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Summary of thesis

In this thesis we will present all the steps for creation of a pipeline that uses machine
learning algorithms to detect sub-second gravitational wave transient signals. In the
end we show the results of a search using the defined pipeline called MLy.

We begin with an introduction to gravitational waves where we show that grav-
itational waves are expected based on general relativity.

Then in Chapter 3 we make an introduction to machine learning an all its con-
cepts and tools we are going to use during this work. We start with the definition
of neuron and an overview of activation functions and gradient descend methods, to
the parameters of a model and its layers and their optional and not, parameters.

In Chapter 4 we describe how we generate noise and injections, and we introduce
the main functions and tools of the pipeline and we explain the reasons and condition
under we use them. We start by defining our core objects DataPod and DataSet
and continue with the generator function and all its extensions and schedulers , with
detailed explanation of how we get the data and how we apply time-lags to the noise.

Following that in Chapter 5 we show our investigation on a model that de-
tects gravitational wave transients. We show how we choose the parameters for the
training and eventually the results of the best model on real noise from the second
observing run.

Finally in the last Chapter 6 we present the application of that best model on an
offline search for all three observing runs. In addition we show how we can extend an
HLV trained model to an HL analysis without creating another model from scratch.
In the end of that chapter we discuss our results and possible future investigations.

– i –



Acknowledgments

Those four years were an amazing experience for me, that exceeded any expectation
I had for my PhD. This work is a result of hard work, a bit of luck and many people
that supported and encouraged me.

First of all, I have to thank my supervisor Patrick Sutton, who was a professional
and made me feel confident on my skills and work in every meeting. Thank you for
focusing my inevitable stress where it was needed and never adding up to it. Also
my secondary supervisor Bernard Schutz ,who I admired through his book which
taught me general relativity, and who was always approachable and made me feel
as an equal through our discussions. Thank you both for showing me that you can
be professional and humble and there is no better way to do it.

I would like to thank Duncan Macleod for all the times that you figure out ”why
it wasn’t working” and your amazing Gwpy that inspired all my codding skills the
last four years. I would also like to thank Chris Messenger and his group in Glasgow
that helped a lot on the direction of my project when I visited Glasgow and taught
me how to use GPUs. I want to thank also Scott Coughlin for his suggestions and
advice. I want to thank Shubhanshu Tiwari that provided me with extra information
to complete this thesis. And of course want to thank all those people that spared
some of their precious time to answer any probably stupid questions that I could
actually google.

A special thanks to all my colleagues in the office, Rhys, Ali, Virginia, Charlie,
Eleanor, Ed, Dave, Johnathan, Aldo, Alex, Seb, Ronaldas, Chinmay and even you
Iain. Thank you for being there and made sure I will work half the time I was
supposed to, so I don’t get too tired. A special thanks to my fellow astrophysicists
from the first floor that made sure Fridays were fun and always offered me tea.

I want to thank my special roommate genius Tanya Sign who was always looking
at me suspiciously every time I passed by without any apparent reason and made
me happy. Thank you for being that sister in the UK. My brain is yours.

I also want to thank Marika (my telescope) who has given me inspiration every
time I was loosing mine and made me remember my roots and how it all started.

Finally I have to thank my Mum and Dad who supported my weirdness and
know it all attitude from young age (and bought me Marika). I reached my dream
because of you, this is your achievement as much is mine.

– ii –



Contents

1 Introduction 1

2 Gravitational Waves 3

2.1 Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Metrics and curvature . . . . . . . . . . . . . . . . . . . . . . 3

2.1.2 Linearised therory of gravity . . . . . . . . . . . . . . . . . . 5

2.2 Gravitational Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Interaction of gravitational waves and particles . . . . . . . . 9

2.2.3 Generation of Gravitational waves by non-relativistic motion 10

2.3 Metrics of signal intensity . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Rooted Squared Sum (RSS) . . . . . . . . . . . . . . . . . . . 13

2.3.2 Signal to Noise Ratio (SNR) . . . . . . . . . . . . . . . . . . 14

3 Machine Learning 15

3.1 Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 The neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.2 Training a single neuron . . . . . . . . . . . . . . . . . . . . . 17

3.1.3 Activation functions . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.4 The loss function . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 From random numbers to features . . . . . . . . . . . . . . . . . . . 25

3.2.1 Loss minimisation - gradient descent . . . . . . . . . . . . . . 25

3.2.2 General structure of neural networks . . . . . . . . . . . . . . 32

3.2.3 Fully connected layers and neural networks . . . . . . . . . . 34

3.2.4 Convolutional Neural Networks (CNNs) . . . . . . . . . . . . 37

3.2.5 Pooling and secondary layers . . . . . . . . . . . . . . . . . . 40

3.3 Machine Learning applied for Gravitational Wave detection . . . . . 41

4 MLy (“emily”) pipeline 44

4.1 Obtaining detector data . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.1 Artificial detector noise . . . . . . . . . . . . . . . . . . . . . 44

4.1.2 Real detector noise . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.3 Implementing time-lags in the data . . . . . . . . . . . . . . . 46

4.2 Injection generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.1 Gravitational-Wave morphologies . . . . . . . . . . . . . . . . 52

4.2.2 Computing the detector response . . . . . . . . . . . . . . . . 54

4.2.3 Final processing of the data . . . . . . . . . . . . . . . . . . . 55

4.2.4 Simulating glitches . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Main pipeline tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

– iii –



4.3.1 DataPod and DataSet . . . . . . . . . . . . . . . . . . . . . . 60
4.3.2 PlugIns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3.3 Validation functions . . . . . . . . . . . . . . . . . . . . . . . 61

5 Real-time detection of Unmodelled Gravitational wave transients
using CNNs 64
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2 A CNN for Unmodelled Burst Detection . . . . . . . . . . . . . . . . 65

5.2.1 Network Architecture . . . . . . . . . . . . . . . . . . . . . . 65
5.2.2 Analysis Procedure . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3.1 False Alarm Rate . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3.2 Detection Efficiency . . . . . . . . . . . . . . . . . . . . . . . 74
5.3.3 Comparison with the all-sky search in O2 . . . . . . . . . . . 75
5.3.4 Inference Time . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Offline search using CNNs for generic subsecond waveforms 87
6.1 Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.1.1 An HL search with an HLV trained model. How? . . . . . . . 88
6.2 O1: The first observing run analysis . . . . . . . . . . . . . . . . . . 91
6.3 O2: The second observing run analysis . . . . . . . . . . . . . . . . . 96

6.3.1 HLV analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.3.2 HL analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.4 O3: The third observing run analysis . . . . . . . . . . . . . . . . . . 102
6.4.1 O3a HLV analysis . . . . . . . . . . . . . . . . . . . . . . . . 102
6.4.2 O3a HL analysis . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.4.3 O3b HLV analysis . . . . . . . . . . . . . . . . . . . . . . . . 114
6.4.4 O3b HL analysis . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7 Conclusion 126

– iv –



List of Figures

2.1 The effect of the main two polarisations of a gravitational wave mov-
ing in the z direction [1] over five different time snapshots. In both fig-
ures the you see a full period of a gravitational wave passing through
a ring of free falling particles.(top) The effect of + polarisation. (bot-
tom) The effect of × polarisation. . . . . . . . . . . . . . . . . . . . 10

3.1 Diagram of the artificial neuron . . . . . . . . . . . . . . . . . . . . . 17

3.2 Graphic explanation of why we use the minus to update the weights.
The point on the left has a negative gradient, and the best value for w
precedes the current value. Hence the update of the weight should be
positive and the only way to do that is to use the minus. The opposite
case applies to the other point where the gradient is positive and the
true value is behind the current value so the minus still updates the
weight to the right direction. . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Simple example with two cases of different learning rates. We see
that if η is rather small we can go close to the minimum, although we
won’t reach exactly the minimum due to the fact that the learning
rate will be considered large for the distance we have left towards
the minimum. When η is “large” or larger than we need it to be we
actually can go even further from the minimum. Such phenomenon
is called “overshooting”. . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 The momentum method on a simplified two dimensional loss param-
eter space. The isolines represent points where the loss has the same
value. Instead of having the default update rule that depends on the
gradient, the update now is also affected by the previous update v⃗t−1.
The amount of the effect is controlled by γ. . . . . . . . . . . . . . . 29

3.5 The Nesterov momentum method on a simplified two dimensional loss
parameter space. Now the gradient is calculated in the point that the
previous update directs to. If the directions don’t agree the update
is reduced and the opposite if they do. . . . . . . . . . . . . . . . . . 30

3.6 The simplest fully connected network with three inputs (x, y, z) and
three outputs (f, g, h). As you can see in the output layer, all neurons
are connected with all the neurons of the previous layers. . . . . . . 35

3.7 A fully connected network, with N layers plus the input layer (layer
0). Again you can see that all neurons of one layer are connected with
all the neurons of the previous layer. . . . . . . . . . . . . . . . . . . 35

3.8 Example of two function f, g in continuous convolution. . . . . . . . 37

– v –



4.1 Theoretical curves of Advanced LIGO and Virgo as used by the gen-
erators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Examples of disposition between different glitch signals. We present
the timeseries for each detector with an offset that depends of the
intensity of each signal so that they are distinguishable. a) Disposition
of 0.1 s. You can see that the central time of Virgo signal (magenta)
is 0.1 s away from the central time of the LIGO H1 signal (red). b)
Disposition of 0.2 s. c) Disposition of 0.3 s. . . . . . . . . . . . . . . 59

5.1 Coincidence model architecture (model 1). For each layer we show
the kernel size on left (if applicable) and the number of filters on the
right. The plus symbol indicates the summation of weights between
outputs of different layers. . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Coherency model architecture (model 2) . . . . . . . . . . . . . . . . 79

5.3 False alarm test results for 10 different trainings of Model1 (blue)
and Model2 (red) and their combination (100 models - magenta) of
scores. For the false alarm tests we used the same instances among
the models. We tested 1 month of data and we present here the 1000
loudest events for each model. We highlight with a bold line the mean
result for each model. The gray area represent one standard deviation
for each case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4 Average false alarm rates of models trained with elevated Virgo level.
For each average curve we calculated the false alarm rate of 49 models
( 7 model1, 7 model2 combinations), using the same data instances. 81

5.5 The average efficiency curve (out of 49 different combinations of model1
and model2) for WNB signals based on thresholds of 1 per month false
alarm rates for each case. . . . . . . . . . . . . . . . . . . . . . . . . 82

5.6 False alarm rate of the current best model, up to once per 10 years.
We compare the performance of Gaussian Noise and O2 real noise.
The score thresholds of 0.11 and 0.30 false alarm rates of 1/month
and 1/year are also shown respectively. . . . . . . . . . . . . . . . . . 83

5.7 Examples of testing signals of high SNR embeded in Gaussian noise:
white noise burst (WNB), binary black hole merger (BBH), core-
collapse supernova (CCSN), circularly polarised sine-Gaussian (CSG)
and cosmic string cusp. . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.8 Detection efficiency : The percentage of simulated signals that are
detected at a false alarm rate of 1 event per year versus the signal-to-
noise ratio (SNR) defined by equation 5.3. The waveform morpholo-
gies are white noise burst (WNB), core-collapse supernova (CCSN),
circularly polarised sine-Gaussian (CSG), cosmic string cusp, and bi-
nary black hole merger (BBH). . . . . . . . . . . . . . . . . . . . . . 85

5.9 Detection efficiency for generic sub-second bursts for iFAR 1/year. . 86

– vi –



6.1 Test of the importance of the L and V detectors to the score assigned
to 200 WNB injections by the three-detector CNN model. Horizontal
axis: ordinary HLV score. Vertical axis: score assigned to the injec-
tion when the injection data stream for L (“L missing” - blue) or V
(“V missing” - magenta) is replased by zeros. Top plot is for injections
with hrss value of 1.8 × 10−22Hz−0.5 which corresponds to the 50%
detection efficiency for this signal type, the middle plot value corre-
sponds to 90% and the bottom plot is a very high value for reference
2× 10−21Hz−0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.2 The sensitivity of LIGO detectors during O1 along with the final
design sensitivity for Advanced LIGO and also the sensitivity of the
last science run of the initial LIGO detectors, S6 [2] . . . . . . . . . 91

6.3 The false alarm rate of the HL network in comparison with the false
alarm rate of Gaussian noise during O1 observing run. The score
thresholds of 0.14 and 0.47 false alarm rates of 1/month and 1/year
are also shown respectively. . . . . . . . . . . . . . . . . . . . . . . . 92

6.4 The detection efficiency of the MLy pipeline algorithm as a function
of the network SNR for signals from various waveform morphologies
described in subsection 4.2.1 and for a false alarm rate of 1 per year,
during the O1 observing run. . . . . . . . . . . . . . . . . . . . . . . 93

6.5 The detection efficiency of the MLy pipeline as a function of the hrss
for generic sub-second burst signals and for a false alarm rate of 1 per
year, during the O1 observing run. . . . . . . . . . . . . . . . . . . . 95

6.6 Sensitivity curves of the three detectors H1 (red), L1 (blue) and V1
(purple) during the O2 observing run in August 2017. Plot taken
from [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.7 The false alarm rates of the HL network in comparison with the false
alarm rates of Gaussian noise during O2 observing run. The score
thresholds of 0.14 and 0.61 false alarm rates of 1/month and 1/year
are also shown respectively. . . . . . . . . . . . . . . . . . . . . . . . 98

6.8 The detection efficiency of the MLy pipeline as a function of the net-
work SNR for signals from various waveform morphologies described
in subsection 4.2.1 and for a false alarm rate of 1 per year, during the
O2 HL observing run. . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.9 The HL detection efficiency of the MLy pipeline as a function of the
hrss for generic sub-second burst signals and for a false alarm rate of
1 per year, during the O2 observing run. . . . . . . . . . . . . . . . . 100

6.10 The representative sensitivity of LIGO-Virgo detectors during O3a.
Plot taken from [4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.11 The false alarm rates of the HLV network in comparison with the
false alarm rates of Gaussian noise for O3a. The score thresholds of
0.23 and 0.96 false alarm rates of 1/month and 1/year are also shown
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.12 The detection efficiency of the MLy pipeline as a function of the net-
work SNR for signals from various waveform morphologies described
in subsection 4.2.1 and for a false alarm rate of 1 per year, during the
O3a HLV observing run. . . . . . . . . . . . . . . . . . . . . . . . . 105

– vii –



6.13 The HLV detection efficiency of the MLy pipeline as a function of the
hrss for generic sub-second burst signals and for a false alarm rate of
1 per year, during the O3a observing run. . . . . . . . . . . . . . . . 106

6.14 The false alarm rates of the HL network in comparison with the false
alarm rates of Gaussian noise for. The score thresholds of 0.20 and
0.98 false alarm rates of 1/month and 1/year are also shown respectively.108

6.15 The detection efficiency of the MLy pipeline as a function of the net-
work SNR for signals from various waveform morphologies described
in subsection 4.2.1 and for a false alarm rate of 1 per year, during the
O3a HL observing run. . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.16 The HL detection efficiency of the MLy pipeline as a function of the
hrss for generic sub-second burst signals and for a false alarm rate of
1 per year, during the O3a observing run. . . . . . . . . . . . . . . . 110

6.17 The false alarm rates of the HLV network in O3b in comparison with
the false alarm rates of Gaussian noise. The score thresholds of 0.84
and 0.99 false alarm rates of 1/month and 1/year are also shown
respectively (the 1/month score is shown slightly to the left to avoid
overlapping). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.18 The detection efficiency of the MLy pipeline as a function of the net-
work SNR for signals from various waveform morphologies described
in subsection 4.2.1 and for a false alarm rate of 1 per year, during the
O3b HLV observing run. . . . . . . . . . . . . . . . . . . . . . . . . 115

6.19 The HLV detection efficiency of the MLy pipeline as a function of the
hrss for generic sub-second burst signals and for a false alarm rate of
1 per year, during the O3b observing run. . . . . . . . . . . . . . . . 116

