

is then performed to retrieve the NFFT -length time-domain
coefficients, which are then truncated to N values around
the centre coefficient. Finally, the filter is then multiplied
by an N-length window function. In this work, a Blackman
window is used due to its high stopband attenuation.
Due to the use of windowing, as we have seen, filters of

consistent quality can be produced, satisfying Condition 1.
Furthermore, as we now use the frequency-domain repre-
sentation of the sinc function (i.e., the rectangular function),
this is readily computable at run-time where, for a low pass
filter, it can be written in the form

rect

(
ωk

2ωc

)
=

{
0 ωc/2 < ωk < ωs − ωc/2,

1 otherwise.
(6)

The only other operations required are the inverse FFT and
the multiplication of the window—also readily computable
on FPGAs—allowing this method to now satisfy Condition 2.
Finally, if we constrain the filter length, N, at compile-time,
Condition 3 can also be satisfied.
Although the filter length is fixed in our proposed algo-

rithm, it is worth noting that constraining N at compile-time
is not always necessary to satisfy Condition 3. In some cases,
the potential for N to be reconfigurable at run-time may be
desirable for certain RFIR filter architectures. For the execu-
tion time to be deterministic the number of samples must be
a fixed size at compile-time. However, the actual coefficients
representing the filter can be of any length (less than the
maximum), and the remaining samples can be padded with
zero values. For example, in the work of [4], as described
in Section I, zero-valued coefficients will result in the gates
representing them to be switched off, lowering the overall
operating power. This has some obvious benefits for systems
in which power is a principal constraint, where the abil-
ity to switch between higher and lower order filters, where
appropriate, could help to reduce power consumption.

III. HARDWARE DESIGN
This section describes how the overall hardware design was
developed for the Zynq device. First we describe how the
Filter Designer algorithm was translated to an HDL IP using
the System Generator for DSP software [30]. We then go
on to explain how the HDL IP was integrated into a larger
test environment on the PL and PS, using both the Vivado
IDE [31] and PYNQ framework [32].
The entire codebase developed in this work, includ-

ing all hardware IP, has been released as an open-source

project [33], where the interested reader may view or
download the source code. Furthermore, the repository that
hosts the project also includes additional implementation
documentation which may aid in reproducibility.

A. IP DESIGN
The filter design algorithm described in Section II-C can be
divided into six steps.

1) Calculate desired frequency response.
2) Generate frequency response.
3) Perform inverse FFT.
4) Truncate the filter to desired length.
5) Perform window operation.
6) Load coefficients to the RFIR filter.

Fig. 3 depicts the algorithm as a simplified, system-level
block diagram, which was developed in System Generator.
The rest of this section describes each component in detail.

1) CALCULATING THE DESIRED FREQUENCY
RESPONSE

In Step 1, in order to calculate the frequency response, two
values are required: the FFT length, NFFT , and the nor-
malised cut-off frequency, fc. As fc is the cut-off frequency
in relation to the sampling period, and NFFT is effectively
the sampling period of the filter at this stage of the algo-
rithm, the number of high values (i.e., the 1 values from (6)),
Nhighs, can be calculated by

Nhighs = ‖fc.NFFT‖, (7)

where ‖‖ denotes a rounding operation.
Since h(n) is purely real the frequency response must be

symmetrical around NFFT/2, meaning the total number of
high values must be 2fc.NFFT − 1. From this the number
of low values (i.e., the 0 values from (6)), Nlows, can be
calculated as

Nlows = NFFT − (
2.Nhighs − 1

)
. (8)

In this design the value of NFFT is fixed at compile time
and the value of fc is taken as a user (or system) input to the
IP. As the value of NFFT is always a power of two, both (7)
and (8) can be implemented by a single multiply operation
and a series of shifts and adds, requiring a total of three
clock cycles to complete.
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2) GENERATING THE DESIRED FREQUENCY RESPONSE

In Step 2 the frequency response is generated using a Finite
State Machine (FSM). The FSM takes Nhighs, Nlows, and
a trigger as inputs, and outputs the AXI-Stream signals
required by the FFT IP [34]. The state machine adds an
additional clock cycle to the total latency of the system.

