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Abstract
Background: The gold standard measurement for recording sleep is polysomnography performed in a hospital environment
for 1 night. This requires individuals to sleep with a device and several sensors attached to their face, scalp, and body, which is
both cumbersome and expensive. Self-trackers, such as wearable sensors (eg, smartwatch) and nearable sensors (eg, sleep mattress),
can measure a broad range of physiological parameters related to free-living sleep conditions; however, the optimal duration of
such a self-tracker measurement is not known. For such free-living sleep studies with actigraphy, 3 to 14 days of data collection
are typically used.
Objective: The primary goal of this study is to investigate if 3 to 14 days of sleep data collection is sufficient while using
self-trackers. The secondary goal is to investigate whether there is a relationship among sleep quality, physical activity, and heart
rate. Specifically, we study whether individuals who exhibit similar activity can be clustered together and to what extent the sleep
patterns of individuals in relation to seasonality vary.
Methods: Data on sleep, physical activity, and heart rate were collected over 6 months from 54 individuals aged 52 to 86 years.
The Withings Aura sleep mattress (nearable; Withings Inc) and Withings Steel HR smartwatch (wearable; Withings Inc) were
used. At the individual level, we investigated the consistency of various physical activities and sleep metrics over different time
spans to illustrate how sensor data from self-trackers can be used to illuminate trends. We used exploratory data analysis and
unsupervised machine learning at both the cohort and individual levels.
Results: Significant variability in standard metrics of sleep quality was found between different periods throughout the study.
We showed specifically that to obtain more robust individual assessments of sleep and physical activity patterns through
self-trackers, an evaluation period of >3 to 14 days is necessary. In addition, we found seasonal patterns in sleep data related to
the changing of the clock for daylight saving time.
Conclusions: We demonstrate that >2 months’ worth of self-tracking data are needed to provide a representative summary of
daily activity and sleep patterns. By doing so, we challenge the current standard of 3 to 14 days for sleep quality assessment and
call for the rethinking of standards when collecting data for research purposes. Seasonal patterns and daylight saving time clock
change are also important aspects that need to be taken into consideration when choosing a period for collecting data and designing
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studies on sleep. Furthermore, we suggest using self-trackers (wearable and nearable ones) to support longer-term evaluations of
sleep and physical activity for research purposes and, possibly, clinical purposes in the future.

(JMIR Form Res 2022;6(2):e31807) doi: 10.2196/31807

KEYWORDS
wearable technology; nearable technology; internet of health care things; sleep; Withings; study duration; establishing standards;
seasonality; mHealth; digital health

Introduction
Background
Sleep disorders and short sleep durations are some of the main
health challenges in current times. Obstructive sleep apnea is
one such disorder and is estimated to affect 1 billion adults
worldwide [1]. Insomnia, defined as difficulties in initiating or
maintaining sleep, outlines another common sleep disorder
[2,3]. Short sleep duration, although not a sleep disorder, is also
a major risk factor for adverse health effects and death [3-5].
The gold standard measurement setting for clinical assessment
of sleep quality and sleep disturbances is the use of
polysomnography for 1 night, typically performed in a hospital
environment [6]. Polysomnography is expensive and requires
individuals to sleep with several sensors attached to their face,
scalp, and body, which is cumbersome [7,8]. Furthermore, data
from such a study gives no indication on important routine
aspects of sleep quality such as the average total sleep time
(TST) of individuals, when they normally go to bed and wake
up, whether they are affected by seasonal changes, or whether
they have insomnia [9]. Instead, to assess free-living sleep
conditions, multiple night recordings in the home environment
need to be performed [9]. In the medical field, this is typically
accomplished by using wrist actigraphy, which involves a small
watch-like device with an embedded accelerometer that often
also records ambient light conditions and skin temperature [9].
The use of actigraphy is accompanied by a subjective sleep log
or a sleep diary. Clinical guidelines recommend that the
individual wears the actigraphy for 7 to 14 days; however, 72
hours of recording is generally sufficient to bill for testing in
the United States [9]. For research purposes, 5 to 7 days of
actigraphy measurements are often used to assess sleep behavior
[10]. These data are used to assess, for example, average sleep
duration, chronotype (morningness vs eveningness, commonly
referred to as A-type vs B-type), and similar sleep parameters
of interest. This type of data can also be used to facilitate the
analysis of individual sleep patterns and for clustering purposes
to show trends at the group level [11].