6.20 Same comparison like table 6.5, but this time for O3a three detector
search. We were provided with the efficiencies for FAR values of 1
per year by Shubhanshu Tiwari, a member of cWB team. . . . . . . 118

6.21 The detection efficiency of the MLy pipeline as a function of the net-
work SNR for signals from various waveform morphologies described
in subsection 4.2.1 and for a false alarm rate of 1 per year, during the
O3b HL observing run. . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.22 The detection efficiency of the MLy pipeline as a function of the net-
work SNR for signals from various waveform morphologies described
in subsection 4.2.1 and for a false alarm rate of 1 per year, during the
O3b HL observing run. . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.23 The false alarm rates of the HLV network in O3a in comparison with
the the same false alarm rates when we ignore instances that involve
coincident glitches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

– viii –



List of Tables

4.1 An example of the order of segments in the case of two detector
time-lags. Detector 1 stays the same for every combination and only
Detector 2 shifts one second at a time. Note that for Detector 2 lag=7
would be the same with lag=0 and this is not allowed. Any further
lags would also be repetitions of other lags. . . . . . . . . . . . . . . 48

4.2 Three detectors A, B, C with data segment of duration 5 × the time
lag step size (in our case one second). A is always kept at zero lag by
convention. The horizontal and vertical axes indicate possible choices
of time lags of B and C. Grey boxes marked X indicate choices that
are not allowed because they keep at least one pair of detectors at
zero lag with each other. Any other choice is allowed. . . . . . . . . 49

4.3 (Up-Left) When we select the combination (0,1,4) at the first table
referring to the lags of every detector, we can never use 1 for B or 4 for
C because the combination AB-(0,1), AC-(0,4) will repeat themselves
and that is forbidden. So the column and line that selection belongs
becomes unavailable. Additionally the diagonal that passes through
(1,4) and (0,3) extends to the other side on (4,2) and (3,1) making
them also unavailable because the combinations of the same diagonal
have the same distance in lags, and this is not allowed to repeat after
our selection. (Up-Right) We choose the combination (0,2,3) and
the column and line of that combination become unavailable. The
diagonal is already unavailable. (Down-Left) We now choose the
combination (0,3,2) and the column and line are already unavailable
as is the diagonal.(Down-Right) Finally we choose the last option
left, combination (0,4,1). . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 The case of even number of instantiations create an odd number of
maximum lags, hence an asymmetry. We need to move the diagonal
method by one and loose one instance. . . . . . . . . . . . . . . . . 50

5.1 The values shown refer to hrss, in units of 10−22Hz−1/2, at the 50%
efficiency threshold. Comparing waveforms from cWB results [5] but
modified for iFAR of 1 per year. We were provided with the efficien-
cies for FAR values of 1 per year for cWB by Shubhanshu Tiwari, a
member of cWB team. We restrict the comparison to injections with
frequencies and durations that are in the range for which we have
trained the MLy models (duration < 1s , frequencies in the 20 Hz -
480 Hz band). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

– ix –



6.1 The official transient search pipelines for O1 [6] and their network
SNR as reported from PyCBC, GstLAL and cWB. In comparison we
show the score of MLy pipeline that correspond to detection. MLy
pipeline has a threshold of 1/year (0.47) and events below that thresh-
old are not present here. . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2 The values shown refer to hrss, in units of 10−22Hz−1/2, at the 50%
efficiency threshold. Comparing waveforms from cWB results [7] and
MLy pipeline at FAR of 1 per year. We restrict the comparison
to injections with frequencies and durations that are in the range for
which we have trained the MLy models (duration < 1s , frequencies in
the 20 Hz - 480 Hz band) The cWB thresholds are only an estimation
base on the behaviour in O2 observing run. . . . . . . . . . . . . . . 94

6.3 The transient events for O2 present in all three detectors [6], and their
network SNR as reported from PyCBC, GstLAL and cWB and MLy
pipeline. *MLy pipeline has a threshold of 1/year and events below
that threshold are not present here. . . . . . . . . . . . . . . . . . . 97

6.4 The official transient events for O2 present only in detectors H1 and
L1, and their network SNR as reported from PyCBC, GstLAL and
cWB [6].*MLy pipeline has a threshold of 1/year and events below
that threshold are not present here. . . . . . . . . . . . . . . . . . . 99

6.5 The values shown refer to hrss, in units of 10−22Hz−1/2, at the 50%
efficiency threshold. Comparing waveforms from cWB results [7] and
the MLy pipeline at FAR of 1 per year. We were provided with the
efficiencies for FAR values of 1 per year by Shubhanshu Tiwari, a
member of cWB team. We restrict the comparison to injections with
frequencies and durations that are in the range for which we have
trained the MLy models (duration < 1s , frequencies in the 20 Hz -
480 Hz band) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.6 Scores and false alarm rates for sub-threshold official BBH events in
O3a. We also show the scores for the two individual models. . . . . . 104

6.7 Same comparison like table 5.1, but this time for O3a three detector
search. We were provided with the efficiencies for FAR values of 1
per year by Shubhanshu Tiwari, a member of cWB team. . . . . . . 107

6.8 Scores and false alarm rates for sub-threshold official BBH events in
O3a HL analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.9 Same comparison like table 6.5, but this time for O3a two detector
search. We were provided with the efficiencies for FAR values of 1
per year by Shubhanshu Tiwari, a member of cWB team. . . . . . . 111

6.10 The extended catalogue of transient events [8] for O3a and network
SNR from the pipeline with the highest significance, as reported from
MBTA, GstLAL or PyCBC or PyCBC-BBH [8] UTC time refers to
the merger time. Detectors indicate which detectors were operational
at the time of the event. When a signal is present only in HL, the
HLV model is non-applicable (N/A). The same is happening in the
case when H or L detectors are not observing. In such case non of
our models are applicable. In this work we analyse only HL and HLV
times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

– x –



6.11 Same comparison like table 5.1, but this time for O3b three detector
search. We were provided with the efficiencies for FAR values of 1
per year by Shubhanshu Tiwari, a member of cWB team. . . . . . . 117

6.12 Same comparison like table 6.5, but this time for O3b two detector
search. We were provided with the efficiencies for FAR values of 1
per year by Shubhanshu Tiwari, a member of cWB team. . . . . . . 121

– xi –



We call this pipeline MLy (Emily), in loving memory
of my friend Emily Voukelatou who is not with us any-
more. She was a fierce computer scientist and a master
software engineer, who fought transphobia, sexism and
misogyny all her life.

– xii –



Chapter 1

Introduction

After the unexpected detection of the first gamma-ray bursts at the late 60s a

new window of observation opened for astrophysics and nearly half a century later,

gamma-ray astronomy is one of the most important fields of astrophysics. It made us

understand a vast amount of new processes happening away from our own milky way.

On September 14th of 2015 the first gravitational wave that was detectable from our

detectors arrived, proving that from now on we would be able to ”hear” the universe

not only see it. After such a discovery a huge progress in the field of gravitational

waves is expected and to the point of writing this we have more terrestrial detectors

starting to be built and a future space gravitational wave detector - LISA. A lot of

detectors means a lot of data and a lot of work for people that have to process those

data.

Alongside the advances of astronomy in the new millennium we took more data

that we could process on time. That created a demand for data scientist and most

importantly the wide recognition of the term data scientist. Gravitational wave

detectors produce a lot of data where most of them are auxiliary channels and en-

vironmental monitors. All these channels create signals and our job is to extract

those signals and prove that they are real. A numerous amount of analytical meth-

ods have been produced to detect those signals that demand a descent amount of

calculations, hence computational time. Although as the detectors are expected to

become better and better with every upgrade the amount of detections will increase

and alongside the demanded computational time will follow. From O2 it was clear

that this will be a problem and another less costly method has do be developed.

Fortunately a promising tool for the task was already developed and it was

called machine learning. Machine learning was developing along side the new data

intensive age in computer science and it already had applications in our everyday life.

Application of machine learning usually has quite different standards depending the

problem it tries to solve and the discipline it belongs to. In our case this would be

the extremely high standards for false alarm rates. Therefore the machine learning

tool that will help with this issue has to be created from scientists that are adepts
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in both fields of gravitational waves and machine learning.

Close to that point in history is when I started my PhD and the present work

started building its foundations. During my first year I was mostly reading about

machine learning and its current applications. I tried to recreate the results of

Gabbard et al. 2018 [9] as a way to learn how machine learning algorithms work.

It was a big surprise for me to see that the big challenge of this problem was not

to find an algorithm that works but find the right processing of the data so that an

algorithm can learn the important features from them. Furthermore at the end of

my first year I realised the importance of working with real detector data and go

beyond a proof of concept endeavour. In the end we want to apply an algorithm on

real data, so it is important that it is tested in real data.

At the beginning of my second year I attended the Deep Learning for Multimes-

senger Astrophysics Conference in Urbana Illinois. Machine learning was in most

of the projects presented there but alongside with it was a lot of mistrust about

the results machine learning provides. The mistrust was created mainly from two

factors. One was that the results back then were mostly proof of concepts that were

not tested enough on real detector data and secondly the enthusiasm of machine

learning researchers implying that match filter is outdated. It seemed to me that

there was not room for middle ground at that point and I wanted to make it part

of my endeavor to make machine learning for detections trustworthy.

To make machine learning trustworthy we needed to make it reproducible. If we

ever have an algorithm that claims detections, we need to have a framework that is

easy to use and with which other researchers would be able to recreate the results

by themselves. That frameworks is the MLy-pipeline / package that we discuss in

Chapter 4. The next year was mostly dedicated to built that framework. Further

work would not be completed on time without it.

Furthermore into making a machine learning detection algorithm trustworthy,

we need to be able to compare it’s performance in exactly the same way with the

analytical methods. Instead of recreating Gabbard et al. 2018 [9], I decided to try

to do the same thing with real noise. Unfortunately the transition is and Odyssey

that shows the big impact the data we use have in the performance, rather than the

algorithm. Consequently I focused on finding the intricacies of such application on

generic signals instead, given also that this was my goal from the start. This gave

fruition to the paper we discuss in Chapter 5.

Finally in the last months of my PhD time I applied the successful algorithm of

Chapter 5 to all the observing runs (Chapter 6), and I found possible caveats that

different runs have for an algorithm.

– 2 –



Chapter 2

Gravitational Waves

In general relativity theory, gravity is not treated as a force, but as a result of curved

space time. The gravitational “force” a body feels when is next to a massive object

is equivalent to a case where this object is accelerated without the massive body

present. This is known as the principle of equivalence. The curvature is present

when gravity is present and objects that are made of energy create gravitational

pull, even light. If the sun just disappeared out of thin air the Earth would still

move around the sun for around eight minutes. This is because we know now that

the information of gravitational force travels with the speed of light.

By the moment we realise that, the gravitational waves are inevitable. A wave

can be any fluctuation, periodical or not, of information. This information can

be anything including forces and people standing up in a stadium. When massive

objects accelerate they create a wave in the space time. If the movement is periodical

that ripple will be a periodical wave. The more massive the object the more intense

the ripple will be.

In this chapter we will start by introducing the space-time metric, which describes

the geometry of a space-time, and how the metric is determined by the Einstein

equations and curvature. Then we will examine the behaviour of perturbations on

flat space-time and show that those perturbations obey a wave equation, defining

gravitational waves. Finally we will show some of the properties of gravitational

waves and their interaction with matter.

This introductory chapter is based on Bernard Schutz book, “A first course in

General Relativity” [10].

2.1 Gravity

2.1.1 Metrics and curvature

The metric fully describes the geometry of the space or space-time. It defines how

do we measure the distance between any points. In flat three dimensional space we

have the Cartesian metric which is a diagonal unit matrix, while in special relativity
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2.1. Gravity

we have the Minkowski space metric diag(−1, 1, 1, 1). Both of those spaces are

flat which means that if you move along a closed curve in those spaces and carry

with you a vector that points towards a specific direction, when you come back

to the origin point, that vector will point to the same direction. This is not true

generally for a curved space, such as on a sphere, or in the space-time around a

black-hole. Any curved space though is considered to be locally flat. This means

that on sufficiently small scales we can always chose a coordinate system such that

withing the neighborhood of a given point the metric will be approximately the flat

metric. Earth is not flat but we walk on it like it is flat because the curvature doesn’t

interfere with our everyday life. Although when it comes to storms this curvature

creates hurricanes and they do interfere.

To represent the metric in space-time we use gαβ. When the indices are a letter

of the Greek alphabet like here it means they include all the special plus time

dimension (t, x, y, z) ≡ (x0, x1, x2, x3). If they are a letter of the Latin alphabet

they include only the special dimensions. When there two of the same letter in an

expression, that means that we some over the parameters of the variables that have

those indices.

xαyα ≡
3∑

α=0

xαyα

The curvature is defined as the effect of parallel transport in a loop, to a vector on

a given space. For example when we apply the divergence on spherical coordinates

there are many extra terms we need to add except the partial derivatives themselves.

Those terms are an effect of curvature. This is called the covariant derivative and

it is defined as:

∂V⃗

∂xβ
=

∂V a

∂xβ
e⃗α + V α ∂e⃗α

∂xβ
. (2.1)

where xβ is the coordinates in which we want to find the derivative of V⃗ and e⃗a

the basis vectors on witch we define that we define V⃗ . For example in the Carte-

sian coordinates the basis vectors for x, y, z are dependent only their corresponding

coordinate, hence the second term is zero for α ̸= β. On the contrary, in spherical

coordinates the basis vectors for ϕ, θ depend on r coordinate. The term that is de-

rived from the curvature of the space is the last term, which are called the Christoffel

symbols:
∂e⃗a
∂xβ

= Γµ
αβ e⃗µ . (2.2)

Using the “, ” for partial derivative, equation 2.1 becomes:

∂V⃗

∂xβ
= V α

;β e⃗α =
(
V α

,β + V µΓα
µβ

)
e⃗α , (2.3)

where V α
;β is called the covariant derivative. When we are in a flat space covariant
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Chapter 2. Gravitational Waves

derivative is identical with partial derivative, which means that Christoffel symbols

will be zero in a flat space. It can be shown that the definition of curvature (where

in flat space this is also zero) can be defined in terms of the Christoffel symbols:

Rα
βµν = Γα

βν,µ − Γα
βµ,ν + Γα

σµΓ
σ
βν − Γα

σνΓ
σ
βµ (2.4)

Now we will attempt to connect the curvature of space-time with the metric

of that space-time. We begin from the Einstein’s Equations in geometrized units

(G=c=1). Which are 10 non-linear and coupled differential equations which describe

how the metric of a space-time is related to the distribution of mass and energy in

the space-time:

Gαβ = Rαβ − 1

2
R = 8πTαβ . (2.5)

where Rαβ is the Ricci Tensor which is derived from the only non identical contrac-

tions of the curvature tensor:

Rαβ = gµνRµανβ , (2.6)

and R is the Ricci scalar which is also contractions of the curvature or the Ricci

tensor with the metric of the system:

R = gµνRµν = gµνgαβRαµβν . (2.7)

All those algebrical notations are very useful so that we can manage to write the

Einstein tensor (Gαβ) in relation only to the metric gαβ. In a locally inertial frame

the Christoffel symbols will be zero due to the nearly flat space. Although their

derivatives will not be necessarily zero because the space is not flat by definition. It

can be shown that in a locally flat coordinate system the curvature tensor can be

written as:

Rαβµν =
1

2
(gαν,βµ − gαµ,βν + gβµ,αν − gβν,αµ) (2.8)

2.1.2 Linearised therory of gravity

If we assume a very weak gravitational field, we can translate that to a small devia-

tion from the Minkowski metric and we can keep only first order contributions from

this deviation. This is only valid for the cases where we are away from “strong”

gravitational fields and we can assume that the metric is close to that of special

relativity:

gαβ = ηαβ + hαβ |hαβ| ≪ 1 . (2.9)

If Equation 2.9 holds only away from “strong” gravitational fields, it cannot hold

in any coordinate system, hence hαβ cannot be a tensor by itself.

