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An Explainable AI-based Intrusion Detection System for DNS over
HTTPS (DoH) Attacks

Tahmina Zebin,Shahadate Rezvy , Yuan Luo

Abstract—Over the past few years, Domain Name Service
(DNS) remained a prime target for hackers as it enables them
to gain first entry into networks and gain access to data for
exfiltration. Although the DNS over HTTPS (DoH) protocol
has desirable properties for internet users such as privacy and
security, it also causes a problem in that network administrators
are prevented from detecting suspicious network traffic generated
by malware and malicious tools. To support their efforts in
maintaining a secure network, in this paper, we have implemented
an explainable AI solution using a novel machine learning
framework. We have used the publicly available CIRA-CIC-
DoHBrw-2020 dataset for developing an accurate solution to
detect and classify the DNS over HTTPS attacks. Our proposed
balanced and stacked Random Forest achieved very high pre-
cision (99.91%), recall (99.92%) and F1 score (99.91%) for the
classification task in hand. Using explainable AI methods, we have
additionally highlighted the underlying feature contributions in
an attempt to provide transparent and explainable results from
the model.

Index Terms—Secure Computing, Machine Learning, Intru-
sion Detection System, Explainable AI.

I. INTRODUCTION

DOMAIN Name System (DNS) traffic is crucial for
many existing security systems. Since an application

must translate a domain name before a connection can be
established, DNS traffic can identify many observable security
threats in the network traffic. As per the EfficientIP and IDC
2021 Global DNS Threat Report, around 87% of the surveyed
organizations have experienced DNS attacks in 2021 which is
8% more than the statistics in 2020 [1]. With the pandemic in
recent times, a rapidly increasing number of people remotely
working and using various cloud services on a daily basis, an
increasing amount of cyber-attacks are disrupting the online
services. The impact and cost of attacks remain extremely high
and it affects company finances but also brand image and data
confidentiality. Organizations have suffered more diverse types
of attacks than ever before, showing that cyber-criminals are
using all the tools at their disposal to exploit both the DNS
protocol and misconfigurations.

Previously, DNS queries were made in plaintext, from an
app to a DNS server, using the DNS settings of the local
operating system received from its network provider, usually
an Internet Service Provider (ISP). In recent times, a new
protocol DNS over HTTPS (DoH) has been created to improve
users’ privacy on the internet. DoH changes this paradigm.
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DoH encrypts DNS queries, which are disguised as regular
HTTPS traffic, hence the DNS-over-HTTPS name. These DoH
queries are sent to special DoH-capable DNS servers (called
DoH resolvers), which resolve the DNS query inside a DoH
request and reply to the user, also in an encrypted manner.
DoH can be used instead of traditional DNS for domain name
translation with encryption as a benefit [2].

The companies and organizations that have DoH-capable
products have been advertising DoH as a way to prevent ISPs
from tracking users’ web traffic and as a way to bypass cen-
sorship in oppressive countries. The readability of translated
domain names in the traffic is exploited in application firewalls
to check security policies, and intrusion detection systems to
detect suspicious connections. Therefore, this paper focuses
on the possibilities of encrypted traffic analysis, especially for
the purpose of accurate detection of DoH attacks. We have
implemented one of the very first explainable AI solutions to
provide an accurate solution to detect and classify the DNS
over HTTPS attacks. We have applied further explainable AI
methods to make the solution reliable and interpretable to
the human user. The remainder of this paper is organized
as follows. Section II introduces the background literature
in the recent development in DoH attack detection methods
used in recent years, we introduced the concept of explainable
AI in this section. We then introduced our dataset and the
associated pre-processing stages in Section III. Section IV
provides details on the workflow, model architecture and pa-
rameter settings for the implemented model. The performance
of the developed model for attack classification is evaluated
in Section V. We presented the explanations from the model
using a model dashboard we have deployed from the task in
Section VI. Finally, the paper is concluded along with ideas
for future work in the very last section.

II. BACKGROUND LITERATURE

This section discusses the literature relevant for DoH de-
tection or the detection of malicious use of DoH. The related
work is divided into multiple parts. It starts with the broad
scope of detecting malicious DNS traffic in general including
available datasets and the learning techniques used for the
classification of encrypted data. The literature then gradually
narrows down to the recent related work that has specifically
used the dataset similar to this research for the detection of
malicious DoH traffic. We then presented some background
concepts necessary for the use of explainable AI in DoH
intrusion detection systems.