3) INVERSE FFT

Step 3 performs the inverse FFT that is required to trans-
form the frequency response into the filter impulse response.
This is performed by the LogiCORE Fast Fourier Transform
v9.1 IP block available in System Generator. The IP inputs
follow the AXI-Stream protocol and requires tdata, tvalid,
and tlast signals. The tlast signal is pulsed-high for one sam-
ple and signifies the end of a data block which, in this case,
is of size NFFT . Note that this IP is the principal source of
latency within the algorithm and is proportional to the size
of NFFT .

4) TRUNCATING TO AN N-TAP FILTER

In Step 4 the FFT frame output is written to a single-port
RAM, implemented using BRAM. As the FFT frame is out-
put by the IP in bit reversed order, a ROM containing the
bit reversed position values is used to write each FFT sam-
ple to its correct RAM address. This ensures the desired
N-length filter can be readily retrieved by the next stage in
the correct order. For Type I symmetric filters only half the
N-point filter is required to reload the FIR Compiler IP [35],
M = (N + 1)/2, around the centre tap. An FSM is used to
read these M values from the RAM in the correct order,
introducing a delay of NFFT + 3 clock cycles.

5) WINDOWING THE FILTER

Step 5 multiplies the M-length filter with a window function.
This is performed by multiplying the output of the RAM with
an M-length window (i.e., half the window function), stored
in a ROM, and read out using a counter. This introduces a
two cycle delay. The desired output wordlength is set after
this operation.

6) RELOADING THE FILTER COEFFICIENTS

Step 6 transfers the coefficients to the RFIR filter which,
in this work, is the AXI-Stream compliant LogiCORE FIR
Compiler v7.2 IP from Xilinx. The FIR Compiler IP uses
two AXI-Stream slave ports to reload the filter coefficients,
named Reload and Config. The Reload port receives the
coefficients within the tdata signal, along with the required
tvalid and tlast signals. The Config port is then used to
instruct the IP to load the new filter by sending an empty
8-bit packet along with a single-cycle tvalid signal [35].
An FSM is used to perform this reconfiguration handshake,
introducing a one cycle delay.
It should be noted that, although this step is specific to

the FIR Compiler IP, the algorithm can be readily modified
to accommodate other RFIR filter architectures.

FIGURE 4. Simplified Vivado IPI block diagram for the test environment.

B. SYSTEM DESIGN
The Filter Designer was developed for the PYNQ-Z2 devel-
opment board that features the Xilinx Zynq XC7Z020
SoC, containing both FPGA Programmable Logic (PL)
and Processing System (PS) on a single chip. The PL is
an equivalent Artix-7 FPGA, consisting of Configurable
Logic Blocks (CLBs), DSP slices, BRAMs, and routing
logic. The PS consists of a 667 MHz dual-core Arm
Cortex-A9 processor, peripheral and memory interfaces,
and clock generation—capable of running a Linux oper-
ating system. Communication between the PL and PS is
facilitated by multiple AXI communication interfaces, pro-
viding both memory-mapped and high-speed streaming data
transfer [36], [37].
This section describes the design of the PL and PS com-

ponents of the system, and how the Filter Designer IP
was integrated into a larger test design for the Zynq SoC.
The hardware and software systems presented in this sec-
tion are readily portable to other Zynq-based devices, such
as the MPSoC and RFSoC platforms—both suited to SDR
applications.

1) PL DESIGN

The PL design was developed in the Vivado Design Suite
IP Integrator (IPI) software tool, building around the Filter
Designer IP that was created in System Generator.
The Filter Designer’s two AXI-Stream master ports

(Reload and Config) are connected to the corresponding slave
ports of the FIR Compiler IP. The memory-mapped port, used
to control the cut-off frequency, is connected to a standard
AXI Interconnect IP. Test signals are transferred between the
FIR Compiler and the PS via the off-chip memory, facilitated
by an AXI Direct Memory Access (DMA) controller IP.
The Zynq PS IP is configured with a general purpose AXI

master port and a high performance AXI slave port, while a
single PL fabric clock is used for all IPs. Two frequencies
were implemented during testing: 100 MHz and 250 MHz. A
simplified diagram of the Vivado IPI block design is shown
in Fig. 4.