We wish to write the Einstein equations in terms of the perturbation hαβ, but
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2.1. Gravity

first we need to clarify the tensor behaviour hαβ has, while it is not a tensor. Assume

a coordinate transformation xα
′
= Λα′

βx
β. with a velocity v, γ = 1/

√
1− v2 and for

simplicity just do the transform to be into the x axis direction. The transformation

matrix will be:

Λα′
β =


γ −vγ 0 0

−vγ γ 0 0

0 0 1 0

0 0 0 1

 (2.10)

In the boosted coordinate system the metric will be then:

gα′β′ = Λµ
α′Λ

ν
β′ηµν + Λµ

α′Λ
ν
β′hµν = ηµ′ν′ + hµ′ν′ (2.11)

This shows that the the perturbation term hαβ transforms like gαβ even if it is

not a tensor. It is a part of gαβ that we decided to separate and gives us all the

information regarding the small disturbance - curvature of our space.

This will help us apply simplifications based on tensor calculus to simplify Ein-

stein’s tensor. Any hαβ small enough will be valid, that means we have the freedom

to choose some of it’s characteristics.

One of these abilities is a specific type of coordinate transformation called the

gauge transformation. We use a function ξ on the coordinates where:

xα
′
= xα + ξα(xβ) . (2.12)

The use of primed indices might confuse as they don’t have their counterpart on

the other side of the equation. These are not valid tensor equations, we just want to

describe the relation between the components of the tensors in different coordinates.

This means that the components ξα are functions of the values of the initial

coordinates. We want to make sure though that this transform will still keep hαβ

small. Up to first order Λα′
β = ∂xα

′
/∂xβ = δαβ − ξα,β, which means we demand that:

|ξα,β| ≪ 1 . (2.13)

In the same way up to first order the transformation becomes:

gα′β′ = ηαβ + hαβ − ξα, β − ξβ, α (2.14)

hα′β′ = hαβ − ξα, β − ξβ, α (2.15)

As long as ξ follows the restriction 2.13 and the curvature is small we can also apply

raising and lowering index like we have a Minkowski space: ξα = ηαβξβ. To this

point the curvature tensor can be written in respect of hαβ without involving the

gauge transformation
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Chapter 2. Gravitational Waves

Rαβµν =
1

2
(hαν,βµ − hαµ,βν + hβµ,αν − hβν,αµ) (2.16)

Although when we attempt to write the Einstein tensor using equation 2.16

the result will not be trivial. For that reason we will use the trace reverse of

hαβ assuming that it can have tensor behaviour as long we restrict ourselves to

the coordinate transformations of the form given in the equation 2.12 subject to

equation 2.13:

h̄αβ = hαβ − 1

2
ηαβh hαβ = h̄αβ − 1

2
ηαβh̄ (2.17)

where h = hαα = −h̄.

Including the previous transformation from equation (2.14)

h̄′
αβ

= h′αβ − 1

2
ηαβh′νν

= hαβ − ξα, β − ξβ, α − 1

2
ηαβ(hνν − ξν,ν − ξ ,ν

ν )

= hαβ − 1

2
ηαβhνν − ξα, β − ξβ, α + ηαβξν,ν

= h̄αβ − ξα, β − ξβ, α + ηαβξν,ν

By substituting the trace reverse metric into equation 2.16 and then substitut-

ing into the Einstein equations 2.5 it can be shown that the Einstein tensor gets

simplified to:

Gαβ =
1

2

[
h̄ ,µ
αβ,µ + ηαβh̄

,µν
µν − h̄ ,µ

αµ,β − h̄ ,µ
βµ,α

]
+O(h̄2αβ) (2.18)

To simplify the equation even more, we can demand from our free gauge functions

xiα to also satisfy that h̄αβ,β = 0, which is known as the Lorenz gauge and it is used

also in electromagnetism. Given that h̄αβ is symmetric and that the derivatives

commute we will have only the first term left. The new h̄αβ will be have to also

follow the previous gauge conditions, restricting ξ:

h̄αβ,β − ξα,β,β − ξβ,α,β + ηαβξν,νβ = 0

h̄αβ,β − ξα,β,β − ξβ,α,β + ξν,α,ν = 0

h̄αβ,β − ξα,β,β − ξβ,α,β + ξβ,α,β = 0 ν → β

h̄αβ,β = ξα,β,β

□ξα = h̄αβ,β , (2.19)

where:

□ = − ∂2

∂t2
+∇2 , (2.20)

is the d’Alembertian operator. From equation 2.19 we conclude that ξα must be a
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2.2. Gravitational Waves

solution of the wave equation with source h̄αβ,β. It is proven that is always possible

to invert the wave equation and solve it for any source. So we can always find a

gauge transformation that takes us to Lorenz gauge. Moreover this transformation

is not unique as any solution of the homogeneous wave equation □ζα added to ξα

can be as solution of 2.19.

For any hαβ that follows the Lorenz gauge condition equation (2.18) will be:

Gαβ = −1

2
□h̄αβ (2.21)

From which we can derive the weak-field Einstein equations to be:

□h̄αβ = −16πTαβ (2.22)

where Tαβ is the stress-energy tensor.

2.2 Gravitational Waves

2.2.1 Propagation

Gravitational waves are produced from sources of gravitational fields that are not

static, like the gravitational field of an accelerated mass. Assuming we are a way

from such source of gravitational waves we can assume that the stress-energy is zero

Tαβ = 0. Then the we only have to solve:(
− ∂

∂t
+∇2

)
h̄αβ = 0 (2.23)

The solution for a plane wave with a wave vector kν is:

h̄αβ = Aαβeikνx
ν
. (2.24)

By applying the solution on the equation 2.23 we end up with the condition kνk
ν = 0,

which means that the wave vector is a null vector kα = (ω, k⃗), where ω = |⃗k|.
Additionally if we apply the Lorenz gauge condition h̄αβ,β = 0 we get Aαβkβ = 0,

which means that the direction of the wave is oscillation orthogonal to its direction

of propagation, hence the wave is transverse.

Applying further gauge conditions we can chooseAα
α = 0 (traceless) andAαβUβ =

0, where Uβ is the four-velocity of a fixed observer in the coordinate system and

means that h̄αβ = h̄βα. Therefore this is called the transverse-traceless gauge,

where hTT
αβ = h̄TT

αβ . By choosing the z direction as the direction of the wave it can

be shown that the the general solution to the wave equation becomes:
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Chapter 2. Gravitational Waves

hTT
αβ =


0 0 0 0

0 Axx Axy 0

0 Axy −Axx 0

0 0 0 0

 eikνx
ν

(2.25)

where kν = (ω, 0, 0, ω). We will show later that those components of Aαβ define the

two main polarisations of gravitational waves. The plus polarisation (h+) denoted

by the symbol + and the cross polarisation h× by symbol ×.

2.2.2 Interaction of gravitational waves and particles

Assume we have two free falling particles in the xy plane with a separation ϵ. We

now investigate what will happen to the separation of the particles in the presence

of a gravitational wave propagating in the z direction as we described above. We

define the vector representing the separation of the two particles as the Dα. With

the equation of geodesic deviation we can describe the distance between two particles

as:
d2

dτ
Dα = Rα

βµνU
βUµDν , (2.26)

where Rα
βµν is the curvature created by the gravitational wave and Uβ is a vector

tangent to the geodesic. Assuming slow moving particles d/dτ → d/dt. Due to the

facts that we want to approximate to first order in hTT
αβ and the curvature tensor is

already first order we can simplify equation (2.26) in terms of hTT
αβ . Additionally by

using hTT
0β = hTT

zβ = hTT
α0 = hTT

αz = 0, and equation (2.16) we will find that we have

only the term hTTα
β,µ,ν surviving:

d2

dt2
Dα =

1

2
hTTα

ν,00D
ν . (2.27)

There are two obvious extreme cases from this result, that show the effects of each

polarisation separately. (We will omit the exponent part for simplicity).

• Axy = 0

In this case the Axy = Ayx = 0, only α = ν terms will survive:

d2

dt2
Dx =

1

2

[
∂2

∂t2
Ax

x

]
Dx → d2

dt2
Dx =

1

2

[
∂2

∂t2
h+

]
Dx

d2

dt2
Dy =

1

2

[
∂2

∂t2
Ay

y

]
Dy → d2

dt2
Dy = −1

2

[
∂2

∂t2
h+

]
Dy

This is an oscillation on x axis and at the same time an opposite oscillation

on y axis.

• Axx = 0

In this case the Axx = −Ayy = 0, only α ̸= ν terms will survive:
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2.2. Gravitational Waves

d2

dt2
Dx =

1

2

[
∂2

∂t2
Ax

y

]
Dy → d2

dt2
Dx =

1

2

[
∂2

∂t2
h×

]
Dy

d2

dt2
Dy =

1

2

[
∂2

∂t2
Ay

x

]
Dx → d2

dt2
Dy =

1

2

[
∂2

∂t2
h×

]
Dx

In Figure 2.1 we show the effect of the two different polarisations on a ring of free

falling particles. Note here that the particles do not move, but the space between

them stretches and squeezes instead. We see that the two polarisations are rotated

by 45o in respect to each other.

Figure 2.1: The effect of the main two polarisations of a gravitational wave moving
in the z direction [1] over five different time snapshots. In both figures the you see a
full period of a gravitational wave passing through a ring of free falling particles.(top)
The effect of + polarisation. (bottom) The effect of × polarisation.

2.2.3 Generation of Gravitational waves by non-relativistic motion

In this section we will show the generation of gravitational waves from a non-

relativistic oscillating mass, constrained to a spatial region much smaller than the

wavelength itself. Equation 2.22 will be in that case:(
− ∂

∂t
+∇2

)
h̄αβ = −16πTαβ , (2.28)

where we will chose the stress-energy tensor Tαβ to be:
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Tαβ = Sαβ(x
k)e−iΩt , (2.29)

where as we said Sαβ is restricted to a region of size ϵ, much smaller than the

wavelength of the wave eventually produced,
2π

Ω
≪ ϵ. Clearly 2.29 is not the

most general form of a stress energy tensor. It simply is a plane wave, although a

general stress energy tensor can be constructed out of an infinite sum of plane waves.

Subsequently this approach, which is essentially a Fourier transform, will show us

how each component wave of Tαβ produce gravitational wave emission. We expect

that the form of the solution will be:

h̄αβ = Aαβ(x
k)e−iΩt , (2.30)

and now we need to find the Aαβ by applying all the restrictions. First of all by

substituting into equation (2.28) we have:

(Ω2 +∇2)Aαβ = −16πSαβ , (2.31)

where if we try to find a solution far away from the source where Sαβ = 0 we get a

solution of the form:

Aαβ =
Bαβ

r
eiΩr +

Cαβ

r
e−iΩr , (2.32)

where the first term represents an outgoing wave and the second term represents an

ingoing wave. Since we are only interested in outgoing waves that are produced by

the source, we can set Cαβ = 0.

Assuming that the mass of that source is inside a sphere of radius ϵ ≪ 2/pi/Ω,

we can integrate equation ?? over the volume of that sphere. Our goal is to express

Aαβ in terms of the source.

For the first part of the left hand side of the integral we can use the maximum

value of Aαβ to simplify the expression in terms of ϵ and Ω. The maximum value of

that integral will be:

Ω2

∫
Aαβdx

3 ≤ Ω2 |Bαβ|max

ϵ

4

3
πϵ3 = Ω2|Bαβ|max

4

3
πϵ2 .

In the second part of the left hand side of the integral we can apply Gauss’

theorem: ∫
∇2Aαβdx

3 =

∮
n∇AαβdS = 4πϵ2

(
dAαβ

dr

)
r=ϵ

∼ 4πBα,β .

We see that the first term is negligible compared to the second one. Finally by

setting the right hand side of the integrated equation to be Jαβ =
∫
Sα,βdx

3 we get:

4πBα,β +O(Ωϵ)2 = −16πJα,β, (2.33)
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So the solution for ϵ → 0 will be:

h̄αβ =
4Jαβ
r

e−iΩ(t−r) , (2.34)

Now we will simplify Jαβ by using it’s relation to the stress-energy tensor and

applying conservation rules on the stress energy tensor. The relation Jαβ has with

the stress energy tensor is:

Jαβe
−iΩt =

∫
Tαβdx

3 . (2.35)

By using the time derivative:

−iΩJαβe−iΩt =

∫
Tαβ

,0 dx3 . (2.36)

Specifically for the case of β = 0 we have:

−iΩJα0e−iΩt =

∫
Tα0

,0 dx3 , (2.37)

which by using the conservation law of the stress-energy tensor:

Tαβ
,β = 0 , (2.38)

we can write 2.37 as:

iΩJα0e−iΩt =

∫
Tαk

,k dx3 =

∮
Tαk

,knkdS . (2.39)

Since the oscillating masses are confined to the interior of the volume, that the stress

energy tensor will be zero on the surface. Hence Jα0 = 0 and due to the commuting of

the derivatives J0β = 0. Now there are only the spatial components Jab to compute.

Going back to equation 2.35 and keeping only the spatial components we have:

Jabe
−iΩt =

∫
Tabdx

3 , (2.40)

where from the tensor Virial theorem we have:

2

∫
Tabdx

3 =
d2

dt2

∫
T00xaxbdx

3 , (2.41)

where for non-relativistic systems T00 ∼ ρ. Furthermore:

Iab =

∫
T00xaxbdx

3 (2.42)

is defined as the quadruple moment tensor of mass distribution. By substituting in

equation (2.40) we have:
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2Jabe
−iΩt =

d2

dt2
Iab . (2.43)

Then by integrating twice on t and using the fact that if Jab = 0 then also Iab = 0:

Iab =
2

Ω2
Jab e

−iΩt . (2.44)

That means that Iab can be written as Dabe
−iΩt. Finally the solution will be of the

form:

h̄ab = −2Ω2

r
Dab e

iΩ(r−t) . (2.45)

It is convenient to find a gauge that is transverse in the direction of the wave.

Additionally we will use a traceless form of the quadrapole moment tensor defined

as:

I ab = Iab −
1

3
δijI

k
k . (2.46)

Assuming the direction to be z, we can find a transverse traceless gauge that we will

have h̄TT
zi = 0 and only the two polarisation terms will survive in the solution:

h+ = h̄TT
xx = −h̄TT

yy =− Ω2

r
(I xx − I yy)e

iΩr

h× = h̄TT
xy = h̄TT

yx =− 2Ω2

r
I xye

iΩr .

(2.47)

This solution is called the quadruple approximation of gravitational wave radiation.

2.3 Metrics of signal intensity

When discussing GWs we are often interested in characterizing the signal intensity

(the power in the signal). To do this, we use two types of metrics to signify the

intensity of a signal. Here we will discuss the Rooted Squared Sum (RSS) and the

Signal to Noise Ration (SNR) metrics, and how we calculate them.

2.3.1 Rooted Squared Sum (RSS)

This metric uses all the intensity of the signal to calculate an average amplitude.

The definition of hrss, in continues and discrete form is:

h2rss =

∫ +∞

−∞

[
h2+(t) + h2×(t)

]
dt

h2rss =
1

fs

N∑
n=1

[
h2+[n] + h2×[n]

]
. (2.48)
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2.3.2 Signal to Noise Ratio (SNR)

The signal to noise ratio definition we use is not the peak over noise level one. The

one we use for gravitational waves is the match filter SNR, which is an integration

over frequencies of the ratio of the power spectrum of the signal |h̃(f)|2 over the

power spectral density S(f) of the background, which refers to the sensitivity of the

detector.