A. DoH attack detection : Learning Techniques

Numerous organizations have less active monitoring plans
in terms of security checking on DNS as it is not used for
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Fig. 1. The technical framework of DNS tunnels for generating Malicious DoH traffic.

Data transfer, compared to other protocols like Web activity
where attacks often take place. A malicious DNS attack can
aim to exploit security vulnerabilities on the server that runs
the DNS services and extract valuable data such as passwords,
usernames, and other personal information. Since most of
the Internet’s traffic is encrypted and served by large content
delivery networks, in many cases, domain name systems are
the only clear text sign about the specific service being
accessed. DNS Tunneling is a method of cyber-attack that
encodes the data of other programs or protocols in DNS
queries and responses. DNS tunnels, established between the
controlled host and master server disguised as the authoritative
domain name server, can be used as a secret data commu-
nication channel for malicious activities. Cybercriminals use
multiple tunnelling techniques such as FTP-DNS tunnelling,
HTTP-DNS tunnelling, HTTPS-DNS tunnelling, and POP3-
DNS tunnelling to hide their identity[3]. Owing to the ready
evasion of the DNS traffic to bypass the network security
mechanism, DNS tunnelling can cause severe damage. DNS
tunnelling often includes data payloads that can be added
to an attacked DNS server and used to control a remote
server and applications. Several earlier methods proposed to
detect malicious DNS traffic include Network and DNS Traffic
Analysis [4], [5], Domain name blacklisting, and Detailing
of Web Page Content by the visual platform to protect top-
level domain name servers against DDoS attacks [6]. Aiello
et al.[4] combined principal component analysis (PCA) and
mutual information (MI) to calculate a novel metric as the
identification index, based on several statistical features. How-
ever, they found that the different circumstances of DNS
server size or the traffic encapsulated in DNS tunnelling would
cause diverse manifestations of the value. Hence, the threshold
could only be determined based on the condition of the non-
overlapping of the mi value between legitimate and malicious
traffic, which is affected by many environmental factors. In
other words, it indicates the poor flexibility and generality
of this method. Other works have focused on predicting the

validity of information coming from the DNS and do not take
into account that DNS data for the malicious activity have
statistical, temporal and payload related differences, so the
results obtained were less effective [6], [7].

Some very recent research focused on analysing and de-
tecting malicious and encrypted DNS traffic using various
machine learning techniques. The research in [8] focused on
the primary domain as a filter to classify the DNS traffic
rather than the queries. The features have been extracted from
sub-domains of multiple groups. The author used supervised
machine learning for examining DNS traffic and filtering
benign and malicious domains. However, this approach has
a limitation of the inability to detect malicious queries in
the main domain. In which the sub-domain is not enough
for detecting the other types of attacks. Banadaki et al.
[9] examined the dataset called CIRA-CIC-DoHBrw-2020[10]
using several ML algorithms such as (Xgboost, Gradient
Boosting, and Light Gradient Boosting algorithms). However,
the preprocessing and optimization phase were unclear. In this
research, we are proposing one of the very first explainable AI
solutions to provide an accurate solution to detect and classify
the DNS over HTTPS attacks. In the next subsection, we will
discuss the introductory explainable AI methods used in this
research for DoH attack detection.

B. Explainable AI for DoH attack detection

Despite the growing popularity of machine learning models
in cyber-security applications (e.g., an intrusion detection
system (IDS)), most of these models are perceived as a black-
box. The eXplainable Artificial Intelligence (XAI) has become
increasingly important to interpret the machine learning mod-
els to enhance trust management by allowing human experts to
understand the underlying data and to understand the impact
of the malicious data to detect any intrusion in the system. The
previous studies focused more on the accuracy of the various
classification algorithms for trust in IDS. They do not often
provide insights into their behaviour and reasoning provided
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TABLE I
TRAFFIC TYPES CAPTURED IN CIRA-CIC-DOHBRW-2020 DATASET [10]

Traffic Type Instances
captured

Description of the Attack

Non-DoH 889809.0 Traffic generated by accessing a website that uses HTTPS protocol is captured. In
order to capture ample traffic to balance the dataset, thousands of websites from
Alexa domain are browsed.

