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Abstract 

In this paper, a hybrid multi-objective metaheuristic algorithm based on the manta ray foraging 

optimization (MRFO) and the success history-based parameter adaptive differential evolution (SHADE) 

is developed to solve multi-objective truss optimization problems, called MO-SHADE-MRFO. SHADE 

is a variant of differential evolution with high performance in solving optimization problems, and 

MRFO is a novel metaheuristic algorithm inspired from the behavior of manta rays. In the proposed 

algorithm, the updating mechanism of MRFO is embedded into the SHADE, to enhance global 

convergence of SHADE for multi-objective truss optimization problems. The design problem is to 

minimize both structural mass and compliance subjected to stress constraints. Six benchmark truss 

optimization problems, including 10-bar, 25-bar, 37-bar, 120-bar, 200-bar and 942-bar trusses, are 

utilized to test the effectiveness of the proposed algorithm. The performance of the proposed algorithm 

is compared with nine state-of-the-art algorithms, in terms of metrics including hypervolume, inverted 

generational distance, and spacing-to-extent. The experiment results demonstrate that the proposed 

algorithm can obtain the best statistical values of metrics and the lowest standard deviation values in 

most test problems, which is more accurate than the compared algorithms. The Pareto solutions obtained 

by the proposed algorithm are well-distributed and smooth in each problem. 
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differential evolution; Manta ray foraging optimization 

1. Introduction 

The optimal truss design is a very challenging task usually solved by the cumbersome trial-and-

error in the practical engineering design [1]. Multi-objective truss optimization is quite advantageous 

than single-objective optimization because more design objectives can be embedded into the design. 

Designers are usually interested in optimizing multiple design criteria in order to obtain a set of Pareto 

optimal solution for decision-making. Some well-known multi-objective optimization algorithms can 

be selected in solving multi-objective truss optimization problems, including non-dominated sorting 

genetic algorithm II (NSGA-II) [2], multiobjective particle swarm optimization (MOPSO) [3], multi-

objective evolutionary algorithm based on decomposition (MOEA/D) [4]. Coello and Christiansen [5] 

presented the genetic algorithm for multi-objective optimization of truss structures. Mokarram and 

Banan [6] developed the FC-MOPSO based on the selection and preservation of diversity for solving 

multi-objective truss optimization problems, which provided good performance on searching for the 

acceptable approximations of Pareto fronts under limited function evaluations. Tejani et al. [7] proposed 

a multi-objective adaptive symbiotic organisms search based on different archive techniques for solving 

multi-objective truss optimization problems. Panagant et al. [8] compared 14 multi-objective 

metaheuristic algorithms for solving benchmark truss optimization problems, and the results showed 

that SHAMODE and SHAMODE-WO outperforms other compared algorithms in most cases. 

According to the No Free Lunch (NFL) theory [9], a metaheuristic optimizer can tackle an optimization 

problem efficiently while fail to converge for another optimization problem. The NFL theory motivates 

us to develop more novel and high-quality multi-objective metaheuristic for multi-objective truss 

optimization problems. 
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In multi-objective truss optimization, the measurement indicators are various, such as 

hypervolume, inverted generational distance, spacing-to-extent, and so on. Therefore, some 

metaheuristic algorithms may result in the premature or oscillation of indicators during optimization 

[10]. A variant of DE called success history-based adaptive differential evolution (SHADE) [11] was 

proposed for optimization, which was a high-quality metaheuristic algorithm and ranked 3rd in the CEC 

2014 competition. However, similar to other metaheuristics, SHADE still suffers from the oscillation 

of some indicators during the optimization process, because the convergence is more concerned for 

single-objective optimization in SHADE, but the diversification is also important in multi-objective 

optimization. 