ρ =

√∫ +∞

−∞

|h̃(f)|2
S(f)

df

Given that we work with real data S(f) = S(−f). For that reason it is a

convention to use the one-sided PSD. To keep the normalisation correct we need to

substitute S1(f) = 2S(f) and also the integral will be symmetrical, if we change the

limits to be from 0 to +∞ we get:

ρ =

√
4

∫ +∞

0

|h̃(f)|2
S1(f)

df

In our data analysis we only use the discrete Fourier transform. The integral

is now a sum from 1/T to the niquest frequency fs/2. Moreover the df = fs/N =

fs/(Tfs) = 1/T , where T is the duration in seconds.

ρ =

√√√√√4

fs/2∑
n=1/T

|h̃1[n]|2
S1[n]

(2.49)

Comparison of hrss and SNR The core difference between the two is that SNR

uses the detector noise level of every frequency to normalise the signal. That will

make a signal around 10Hz and a signal of 100Hz that both have the same hrss

to have a dramatic difference in SNR. The noise of the detectors is large around

10Hz compared to 100Hz, which will diminish the the low frequency signal after

normalisation.

Those two metrics can only be compared when the signal is in a reasonably

narrow band of frequencies. Then the integral would be non zero only around that

narrow band of frequencies, where the signal is present, and S(f) will be practically

a constant and could go out of the integral. Still the comparison though depends

on the value of that constant. In any other case they cannot be directly compared.
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Chapter 3

Machine Learning

The term machine learning is used to describe algorithms that try to create an

“empirical” representation of a process. Humans use machine learning techniques

all the time and we apply it effortlessly. A good example is learning to walk, where

from our first attempts there is a natural system of reward if we manage to balance

and a penalty of a fall if we fail. Every time we tried we failed better until we

mastered the skill of walking. How do we do it though? If somebody ask you how

do you walk the common answer is “I just do it”. Years of practice and unfortunate

falls created muscle memory that reacts to our balancing mechanisms in our ears.

A plethora of processes and decisions we make are based on not really reasonable

causes but rather a feeling, a hunch or an instinct. If we tried to calculate every

move we do while walking based on position, wind and inclination of the floor we

would never have enough time to think even one step given the time it takes to walk

a step.

In 1950’s when Arthur Samuel developed an algorithm to play checkers [11] and

it was one of the first examples of an algorithm learning how to do something based

on a system of reward and penalty. After that many people tried to beat games

like chess and go using algorithms. Those algorithms were not calculating all the

possible courses a game can have given the stage (analytical way). Instead Samuel

developed a scoring system that represents the chance of winning for each player

in every turn of the game. The algorithm was able to learn the right scoring after

training. The most important feature of that achievement is that computer checkers

wouldn’t take much memory space compared to using an analytical algorithm.

Around the same time, two neurophysiologists were doing research on something

that was going to develop a field totally different than their own. Their research

was about how vision is actually perceived by the brain. By experimenting on the

cortices of cats [12] they realised that they contain neurons that react only if light

hits them around a specific area. Those areas are overlapping between neurons and

all together they create cat’s visual field. Following experimentation on monkeys in

1968 [13] they discovered that the visual cortex has a type of cell that can identify
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edges and their orientation. This was the inspiration for Kunihiko Fukushima, a

Japanese computer scientist to create the first convolutional layers, which we will

describe in detail in subsection 3.2.4. The model he created called Neocognitron[14]

had the conventional convolutional layers and also the feature of down sampling.

This was the foundation of the Convolutional Neural Networks (CNN) as we know

them today.

After years, CNNs proved to be the champions of what the first concept was

trying to imitate. They are used widely in image recognition due to their ability to

distinguish between two similar objects of the same class. They have outperformed

humans on this task with the current champion being the Inception network [15].

To compare different models on a type of task like classification, there are specific

data problems used called benchmark problems. A very famous benchmark problem

of classification that is used to compare the performances of models like Inception

network [15] is the MNIST dataset [16]. This dataset consists of images of ten

different types of handwritten digits (0 to 9) and the goal is to distinguish them

from each other.

To understand the way a network works we need to start from the smaller struc-

tures in it. In this chapter we will discuss all the parts that make a neural network

be functional. Starting from the neurons in subsection 3.1.1, and they way they can

learn simple functions in subsection 3.1.2. Going through different types of activa-

tion functions, in subsection 3.1.3, that help us introduce non-linearity in our models.

Then we will discuss loss-functions in subsection 3.1.4 and how different gradient

descent algorithms minimise the loss with different approaches, in subsection3.2.1.

Finally we will talk in detail about the main two types of neural networks we use in

this project starting with fully connected networks in subsection 3.2.3 and finishing

with a discussion about how Convolutional Neural Networks (CNNs) are computing

their input and back-propagation in subsection 3.2.4.

3.1 Foundations

3.1.1 The neuron

The neuron is the building block of neural networks. The name “neuron” is inspired

from the simplified shape of organic neurons. Note though that the complexity of

organic neurons is extremely higher that the complexity of the artificial neuron.

Although it serves the purpose of explaining in a simple way how our artificial

neurons work.

The artificial neuron is a process that applies a weighted sum on its inputs, and

following that a function that digests this sum and gives another number as an

output. The reason the artificial neuron evolved as it did is that in the beginning

artificial neurons were simple decisions trees that were doing a simple, but most
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importantly linear calculation. The function that the neurons apply at the end is

called the activation function, and at the beginning was identity (linear) function.

The problem with the neuron at this point is that it could simulate only linear

functions because by itself it was a linear function. To fix this issue more types of

activation functions were created that introduce a non linearity, as it is discussed

later in subsection 3.1.3.

A general neuron has as many weights as inputs plus a variable called bias. So

the final description of a neuron in a functional form is,

N(x⃗) = A

(∑
i=1

wixi + b

)
, (3.1)

where x⃗ = (x1, x2, . . . , xi) is the input you have, w⃗ = (w1, w2, . . . , wi) the relative

Figure 3.1: Diagram of the artificial neuron

weights, b the bias and A() is the activation function. A better representation

happens when we attach an x0 = 1 in place of the bias term a so that x0w0 = x0b = b.

Eventually the function of the neuron is:

N(x⃗) = A

(∑
i=0

wixi

)
. (3.2)

3.1.2 Training a single neuron

A neuron by itself can be trained to simulate a simple linear function. We will

demonstrate an example of training a neuron with the simple function:

f(x1, x2, x3) = ax1 + bx2 + cx3 . (3.3)
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To do that we will need a simple neuron with three inputs and a linear activation

function. So the weighted summation and activation function are defined as:

S(x⃗) =
3∑

i=0

wixi A(S) = S . (3.4)

Initially the weights w⃗ are uniformly distributed random numbers and our goal

is to update them in a way that they become the weights of the equation (0, a, b, c).

For this to happen we need training data that we can put through the neuron and

then see how close is the output to the true value. Then we have to quantify that

closeness and finally use it to update the weights so the result comes even closer to

the true one. To define how bad or good our neuron performed in each trial we have

to define a loss function. For simplicity we will use a quadratic

L(y) = (y − ytrue)
2 , (3.5)

where ytrue = f(x⃗) and y = A(S) is the output of the neuron. We chose A(S) = S

for simplicity but as we will see later A(S) is not equal to S because activation

functions don’t have to be identities. The loss function is related to the weights,

hence we can calculate the derivative of the loss over each weight and figure out how

much a weight is affecting the loss. So lets calculate this derivative:

∂L

∂wi
=

∂L

∂y

∂y

∂wi
=

∂L

∂y

∂A

∂wi
=

∂L

∂y

∂A

∂S

∂S

∂wi
. (3.6)

Let’s see all the those parts of the derivative. For every neuron ∂S
∂wi

= xi by

definition ∂A
∂S = 1 and as you can see the derivative of such activation function is

independent of S, hence independent of the weights themselves this makes linear

functions not useful in more complicated cases of neural networks. Finally the last

term:
∂L

∂A
=

∂L

∂y
= 2(y − ytrue) ,

is the only term dependent of wi through y. Now we have the derivative of loss over

each weight:
∂L

∂wi
= 2xi(y − ytrue) . (3.7)

This process of finding those derivatives is called back-propagation and here we see

the simplest example of it. We will encounter it again later in a more advanced

level where more than one neurons is involved. The only thing left is to upgrade the

weights proportionally to their influence ( ∂L
∂wi

). To control how radical those changes

are going to be we multiply this influence with a learning rate η and then update

the weights. Although there are two ways to update the weights, one by adding the

change and one by subtracting it. As we show in Figure 3.2 the correct answer is

subtracting, so that the new value of the weight will make the loss smaller.
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wi → wi − η
∂L

∂wi

Figure 3.2: Graphic explanation of why we use the minus to update the weights.
The point on the left has a negative gradient, and the best value for w precedes the
current value. Hence the update of the weight should be positive and the only way
to do that is to use the minus. The opposite case applies to the other point where
the gradient is positive and the true value is behind the current value so the minus
still updates the weight to the right direction.

A whole cycle of calculating the gradient and updating the weights accordingly

is called a training epoch. To this point we have completed one epoch of training

for this neuron. To fully train it we can repeat this process again as many times

as we want to minimise the loss. There is no best activation or loss function. For

each problem the ones that work better are often identified empirically by trying

different ones and comparing them for a given problem.

3.1.3 Activation functions

Activation functions are a crucial component that can make a model learn success-

fully. The reason we use them at the end of a neuron is to restrict the result between

an interval and prevent from small or big numbers that could create updates which

could be insignificant or far from the real value respectively. By such a restriction we

normalise the outputs of neurons. If we didn’t do that a division with a very small

– 19 –



3.1. Foundations

number might create a huge derivative that will make our weight orders of magni-

tude away from the real value. That is why from early one the activation functions

were applied. No one activation is optimal for all applications. Most of them are

good and some of them have great performance for specific types of problems. We

will go through some of the most famous activation functions here. In the previous

subsection we used the symbol S to denote the weighted sum of the input, although

we will just use x here for simplicity because we focus on the activation function

and not the whole process.

Linear activation is the simplest activation that can be applied.

A(x) = kx k ̸= 0 . (3.8)

In the case where k = 1 we have a trivial activation function, which cannot work

successfully in non trivial neural networks because the back propagation derivative

will always return a constant. The linearity gives no power to the activation function

to influence the weights in a non linear way. It can usually be applied in cases where

the solution can also be derived analytically, which makes it redundant.

Sigmoid activation follows the sigmoid function:

A(x) = σ(x) =
1

1 + e−kx
. (3.9)

This function restricts the output inside the interval (0, 1). The parameter k is

called the gain and it controls how steep the transitioning is from 0 to 1.

A′(x) = σ′(x) = kσ(x)(1− σ(x)) . (3.10)

The sigmoid function derivative is restricted between [0, k/4]. In the case of one

neuron when we try to update the weights, we can see that from equation (3.10)

∂A/∂x → 0 for |x| ≫ 1. Which means that ∂L/∂wi → 0. While in the area around

x = 0 the values are proportional to the gain and they “survive”, hence the update

to the corresponding weight is significant.

Having a derivative close to zero makes the gradient to go to zero. This phe-

nomenon is called vanishing gradient and we will see later how serious it is when

we have many layers of neurons. The more layers the more probable for this to

happen. In general we try to avoid it by making sure all components of a model do

not produce really small or really large numbers, because both cases correspond to

gradients close to zero.

Tanh is a function similar in form to the sigmoid. This function restricts the

output to the interval [−1, 1]. It can be shown that tanh(kx) can be written as:
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A(x) = tanh(kx) = 2σ(2kx)− 1 . (3.11)

The derivative is of the same nature as that of the sigmoid. Both have the same

problem of the vanishing gradient for high magnitude inputs.

ReLU (Rectified Linear Unit) is the first of a series of activations that are

based on the linear function. Although half linear, this function is non-linear as it

discriminates between negative and positive input.

f(x) =

{
kx : x ≥ 0

0 : x < 0
. (3.12)

During back propagation the derivative is k for any positive result and zero for any

negative. A characteristic of ReLU is that it converges very quickly because it is not

asymptotic in its range like sigmoid and tanh are. A big loss will be translated to a

big gradient proportionate to the loss. Although like sigmoid and tanh the gradient

vanishes for negative values.

Leaky ReLU is the first obvious modification of ReLU to keep it non-linear but

fix the vanishing gradient problem.

f(x) =

{
Kx : x ≥ 0

ax : ax < 0
, (3.13)

where a ≪ 1. A common choice is a = 0.1 , k = 1 in general. This creates a constant

derivative for negative values that is not zero, preventing the vanishing effect.

Parametric ReLU solves the problem of selecting the parameters of leaky ReLU.

Instead of deciding the values a, k, they are treated as trainable parameters.

Softmax is a special case of activation function because it has more than one input

values which are also equal to the number of the output values. We will denote those

inputs as an array z,

σ(z)i =
ezi∑
j e

zj
. (3.14)

This function is the generalisation of the sigmoid function in more than one

dimensions and it is used as final activation in classification problems. Softmax

activation translates numbers of arbitrary size into a range (0,1). More importantly

the sum of the output values of this function is equal to 1. This makes possible

to treat the those values as probabilities. Although it is important to remember

those outputs cannot be treated as probabilities without enough justification from

statistics.
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3.1.4 The loss function

Until now we discussed how a neuron is able to learn the right weights to describe

a function. This training process is not happening in one step. It is a repetitive

process that requires an algorithm with appropriate finesse.

A neural network algorithm has two main states. One is the initial state where

we created the architecture and we have initialised the weights to values of our

choice (usually random). In this state we haven’t calculated any loss, we haven’t

even introduced the data. The second state is when the network has been through

any kind of weight updates. After each epoch of training there is different version

of a trained state. We can train a network as many times (epochs) as we want. At

the end of final training we are at the fully trained neural network state. While

we are still in the first state, we have to define the two pillars of training, the loss

function and the gradient descent algorithm.

As we saw before on the single neuron example we needed a metric that checks

how far from the correct answer the model is for a given input. In regression problems

like a least squares fit, the output parameters are combined through a function

to give a final result which then we compare with the expected value from this

function. The way we compare the real value with the predicted one is called the

loss function. We already saw the use of the quadratic loss function 3.5 when we

were trying to use a single neuron to fit a function. The work we describe in chapter

5 is a classification problem and we will focus on components that are made for

classification problems. Here we will discuss the most commonly used loss functions

in classification problems.

In a real training scenario we will have many data to train with. As we will

discuss further later, we don’t use those training data one by one to calculate how

far we are from the real value because the data are noisy, and noise can create outliers

that can derail our training. It is common in the machine learning community divide

our data to small datasets which we call batches. From now one batch is a subgroup

of a dataset and batch size is the number of data instances this batch has.

Categorical cross-entropy Assume we have a classification problem where we

want to classify a type of data to M different classes. After we feed data to the

algorithm it will return M scores for each class. If we use the softmax activation

function as the final activation, we will have an array with values in a probabilistic

form. We expect that all the predicted scores will have a non zero number however

small, because machine learning algorithms are not perfect. The correct scores of

the array given that we know the correct class are always zero, except for the score of

the correct class which is one. For one given data instance sample, we can describe

the probability of that sample belonging to class m with the categorical distribution
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which is the generalisation of Bernoulli distribution:

P (x) =
M∏

m=1

pχm , (3.15)

where pm is the probability of belonging in the m class and χ is a parameter that

helps represent the distribution in the same way we do it for the Bernoulli distribu-

tion where M = 2. It takes values according to m as shown below:

χ =

{
1 : x = m

0 : x ̸= m
.

Note here that we could also write this distribution as:

P (x) =

{
pm : x = m

0 : x ̸= m
,

although the reason we use the previous format is to help with the following calculus.