2) PS DESIGN

As the Filter Designer has only one input, the cut-off
frequency, controlled from a shared AXI-Lite register, very
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little software is required to test its output. However, to ade-
quately test the IP in a full system, as depicted in Fig. 4,
the software requirements become more complex. For this
reason the software developed for this design was written
within the PYNQ framework.
PYNQ is an open-source embedded software framework

from Xilinx that targets their line of Zynq and Zynq
Ultrascale+ SoCs. The framework includes an Ubuntu-based
Linux operating system, a software library written in the
Python programming language, and a Jupyter Web server that
allows uers to run embedded code in a Web browser-based
Integrated Development Environment (IDE) [32], [38].
One immediate benefit of using PYNQ is the speed in

which embedded code can be written and tested. In this work,
to confirm that the Filter Designer functioned as expected, a
cut-off frequency is written to a memory-mapped AXI-Lite
register to generate filter coefficients and program the FIR
filter IP. A test signal is then generated, written to memory,
then sent to the FIR filter’s data port by a DMA transaction.
The filtered signal is then written back into memory and
read back in the PS by a second DMA transaction. This
entire program can be achieved in many fewer lines of code
using the PYNQ framework, than with a conventional C
implementation.
Another benefit of PYNQ is the ability to integrate stan-

dard Python modules into the codebase alongside embedded
code written using the PYNQ library. An example of this is
the plotting library matplotlib, which allowed us to quickly
analyse the results of the test signals passed through the
filter visually, in both time and frequency domains.
The PYNQ framework was also used for the results in

Section IV-F, where execution times were compared between
fixed-point filters designed on the PL and the PS. To differ-
entiate between filters designed on the PL, calculated entirely
in fixed-point, and those designed on the PS, calculated in
floating-point then converted to fixed-point, we refer to them
as native and non-native respectively.

IV. RESULTS
In this section we look at various filters designed by the
system, consider the quality of the coefficients and the
effects of quantisation, make comparisons between native
and non-native fixed-point filters, and compare execution
time between software and hardware implementations.
For the purposes of this work stopband attenuation is mea-

sured at the peak of the highest sidelobe, while the transition
bandwidth is measured between the −3dB point and the end
of the main lobe (see Fig. 2). To show the data more clearly,
stopband attenuation measurements in this section are dis-
played as a second-order polynomial fit, which shows the
general trend of the data, and at least some deviation from
the trendline should be expected.
All results in this section were retrieved in simulation,

except where actual data from the hardware was necessary
(e.g., execution times and FPGA resources). A subset of

FIGURE 5. Trendlines of stopband attenuation over N with respect to wordlength
constraint. NFFT = 1024, fc = 0.33.

the simulated experiments were confirmed on hardware and
found to be equivalent.

A. EFFECTS OF WORDLENGTH CONSTRAINTS ON
FILTER QUALITY
Throughout the signal path of the Filter Designer IP the
wordlengths are left unconstrained to reduce quantisation
errors, except at the output where the wordlength is con-
strained at compile-time. With NFFT fixed at 1024, fc fixed
at 0.33, and with varying values of N, stopband attenuation
and transition bandwidth were measured over a range of
constrained output wordlengths.
As shown in Fig. 5, at shorter wordlengths the stopband

attenuation decreases as N increases, caused by cumulative
quantisation errors. These errors become less significant as
the wordlength increases, with stopband attenuation improv-
ing over higher filter orders, and with no improvement shown
past 24 bits. There is approximately 30dB difference between
highest and lowest stopband attenuation measurements.
It was found that output wordlength had little effect on

transition bandwidth, with all wordlengths displaying the
same downward trend as N increases, which is typical for
the window function used in the design.

B. EFFECTS OF FFT LENGTH ON FILTER QUALITY
The Filter Designer allows for the FFT size and filter length
to be selected at compile-time. Results were obtained to
measure how stopband attenuation and transition bandwidth
changed with regards to the ratio between these two factors,
N/NFFT . It was discovered during development that filter
quality degraded once this ratio passed 50% (this is also
documented in [28]), therefore only results below this ratio
are displayed. Additionally, a fixed wordlength of 24-bits was
used as this produced the best performance in the stopband.
As shown in Fig. 6, stopband attenuation displays a sim-

ilar downward trend as the ratio between N and NFFT
increases. From this result alone, one would assume that a
shorter FFT length would be more beneficial as this reduces
both hardware resources and the amount of latency in the
FFT calculation, allowing increased stopband attenuation
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FIGURE 6. Trendlines of stopband attenuation over N/NFFT with respect to NFFT .
fc = 0.33, wordlength = 24.