Benign-DoH 19746.0 Benign DoH is non-malicious DoH traffic generated using Mozilla Firefox and
Google Chrome web browsers.

Malicious-DoH 249553.0 DNS tunneling tools such as dns2tcp, DNSCat2, and Iodine are used to generate
malicious DoH traffic. These tools create tunnels of encrypted data. Therefore, DNS
queries are sent using TLS-encrypted HTTPS requests to special DoH servers

Fig. 2. Density plots displaying the difference in a number of features for the three types of traffic available in the dataset

by the sophisticated algorithm. Therefore, in this paper, we
have addressed the XAI concept to enhance trust management
by exploring the decision tree model in the area of IDS.

Over the last few years, there has been significant progress
on Explainable AI. The pursuit of converting these black-
box models into transparent and interpretable algorithms has
gained traction in both academia, industry and other users
of AI and machine learning models. While many packages
and methodologies have developed in recent years, one of
the most popular methods today, SHAP (SHapley Additive
exPlanations) is a game theory-based approach to explain the
output of any ML model [11]. It connects optimal credit
allocation with local explanations using the classic Shapley
values from game theory and their related extensions. SHAP
does a great job in decoding the strength of the influence of the
input variables in the predictions with intuitive and engaging
visualizations across various aspects of model explainability.
SHAP values calculate the feature importance by comparing
what a model predicts with and without the feature. However,
since the order in which a model sees features can affect its
predictions, this is done in every possible order, so that the
features are fairly compared.

At the time of writing this paper, there was not much
explainable AI literature available for DoH attack detection
and classification. Hence we will present a thorough discussion
and the explanations from our proposed model using a model
dashboard in Section VI in this paper.

III. DATASET DESCRIPTION AND PRE-PROCESSING

For experimenting, we have used the publicly available
CIRA-CIC-DoHBrw-2020 dataset[10] from the Canadian In-
stitute for Cybersecurity (CIC). In this dataset, a two-layered
approach is used to capture benign and malicious DoH traffic

along with non-DoH traffic. In the first layer, the Non-DoH
activity is generated by accessing different web servers. The
DoH traffic has been collected using Several DNS tunnelling
tools have been used such as DNSCat2, Iodine, and dns2tcp
[12], [13]. In layer 2 data collection, Malicious-DoH traffic is
generated using the above-mentioned tunnelling tools, where
these tools sent TLS-encrypted HTTPS data in DNS queries to
DoH servers (Adguard, Cloudflare, Google, Quad9). Fig. 1 is
shows the technical framework of DNS tunnels for generating
Malicious DoH traffic. To capture Benign-DoH traffic, Several
web browsers such as Chrome, Firefox, and safari have been
used to generate Benign-DoH in the same mechanism as in
scenario Non-DoH.

A. Exploratory Feature Analysis

The features of this dataset can be divided into multiple
broad categories. Flow Statistics is one of the categories
containing features such as the duration of the flow and the
number of packets sent or received in that flow. The category
Flow Bytes contains features describing the number of total
bytes sent and/or received. Furthermore, there is a Packet
Length category containing statistical features about the packet
lengths such as mean value or standard deviation. There are
similar statistical features calculated for the Packet Time and
Inter-Packet Delay categories.

To learn the differences in characteristics of DoH and non-
DoH, thorough feature analysis is performed in this section.
The value distribution for the feature is plotted using a
Kernel Density Estimation (KDE) plot. Fig. 2 shows the class-
wise density distribution for Flow Bytes Received, packet
length mean and variance features. A KDE plot is similar
to a histogram, however, the KDE plot shows the estimation
of the probability density function of a variable instead of
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discrete bins. The duration of a network flow is a feature
clearly distinguishing malicious DoH from non-DoH, with
DoH flows having comparatively longer duration. The non-
DoH web traffic network flows have a short duration since
the whole web page is fetched in only a few seconds. We
noticed some differences in the Flow byte measurements as
well, the number of bytes sent or received for malicious DoH is
clearly higher compared to non-DoH and benign-DoH (shown
in the KDE plot in Fig. 2(a). This is shown for the flow bytes
received in As we looked into the variance of incoming packets
(shown in the KDE plot in Fig. 2(c)), in general, DoH flows
have more consistent packet lengths, resulting in a smaller
variance compared to non-DoH. The outgoing packets showed
similar properties. An interesting difference between benign
and malicious DoH is that the variance for malicious DoH
is always relatively high due to alternating small and larger
packets. A full list of the 29 features in CIRA-CIC-DoHBrw-
2020 dataset can be found in [13] and also in Fig. 5.