Assuming that we will split our training in batches and for a given batch size of

training N the likelihood of a data instance selected for a class at a given batch, will

be the multiplication of all individual probabilities because they are independent.

l =
N∏
n

Pn(x) =
N∏
n

M∏
m

pχn
nm (3.16)

Our goal now is maximise the likelihood and to do that we need to take the

derivative of the likelihood over all pnm values. Due to the amount of multipli-

cations needed we will take advantage of the monotonic nature of the logarithmic

function. By maximising the negative log-likelihood we are maximising the likeli-

hood. Defining the log-likelihood:

log(l) =

N∑
n

log

(
M∏
m

pχn
nm

)
=

N∑
n

M∑
m

log (pχn
nm) =

N∑
n

M∑
m

χn log(pnm) (3.17)

To define a loss function L out of the the log-likelihood we will attempt to maximise

the likelihood for each class. Maximising the likelihood is the same as minimising the

negative log-likelihood as we already said, although many to be consistent with the

fact that a loss function needs to be minimised we will try to minimise the negative

log-likelihood instead. Assuming that we treat all training examples equally, we take

the average loss over the training batch and we define the cross-entropy loss as:

L = − 1

N

N∑
n

M∑
m

χn log(pnm) (3.18)

Let’s revise what this expression means. The χn parameter symbolises the correct
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class, where pnm = pn(m) is the predicted probability of the algorithm for class m. If

we have a very good algorithm that gives very high probabilities to the correct class

(χn = 1 , pn(m) ∼ 1) then we will have many parameters in the form 1 log(1) → 0,

and the loss will be a sum of numbers close to zero. If the the algorithm gives very

low probabilities to the correct class (χn = 1 , pn(m) ∼ 0) then the parameters will

be in the form 1 log(0) → −∞, which means the loss will quickly become a very large

number. Similarly if a high score is given to the wrong class (χn = 0 , pn(m) ∼ 1)

the contribution would be zero, although at the same time the correct class will

have a low score due to
∑M

m=1 pn(m) = 1 resulting to a high loss. Finally note how

important is that we use log-likelihood and not just likelihood. A big deviation from

the correct answer creates a huge loss, while if we didn’t have the log, the loss would

be proportionate to the deviation.

In the real application of the loss function, each class has its own loss calculated

separately as you see below and eventually we add all the individual losses Lm, to

acquire the total loss.

Lm = − 1

N

N∑
n

χn log(pnm) . (3.19)

Sometimes we might want to be more accurate in our predictions for one specific

class. It is a common situation for different problems that false positives need to

be minimised while false negatives are not such a big issue. For example a cancer

diagnosing model would create big distress if it was allowed to have even 1% false

positives. As we will also see later in chapter 5 one false positive instantly limits the

efficiency of our algorithm as we will see later. In such cases we can weight the the

loss of each individual class m with a parameter am so that it penalises differently

the losses of each class:

Lm = −am
N

N∑
n

χn log(pnm),
∑
m

am = 1 . (3.20)

Finally to come to agreement with the symbols commonly used in the literature

for categorical cross-entropy 1.

Lm = − 1

N

N∑
n

ŷn log(ynm) (3.21)

Binary cross-entropy is a special case of categorical cross-entropy, where we

have only two classes, M = 2. Instead of ynm we have yn0 and yn1 = 1 − yn.

Similarly ŷn can be either 1 or 0. The loss function becomes:

L = − 1

N

N∑
n

[ŷn log(yn) + (1− ŷn) log(1− yn)] (3.22)

1χn = ŷn the correct class score and pnm = ynm the predicted class score
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Binary cross-entropy is used when we have a binary classification problem. Our

project is a binary classification problem where will try to classify signals embedded

in noise from just noise. In our case we try the weighting of the loss to penalise

falsely classified noise, as signals.

Connection of Activation function and Loss function

In the previous examples of the categorical and binary cross-entropy the output

that is expected from the neurons lies in the interval [0, 1]. That means that it

would be wrong for example to use ReLU activation as our final activation for a

classification case. ReLU can give values above unity and this would go against the

“rules” we defined for the cross-entropy loss. Therefore is important to understand

the loss function we have before we choose the last activation function in a neural

network. Common pairs are shown below:

• Sigmoid - Binary cross-entropy

Note here that sigmoid return one parameter in (0,1) and binary cross-entropy

demands also one parameter because the second is just yn1 = 1− yn0.

• Softmax - Categorical cross-entropy

• ReLu - Regression

3.2 From random numbers to features

3.2.1 Loss minimisation - gradient descent

Given any model our goal is train it appropriately so that it can mimic a multi-

parameter undefined function and provide good prediction of what that function

returns. The way to do this is to update the weights of the model so that the

predicted result is as close as possible to the expected one, hence minimise the

loss by evaluating on training examples. Assuming we have a training example

that went through our model and received a prediction, we can calculate the loss.

By calculating the loss we are able to update our weights in a way that the next

prediction will be more accurate. This doesn’t happen in one step because in a

real case algorithm the number of the weights are a lot and not independent. By

updating one weight we might change another one in a way that it doesn’t help the

prediction. The more the weights the higher the dimensionality our optimisation

space has.

In the simple case of finding the perfect linear fit of some data we have two

weights A and B to describe the function y = Ax + B. Using the least squares

method we can find the best choices for those parameters. In this case the least

squares is our loss function that we want to minimise and given that we have only
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two parameters and the loss value, our optimisation space is a surface in a three

dimensional space. We try to find the lowest point of this surface.

For this problem there is an analytic solution to find the A and B parameters

that correspond to the minimum loss. Although let’s assume for a moment that there

is not an analytic solution and we need to try different A,B to find the minimum

loss. A way to do it is to create a grid of values of A and B, for example 10 for

A and 10 for B . Then by calculating the loss for each of those 10 × 10 = 100

combinations we select the pair with the minimum loss. This method works but if

we had more parameters or dimensions this would be computationally impractical.

Assuming a similar grid of 10 different trial values for each parameter, the amount

of calculations of loss is 10D where D is the dimensions/number of parameters.

Moreover with more dimensions a number of 10 samples for each parameter will

probably become insufficient as the dimensions grow. This is also called the “curse

of dimensionality”, and practically means that the more dimensions we have the

more difficult it becomes to sample the parameter space. We need an method that

is not critically affected from the amount of parameters.

A method of this type, whose computational cost is proportional to the number

of parameters, is the gradient descent. First we select a random point in the

parameter space and calculate the loss L and the gradient of the loss ∇L over each

parameter. By doing that we know in which direction we need to move in the

parameter space to reduce the loss even further. Something that is not defined is

how far in that direction we need to go. This is called the learning rate η, and is

one of the most important parameters of the training. So to update our parameters,

the simplest gradient descend we can use is:

w⃗ → w⃗ − η∇wL . (3.23)

Parameters like learning rate η that affect the training and the algorithm as

a whole are called hyper-parameters. We will encounter this term more often,

because many things that define a model structure are hyper-parameters. Gradi-

ent descent has has two main attributes, the type of the gradient descent and the

algorithm that does the updates of the weight.

The process of choosing an appropriate learning rate is not trivial. Assume

we have the case of the two dimensional parameter space and the linear fit above.

The parameter space of the loss function will be a convex surface. If we are at some

specific point on this surface but not on the minimum we can calculate the divergence

on that point. The divergence will direct us towards the area where the loss will be

minimised. If we choose a “small” learning rate, the loss will be decrease and the

divergence will still point towards the same area. If we use a “large” learning rate

there is a chance that we will go to the other side of this “well” where the the new

divergence will be pointing to the opposite way. This is what we call “overshooting”.
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Usually, as we will see below, the learning rate rarely stays the same during training.

A good depiction of what we discussed is in figure (3.3).

Figure 3.3: Simple example with two cases of different learning rates. We see that if
η is rather small we can go close to the minimum, although we won’t reach exactly
the minimum due to the fact that the learning rate will be considered large for the
distance we have left towards the minimum. When η is “large” or larger than we
need it to be we actually can go even further from the minimum. Such phenomenon
is called “overshooting”.

Types of Gradient descent

There are three common types of gradient descent and their main difference is how

they treat the training data. Below we will represent the training data as X⃗ =

(x⃗1, x⃗2, x⃗3, . . . , x⃗N ), where N is size of the training data.

Stochastic gradient descent - STG When we described in the example above

with the line fit, we talked about using one training example to update the weights.

This is the main characteristic of the stochastic gradient descent. It is called stochas-

tic because in cases where you have many classes the training example can be from

any randomly selected class. This type can make a model train quite quickly but

the training can be quite unstable. Each example can make the model get more

accurate on that example’s class. This is usually used for regression problems and

in it’s basic form it follows equation (3.23).

Batch gradient descent The exact opposite of STG is to use the whole dataset

to train the model. This type is usually limited by the amount of memory we have.

– 27 –



3.2. From random numbers to features

It tends to converge very slow but it is very stable. Again we use equation (3.23),

although we calculate an average over the whole dataset of the gradient and then

update the parameters.

Mini-batch gradient descent This type can help achieve the golden ratio be-

tween stability and speed. Mini-batch gradient descent breaks the training data in

batches of size M resulting on b = N/M batches of data. Then it calculates the loss

on each mini-batch and updates the weights after every mini-batch. The gradient

of the loss used to update the weights is the average of all calculations in a given

batch. The equation (3.23) is used again for this but the average of the gradient is

on the batch.

Reaching the bottom

Gradient descent seems quite simple as a process. Although the process of actually

reaching the lowest loss in the parameter spaces is difficult, mainly because we

cannot easily visualise the parameter space. Here we will go through some of the

most common issues the gradient descent methods encounter.

The correct learning rate Lets try to imagine again a parameter space with

only two parameters, which gives a three dimensional surface like a golf course.

Usually parameter space is not smooth and it has many local minima and maxima.

Here are some problematic cases during training:

• If we calculate the gradient in a very steep part of the space, the step of the

gradient descent will be big and it might jump over the minima.

• If we calculate the gradient in a plateau of the parameter our step will be

small if not zero and we will be forever trapped there, especially if we are in

multidimensional plateau.

• If we have a big (bigger that we should) learning rate, the step of each update

will be bigger than the size of the minimum will are looking for. Therefor even

if we get close to it we will overshoot out of it.

• If we have a small (smaller that we should) learning rate, the first minimum

that we encounter will be the final one. It is very difficult to escape a local

minimum with a small learning rate.

It is apparent from the above cases that the best learning rate for a model can

be found. It is also profound though that a fixed learning rate or update is not the

best idea. That is why many other algorithms with flexible learning rates have been

developed. We will discuss some of them here.
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Momentum When we first try to visualise the parameter space we use geographi-

cal concepts as hills, ravines and plateaus. Momentum is a gradient descent method

that uses that concept. If the descent is in steep point of the parameter space and it

heads downwards, in the next evaluation will have already enough speed to go even

further, like it has momentum. Similarly if it heads upwards (something we don’t

want) it will loose momentum and will update the parameters less. The update at

each step depends on the previous update, making it a recursive sequence. Defin-

ing t as the current update and γ as the parameter controlling the momentum, the

sequence is as below:

v⃗t = γv⃗t−1 + η∇L(w⃗)

w⃗′ = w⃗ + v⃗t
(3.24)

Note here that this method doesn’t change the learning rate but it changes the effect

on the updates, which are a linear combination of the previous step and the gradient

of the current step. The suggested value of γ is 0.9.

Figure 3.4: The momentum method on a simplified two dimensional loss parameter
space. The isolines represent points where the loss has the same value. Instead of
having the default update rule that depends on the gradient, the update now is also
affected by the previous update v⃗t−1. The amount of the effect is controlled by γ.

Nesterov momentum Nesterov momentum [17] works like momentum but with

the only difference that that it doesn’t evaluate the loss on the current point. Instead

it uses the momentum to approximate the next point and calculate the gradient

there ∇L(w⃗−γvt−1). In that way it checks how the gradient behaves in the current

direction of the momentum. If the gradient changes direction a lot compared to
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the current point, the change is penalised, if it stays similar or tends to align with

momentum the change increases.

v⃗t = γv⃗t−1 + η∇L(w⃗ + γv⃗t−1)

w⃗′ = w⃗ + v⃗t
(3.25)

Figure 3.5: The Nesterov momentum method on a simplified two dimensional loss
parameter space. Now the gradient is calculated in the point that the previous
update directs to. If the directions don’t agree the update is reduced and the opposite
if they do.

Adagrad The previous two algorithms use information from previous updates in

a recursive way to calculate the next one. Adaptive gradient (Adagrad) [18] takes

this concept further by updating each parameter based on all the past values and

most importantly it uses a different learning rate for each parameter at each time

step. The index i refers to the different weights and the index t refers to each state

of this weight throughout the training.

ηi,t =
η√

Gi,t + ϵ
, (3.26)

where:

Gi,t =
t−1∑
k=0

(∇L(wi,k))
2 , (3.27)

is a squared sum of the past gradients of each weight, η is a fixed value of learning

rate and ϵ is just a very small number to avoid division with zero. The update of

the parameters will be:
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wi,t = wi,t + ηi,t∇L(wi,t)

,

and by using 3.26 we have the final update rule of Adagrad:

wi,t = wi,t + η
∇L(wi,t)√
Gi,t + ϵ

. (3.28)

As you can see, in the end we don’t have to update the learning by hand. It is

automatically updated by the past gradients through Gi,t. Adagrad performs very

well in datasets with many important parameters that demand accuracy. Although

there is a caveat that due to fact that the summation Gi,t increases with every step,

the learning rates tends to vanish, and the training to stall.

ADAptive momentum estimation -ADAM ADAM [19] uses decaying average

of gradients and at the same time implements a similar technique to momentum. In

machine learning we can treat the gradient as a random value due to the unexpected

nature of the gradient descent. For any given random value we can definemoments,

which are the expectation values of those random values to a power. If we define g

as the gradient, then the mean of g, is the first moment and variance is the second

moment.

Adam wants to estimate those moments and use them on the update rule of the

weights. The estimation of the mean gradient (mi,t) will be used for the gradient

and the estimation of the variance of the gradient (vi,t) will be used to update the

learning rate. Those equations are defined recursively as:

mi,t = β1mt−1 + (1− β1)gi,t , (3.29)

vi,t = β2vt−1 + (1− β2)g
2
i,t , (3.30)

where parameters β1, β2 are commonly fixed to 0.9 and 0.999 respectively. With the

initial condition of mi,0 = 0 and vi,0 = 0, we can write equations 3.29, 3.30 as:

mi,t = (1− β1)
t∑

k=1

βt−kgi,k , (3.31)

vi,t = (1− β2)
t∑

k=1

βt−k
2 g2i,k . (3.32)

Our goal was for those two parameters to be approximations of the moments of

the gradient. Let’s evaluate this on equation 3.31:
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E[mi,t] = (1− β1)E

[
t∑

k=1

βt−k
1 gi,k

]
.

Given the random nature of the gradient we can approximate gi,k with gi,t plus an

overall error δg added to the equation.

E[mi,t] ∼ (1− β1)E[gi,t]

t∑
k=1

βt−k
1 + δg . (3.33)

From the sum of a finite geometric series we get:

∑
k=1

βt−k
1 = βt

1

(
t∑

k=0

(
1

β1

)−1

− 1

)
= βt

1

(
1− β−1

1

β1 − 1

)
=

1− βt
1

1− β1

By using this on equation 3.33 and doing the same procedure for E[vi,t] we get:

E[mi,t] ∼ gi,t(1− βt
1) + δgE[mi,t] ∼ g2i,t(1− βt

2) + δg (3.34)

This shows that after each update the older the gradient is the less it contributes

to the parameters. That is why we consider it to be a biased estimator as it is. To

overcome this we will divide by (1 − βt
1) and (1 − βt

2) respectively to remove this

bias.

m̂i,t =
mi,t

1− βt
1

v̂i,t =
vi,t

1− βt
2

(3.35)

Finally the parameter update becomes:

wi,t = wi,t−1 − m̂i,t
η√

v̂i,t + ϵ
(3.36)

where η is the learning rate as we said before. Adam is the optimiser we used mostly

in our project so I will restrict my overview of optimisers up to this point.