Consumer-Grade Self-Tracking Technologies
More recently, consumer-grade self-tracking technologies that
facilitate sleep data collection over longer periods have emerged
[12]. Wearable technology (wearables) is an umbrella term for
body-worn connected sensors [8]. Smartwatches are an example
of such wearables and can capture information similar to
actigraphy. Often, they collect even a wider range of
physiological signals, such as heart rate, skin temperature, and
oxygen saturation [13-15]. Other self-tracking technologies are
nearable technologies (nearables), which can also be used to
monitor physiological signals by close approximation to the

body. These are increasingly used in conjunction with wearables
in health-related research studies [14-16]. For instance, and
relevant to our study, they include connected mattresses to
monitor sleep patterns in more detail [17]. In most cases,
consumer-grade self-trackers are designed for the general
purpose of activity tracking. However, their ability to monitor
a broad range of physiological parameters means that they are
now seriously being considered as alternatives to medical-grade
technology for the monitoring of various clinical conditions
[18,19]. In addition, the portability and affordability of these
trackers open up opportunities for pursuing clinical research on
larger cohorts of participants and for rethinking the
implementation of remote monitoring care models in specific
patient populations [20].

Recent years have seen a surge of research on sleep with
consumer-grade self-trackers. Most of these studies focus on
relating measurement from the wearable device to either mental
or physical health and sometimes both [21,22]. In a few cases,
the duration of data collection varies from days and weeks
[23-26] to months and years [27,28]. In addition, large sample
sizes obtained from the vast number of people who wear
self-trackers in the general population have been leveraged to
study and compare sleep patterns by age, gender, and BMI
worldwide, as in the work presented by Jonasdottir et al [12].
In terms of duration of data collection, a similar study associated
shorter sleep duration and greater variability of sleep duration
with increased BMI [28]. Furthermore, the large amount of data
collected with self-trackers has encouraged the use of advanced
machine learning techniques and deep learning to predict clinical
outcomes more robustly [29,31]. Although some studies have
taken on the task of observing participants over a longer time
span than the gold standard for clinical assessment of sleep
quality and sleep disturbances, to our knowledge, only a single
study has compared data collected over 1 week with data
collected over 2 weeks, concluding that the shorter period is
sufficient [24]. Although the sleep research community
acknowledges the need for longer periods of data collection
with wearable and nearable (nonwearable that is placed near
the body) self-trackers, the question of whether the participants
should wear self-trackers for a longer time than the gold standard
to generate a more insightful portrait of their sleep patterns
remains unanswered [11,31].

Aims and Overview
The primary goal of this paper is to investigate whether the time
span of 3 to 14 days is sufficient for data collection when
performing sleep measurements at home using wearable and
nearable sensors. We address the primary goal through the
following research question: is 3 to 14 days of data collection
sufficient to capture the sleep habits and fluctuations in sleep
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patterns of an individual in a reliable way for research purposes?
Our secondary goals are to investigate whether there is a
relationship between sleep quality, physical activity, and heart
rate and whether individuals who exhibit similar activity and
sleep patterns in general and in relation to seasonality can be
clustered together. We address the secondary goals through the
following three research questions:

1. Is there a relationship between sleep quality, physical
activity, and heart rate?

2. Can individuals who exhibit similar activity be clustered
together in an insightful manner?

3. Are there significant differences between sleep patterns of
individuals that are affected by seasonality and daylight
saving time (DST) clock changes?

Our a priori hypothesis is that 3 to 14 days’ worth of data are
neither sufficient to capture a person’s sleep habits nor sufficient
to observe fluctuations in sleep patterns that might be important
for research purposes.