B. Pre-processing: Scaling and Normalization

All numeric feature values are ranged between 0 and 1. We
performed a min-max normalization on the feature vectors to
prevent value related bias during training.

C. Dataset resampling

To deal with the class imbalance in the training data, we
have used a one-sided selection with synthetic Minority Over-
sampling Technique (SMOTE) technique [14] while preparing
our training data.

D. Train-test Split

The dataset has been split into training and testing sets
of 90%, 10% respectively. As can be seen from the system
overview diagram in Fig. 3, we have created three balanced
splits from the 90% training data to feed three independent
sub-models. We have used three different splits of Non-DoH
data while sharing the same malicious samples over various
divisions. We applied SMOTE up-sampling of the benign
group to avoid any evident bias from the majority groups
available in the dataset. With this sub-division, we had to
use less amount of synthetic data from the minority group
per sub-model. The training sets were further split into 10
folds to allow 10 fold cross-validation. To be noted, all of our
experiments were performed on a Linux machine with an Intel
Core i9 processor, 64 GB RAM and an NVIDIA RTX GPU.

E. Hyperparameter Tuning and Cross-Validation

For finding the optimal hyperparameters, resulting in the
best classification, we used the GridsearchCV function that is
used for the exhaustive search. In the search, different models
are trained covering all (manually) pre-configured parameter
values. Each model is tested after training and the search
was done with 10- fold cross-validation so that the selected
parameters are less susceptible to outliers.

IV. MODEL IMPLEMENTATION

In this study, we attempted to identify DoH traffic generated
by various malicious DNS tunnel tools. The payload of DoH
traffic is encrypted; thus, its content cannot be accessed. There-
fore, we have used the statistical features of the packets to
analyze the traffic in detail. For the detection and classification
task, we employed two main functional stages in our proposed
model. A balanced-training layer with multiple sub-models
and a stacked classifier for classification based on DNS over
HTTPS intrusion features. We describe our intuition for using
these components in the system development in the coming
subsections. To be noted, we have also trained Decision Tree,
Random Forest, and Xgboost Classifiers for the purpose of
mode performance comparison before settling to our final
Balanced and Stacked Random Forest Classifiers.

A. Base-Classifiers: Random Forests

For our model implementation, we are using a popular
ensemble classifier called the Random Forest [15] which
operates by constructing multiple decision tree models at the
training time. It is one of the most accurate supervised learning
methods in recent times. Each decision tree in a Random
Forest represents one class of observations that are being
considered. Decision trees are constructed during the learning
process with the training data Random Forests mainly rely
upon two parameters to control their growth: numTrees, the
number of decision trees to be built and numFeatures, the
number of random subset of features to assess at each tree
node[16]. In our design, numTrees = 10 and numFeatures =
28. Each of the 10 decision trees is constructed in a top-
down manner starting with a root node by selecting a set of
N observations of size n at random with replacement from
the training dataset and selecting the most significant features
of these samples as the tree nodes. At each node a, the m
number of features is selected at random from 28 features to
grow the tree and the most significant feature that provides the
best binary split on that node is selected among all according
to an objective function. Feature significance is generally
estimated using the Gini index[17]. To classify a new sample,
the features values of the samples are tested with each of the
decision trees present in the random forest. Each tree gives a
classification score or “vote” and the class with the most votes
is selected as the class to which the sample belongs. We have
used the RandomForestClassifier from the sklearn.ensemble
module in python for training the models [18].

B. Balanced and Stacked Classifier for Higher Predictive
Performance

The simplest form of stacking can be described as an
ensemble learning technique where the predictions of multiple
classifiers are used as new features to train a meta-classifier
[19]. The functional stages of the proposed algorithm is
outlined in Fig. 3. The workflow is demonstrating the stacking
scheme we used to train and implement our multi-class traffic
detection model. The meta-classifier of our choice is a logistic
regression model. All the sub-models in this diagram are Ran-
dom forest models with numTrees=10, and has a maximum
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Fig. 3. Functional stages of the Balanced Stacked Random Forest Classifier for Benign, Malicious DoH and NonDoH Classification

branch depth of 5 in the individual decision trees to keep the
computation fast enough during the prediction stage. For the
implementation, we have used the StackingClassifier from the
mlxtend.classifier module [20].