3.2.2 General structure of neural networks

We talked already about the building blocks of the machine learning process. The

neuron, the activation function, and the gradient descent algorithm are all parts

we can combine in different ways to train a machine learning algorithm. We need

now, to define what a machine learning algorithm actually is. Most of the terms we

discussed above are parts used in machine learning algorithms and some of them

are considered as hyper-parameters, although we have had no discussion about the

structure of the network itself.
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Layers

If the neuron is the building block of neural networks, layers are the “beams” of the

structure. Layers can have quite different functions from each other. Most of the

time this depends on the way they connect to the previous layer (if any) and the

next layer (if any). The right combination of layers can organise the neurons in such

a way to create a specific method computationally feasible.

All neural networks start with an input layer, or more specifically at least one

input layer. This type of layer assembles the training data in the way we want the

network to receive them. Any type of input goes through an input layer or many of

them depending how complicated the structure is. An input layer has no activation

function or weights, it is just the data provided.

In the same way neural networks start with an input layer, they always have

at least one output layer. Again an algorithm might have more than one output

layers. Sometimes an output layer might be put in the middle of a structure to

“monitor” the in between layers in a large algorithm. Output layers usually are an

assembly of neurons in the shape of the output. If the output is N parameters it

will be a layer with N neurons, or if the output a timeseries with three channels and

size N it will be a two dimensional layer with size N × 3. The important difference

from other layers is that the output usually has a special activation function like

softmax in classification problems.

Assembly of layers

The simplest assembly of layers is the sequential one, where we have one input,

some hidden layers and one output layer. The output of each layer is the input of

the next layer. This fact creates a compatibility demand between layers. Depending

on the type of one layer or the shape of that layer we need to be careful on the

choice of structural parameters of the next layer. A simple example is when we have

a two dimensional layer and then the output layer is one dimensional. In that case

we need to flatten the two dimensional layer, and if it was of shape N ×M now it

will be of shape 1× (NM).

The flattening is actually considered a layer called flattening layer. We call layers

such as this formatting layers. Some of them just reshape the input, but most of

them are calculating an average or a max and in general change the output and

the shape at the same time. We will see some examples of them later in subsection

3.2.5. Those types of layers are usually an add-on on each hidden layer and they are

a secondary feature.

Before training all weight parameters have an initial value. The process of choos-

ing an the initial values for the trainable parameters is called initialisation. If we

chose all weights to be zero before training, we choose a specific point in the pa-

rameter space without any reason. It would be theoretically equivalent if we chose

– 33 –



3.2. From random numbers to features

everything to be equal to unity. Although this depends on the problem and the

model. The most common and “safe” practice is to initialise all weights by sampling

a Gaussian distribution of a certain sigma, usually σ = 1. The random choice of the

initial parameters makes every instance of training give a slightly different result.

This can create confusion to us physicists when what we want from a method is to

be consistent. The truth is that the power of machine learning lies on that random

choice of starting point in parameter space. We will discuss further how we approach

those different results in our application.

3.2.3 Fully connected layers and neural networks

Here we will discuss the simplest assembly of neurons, fully connected layers. These

layers are also called dense layers and a network that is made from dense layers it is

called fully connected network. Those models are called fully connected because

each neuron of a layer is connected with all the neurons of the previous layer. This

is the simplest type on network and it is in principle a very powerful tool.Those

models are called fully connected because each neuron of a layer is connected with

all the neurons of the previous layer. Although due the amount of connections it has

between layers it is very computationally expensive to train. Furthermore it tends

to have poor performance without any extra add-ons.

The fully connected network is characterised by arrays of neurons that belong

in the same dense layer. For example as we present in Figure 3.6 in the group of

functions f(x, y, z), g(x, y, z), h(x, y, z), the output layer (f, g, h) is connected with

the same pool of inputs in the input layer (x, y, z) but there is no dependency

between them. If we make this simple network we have two (3× 1) layers, the input

and the output layer respectively. Machine learning starts when we decide to add

another layer between them. As we said before the layers between input and output

are the hidden layers. If for example we have one hidden layer, it is getting input

from the input layer (xi) and its output will be the input for the output layer. So,

assume we have a hidden layer h with neurons which have an output value hi. The

value for each neuron will be

hi = A

(
3∑

k=0

iwkxk

)
, (3.37)

where A is the activation function of this neuron.The activation function will be the

same for all the neurons of the layer. Note also that the summation includes k = 0

which is the bias (w0x0). In the general case of a fully connected network with N

layers (We assume N plus the input layer, we separated because it is not a trainable

layer.) we will have the following recursive equation for the neuron i in the hidden
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Figure 3.6: The simplest fully connected network with three inputs (x, y, z) and
three outputs (f, g, h). As you can see in the output layer, all neurons are connected
with all the neurons of the previous layers.

Figure 3.7: A fully connected network, with N layers plus the input layer (layer 0).
Again you can see that all neurons of one layer are connected with all the neurons
of the previous layer.

layer n:

hn,i = A

Sn−1∑
k=0

iwn,k · hn−1,k

 , (3.38)
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where Sn is the size of the nth layer and S0, SN are the input and output layer

sizes respectively. The calculation of the gradient for such a model is quite straight

forward or an even better description would be “straight backwards”. Similar to

the simple neuron the loss will be a linear combination of the weights and input,

although this time it will have one more step for every layer. In the output layer,

the output of a neuron is hN,i and the loss of that particular value is Li. We want

to calculate the gradient with respect to each weight.

∂Li

∂wn,i,j
=

∂Li

∂hN,i

∂hN,i

∂ iwn,j

=
∂Li

∂hN,i

∂hN,i

∂A

∂A

∂ iwn,j

∂hn,i
∂A

= 1 ,∀ n

=
∂Li

∂hN,i

SN−1∑
k1=0

(
iwN,k1 ·

∂hN−1,k1

∂A

∂A

∂ iwn,j

)

=
∂Li

∂hN,i

SN−1∑
k1=0

(
iwN,k1 ·

∂A

∂ iwn,j

)

=
∂Li

∂hN,i

SN−1∑
k1=0

iwN,k1 ·
SN−2∑
k2=0

(
iwN−1,k2 ·

∂A

∂ iwn,j

)
=

∂Li

∂hN,i

SN−1∑
k1=0

iwN,k1 ·
SN−2∑
k2=0

iwN−1,k2 ·
SN−3∑
k3=0

· · ·
S1∑

kN−1=0

iw1,kN−1

∂A

∂ iwn,j
. . .

 .

(3.39)

where n refers to the layer, i to the neuron of the layer n and j to the weight j of

the neuron i of the layer n.

Depending on the loss function ∂Li
∂hN,i

will be different, so we have left it as a free

parameter. Due to the fact the layers are fully connected, for N layers the number of

parameters scales as O(N). This makes fully connected networks computationally

expensive. Moreover it is noticed that as you back propagate the further in you

go from N,N − 1, ...n you have to multiply with the weights of each layer. There

are many cases where a weight might get a very small value or even zero. That

prevents the next weight from being updated properly and stays small or zero. In

cases where many small weights are multiplied in a row we have the phenomenon

of the vanishing gradient. The more layers fully connected a network has, the more

prone is the vanishing gradient effect.

It is a very common practice that in the end of any type of model we see a dense

layer. The reason for that is that they are good for summarising what features a

network learned in an non spacial way, like independent voters.

– 36 –



Chapter 3. Machine Learning

3.2.4 Convolutional Neural Networks (CNNs)

Convolutional neural networks (CNNs) [14] are a revolutionary approach to machine

learning that instead of a black box approach that you don’t know what exactly

your neurons learn, they try to identify features in the data that you can actually

verify. Those features are not prefixed but they are inferred by the data themselves.

They are very successful when applied on either regression or classification of images

or timeseries data. Convolution as an operation needs two inputs. In the one

dimensional case the convolution function c(t) is the integral of the product of two

functions h(t), f(t), while one of them is “time-shifted”, assuming the variable is

time.

c(t) = (h ∗ f)(t) =
∫ ∞

−∞
h(τ)f(t− τ)dτ . (3.40)

In this definition f(t) is said to be the “filter” that is applied to h(t) where later

we will also refer too as kernel. In our case we want to use discrete convolution of

Figure 3.8: Example of two function f, g in continuous convolution.

unitary steps m.

c[n] = (h ∗ f)[n] =
∑
m

h[m]f [n−m] (3.41)

By applying to a data series h a filter f with delay n we get the convolution c[n].

This process defines a convolutional layer. In convolutional networks we use such

layers with small filter functions - kernels. By small we mean that the length of the

kernel is much smaller than the length of the layer. Kernels carry all the trainable

parameters and their features eventually emerge during training.

Imagine a timeseries t[n] with N = 1024 values. We want to figure out if this

timeseries has Gaussian like narrow peaks using convolution. So we will define a

kernel function that looks like the feature we are looking for:

k[n] = [0, 0.1, 0.5, 1.0, 0.5, 0.1, 0.0] .

By convolving t and k we will get a new timeseries that shows us where the

feature of a narrow peak appears. To do that we need to multiply the two functions

and get the sum of their elements. The kernel size is K = 7, so for every step we

need to pad the kernel with zeros from both sides to create the shifting effect.
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km[n] = m×x[0.0]+[0, 0.1, 0.5, 1.0, 0.5, 0.1, 0.0]+(N−m−7)× [0.0] m ∈ [0, N−K]

The final function c[n] will have a reduced size of 1024−7+1 = 1018. The main

difference from the default convolution is that we don’t want to shift our kernel

around the edges because the edge points have no feature relation to each other. So

instead we end up with an output that has reduced size.

c[m] =

N−1∑
n=0

t[n]km[n]

or instead of using the zero padding we can just do the convolution locally:

c[m] =
K−1∑
n=0

t[n+m]k[n]

Note here that after this calculation, each neuron of the new layer puts the result

through an activation function. Here we showed the process for one kernel/filter.

The input usually has more than one feature that characterises it and every time

we define a convolutional layer we also define the number of those filters which set

the number of features we want it to learn during training. In the example above

we already defined in advance a feature to be a narrow peak to show how the layer

would work. Although when we build a model we initialise all the kernel parameters

to random values, which means that in the beginning kernels are looking for random

features. This is a common misconception in convolutional network, the assumption

that the features are fixed, while instead they are only fixed after the training has

finished.

Its time now to show a real example of a convolutional layer. Assume the same

case as above with input X[n] of size 1× 1024 but this time we will have 4 kernels

W1,W2,W3,W4 with size 1 × 7 that will do a calculation process and give back 4

new arrays. Our output will have now two dimensions 4 × 1018 now but only the

second will be spatial.

C[f,m] =

K∑
n=1

X[n+m]Wf [n] . (3.42)

Comparing to the dense layer notation hi in equation 3.37, we can see that

convolutional layers have an extra parameter, the amount of kernels (amount of

filters) f . So in a similar notation for a sequential convolutional network we could
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write the equation 3.42 as:

cf,i = A

 K∑
j=1

xj+i
iw[f,j]

 . (3.43)

In dense layers we have as many weights as input parameters and a bias where

in convolutional layers we have as much weights as defined by the the kernel size.

Hence CNNs have few parameters to train.

Multi-channel convolutional layers

Following the layer above we saw that the result was two dimensional with only

one of the dimensions to be spatial. What if there is another convolutional layer

following? Then the next layer will face the previous one as a multi-channel layer,

in that case of four channels. The channel dimension is usually called the depth of a

layer and the main difference from the spatial dimensions is that the kernel doesn’t

shift over it, i.e. there is no convolution along the channel dimension.

Lets say now that we have our convolutional layer n, cn,f,i, where f indicates the

channel and i the neuron of that channel. We want the next layer to have a kernel

size Kn+1 and a number of filters Fn+1. The calculation of the output cn+1,f,i will

then be:

cn+1,f,i = A

 Fn∑
ϕ=1

Kn+1∑
j=1

cn,ϕ,j+iwn+1,f,j

 . (3.44)

What it does is convolve on each of the Fn channels and then adds them up to

create the output. In the previous first example there was only one channel so the

summation over the input channels didn’t apply. We see that this sequence creates

an output that allows for every layer to have as many filters we want. As we will

discuss later in chapter 5 the input of the network a three channel input layer that

is fed to convolutional layers. We will not discuss the two dimensional convolutional

layers here because they are out of the scope of this project.

Connection with other layers

It is common for the final convolutional network of a CNN to be connected with

a dense layer. When this happens we usually have a flattening type of layer that

arranges the filters of the last convolutional layer in one dimension. All neurons

are arranged in one array ignoring any spacial information between them. By that

point the filters of the successive convolutional layers have already down-sampled

the input enough that dense layers can handle the information. Although we still

use other techniques to avoid that.
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3.2.5 Pooling and secondary layers

When we were discussing how machine learning came to be and more specifically

CNNs, we saw that Kunihiko Fukushima, along with the convolutional layer devel-

oped and down-sampling layer [14]. Those type of layers have evolved over the years

and are recognised as pooling layers. What they do is reduce the size of their input

data using different methods like the average of inputs or their maximum value.

Average Pooling

Average pooling calculates the average of a subgroup of the input data. As with

one dimensional convolution it has a filter that calculates the average of the input

inside it’s window:

pi =
1

K

K∑
j=1

xj+i . (3.45)

As with convolution the size of the output will be reduced depending on the size K

of the average pooling along with the size of the optional stride (see below).

Max Pooling

Max pooling returns the maximum of a subgroup of the input data. It is much more

common than average pooling due to the fact that it has less computations and it

effective when it is used properly. It’s formula is:

pi = max(xi:i+K) . (3.46)

Strides

The two pooling layers we discussed above are reducing the input size proportional

to their window. This is not enough for down-sampling. Strides are not a type

of layer rather than an extra option of layers with sliding windows, including the

convolutional layers. By stride we mean how many steps will the window do for

every calculation. The default is unity, while if we have stride two we apply the

window for every other element of the array. Assuming a window with size K, an

input with size N and a stride S. The output N ′ of this process will be of size:

N ′ = (N −K)÷ S + 1 .

As you can see sometimes that division is not complete. In practice this means that

we might omit input because the filter or the stride are too big. To solve that issue

we usually use zero-padding appropriate for each layer to make use of all the input.

Then the output will be:

N ′ = (N −K + 2P )÷ S + 1 ,
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where P is the amount of padding we add on each side. Additionally we might want

to keep the size exactly the same for compatibility reasons. To do that we only have

to choose the appropriate padding being:

P =
1

2
[S(N − 1)−K] (3.47)

Those parameters are very important for convolutional neural networks. We need

to use the stride with caution because it is very easy to reduce the parameters of

a network very quickly when we use stride in consequent layers. Such thing can

reduce the training time but also reduce the performance if the parameters are also

reduced significantly.

3.3 Machine Learning applied for Gravitational Wave

detection

The fields of gravitational-wave astronomy and machine learning have both advanced

significantly in recent years. As such, there has been a confluence of research into

their combination and a considerable body of work has developed. Artificial neural

networks, including CNNs, autoencoders, classifiers and various other architectures,

have been applied to a variety of problems within gravitational-wave astronomy.

The first obvious question was: Is it possible that machine learning can outper-

form match filtering when it comes to CBC detections? The first order approach on

this conflict was that machine learning cannot surpass match filter because match

filter is the analytical way to find modeled signals. This answer has two major prob-

lems. The first is that match filter would have been the best way if the detector

noise was Gaussian and stationary. As we will discuss in the last two chapters,

detector noise is anything but stationary or Gaussian, so there is a chance machine

learning could fill that unpredictable gap where analytical methods fail. The second

problem is that a detection is as good as it’s false alarm probability. As we will see

later in chapter 5, we need a low false alarm rate and the calculation of a low false

alarm rate is computationally expensive. After we take in account the above facts,

we can change our approach to that machine learning it can actually help boost the

detection performance, but even if it doesn’t it might make it less computationally

expensive if not faster.