Methods
Data Collection
This study was proposed in the context of the Stanford Medicine
X–Digital Health Challenge [32]. It was executed under an
ethical waiver from the central Danish National Committee on
Health Research Ethics. The participants were recruited through
advertisements in 2 local newspapers (Søndagsavisen Vestegnen
and Villabyerne) distributed within Greater Copenhagen in
Denmark. A total of 82 adults aged >50 years were screened.
The first screening was conducted over the phone. Candidates
were then scheduled for a home visit, during which the Montreal

Cognitive Assessment test was administered by a trained
neuropsychologist. The Montreal Cognitive Assessment scores
were collected but are not reported in this paper as it was outside
the scope of this study (see [33] for details). Of the 82
individuals, 54 (66%) (aged 52-86 years; male: 35/54, 65%;
female: 19/54, 35%) fulfilled the inclusion criteria of the study.
All participants signed informed consent to join the study and
agreed to share their data. At a second home visit, the
participants were equipped with the wearable Withings Steel
HR smartwatch (Withings Inc), tracking the number of steps
and heart rate on a per-minute basis. Participants were also
equipped with the nearable Withings Aura sleep mattress
(Withings Inc), tracking the various phases of sleep (sleep onset
latency, wake, light sleep, deep sleep, rapid eye movement
[REM] sleep, and waking up times) on a per-minute basis [34].
The first day of data logging for the participants spanned from
June 7, 2017, to September 25, 2017. Data logging stopped for
all participants on December 28, 2017. Figure 1 shows an
overview of the days for which data were acquired for all
participants in the study. In addition, the participants’ age,
height, weight, and gender were noted upon entry into the study.

The study is based on data from the abovementioned
devices—smartwatch (wearable) and sleep mattress
(nearable)—and specifically the variables listed in Table 1.
Most of the variables in Table 1 are either measured directly or
calculated by the smartwatch during the day or sleep mattress
during the night. In addition to those, we derived 2 commonly
used variables in sleep research, namely, TST, which is the time
in hours from falling asleep until final wake up, and sleep
midtime, which is the midtime between falling asleep and final
wake up.

JMIR Form Res 2022 | vol. 6 | iss. 2 | e31807 | p. 3https://formative.jmir.org/2022/2/e31807
(page number not for citation purposes)

Óskarsdóttir et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. Overview of data collection for the participants in the study. The dots indicate dates with measurements. Blue represents periods with complete
data from the smartwatch during the day, and red represents data from the sleep mattress during the night.

Table 1. Overview and definitions of the variables used in our analysis and the self-trackers used to collect them.

DeviceDescriptionName

SmartwatchNumber of steps during the dayDaily step count

SmartwatchMean heart rate during the dayDiurnal heart rate–average

Sleep mattressMean heart rate during the nightNocturnal heart rate–average

Sleep mattressTime in hours from going to bed until getting out of bedTotal duration in bed

Sleep mattressTime in hours from falling asleep until final wake upTotal sleep time

Sleep mattressTime in minutes from going to bed until falling asleepSleep onset latency

Sleep mattressCount of how often the individual woke up during the nightNumber of times awake

Sleep mattressTime in hours spent in deep sleepDeep sleep duration

Sleep mattressTime in hours spent in REM sleepREMa sleep duration

Sleep mattressTime in hours spent in light sleepLight sleep duration

Sleep mattressMidtime between falling asleep and final wake upSleep midtime

aREM: rapid eye movement.
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Group-Level Analyses
To inspect long-term changes and variability at the cohort level,
we considered the participants for whom data were collected
the longest, starting in June 2017 until December 2017. For this
part of the cohort (25/54, 46%), we calculated the daily means
and SDs of the measurements.

To inspect whether there are discernable patterns in the
day-to-day activities of the participants, we used K-means
clustering that aims to group together similar numerical data,
where similarity is defined through the Euclidean distance,
particularly, to partition N observations into K clusters [35].
First, we applied the method using only data from the last week

of the trial and then from the last 2 weeks and so on. We decided
to do so because of the different starting points and to avoid
seasonality effects.