V. MODEL EVALUATION

Once the model is trained, we evaluated how well the
model is performing on test data from various classes. For
that, we have reported the scores such as accuracy, precision,
recall, Area Under the ROC Curve (AUC), and F1-scores since
these are directly comparable with other studies. Additionally,
confusion matrices are reported to give insights into the strong
and weak points of the classifiers, it shows which classes are
often misclassified. A definition of the evaluation matrices is
provided in the next sub-section.

A. Model evaluation matrices
If True Positive (TP ) is the number of attacks classified

rightly as attack; True Negative (TN ) is the number of normal
events rightly classified normal; False Positive (FP ) is the
number of normal events misclassified as attacks and False
Negative (FN ) is the number of attacks misclassified as
normal, we can define accuracy, recall, precision and F1 values
of a model using the following equations.

• Accuracy: It is an indicator of the total number of correct
predictions provided by the model and defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
. (1)

• Recall, precision and F1 Score: Three of the most com-
monly used performance measures with F1 score being
the harmonic mean of recall and precision measures are
defined as follows:

Recall or True positive rate =
TP

TP + FN
. (2)

Precision =
TP

TP + FP
. (3)

F1 Score =
2 ∗ Precision ∗ Recall

Precision+Recall
(4)

B. Confusion Matrix

We presented the confusion matrix plot in Fig. 4, for our
model when evaluated with the test data set. The columns
correspond to the predicted class and the rows correspond
to the true class (Actual Class). The diagonal cells in the
confusion matrix correspond to observations that are correctly
classified (TP and TN ’s). The off-diagonal cells correspond
to incorrectly classified observations (FP and FN ’s). Both the
number of observations and the percentage of the total number
of observations are shown side by side. For the proposed
balanced stacked random forest classifier, class-wise model
performance for train and test set is shown in confusion
matrices (a) and (b) respectively. As can be seen in Fig. 4
(b), the proposed stacked random forest was able to detect
24949 malicious out of 24955, with only six misclassified
instances where the model predicted those as NonDoH. The
major source of misclassification was observed in the model
for benign instances classified as NonDoH, these errors are
caused due to the test instance benign similar in nature to
NonDoH in terms of models top predictive features such as
duration, packet length etc, However, these errors are less
damaging to the system because of their benign nature.

C. Performance comparison

For comparison purposes, we have also trained a Decision
Tree, a Random Forest and an Xgboost (Gradient Boosting)
Classifier along with our final Balanced Stacked Random
Forest Classifier. As shown in Table II, the proposed classifier
results are better than the generic ensemble learning frame-
work such as the Gradient Boosting and The RF classifier
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TABLE II
MODEL ACCURACY COMPARISON IN TERMS OF AREA UNDER THE CURVE (AUC), CLASSIFICATION ACCURACY (CA), PRECISION, RECALL AND

F1-SCORE FOR NONDOH, BENIGN AND MALICIOUS DOH TRAFFIC CLASSIFICATION

Three-class model AUC Accuracy F1 Precision Recall

Decision Tree (Tree Depth=10) 0.8617 0.9770 0.8197 0.9658 0.7120
Gradient Boosting(Xgboost) 0.9986 0.9927 0.9843 0.9956 0.9732
Random Forest (number of Trees=10, SMOTE balanced) 0.9999 0.9998 0.9987 0.9989 0.9985
Proposed model (Balanced Stacked random forest) 0.9999 0.9998 0.9991 0.9991 0.9992

Fig. 4. Class-wise model performance for train and test set is shown in
confusion matrices (a) and (b) respectively. For each case, class-wise accuracy
is shown as a percentage of predicted on the left and a count of instances was
shown on the right.

with SMOTE balancing. Compared to the other classifiers, the
created ensemble framework misclassified a few samples from
NonDoH and benign class but, there is only six wrong classi-
fications in malicious class. And a very low misclassification
for the malicious class would be desirable in this scenario.
In the table, we have also compared the AUC score for the
various classifiers we have developed for the task.