After people saw potential using machine learning in gravitational-wave astron-

omy (and also some peer pressure because many other disciplines were already using

it for a long time now) the first proof of concept research came to be. The first obvi-

ous model to be created is one that distinguishes CBC signals from noise in Gaussian

noise. The paper from Gabbard et al.[9] used a CNN classifier and their goal was

to compare the performance of the classifier and matched filter at different false

alarm probabilities up to 0.001. Those models were trained and tested on Gaussian
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noise. A similar investigation, mostly focused on how the network structure affects

the performance has been also developed by George et al. [20]. There were many

other similar investigations [21, 22, 23, 24, 20, 25, 26, 27, 28], but most of them were

focused on binary black hole or neutron star binary signal detection. It is proven

that machine learning can have similar performance with match filtering, although

most of the time those algorithms have not generated enough background tests to

be able to have a low false alarm rate that limits the confidence of any detections

made.

Another group of investigation that started shortly after was the parameter esti-

mation algorithms. One of the most time consuming procedures of the post detection

analysis is the calculation of the parameters and their margins of error. Those in-

vestigations assumed that there is a CBC signal detected and confirmed and they

attempt to find the sky localisation[29, 28], the masses and spins of the initial and fi-

nal masses or other combination of parameters specifically targeted on known signals

[30, 31, 32].

Artificial Neural Networks (ANNs) provided a speed boost into the generation of

modeled waveforms as shown to Khan et al. [33]. Not only they increased the speed

of generating one waveform out of parameters but made possible, by using GPUs,

to generate 104 waveforms in 163 ms. This is an excellent example how machine

learning can decrease the time of even the analytical methods by helping creating

the theoretical templates in much less time.

Machine learning seemed also promising to help reduce the false alarm rates

or understanding better the glitch behaviour of the detectors. Gravity Spy [34]

and other applications [35, 36] create classifiers of glitches that help us understand

how the detectors change over time, and use those classes of glitches to simulate

the behaviour of the detectors. LIGO and Virgo detectors have a huge number

of auxiliary channels, that monitor different part of the detector and environment

variations. If we search through those channels we can see how glitches are correlated

to signals in other channels (making them to be of non-astrophysical origin). There

have been some projects that try to train algorithms to identify what would we

expect to see in the strain based on the auxiliary channels or just identify when

there is a signal that is correlated to auxiliary channels [37, 38, 39, 40].

The first BNS signal [41] ever detected was accompanied by a very loud glitch,

this brought a question to the surface about how often this might happen and how

do separate the glitch from the signal. There have been many attempts to de-noise

signals that are contaminated with glitch like non-gaussian signals [42, 43, 44] using

auto-encoders.

There has been somewhat less interest in the application of machine learning to

the detection of other, as yet undetected, gravitational-wave sources, although there

have been a number of studies into the efficacy of using ANNs to detect specific su-

pernovae waveforms In this paper [45] they attempt to use the spectrogram of three
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detectors as RGB colours and the really good performance of CNNs in picture recog-

nition. This focuses on phenomenological templates that follow a specific frequency

curve and it doesn’t generalise to more types. An investigation of the performance

of similar models in the future when we will be using the Einstein Telescope was

performed by this paper [46], where they have trained and tested models on different

core colapse super nova (CCSN) waveforms.

The main issue with machine learning applied in gravitational wave detection

pipelines is the false alarm rate. Most projects focus on their efficiencies showing

promise but there was not a big effort to reduce the false alarm rate to a significant

level. The drive to my project was exactly that. To make a machine learning pipeline

that can be a candidate for low latency detection.
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MLy (“emily”) pipeline

In this project we are investigating how we can make a machine learning algorithm

capable to distinguish unmodelled signals from noise. The performance of the best

algorithm can be as good as the dataset that it is trained with. To assure that our

datasets and training procedures are consistent, we have put all the tools needed for

this project into one library and into one pipeline. MLy is this python library. MLy

pipeline is the the combination of the functions of the MLy library that will help use

produce our results as we will see in the last two chapters. In this chapter we will

describe all the details about the generation process of our datasets. Specifically, we

will look at how the appropriate time periods for analysis are determined, how the

data is located (or generated, in the case of simulated detector data), how time lags

are selected for background studies, and how artificial GW signals (“injections”) are

simulated for training and sensitivity studies.

4.1 Obtaining detector data

In all our investigations we have to obtain background noise. There are two types

of noise currently used - artificial noise and real noise from the detectors. Real noise

needs only pre-processing, like whitening and band-passing. Although artificial noise

needs more work to be generated. We describe how to obtain each type of noise

below.

4.1.1 Artificial detector noise

Artificial detector noise is used for training our models. This might be surprising at

first but we will show later, that training with simulated data is a better choice than

training with real data. The reason for that is that with simulated data we will be

able to generate artificial glitches at a controlled rate, that is higher than the rate at

which real glitches occur in real data. It is important to know though that we test our

models with real noise, otherwise the models would not be practically useful. Given

that all models we create are used and verified on real detector data, we want the
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artificial noise to follow the detector noise curves and simulate a stationary version

of the real detector noise. In Figure 4.1 we can see the PSD of the theoretical curves

of Advanced LIGO and Virgo that we use as a base for the PSD of our generators.

Figure 4.1: Theoretical curves of Advanced LIGO and Virgo as used by the gener-
ators

A real detector noise segment will have fluctuations around a mean value. To

simulate these fluctuations we generate white Gaussian noise in the frequency do-

main (real and imaginary parts are generated independently as Gaussian distributed

random numbers). The the noise value in each frequency bit k is multiplies by
√
S[k]

where S is the PSD of the theoretical curves. For every generation of noise we do

this process to create different instances of the same type of noise. Additionally

we use smooth cut-offs on the frequencies we want to exclude from the generated

segment. The frequencies outside the two thresholds respectively will exponentially

go towards zero. The code for this process was adapted into python from X-Pipeline

[47]. Noise will not be further processed depending on it’s use. We will talk about

the final processing in the end in subsection 4.2.3.

4.1.2 Real detector noise

Real detector noise doesn’t need to be generated because it already exists. We only

need to find it and load it. To access real detector noise we have to figure out

the GPS times where the noise is appropriate for our analysis. GW detectors need

to be in a precisely controlled state to operate, in which their optical cavities are

in resonance. This is known as “science mode”. LIGO and Virgo are able to run

stably in science mode for periods of hours to days, with a typical overall duty cycle

of around 0.7(70%) [5]. We use gwpy [48] and dqsegdb2 [49] to determine the times
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of science mode operation during the observing run of interest.

Not all science mode data is of a quality that allows us to confidently detect GW

signals. Background noise fluctuations with durations of order of one second are

common. These fluctuations are known as “glitches” and can confuse algorithms

searching for GW transients. Glitches may be caused by a variety of environmental

disturbances, electronics noise, limitations in the control feedback systems, etc. [50]

Many glitches appear in both the h(t) channel and also auxiliary channels used to

monitor the detector’s environment and control systems. Science mode times that

coincide with glitches in selected auxiliary channels are tagged by “data quality

flags”. Candidate GW events occurring at the time of “not appropriate for analysis”,

DQ flags are typically discarded. We use the real detector data for false alarm tests

and off-line searches and we want to exclude parts of the noise where any type of

hardware injection (simulated GW signal added to the feedback control signals for

the detector mirrors) is present. Those can be CBC, burst, stochastic, transients or

detector characterisation related injections and are characterised by the related data

quality flags. Note though that real data also contain some true GW signals. We

include the times of real signals in the processing as we want to see if the pipeline

can detect them. The dqsegdb2 [49] packages provides the tools to exclude those

wanted segments and help us to create new appropriate segments without injections.

More specifically we look for all the coincident data when all three detectors (or two

depending on the search) are online.

All GW detector data are stored in a particular file format called frame files,

with copies in all LSC computing clusters. After getting the segments we want to

use, we can use the gwdatafind [51] package to get the locations of the frame files

containing the real detector strain data. Although at this point, a computational

problem emerges. Some segments are too long to fit in memory, or we might need

only a very small fraction of them. We therefore fetch the detector data in intervals

that they don’t exceed one hour in duration.

Finally, by using gwpy [48], we down-sample the strain data to the appropriate

sample frequency we use in our analysis. This is the last stage of getting the real

noise ready to be processed to create the dataset. We will discuss the final details

in the end in subsection 4.2.3.

4.1.3 Implementing time-lags in the data

In detecting candidate GW signals in low-latency analysis for the generation of alerts,

we target false alarm rates of 1 per year or less. The once per year threshold is a

requirement for a potential low-latency search pipeline. Confident offline detection

of GW signals requires even lower false alarm rates, typically 1 per century or

less [52, 5]. A typical LIGO-Virgo observing run will produce less than 1 year

of coincident data, which is not sufficient for determining such low false alarm rates.
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Therefore we need a method to generate additional independent sets of background

(signal-free) data to use in measuring false alarm rates. The solution to that is using

time lagged streams of data.

When we test for false alarms, each second of noise in one detector is considered

independent of any other second in any other detector (unless there is a real signal of

course). We artificially shift the time stamps of the data from each detector relative

to the other. The time shift is by an amount that is larger than the light travel

time between the defectors and equal to or larger than the time interval used to

produce each instance of data that we feed in the neural network, which in our case

is one second (in practice multiples of seconds). Then any real data cannot appear

in coincidence in the shifted data, so any coincidences we do measure must be due to

random coincidence of background noise events. By using multiple time shift values

and repeating the analysis for each value we effectively generate many independent

copies of the data that are suitable for measuring the properties of the background.

Usually when we apply time-lags we have a lot of data to process. Therefore we

separate them in to smaller jobs that process small segments. Time-lags are applied

first on big chunks of data creating time-shifts of typically 1024 seconds. Those

are called external lags (or superlags). One external lag will consist by typically

1024 seconds of data for each detector. If we need more instances of noise then we

apply time-shifts of one second for each external-lag. Those types of lags are called

internal lags (or circular lags). They are both applied in the same way, with the

only difference that external lags never use the zero-lag. We will talk more about

the implementation in the scheduler functions subsection ??.

There are some basic rules about time-lags that need to be followed:

• We don’t want to include in the false alarm rate any real signals that might

be present, because a real signal will not be a false alarm. For that reason we

don’t use noise at zero lag, which means data as they were collected from the

detectors in real time.

• The lag time between two detectors should not be more than an hour or two.

Detector behaviour changes with time as they are not stationary. For example

for some detectors there are specific ours of the day that are noisier due to

human activity (such as traffic or train activity). Therefore if we use two

instantiations with a really big difference in time, it might not be a realistic

representation of the noise.

• We should exclude times of real known GW events. These are known to be

able to produce biases in the false alarm estimation. We could do this in

post-processing, vetoing background events where unshifted time is any of the

detectors is the time of know GW events.

• Last and most important rule is that we don’t want to repeat the same time
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Detector 1, lag=0 0 1 2 3 4 5 6

Detector 2 ,lag=1 6 0 1 2 3 4 5

Detector 2 ,lag=2 5 6 0 1 2 3 4

Detector 2 ,lag=3 4 5 6 0 1 2 3

Detector 2 ,lag=4 3 4 5 6 0 1 2

Detector 2 ,lag=5 2 3 4 5 6 0 1

Detector 2 ,lag=6 1 2 3 4 5 6 0

Table 4.1: An example of the order of segments in the case of two detector time-
lags. Detector 1 stays the same for every combination and only Detector 2 shifts
one second at a time. Note that for Detector 2 lag=7 would be the same with lag=0
and this is not allowed. Any further lags would also be repetitions of other lags.

lag between any pair of detectors for a given data segment, because then they

won’t be independent samples of the background. That is the most tricky part

of this calculation.

The last rule of not repeating pairs is quite simple in this example in two detectors.

We leave one detector in zero lag and we move the other one step at a time ignoring

the case where lag is zero. If a segment duration has N seconds and we use a step

of one second then we will get out N(N − 1) time-lagged new instantiations of one

second.

The case of three detectors is more complicated. We must not repeat the same

pair of any two detectors and to do that we use the following train of thought.

• The first detector is always at zero lag.

• The other two detectors should never repeat the same lag (including zero),

because they will repeat the same combinations of instantiations with the first

detector.

• The difference of lags between two detectors should never be repeated because

it will repeat the same combinations of instantiations between them.

To make this process of lags more understandable I will use lag tables. A simple

example of size 5 is the following: Three detectors A, B, C with data segment of

duration 5 × the time lag step size (in our case one second). A is always kept at

zero lag by convention. The horizontal and vertical axes indicate possible choices of

time lags of B and C. Grey boxes marked X indicate choices that are not allowed

because they keep at least one pair of detectors at zero lag with each other. Any

other choice is allowed. Although by the time we select a combination we restrict

the number of combinations that are left. For example lets follow the selection at

the following tables 4.3 step by step. When we select the combination (0,1,4) at the
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C

4 X X
3 X X
2 X X
1 X X
0 X X X X X

0 1 2 3 4
B

Table 4.2: Three detectors A, B, C with data segment of duration 5 × the time lag
step size (in our case one second). A is always kept at zero lag by convention. The
horizontal and vertical axes indicate possible choices of time lags of B and C. Grey
boxes marked X indicate choices that are not allowed because they keep at least one
pair of detectors at zero lag with each other. Any other choice is allowed.

first table referring to the lags of every detector, we can never use 1 for B or 4 for

C because the combination AB-(0,1) and AC-(0,4) will repeat themselves and that

is forbidden. So the column and line that selection belongs becomes unavailable.

Additionally the diagonal that passes through (1,4) and (0,3) extends to the other

side on (4,2) and (3,1) making them also unavailable because the combinations of

the same diagonal have the same distance in lags, and this is not allowed to repeat

after our selection. Then we choose the combination (0,2,3) and the column and line

of that combination become unavailable. The diagonal is already unavailable. We

now choose the combination (0,3,2) and the column and line are already unavailable

as is the diagonal. Finally we choose the last option left, combination (0,4,1).

Eventually we see that by following the diagonal of that table we get all the

possible combinations. Moreover the particular way of doing the lags gives us a

simple algorithm, which is that for every step we lag detector B by +1 and detector

C by -1. Finally we get that for size N we get again N(N−1) instantiations of data.

It is important to notice here that this method works when the segment size is

an odd number of instantiations. When we have an even number things get trickier.

If he method we use to do the lags for the odd numbers is used here, we can see that

one of the combinations will lie on the B=C diagonal which is forbidden. For that

reason we start already with an additional one-step lag offset in one of the detectors,

+1 for B for -1 for C. See Table 4.4. If the size N is an even number, then we get

N(N − 2).

More than 3 detectors The generalisation of this to more than three detectors

and for any number of instantiations is a simple but difficult to grasp algorithm from

Patrick Sutton []that goes as follows.

Assume you have N instantiations and you want to combine D detectors. We

will avoid the term time-lag here because we will just describe the combinations of

segments however long in duration.

For each combination of instantiations we want to guaranty that no instantiation
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C

4 X O X
3 X X
2 X X
1 X X
0 X X X X X

0 1 2 3 4
B

C

4 X O X
3 X O X
2 X X
1 X X
0 X X X X X

0 1 2 3 4
B

C

4 X O X
3 X O X
2 X X O
1 X X
0 X X X X X

0 1 2 3 4
B

C

4 X O X
3 X O X
2 X X O
1 X X O
0 X X X X X

0 1 2 3 4
B

Table 4.3: (Up-Left) When we select the combination (0,1,4) at the first table
referring to the lags of every detector, we can never use 1 for B or 4 for C because
the combination AB-(0,1), AC-(0,4) will repeat themselves and that is forbidden.
So the column and line that selection belongs becomes unavailable. Additionally the
diagonal that passes through (1,4) and (0,3) extends to the other side on (4,2) and
(3,1) making them also unavailable because the combinations of the same diagonal
have the same distance in lags, and this is not allowed to repeat after our selection.
(Up-Right) We choose the combination (0,2,3) and the column and line of that
combination become unavailable. The diagonal is already unavailable. (Down-
Left) We now choose the combination (0,3,2) and the column and line are already
unavailable as is the diagonal.(Down-Right) Finally we choose the last option left,
combination (0,4,1).