FIGURE 7. Transition bandwidth over N/NFFT with respect to NFFT . fc = 0.33,
wordlength = 24.

FIGURE 8. Mean and standard deviation of stopband attenuation over N/NFFT with
respect to NFFT . Each data point uses 25 values of fc to calculate the mean.
Wordlength = 24.

with a relatively smaller value of N. However, as Fig. 7
shows, longer FFT lengths are required to reach transition
bandwidths less than 1% of fs.

Although data from both Figs. 6 and 7 were measured
with a fixed value of fc, it is worth noting that stopband
attenuation is not constant for every fc value. With this is
mind, a number of measurements were taken to understand
what effect changes in fc had on filter quality.
In Fig. 8, 25 values of fc were taken for each value of

N, between 1% and 50% of fs, and the mean and standard
deviation were calculated. These results show that there is
much higher deviation from the mean at shorter filter lengths,

FIGURE 9. Comparison between a native and non-native fixed-point filter. N = 101,
NFFT = 1024, fc = 0.33, wordlength = 24.

FIGURE 10. Trendline comparison of stopband attenuation over N between native
filters and two variants of non-native fixed-point filters. NFFT = 1024, fc = 0.33,
wordlength = 24.

further implying that a longer FFT is beneficial to keep the
frequency response of the filter consistent.

C. COMPARISON BETWEEN NATIVE AND NON-NATIVE
COEFFICIENTS
When considering the quality of natively designed filters, it
is worth comparing them to filters designed by non-native
means. To make this comparison the MATLAB function
fir2 was used to design the non-native filters, as it employs
an algorithm similar to the work in this paper, albeit using
floating point arithmetic. For all the filters designed in this
section, NFFT and fc were fixed at 1024 and 0.33 respec-
tively, with the floating point filters converted to 24-bits after
computation.
Fig. 9 shows a comparison between a native and non-

native filter, where N = 101. This shows that, while the
non-native filter displays much higher stopband attenuation,
the native filter displays better performance in the transition
band. Moreover, when we compare stopband attenuation and
transition bandwidth over a number of filter lengths, we can
see this trend continue. As shown in Fig. 10, as N increases
the non-native filters (shown as Non-Native (A)) display con-
tinued improvement of stopband attenuation over the native
equivalents, with over 20dB difference at its maximum.
Similarly, although not to the same extent, the native fil-
ters display continued improvement of transition bandwidth
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FIGURE 11. Comparison of transition bandwidth over N between native filters and
two variants of non-native fixed-point filters. NFFT = 1024, fc = 0.33, wordlength = 24.

TABLE 2. FPGA utilisation for varying values of N and NFFT . Wordlength = 24 bits.

over the non-native filters for N > 100, with over 1% of fs
difference at its maximum, as shown in Fig. 11.
The native filters display better performance in the transi-

tion band due to an implementation difference between the
work in this paper and fir2, where the latter allows for
more control over this region [39]. However, changing the
fir2 parameters to allow the non-native filters to match
the transition bandwidth performance of the native filters
(shown as Non-Native (B)) results in a considerable drop in
stopband performance. As can be seen in Fig. 10, the differ-
ence in stopband attenuation between native and non-native
filters drops from more than 20dB at its maximum, to less
than 9dB. This demonstrates that, under certain conditions,
natively designed filters can achieve a quality approaching
that of non-native filters.

D. EFFECTS OF N AND FFT LENGTH ON FPGA
RESOURCES
Here we examine how changes in N and NFFT affect IP
hardware resources on the Zynq-7020—a mid-range device
within the Zynq family of devices. Three FFT lengths were
used: 256, 512, and 1024. For each value of NFFT , three
filter lengths were used: 10%, 20%, and 30% of NFFT (to
the nearest odd value). The wordlength was constrained at
24-bits.
As can be seen from Table 2, the value of N has little

impact on resources except for a small increase in LUTs.