This paper developed a novel hybrid optimizer combining the merits of SHADE and MRFO to 

solve multi-objective optimization problems, called MO-SHADE-MRFO. In the proposed MO-

SHADE-MRFO, the MRFO is embedded into the SHADE to balance the exploration and exploitation, 

which can enhance the global convergence. The efficiency of MO-SHADE-MRFO is illustrated by six 

benchmark design examples: planar 10-bar, spatial 25-bar, planar 37-bar, spatial 120-bar, planar 200-

bar, and spatial 942-bar truss design. The main objectives of the truss design are minimizing the weight 

and compliance of the structure. The proposed algorithm is also compared with 9 state-of-the-art multi-

objective algorithms: MOPSO, NSGA-II, MOEA/D, MOGOA, MOMVO, MOWCA, MOSSA, 

UPSEMOA, and SHAMODE, in terms of metrics including hyper-volume, inverted generational 

distance, spacing, and Pareto front. 

 

2. Problem description 

The multi-objective truss optimization design is a challenging task due to the conflicting objectives, 

complicated constraints, and discrete design variables of cross-sectional areas [1]. In general, the multi-

objective truss optimization problem is formulated as: 

Find A={A1, A2, …, Am}  
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where Ai is the design variable of the cross-sectional area for i-th element, m is the number of 

design variables, f1 and f2 denote the structural mass and compliance, respectively, ρi and Li are the mass 

density and length of the i-th element, respectively, σi  and σi
max  are the tress and the allowable value 

of the i-th element, and Ai  and Ai
max  are the lower and upper bounds of cross-sectional areas of design 

variables. The compliance is computed by the vector product of displacement u and force F. 

 

Fig. 1 The flowchart of MO-SHADE-MRFO algorithm 

SHADE is a very effective and successful metaheuristic algorithm, especially for solving single-



objective optimization problems. However, there has been little research on SHADE for solving multi-

objective truss optimization problems. In this work, a variant of SHADE is presented for multi-objective 

truss optimization problems, called multi-objective success history-based adaptive differential 

evolution with manta ray foraging optimization (MO-SHADE-MRFO), which stands for the integration 

of the cyclone and chain foraging of MRFO into the SHADE. The modification is made at the 

reproduction process, where each mutant vector has a chance to be further updated with the cyclone or 

chain movement of MRFO. Besides, all the non-dominated solutions are saved and updated in the 

selection process. The flowchart of MO-SHADE-MRFO is illustrated in Fig. 1. 

 

3. Numerical results 

In this work, six benchmark truss optimization problems, including 10-bar, 25-bar, 37-bar, 120-

bar, 200-bar and 942-bar trusses, are utilized to test the effectiveness of the proposed algorithm. The 

performance of MO-SHADE-MRFO is also compared with nine competitive multi-objective 

algorithms, including MOPSO, NSGA-II, MOEA/D, MOGOA, MOMVO, MOWCA, MSSA, 

UPSEMOA, and SHAMODE. For fair comparison, the population size and maximum iterations are set 

as 100 and 100, respectively. All multi-objective metaheuristic algorithms execute 30 times 

independently. Three different metrics are used to evaluate the performance of metaheuristic algorithms, 

including hyper volume (HV) to measure spread of Pareto front, spacing-to-extent (STE) to measure 

spacing and extent of a front, and inverted generational distance (IGD) to measure the distances between 

the Pareto front and the reference front.  

For simplicity, the results of 942-bar truss problems are discussed. According to the statistical 

results in Table 1, MO-SHADE-MRFO achieves good performance in the HV, IGD and STE metrics, 

which ranks first among the compared algorithms. Moreover, the convergence capacities are illustrated 

in Fig. 2, demonstrating that MO-SHADE-MRFO has smooth and well-distributed Pareto solutions, 

which is better than MOPSO, NSGA-II, MOWCA, MOGOA and MOMVO. In all, MO-SHADE-

MRFO is a competitive algorithm for multi-objective truss optimization problems. 
Table 1 Statistical metrics for 942-truss problems 

Algorithm MOPSO NSGA-II MOEA/D MOGOA MOMVO MOWCA MOSSA UPSEMOA SHAMODE Proposed 

HV Best 1.07E+11 1.17E+11 1.21E+11 8.73E+10 1.15E+11 1.07E+11 9.51E+10 1.14E+11 1.27E+11 1.29E+11 

Mean 1.18E+11 1.20E+11 1.23E+11 9.94E+10 1.20E+11 1.15E+11 1.03E+11 1.26E+11 1.29E+11 1.30E+11 