To determine the number of clusters, we used the elbow method
[36]. The number of clusters was chosen such that adding an
additional one does not increase (much) the information gained.
Specifically, we recorded the ratio of within-cluster distances
of all clusters to distances between cluster centers and used
Figure 2 to determine when it ceases to change (much). This
created an elbow in the graph at K=3, after which not much
change occurs. Note that to investigate which variables differed
with statistical significance between clusters, we used the
2-sampled Student 2-tailed t test with P<.05 significance level.

Figure 2. Elbow test.

Individual-Level Analyses
To demonstrate the variability in sleep and daily activity at the
individual level, 7% (4/54) of the participants were selected at
random and studied in depth. Following the selection, their
values were compared with those of other participants. Figure
3 shows the variable distributions of these four participants,
which fell within the same range as that of the entire population.
These participants were not meant to be a representative sample
of the cohort, and the rationale behind our choice to show only
data from 7% (4/54) of participants was to clearly demonstrate
the variety in measurement patterns among participants without
compromising the readability of the figures.

We considered 3 perspectives in the individual-level analyses.
First, we assessed the day-to-day values for variables associated
with sleep quality for a span of 1 week. The week was chosen
at random. Subsequently, we calculated the weekly mean and
SD for the different variables for a span of 10 weeks for the
same 4 participants, where we normalized variable values for
each participant by dividing by the largest value measured in

the collection period. These values showed how sleep and daily
activity changed from day to day and week to week.

Second, we looked at the evolution of the SD of sleep and
activity measurements. We calculated a rolling SD over 7 days
with a 1-day moving window from the first week of October
2017 until the end of December 2017. Moreover, starting with
the first 3 days of October 2017, we calculated the SD of each
participant’s measurements. Then, we added the next day and
performed the calculation again. We repeated the procedure
until 80 days had been added to the original 3 days. Thus, we
obtained a sequence of SD values that described the variability
in each participant’s measurement.

Finally, to investigate seasonal effects and, in particular, the
impact of the DST clock change on October 29, 2017, we used
a 2-tailed t test to evaluate whether differences in the values of
each of the 11 variables before and after the DST clock change
were significant using a .05 significance level. For this, we
considered 3 periods: (1) short-term: 15 days before and 15 days
after October 29, 2017; (2) midterm: 30 days before and 30 days
after October 29, 2017; and (3) long-term: 60 days before and
60 days after October 29, 2017.
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Figure 3. Boxplots showing the distributions for the variables considered (daily step count, diurnal heart rate–average, nocturnal heart rate–average,
total duration in bed, total sleep time, sleep onset latency, number of times awake, deep sleep duration, rapid eye movement sleep duration, and light
sleep duration) for the four participants and the whole population. As sleep midtime is a circular variable, it is not considered in this figure. bpm: beats
per minute; REM: rapid eye movement.

Results
Group-Level Analyses
Some of the participants in the study wore self-trackers for 6
months. This allowed us to look at trends over a longer period
and assess seasonal patterns. Figure 4 shows daily means and
SDs for TST, total duration in bed, sleep onset latency, sleep
midtime, and daily step count. These variables showed the most
evidence of seasonal effects. Major trends in the data indicate
that total duration in bed increased, albeit the TST remained
similar. The sleep onset latency leaped at the end of October
2017, when DST stops in Europe and the clock is set back by
1 hour. Clearly, the participants in this study were affected by
this change, as shown by the increased time they took to fall
asleep in the weeks after the change of the clock. We also saw

a downward trend in the number of steps throughout the 6-month
period and fluctuations in the sleep midtime.

Clustering analysis resulted in the suggestion of 2 distinct
cohorts of approximately the same size (25 participants each)
and a third one that we neglected for its small size when >4
weeks of data were used (Figure 5); the third cluster with 6
participants was omitted. Table 2 shows the mean and SD of
all the variables in the two cohorts. The 2-tailed t test results
showed that only differences in number of times awake were
statistically significant. On average, the difference between the
cohorts in the number of times awake was 1 time. On average,
most participants woke up <4 times per night, whereas 6%
(3/54) of study participants woke up >5 times per night. We did
not find statistically significant differences in gender, age, or
BMI between the two clusters.
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Figure 4. Seasonal differences in (A) daily step count, (B) total duration in bed, (C) total sleep time, (D) sleep onset latency, and (E) sleep midtime.
The blue line indicates the local polynomial regression fit, and the red dashed line indicates the start of daylight saving time on October 29, 2017.
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Figure 5. Cluster analysis revealed 2 cohorts (red and blue in the figure). The figure shows a difference in the variable number of times awake between
the 2 cohorts. Other variables were less distinctive. REM: rapid eye movement.