TABLE 3. Measured execution time of filter designer, in clock cycles and absolute
time, over two clock frequencies, with varying values of N and NFFT .
Wordlength = 24 bits.

This is due to the filter length remaining equal to NFFT for
most of the signal path, and only being truncated before the
window operation.
Each increase in NFFT uses approximately 400 additional

LUTs. There is a small increase in DSPs and BRAMs caused
by the single-port RAM requiring more resources, as well
as the FFT calculation itself. Overall this resource usage is
low, using as little as 3.34% of LUTs, 2.14% of BRAMs,
and 5% of DSPs. This leaves ample space for additional
DSP algorithms, even for the relatively modest resources
available on the XC7020 device.

E. EFFECTS OF N AND FFT LENGTH ON EXECUTION
TIME
Using the same hardware implementation as the previous sec-
tion, the execution time of the Filter Designer was measured
to determine how changes in N and NFFT affected the system.
A simple counter was used to record the number of clock
cycles between when the value of fc was written to a regis-
ter and the rising edge of the m_axis_config_tvalid
signal—signifying that the filter had been reloaded. Two
clock frequencies were tested: 100 MHz and 250 MHz.
As shown in Table 3, there is a near linear increase of

execution time as the values of N and NFFT increase. This
result is expected as the latency incurred in each step of the
algorithm is directly proportional to the length of the filter,
both before and after truncation. The reason why there is not
an exact doubling in cycles between changes in NFFT is due
to optimisation in the FFT implementation, which allows it to
moderately reduce the number of calculations required [34].
These results demonstrate markedly short execution times
when compared to software implementations, discussed in
the following section.

F. NATIVE AND NON-NATIVE EXECUTION TIME
COMPARISON
In order to make meaningful comparisons of execution time
between native and non-native filter design methods, we
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assume that the system setup requires the FIR Compiler to
be reconfigured from the PS side of the Zynq SoC.
For the Filter Designer IP, the fc value is written to an

AXI-Lite register that is shared between the PS and PL.
For the comparison case, the filter coefficients are calcu-
lated in software then sent to the RFIR filter on the PL
via off-chip memory. The necessary AXI-Stream handshake
required by the FIR Compiler, explained in Section III, is
managed by the use of two AXI DMAs on the PL: one for
the Reload channel, and one for the Config channel. PYNQ
is the assumed target framework.
The following operations are required to create a filter and

reprogram the RFIR on the PL using the method described
above:
1) Calculate N filter coefficients for given parameters.
2) Convert coefficients to integer values.
3) Copy coefficients to the Reload DMA buffer.
4) Initiate Reload DMA transfer.
5) Copy configuration packet to the Config DMA buffer.
6) Initiate Config DMA transfer.
These operations were split into two functions:

design_filter and reload_filter. The former per-
forms items 1 and 2, while the latter takes the quantised
filter coefficients and performs the DMA transactions in
items 3 to 6. Two values of N were used for these results:
51 and 101.
Because the transfer of data between PS and PL portions

of the Zynq SoC can be viewed as a bottleneck, it is impor-
tant to take a cautious approach when comparing native and
non-native execution times on the device. This includes mak-
ing comparisons between execution times on the PS and PL,
as well as the system as a whole, all of which is discussed
in the following sections.

1) MEASURING DMA TRANSACTION TIME

Two AXI DMAs are required to perform the AXI-Stream
handshake necessary to reprogram the FIR filter. The PYNQ
DMA class allows users to interact with DMAs and pass
data between the PS and PL via shared memory. This is
done by creating a contiguous memory array, copying data
to the array, initiating the DMA transfer, then waiting for
the transfer to complete. As two DMA transfers are needed
to complete this process—one to transfer the coefficients
(the Reload channel) and the other to instruct the filter to
load these coefficients (the Config channel)—this wait time
between DMA transactions can be a substantial source of
latency.
The time taken to perform the operations within the

reload_filter function was measured using Python’s
timeit module. This module computes the assigned code
over a large number of iterations and outputs an average of
the best three execution times. Using this technique, it was
found that it took an average of 1.91 ms for N = 51, and
1.97 ms for N = 101.
To confirm this result in hardware a small counter IP

was created on the PL. The counter recorded the number of

TABLE 4. Hardware measured execution time of software filter design.
Wordlength = 16 bits, clock = 100 MHz, sample size = 20.