From the results showed in Fig. 4 and Table II, we noticed
our system can identify malicious DNS traffic with more
than 99% accuracy. The model can distinguish DoH traffic
from normal HTTPS network traffic 99.9% of the time and
the class-wise accuracy of Benign, Malicious and Non-DoH
traffic on the test set was found to be 97.3%, 99.99% and
99.8% respectively. In Table II, we have also reported the
AUC, F1-score, precision and recall value from the model.
In comparison to state-of-the-art ensemble models such as
gradient boosting and generic random forest, our proposed
balanced and stacked random forest achieved slightly higher
precision (99.91%), recall(99.92%) and F1 score (99.91%)
which is desirable for the task at hand. For the purpose
of comparison, the Xgboost model had a precision value of
99.56%), a recall value of 97.322% and an F1-score of 98.43%
in this scenario.

VI. EXPLAINING THE DECISIONS USING XAI

In this section, we highlighted our use of XAI methods to
visualize the decision-making process of our proposed model.
We used the methods available from the SHAP (SHapley Ad-
ditive exPlanations) library to look into the model’s decision-
making process, expected impact from various features and

potential biases. It helped us characterize model accuracy,
transparency and outcomes to be validated by a human user.

A. Feature importance plots

As DoH can be used for benign and malicious purposes, so
if DoH is detected, the analysis of the features that are helping
to detect DoH traffic would be highly beneficial. For our use
case, Fig. 5 is highlighting a SHAP summary plot from the
proposed model that is giving us a birds-eye view of global
feature importance obtained from the training data. On the X-
axis of the summary plot, we have the average impact ( mean
absolute SHAP values) of a particular feature on the decision
making of a particular sample. SHAP values show how much a
given feature changed our prediction (compared to if we made
that prediction at some baseline value of that feature). On Y-
axis the features are presented according to their importance
globally from the entire training set. From our visualization,
we found out that the duration of a network flow and the packet
length related features were the features that helped the model
heavily to distinguish the malicious DoH from Non-DoH. The
packet length related features were found to be most powerful
in separating the benign DoH traffic from the dataset.

B. Dependence plots and Interaction plots

It is also possible to create local summary plots displaying
positive SHAP-values indicative of a feature supporting the
decision confidence. Negative SHAP-values are indicative
of the feature negatively impacting the decision confidence.
SHAP dependence plots provide useful insight if we want to
delve into the impact of a single feature in terms of the samples
the model has processed.

In Fig. 6, we have plotted the Duration and FlowByteSent
feature for all the samples in the test set, where each dot
represents a row of the data. The horizontal location is the
actual value from the dataset, and the vertical location shows
the SHAP impact value for that prediction. Higher the SHAP
value, the bigger the impact of the feature for one observation
in its decision making. In these diagrams, the malicious traffic
is indicated with positive SHAP values, benign and nonDoH
traffic represented using negative shap values for classification.
In Fig. 6(a) we plotted the duration of all the observations of
the test set to monitor the impact of duration in the model’s
classification. Most of the instances, that were classified as
malicious DoH traffic by the model is having a duration above
40 seconds. In Fig. 6(b) We are showing an interaction plot
of FlowBytesSent with FlowBytesReceived. The interesting
grouping is revealed on the upper left cluster in this plot when
bytes received sent in some instances is bigger than bytes
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Fig. 5. SHAP summary plot from the model that is giving us a birds-eye view of feature importance. From our analysis, we found the duration of a DoH
traffic is the most important predictor of whether the traffic is malicious or not, followed by some features related to packet length and variance in packet
time. On the right, the list of features is broadly categorised into flow statistics, flow bytes, packet length, packet time and Inter-packet delay features.

Fig. 6. (a) SHAP dependence plot for Duration as a feature. On y-axis we have the SHAP Values for each observation. This plot holds the duration of all
the observations of the test set to monitor the impact of duration in the model’s classification. Each dot represents a row of the data. We can infer from this
diagram that the model is using a duration threshold above 40 seconds to determine malicious DoH traffic reflected by the positive SHAP Values above this
range. (b) Interaction plot of FlowBytesSent and FlowBytesReceived. An interesting grouping is revealed on the upper left cluster in this plot when bytes
received sent in some instances is bigger than bytes originally sent indicating the suspicious or probable malicious nature of these grouped instances.

originally sent indicating the suspicious or probable malicious
nature of the grouped instance.