Table 2. Mean and SD of the 11 variables in the 2 cohorts.

Cohort 2, mean (SD)Cohort 1, mean (SD)Variable

4996.31 (2230.61)4895.97 (2772.25)Daily step count (count)

61.85 (6.67)58.89 (5.91)Diurnal heart rate–average (bpm)

62.66 (6.85)61.10 (6.02)Nocturnal heart rate–average (bpm)

8.06 (1.24)7.81 (0.82)Total duration in bed (h)

7.08 (1.29)6.86 (0.99)Total sleep time (h)

8.70 (4.05)10.22 (5.25)Sleep onset latency (min)

3.06 (1.27)a2.03 (0.93)aNumber of times awake (count)

1.53 (0.63)1.54 (0.34)Duration of REM b sleep (h)

2.23 (0.77)2.18 (0.68)Duration of deep sleep (h)

3.32 (0.68)3.13 (0.56)Duration of light sleep (h)

11,493.10 (3465.17)11,249.91 (2645.61)Sleep midtime (time)

aIndicates that the difference was statistically significant at the .05 confidence level.
bREM: rapid eye movement.

Individual-Level Analyses
Figure 6 shows time-series data for 6 variables (total duration
in bed, TST, sleep onset latency, sleep midtime, deep sleep
duration, and REM sleep duration) collected for 1 week for 7%
(4/54) of participants on a night-to-night basis. The remaining
5 variables (daily step count, diurnal heart rate–average,
nocturnal heart rate–average, number of times awake, and light
sleep duration) can be seen in Figure S1 in Multimedia
Appendix 1. The figures show a clear difference for each

participant on a day-to-day basis and among the four of them.
The relationship between the duration of REM and deep sleep
differed for the participants considered here. For participant 34,
they were in sync, but not for the remaining participants. Finally,
sleep onset latency appeared regular for all 4 participants, and
of them, 2 (50%) had days where it peaked.

Figure 7 shows weekly averages over a period of 10 weeks for
the same 7% (4/54) of participants and 6 of the variables (total
duration in bed, TST, sleep onset latency, sleep midtime, deep
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sleep duration, and REM sleep duration). The remaining 5
variables (daily step count, diurnal heart rate–average, nocturnal
heart rate–average, number of times awake, and light sleep
duration) can be seen in Figure S2 in Multimedia Appendix 1.
Here, we see that the variation in measurements was even
greater. For example, the sleep onset latency of participant 10
was gradually increasing, a pattern that can also be discerned
in the total duration in bed and sleep midtime plots. In some
weeks, the SD was large, which indicated that the values in
those weeks spanned a wide range. The measurements of
participant 53 showed stark fluctuation during the 10-week
period.

Figure 8 shows the correlation between the weekly averages in
Figure 7 for the 7% (4/54) of participants, which varied greatly.
Participants 10, 15, and 34 had some positive and negative
correlations between their variables. For example, for participant
10, there was a positive correlation between light sleep duration
and TST and a negative correlation between light sleep duration
and sleep onset latency. In contrast, for participant 53, most of
the correlations were strongly positive or negative, showing
great synergy. Only sleep onset latency showed little correlation
with the other variables.

Figure 6. Daily parameters over a period of 1 week for the 4 participants. Each column and color represent one of the participants. REM: rapid eye
movement.
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Figure 7. Average activity by week over a 10-week period for the 4 participants. The bars denote the SD within each week. REM: rapid eye movement.
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Figure 8. Correlation between the 11 variables for the 4 participants. REM: rapid eye movement.