clock cycles between the rising edges of the Reload DMA
and Config DMA tvalid signals, indicating that both DMA
transactions had completed.
The execution time was shown to be non-deterministic

and, over 20 measurements, a mean value of 685,768 cycles
for N = 51 and 740,443 cycles for N = 101 was recorded.
These results, along with a ‘best’ and ‘worst’ recorded time,
are shown in the upper half of Table 4. The results recorded
on hardware are approximately twice those measured using
the timeit function, suggesting the latter stops timing the
process before the second DMA transaction has completed.
These non-deterministic execution times are due to the

overhead of the Linux operating system running on the PS,
which gives no guarantees on when sequential commands are
executed. This overhead could be mitigated by moving to a
real-time operating system, or removing the operating system
entirely from the PS (i.e., using a ‘baremetal’ approach), but
would likely increase development time.
The results presented in this section solely took into

account the execution time of the DMA transactions (i.e.,
the reload_filter function). In the next section we dis-
cuss the execution time to calculate the filter coefficients in
software (i.e., the design_filter function).

2) MEASURING SOFTWARE FILTER DESIGN TIME

The Python function firwin2 (from SciPy’s Signal
library) was used to calculate the filter coefficients within
design_filter. This function, like MATLAB’s fir2
used in the simulation results, employs an algorithm similar
to the work in this paper [40].
By using timeit on design_filter it was found

that it took an average of 2.72 ms for N = 51 and 2.51 ms
for N = 101. Similar results were confirmed in hardware,
shown in the lower half of Table 4.
This apparent discrepancy between execution times is

again due to the overhead of the Linux operating system.
However, a basic implementation of the window method was
created using the C language and run as a baremetal program
on the SoC Arm processor, where similar order of magnitude
results were obtained. For N = 51 and N = 101 a best time
was measured to be 2.64 ms and 9.907 ms respectively—up
to 1000 times slower than the FPGA implementation shown
in Table 3. Moreover, as the baremetal results do not include
RFIR reconfiguration time, the total execution time would
be even longer than stated here. A comparison between
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FIGURE 12. Comparison between software and hardware execution times of the
filter design algorithms (software times do not include RFIR reconfiguration time).
Note that the FPGA times are taken from Table 3, where NFFT = 256, with a system
clock rate of 100 MHz.

the execution times of the FPGA implementation and those
discussed in this section is shown in Fig. 12.

V. CONCLUSION
This paper has presented an FPGA-based fixed-point fil-
ter design method that targets reconfigurable FIR filters.
We investigated various filter techniques from the literature
and developed an algorithm based on a hybrid between the
window and frequency sampling methods, suitable for imple-
mentation on FPGAs. We focused our work on low-pass
filters exclusively, but the algorithm could be readily mod-
ified to include high pass, bandpass, and bandstop filters.
Although we placed this work in the context of software
defined radio, it is not limited to these architectures alone.
Any DSP design that includes run-time reconfigurable fil-
ters, and requires very low latency, could leverage this
algorithm.
The algorithm is simple to implement and requires only

four parameters to be set by the user. The filter length,
FFT length, and output wordlength are set at compile-time,
while the cut-off frequency can be changed on-the-fly at
run-time. The cut-off frequency is controlled by writing to a
shared PS/PL AXI-Lite memory address, but could be readily
modified to be set solely on the FPGA. We have provided a
comprehensive analysis of the effects these parameters have
on filter quality and hardware resources, that can be used as
a reference.
The implementation uses modest hardware resources

which allows it to fit easily within a larger radio architecture.
Our results show that the proposed algorithm generates deter-
ministic filters of good quality and are well suited for SDR
applications, with stopband attenuation as high as 88dB and
transition bandwidths as low as 0.7% of fs. Moreover, the
algorithm demonstrates very low and deterministic latency,
with execution times as low as 2.52 µs—orders of magnitude
lower than its software equivalent.
Finally, the work in this paper has been released as an

open-source project, under a permissive license, where the
interested reader may view and use our work [33].
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