C. Explaining a malicious and a non-DoH test packet

We have deployed the model we have trained for this task
on a live Explainer Dashboard. Fig. 7 and Fig. 8 is using
a contribution table and a contribution plot to break down
the contribution of various feature values for an exemplar
malicious DOH traffic and a Non-DOH traffic sample from
the dataset. We have used 29 features to classify DoH traffic
in our model and it is possible to break down how much each
feature contributed in generating the confidence value of a

certain decision with the help of the dashboard functionalities
we have put together for this.

In Fig. 7, we are demonstrating a detailed explanation of a
malicious test packet by the model. The deployed model dash-
board provides a prediction probability (table and pie chart on
the top left), which is 73.3% for this Malicious instance. The
contribution plot below provides a further breakdown of which
feature contributed positively or negatively in models decision
making for this particular instance. For example, this test
instance with a duration of 126.43 seconds, which is above the
threshold for NonDoH and benign traffic contributed positively
(+16.95%) to models decision for classifying this instance as
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Fig. 7. Explaining a malicious test packet. On the top left, the dashboard provides a prediction probability and a pie chart shows the percentages. The label
with the asterisk sign is the label the model outputs as the decision. On the right, we have a contribution table with the value of each feature of the data
sample being processed by the model and their effect value or positive-negative contribution in models decision making. On the bottom left, we have the
feature contribution plot as a waterfall plot, green bars displaying positive contributors and the red bars displaying negative contributors.

Fig. 8. Explaining a Non-DoH test packet. For this decision, we can see the model had an 86.1% confidence score for Non-DOH based on the feature
averages and the impact the model has seen for various samples during the training phase.

malicious. The next highest contribution was coming from a
high packet time variance measurement for this case. However,
the packet length skew from the mode for this transaction
was very low, which affected the model confidence value
negatively by 1.77%.

In Fig. 8, we are showing a similar analysis of a Non-DOH
test packet. Notice the value difference in Duration in both the
decisions and their contribution differences. Additionally, for
this decision, we can see the model had a 5.2% similarity of
malicious traffic in some of the features. It is also possible
to identify the features that impacted the model’s decision

that way. In this instance, the PacketTimeMedian value of this
traffic was matching more to the average of the malicious
group than to the Non-DOH group of traffic the model was
trained with.

VII. CONCLUSIONS

DoH technology has been developed to provide security
and privacy for Internet users by encrypting the DNS traffic.
However, over the past few years, DNS remained a prime
target for hackers as it enables them to gain first entry into
networks and gain access to data for exfiltration due to network
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traffic generated by malware and malicious tools. Although
many studies on encrypted network traffic classification and
DNS tunnel detection have been reported before, as DoH is a
new protocol we need new set of intrusion detection tools. In
this paper, we reported an explainable AI model dashboard
that can detect malicious DoH traffic accurately. To prove
that our system can identify malicious DNS tunnel tools and
evaluate the performance, we have used the publicly available
CIRA-CIC-DoHBrw-2020 dataset. Our proposed model can
distinguish DoH traffic from normal HTTPS network traffic
99.9% of the time and the class-wise accuracy of Benign,
Malicious and Non-DoH traffic on the test set was found to be
97.3%, 99.9% and 99.8% respectively. We have also reported
the AUC, F1-score, precision and recall value from the model.
In comparison to state-of-the-art ensemble models such as
gradient boosting and generic random forest, our proposed
balanced and stacked random forest achieved slightly higher
precision (99.91%), recall(99.92%) and F1 score (99.91%)
which is desirable for the task at hand. Additionally, With
the help of the SHAP values, we have also highlighted the
feature contributions for the underlying classification decision
by the model. We have also discussed the conditions under
which high classification accuracy can be achieved by using
these features. In summary, the proposed method provides an
accurate solution to detect and classify the DNS over HTTPS
attacks.

Our future research will apply the explainable DoH detec-
tion methods for deep neural network-based solutions [21].
Currently, DoH traffic is only distinguished from browser
traffic. However, there might be HTTPS traffic created by more
applications than browsers only, with characteristics more sim-
ilar to DoH traffic. Other types of malicious use of DoH can
also be an interesting topic for exploration. Botnets often use
fast domain fluxing or Domain Generating Algorithms(DGA).
DGAs in botnets might abuse DoH [7], [22]. Future extensions
of the current work can aim to distinguish DGA related DoH
traffic from other HTTPS traffic.
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