Next, we investigated the variability in different variables by
focusing on the changes in SD over time. Firstly, Figure 9 shows
the rolling SD computed over 1 week with a rolling window of
1 day for 6 of the variables (TST, total duration in bed, sleep
midtime, deep sleep duration, REM sleep duration, and sleep
onset latency). The remaining 5 variables (daily step count,
diurnal heart rate–average, nocturnal heart rate–average, number
of times awake, and light sleep duration) can be seen in Figure
S3 in Multimedia Appendix 1. From the figure, we see that the
SD changed greatly throughout time for all participants and for
all measurements. Participant 34 had little variation in
measurements. The SD of TST and total duration in bed remains
within 1 hour. However, in the first weeks, the SD of the sleep
onset latency went up to 60 minutes. The other participants had
greater fluctuations throughout the period, with SD of TST
reaching 3 hours for participants 10 and 53. In addition, the
variability in deep and REM sleep duration decreased over time.
The data also shows that the variability in sleep onset latency
had an increasing trend in the 10-week period.

Finally, Figure 10 shows the cumulative SD of the 7% (4/54)
of participants for the same 6 variables. The remaining 5

variables can be seen in Figure S4 in Multimedia Appendix 1.
These plots give a sense of the participants’ overall variability
over time and how it stabilized as more days were added to the
data collection. The plots show that 1 week is not representative
of someone’s sleep behavior as it can change drastically from
week to week.

We now assessed the effects of seasonality on sleep and sleep
quality. More precisely, we investigated which, if any, of the
variables were significantly different before and after the DST
clock change when looking at short-term (15 days before and
after October 29, 2017), midterm (30 days before and after
October 29, 2017), and long-term (60 days before and after
October 29, 2017) periods for the 7% (4/54) of participants.
Table 3 and Figure 11 show which variables had a significant
difference before and after October 29, 2017. The difference in
sleep midtime was almost always significant. Also, long-term
changes were the most statistically significant, and before the
changing of the clock, the participants spent more time in REM
sleep, the midtime of their sleep was earlier, and they fell asleep
faster.
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Figure 9. Rolling SDs over a 10-week period. These were calculated over 7 days with a 1-day rolling window. REM: rapid eye movement.
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Figure 10. Cumulative SD over a 10-week period, adding 1 day at a time. REM: rapid eye movement.
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Table 3. Statistical significance of the difference in variables before and after October 29, 2017, for each of the four participants during the three
periods.

Long termMidtermShort termVariables

ID
53

ID
34

ID
15

ID
10

ID
53

ID
34

ID
15

ID
10

ID
53

ID
34

ID
15

ID
10

✓aDaily step count

✓✓✓Diurnal heart rate–average

✓✓✓Nocturnal heart rate–average

✓Total duration in bed

✓✓✓✓✓Total sleep time

✓✓✓✓✓Sleep onset latency

✓✓✓✓Number of times awake

✓✓✓✓✓REMb sleep duration

✓Deep sleep duration

✓✓✓✓✓✓✓Light sleep duration

✓✓✓✓✓✓✓✓✓✓✓Sleep midtime

aIndicates a statistical significance at the .05 confidence level.
bREM: rapid eye movement.

Figure 11. Mean values for the variables before and after October 29, 2017. Top row: long-term patterns for participants 15 and 53. Bottom row:
short-term, midterm, and long-term patterns, which represent 15, 30, and 60 days before and after October 29, 2017, respectively, for participant 10.
Both participants 15 (P<.0001) and 53 (P<.001) had significantly longer REM sleep before the change. Participant 10 fell asleep sooner, slept longer,
and spent more time in light sleep before the change. REM sleep duration also changed from short term to long term. REM: rapid eye movement.
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Discussion
Principal Findings
Although the sleep research community welcomes the
advancement of consumer-grade self-trackers, including
wearables and nearables, they are also widely aware of the
numerous challenges that remain, especially regarding the need
to validate the devices to ensure their accuracy and reliability
[8]. Although many of these barriers are for wearable and
nearable technology companies to solve, it is the responsibility
of the sleep research community and the medical informatics
community to make a collective effort and decide upon
necessary and sufficient requirements for validating the devices
[31]. As we show in this paper, the duration of the validation
period is an essential but grossly overlooked factor. Guillodo
et al [11] acknowledged the need for long-term sleep studies,
which could help identify connections between sleep quality
and health outcomes. However, few attempts have been made
with data from wearables and nearables. Although data collected
over a longer period is essential, it is also important to make a
clear distinction between group-level and individual-level
approaches when it comes to research goals, clinical value, and
data analysis. Although data collected over an extended period
in a large cohort can reveal interesting insights about sleep
patterns of the general population [10], there is much potential
in using wearables and nearable devices for individualized
medicine approaches as well. The approach used in this paper,
where we studied individual patterns, has been fruitful for
understanding sleep patterns over time.