Worst 1.23E+11 1.25E+11 1.26E+11 1.07E+11 1.22E+11 1.21E+11 1.12E+11 1.30E+11 1.31E+11 1.31E+11 

SD 4.43E+09 2.28E+09 1.20E+09 3.74E+09 1.71E+09 3.08E+09 3.23E+09 3.14E+09 9.20E+08 4.07E+08 

FR 6.23  5.60  4.17  9.83  6.13  7.57  9.13  3.27  1.93  1.13  

IGD Best 5.57E+03 3.75E+03 9.73E+03 1.36E+04 7.87E+03 6.97E+03 1.14E+04 1.57E+03 2.90E+03 5.04E+02 

Mean 9.79E+03 8.28E+03 1.48E+04 1.67E+04 1.20E+04 1.10E+04 1.47E+04 3.08E+03 4.57E+03 7.69E+02 

Worst 1.32E+04 1.27E+04 2.04E+04 2.02E+04 1.78E+04 1.51E+04 1.97E+04 5.95E+03 6.74E+03 1.39E+03 

SD 1.97E+03 2.10E+03 2.79E+03 1.58E+03 2.17E+03 2.14E+03 1.88E+03 7.97E+02 9.85E+02 1.84E+02 

FR 5.50  4.57  8.27  9.47  6.93  5.97  8.30  2.07  2.93  1.00  

STE Best 4.00E-03 4.21E-03 4.24E-03 1.65E-03 4.16E-03 6.29E-03 2.92E-03 2.67E-03 3.62E-03 2.86E-03 

Mean 6.34E-03 9.89E-03 9.82E-03 6.96E-03 9.85E-03 1.16E-02 9.21E-03 5.74E-03 4.82E-03 3.87E-03 

Worst 9.34E-03 3.94E-02 3.56E-02 2.69E-02 4.17E-02 2.58E-02 2.92E-02 3.08E-02 6.81E-03 5.49E-03 

SD 1.36E-03 7.32E-03 5.99E-03 5.29E-03 7.38E-03 4.09E-03 5.16E-03 4.92E-03 8.86E-04 5.08E-04 

FR 5.33  6.93  7.00  4.83  6.87  8.63  6.63  3.47  3.50  1.80  

 
(a) IGD iterative curves 

 
(b) Pareto front 

Fig. 2. Iterative curves and Pareto front of 942-bar truss problem 

 



4. Conclusions 

In this work, a novel MO-SHADE-MRFO optimizer is presented for multi-objective optimization 

of truss structures, combining two powerful single-objective metaheuristic algorithms: success-history 

based adaptive differential evolution (SHADE) and manta ray foraging optimization (MRFO). In MO-

SHADE-MRFO, the Pareto archives are used to save the non-dominated solutions. The operators of 

SHADE are used in the proposed algorithm to ensure the convergence for optimization problems. The 

operators of MRFO including cyclone, chain, and somersault foraging are embedded into the proposed 

algorithm to enlarge the population’s diversity and enhance convergence ability. The combination of 

MRFO and SHADE can provide good convergence and coverage, which enhances the diversification 

and intensification in solving multi-objective truss optimization problems. 

The performance of MO-SHADE-MRFO is investigated using six multi-objective truss 

optimization problems (10-bar truss, 25-bar truss, 37-bar truss, 120-bar truss, 200-bar truss, and 942-

bar truss). The objective is to minimize the structural mass and compliance subjected to elemental stress, 

with discrete design variables of cross-sectional areas. This study compares the proposed algorithm 

with other nine state-of-the-art multi-objective metaheuristic algorithms, including MOPSO, NGSA-II, 

MOEA/D, MOGOA, MOMVO, MOWCA, MOSSA, UPSEMOA and SHAMODE, by evaluating the 

performance of algorithms with three metrics, HV, IGD and STE. Based on the statistical results, the 

proposed MO-SHADE-MRFO is overall the best algorithm, which is effective in solving multi-

objective truss optimization problems, with well spread, consistent and smooth Pareto solutions in each 

benchmark problem. Evidently, the proposed algorithm provides competitive performance in solve truss 

multi-objective optimization problems. In future works, we can extend the proposed algorithm for 

higher dimension and practical challenging optimization problems. 
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