Another shortcoming in the sleep literature is that it views and
analyzes individual nights instead of analyzing time series,
where trends, seasonality, and other long terms patterns can be
discovered. On that basis, we showed that sleep patterns vary
highly from person to person, and, because of that, an
individualized approach may be more appropriate than pooling
the data per night for several individuals, as is common in the
literature. Moreover, we can see that the type of wearable or
nearable is not the main value; instead, the main value is in
comparing data from the same device, for the same individual,
over an extended period. It has been acknowledged that clinical
practices should embrace the unique characteristics of individual
patients and their patterns and seek to individualize patient care;
clearly, the same should hold for sleep [37].

In this paper, our primary research goal was to investigate
whether the gold standard, the traditional time span of up to 2
weeks, is sufficient for obtaining reliable data to assess sleep
duration and sleep quality of an individual when performing
sleep measurements at home using wearable and nearable
sensors. Our answer to this question is no. Specifically, we
showed that there is much variability in the self-tracker
measurements for individual participants across time.

Furthermore, in our cohort analysis, we observed a clear
distinction in the empirical data only when using sufficient data
(>30 days) and could show the emergence of clusters that are
robust to changes in the amount of data and the specific dates
chosen for the analysis. However, when following individual
behavior, an even longer period is needed, and we recommend
>2 months.

The secondary research goal of this paper was to investigate
whether there was a relationship among sleep quality, physical
activity, and heart rate and whether within-group patterns in
clusters of individuals exhibit similar activity and sleep patterns,
both in general and in relation to seasonality. Our results show
a seasonal effect on sleep patterns is related to the changing of
the clock. This could both be because of overall seasonal
changes and affected by the DST change, which has a significant
effect on sleep patterns. This has been acknowledged previously,
for instance, by international sleep and biological rhythm
societies [38]. We show that there is much variability in the
self-tracker measurements and apparent correlation between
variables among participants [38].

Conclusions
In conclusion, analysis and exploration of time-series data have
given new insights about collecting and analyzing data from
self-trackers. The findings in this paper show that it is important
to get enough sleep data when attempting to understand sleep
patterns from self-trackers in depth. First, the gold standard is
less useful as there is much variation in the measures, both on
a day-to-day basis and a week-to-week basis. This means that
when collecting data on individuals, we recommend a longer
period to capture as much of this variability as possible. Second,
the variation in the patterns in the data is high from person to
person. Although cluster analysis indicates that some patterns
seem common among groups of people, our individual
observations indicate that the analysis should be conducted on
a person-by-person basis by training algorithms to learn
individual patterns. Thus, further analysis is needed to
investigate the number of days suitable for data collection with
self-trackers and whether these patterns and correlations
observed are common among groups of people, particularly as
our analyses were only based on data from self-trackers and
additional information such as illnesses, exercise plans,
medication, or medical history were not included. Further
limitations of the study include recruitment bias as participants
were not randomly selected but were included from a
homogeneous sample, and the sample size of 54 individuals
affects robust conclusions. The novel finding and call to action
of this paper is to reconsider the gold standard in sleep research
from 14 days to >3 months. The proposition of this paper is that
wearables and nearables make this possible and appear
promising for clinical research under free-living sleep
conditions, such as at home.
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