C

5 X O X
4 X O X
3 X X O
2 X X O
1 X X
0 X X X X X X

0 1 2 3 4 5
B

Table 4.4: The case of even number of instantiations create an odd number of
maximum lags, hence an asymmetry. We need to move the diagonal method by one
and loose one instance.

pairs will repeat in any pair of detectors. This can be achieved by shifting each

detector i by (i−1) steps while at the same time making sure that N is appropriate.

By appropriate we mean that the N instantiations don’t allow any of the shifts to

“synchronise” resulting to repeating pairs. More specifically, since each detector

uses different multiple of the step, the lag between each pair of detectors increases

with each step. The total shifts i− 1 for each detector i should satisfy N/(i− 1) ≥
1fori ∈ [1, D]], where D is the number of detectors. That means that N should be
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at least the lowest common multiple between the shifts i−1fori ∈ [1, D]. Although,

as we shown in the simple case of three detectors, having an even number for N

results to repetitions. Furthermore, if we can use the lowest common multiple of

N , let’s name it m, and then add 1 to have an appropriate number of instances,

we will still have an appropriate number for N if we use any multiple of m and

then add 1. In conclusion given the number of instances we have N we have to

choose an appropriate number Nnew, where Nnew = M + 1, where M is the largest

multiple of the lowest common multiple of integer numbers between [1, (D−1)] such

that M + 1 ≤ N . If Nnew is defined as the largest common multiple of all the step

sizes plus 1, no detector repeats a previously used shift upon “wrapping” by modulo

Nnew. This prevents repetition of any lag between any pair.

Let’s check some examples about that. Assuming three detectors D = 3 and

N = 128, the lowest common multiple in [1, 2] is 2. So the largest multiple of 2 for

which if we add one, it will be ≤ 128 is 126 = 2× 63. So Nnew = 127. If we do the

same but for D = 4 the lowest common multiple between [1, 2, 3] is 6 and the largest

multiple of 6 that if we add one will be ≤ 128 is 126 = 6× 21, so again Nnew = 127.

The bigger the number of detectors, the biggest the minimum Nnew we need to do

the shifts.

When we apply this on a segment of data that has N instances and data from D

number of detectors, we can create a shifting matrix. Each number on this matrix

represent the amount of steps a segment is shifted. To create this matrix, we apply

the train of thought we describe above. We use the cross product of the array of

detectors DT and the array (0, 1, 2, Nnew). The first row of this matrix will be zeros

because we don’t apply shifts on the first detector. The row will be one step at

a time, the third will be two steps at a time. Eventually the shifts will become

much greater than the number of instances used (Nnew) which will still be valid but

unnecessary. Shifting an array of size 10 by 104 steps is the same of shifting just 4

steps. For that reason we apply modulo Nnew at the end to avoid such redundancy.

L =





0

1

2
...

D − 1


×
(
0 1 2 · · ·Nnew − 1

)


mod Nnew (4.1)

Let’s see an example of the shift matrix in the case of four detectors (D = 4)

and N = 128. We can’t use N as it is, we need to find an appropriate N which as

we shown above it will be Nnew = 127:
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L =


0 0 0 0 0 0 . . . 0 0 0

0 1 2 3 4 5 . . . 124 125 126

0 2 4 6 8 10 . . . 121 123 125

0 3 6 9 12 15 . . . 118 121 124


Each row represents a detector and each column the lags in respect of the first

detector.

Finally we need to need to note here that this procedure is independent of the

duration of the segment or the instances. These are to be derived depending on the

problem.

4.2 Injection generation

Our goal is to be able to detect tranisents of GW signals without prior knwoledge

of their waveform, and distinguish them from background noise glitches (also poten-

tially of unknown waveforms) that occur simultaneously or near-simultaneously in

two or more detectors. The complexity of this task demanded a plethora of signal

types and ways of injections. In this section we will discuss the main waveform mor-

phologies we will use and why we use them, then in subsection ?? we will explain

the different ways of creating injections and projecting them in the the detectors,

and finally in subsection 4.2.3 we will talk about the final assembly of noise and

injection and how we create the different types of data to simulate generic signals

and glitches.

4.2.1 Gravitational-Wave morphologies

The main signal type we used in our project was the White Noise Burst (WNB).

This type was used for all training, although we generated other types of signals

to test with, such as Compact Binary Coalescence (CBC), Circularly polarised Sine

Gaussian (CSGs), Core Collapse SuperNova (CCSN) and Cusp signals. All of those

signals were of maximum duration of one second and all injections have two polari-

sations components h+ and h×, with the only exception of CUSPs which are linearly

polarised and have only h+ component.

WNBs are a type of signal that attempts to be as random and unstructured

within its parameters as possible. To create a WNB we start by generating white

noise on the frequency domain with two frequencies [fmin, fmax]. They are described

by a central frequency and a frequency range f0, δf where fmin = f0 − δf/2 and

fmax = f0+ δf/2. Then we inverse Fourier transform to get the injection in a time-

series format and we apply a sigmoid window on both edges of the signal to make

it non-zero only over the desired time interval The steepness of the sigmoid window
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depends on the duration of the injection. Both sigmoids on the sides go from 0.01

to 0.99 and in reverse, using 2.5% of the signal duration on each side. We desire the

final signal to have two independent polarisations, so we generate two independent

WNBs with the same parameters. A physical interpretation of this is a source in

which matter is undergoing random motion over some range of length/time scales,

such as turbulent flow. WNBs are the closest type of signal to represent generic

signals.

CBCs are compact binary coalescence signals generated with IMRPhenomD [53].

These represent the inspiral, merger and ringdown of binaries consisting of black

holes and/or neutron stars. We restricted the generation only to binary black hole

signals with the black-hole masses and spins selected randomly and uniformly over

the intervals [10,100] and [-1,1] respectively, with the restriction that the signal

maximum frequency has to stay below the Nyquist frequency of the dataset. The

two different polarisations also assume a random angle of inclination. We use this

type of signals because they are the only type of GW signal detected to dated, so

ti makes sense to test the pipeline sensitivity to this type. We don’t use them for

training.

CSGs are an ad hoc but standard waveform for testing GWB analyses [7, 5]. They

are sinusoidal signals of a fixed frequency in a Gaussian envelope. Each polarisation

has sine and cosine oscillation respectively with the h× having also an optional

ellipticity parameter. Here is the waveform analytically:

h+ = h0 cos(2πf0t+ ϕ)e
−
(

t−T/2
T/σ

)2

h× = h0 sin(2πf0t+ ϕ)e
−
(

t−T/2
T/σ

)2√
(1− ϵ2)

Where t is a time array from 0 to T with step one over the sample frequency, f0

the frequency, ϕ the phase offset and σ is the number of standard deviations we

want to be included in both sides of the Gaussian envelope. The default is 5. The

parameters f , T , ϕ, ϵ are all randomised within [20, 480] Hz, [0.0625, 0.9] sec, [0, 2π)

and [0, 1] respectively.

CCSN (Core colapse super nova) is the most popular type of burst type we expect

to see, as it is the next expected type of signal to be detected with an electromagnetic

counterpart. There are many CCSN simulations that return the two polarisations

of the expected signal. In our project we used only the N20-2 waveform of [54], from

a 3D simulation of a neutrino-driven core-collapse supernova (CCSN) explosion for

testing. We only use that one waveform because we are doing an early study of the

type and not comprehensive study of CCSN detectability. Hence one waveform is
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enough for a sanity check. This specific waveform is used in previous LIGO searches

[7, 5, 4]

Cusp signals are the type of signals that are expected from cosmic string cusps.[?,

55, 56] These signals have a rather simple equation:

h(t) = A|t− t∗|1/3,

where A includes physical parameters regarding the strings and t∗ is the peak time

of the signal. Cusp signals are linearly polarised.

4.2.2 Computing the detector response

The next step is the projection of the injection waveforms, where we project the

waveforms as they come from the source to the detectors and we calculate the strain

data that will appear in the detectors. The waveform that will appear in a detector

is a combination of two polarisations with weighting parameters F+ and F×. For a

given detector we have the following signal as a response [57]:

d = F+h+ + F×h× , (4.2)

The antenna response parameters F+ and F×, depend on the incident direction

and polarisation angle to the GW with respect to the detector, see [57] for explicit

formulae. To simplify the calculation and make sure we distribute our injections

uniformly throughout the sky, we fix the time (practically freeze the earth rotation)

and generate random spherical polar coordinates of the for each generated waveform.

Additionally we randomise the polarisation angle of the incoming signal so that there

is no preference of polarisation during the training.

After the projection is done the initial two polarisation components of the wave-

form h+ and h× will transform to D projected waveforms where D the number of

detectors we projected to. A very important detail we need to add is the arrival time

difference of the detectors. The signal will arrive to each detector with a difference

of some milliseconds, so we need to time-shift the projected signals in respect to

each other. Assuming that the signal comes from direction Ω̂, the time delay will

be [47]:

∆tα(Ω̂) =
1

c
(r⃗0 − r⃗α)Ω̂ , (4.3)

where α is a specific detector and r⃗0 a reference point, which we select to be the

Hanford detector. In combination to the antenna response, we have that for a given

detector the projected signal will be described as [47]:

dα(t+∆tα(Ω̂)) = F+
α h+(t) + F×

α h×(t) + nα(t+∆tα(Ω̂)) . (4.4)
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In the case where the signal duration is quite close to the duration of the injection

duration (noise and signal, in our case one second) we might have edge effects after

shifting. To resolve this we pad with zeros equal to the maximum time delay pos-

sible calculated based on our sample frequency fs. Then we calculate the Fourier

transform of the waveform and add a phase that will create this time-shift in the

time domain.

d̃α(f) → d̃α(f)e
−i2πfδtα (4.5)

We follow this approach because if the time delay is not an exact multiple of the time

step in the time domain, there will be side effects in higher frequencies that will add

extra noise. To do this calculation shown in equation 4.5 we use the first detector

as reference detector, where we don’t apply the shift (δt1) and δtα is calculated in

respect to that detector. After the shift we crop the padding. The waveform will

not stay at the center of the injection. In the next subsection, we will describe how

we randomize the central times of the waveforms when possible.

4.2.3 Final processing of the data

In the previous subsections we detailed how we generate noise samples and injections.

Now we will explain how we combine these into the the final instances of our datasets.

When we first started experimenting with machine learning and data types,

the first obvious choice was to have noise, and injected signals as we expect them

to appear in the detectors. We found that CNNs trained only on real detector

noise and simulated signals performed poorly, and performance was improved by

creating simulated glitch populations as well. In this subsection we will describe the

procedure and go through them one by one.

Coherent Signal Injections These are the gravitational-wave signals as we ex-

pect to see them when they arrive in the detectors. Depending of what metric of

intensity we use we change their amplitude in a different way. As we described be-

fore we can have a target SNR ρ or a target hrss value h, that we want the signal

to have. In both cases we pad first the injection s0α with zeros equally from both

sides to have the same length as the noise segment nα and we add it to the noise.

d0α = s0α + nα . (4.6)

The zero indexed values indicate the signal or injection before re-scaling. In the

case of a target SNR value ρ we have to calculate the PSD S(f)α of the noise and

then calculate the current SNR value ρ0α the signal has on each detector α using

equation 2.49. The initial network SNR will be:
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ρ0 =

√√√√ D∑
α=1

ρ20α (4.7)

Then we re-scale the amplitude of the signal using the target and the initial

SNRs using:

dα =
ρ

ρ0α
s0α + nα .

In the case of a target hrss value h we don’t have to calculate a PSD. We simply

calculate the initial RSS ampitued h0 from the injection using equation (2.48) and

then re-scale in the same way:

dD =
h

h0
s0D + nD .

Note here that the hrss value is independent of the detectors.

The signals we inject have different durations, from 0.0625s to nearly 1s. We

don’t use signals of exactly 1 second because they would be cropped when we apply

time delays between detectors. The rest of the interval will be zero and we take

advantage of that to move the injection around. Having an injection always at the

center would easily make a machine learning algorithm over-fit and try to find signals

only in the center.

Let us denote the maximum time delay between detectors by ∆T . The maximum

time delay depends on which detectors we use (based on their distance on the globe).

Given the duration Ts of a signal, the duration of the instance T we can shift the

injections in all detectors by a random value from the interval [−∆T/2,∆T/2],

without any danger of the injection being cropped by the edges of the data instance.

We perform these shifts independently for each injection.

We treat BBH signals as a special case, given that the beginning of the signal

is not clearly defined (only based on the minimum frequency the detector can see),

we usually have signals that already have duration equal or bigger to the instance

duration. Although we also need to move the loudest part of the signal around

without any important information. For this reason the shift is allowed to be only

backwards [−(∆T )/2, 0], so that the merger appears always within the second half

of the instance (in our case 1s).

Whitening and Bandpassing All instances have a basis of noise, artificially

made or real. The loaded or generated noise segment is 16 times the duration of the

final instance in the beginning. The reason of such length of the segment is that it

will be used to calculate a power spectral density (PSD). When a signal is present,

it might contribute to the PSD. The larger the segment of noise we use compared

to the signal the smaller the contribution to the PSD it will have. We choose to
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use a background of duration 16 times the instance duration. This is because it is

big enough to suppress that contribution in the PSD and small enough so that it

is not computationally expensive. There is not a correct option for that of course,

we just make a balanced choice between efficiency and time. We suggest that an

investigation about the contribution of the noise segment size would be very useful

addition to the analysis.

After the noise and (optional) injection are combined we need to finalise the

instance to its size. First we use the whole interval (16 second in our case) of

combined signal and noise to calculate a PSD. Then we divide the Fourier transform

of the instance with the PSD to normalise the frequency levels. This will make the

signal more apparent. This will then be a whitened timeseries. Additionally we

apply an IIR band-passing filter to crop all the frequencies below 20 Hz. Finally we

crop and keep the central second of our segment which is the final form of the data

instance.

4.2.4 Simulating glitches

The use of simulated waveforms for glitches is a really important point that the

reader should elaborate (it is an unusual choice). we use simulated glitches for

two reasons. First, real glitches don’t occur in coincidence frequently enough to be

useful for training - if we used real data only a small fraction of our training samples

would contain coincident glitches and the CNN would not learn to reject them. We

would instead use another algorithm (such as Gravity Spy [34] to identify times that

contain glitches and preferentially select those fore training samples to get a good

enough ratio of signals vs glitches so that they have an impact on the training. But

then there is a danger that we are training the CNN to recognise and reject only

those specific glitch mythologies that are know by Gravity Spy. This may leave us

vulnerable to as-yet unclassified/unknown glitches - exactly the same danger as using

specific signal morphologies for gravitational wave bursts (GWBs). What we prefer

to do is to find a way to force the CNN to learn how to distinguish coherent events

from incoherent events, rather than classifying morphologies. By coherent event we

mean a signal that appears in more than one detectors and has the same morphology

(projected differently), and incoherent signal would be a case of signals appearing

in more than one detectors and being of a different morphology. To focus on the

coherency information during training, we use the same WNB waveform sets for

both GWB and glitch simulations. The CNN cannot rely on the signal morphology

for tits classification, only on the coherence between detectors.

Single detector glitches To simulate the glitchy behaviour of one detector, we

first choose a detector which we call the ”lucky” detector. We follow the same

procedure with coherent injections but we inject the projected waveform only into

the lucky detector. The target SNR or hrss goes directly to that lucky detector.
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All other detectors remain as they are without injection. In this way we simulate

the common case of single-detector glitches. As with coherent signals we apply a

time-shift to the signal so the glitches are not always centered in the analysis interval.

Multi-detector glitches Random coincidence of glitches in multiple detectors

constitute a challenge to the confident detection of GWBs. We force our model to

learn to handle this scenario by injecting incoherent glitches into the data streams of

each detector. The incoherent injections are a type of dataset that is used to confuse

any model by introducing different signals in all detectors to make present the idea

of uncorrelated coincident signals to the model training. We do this by selecting the

WNB parameters independently for each detector. No antenna response projection

is required as the glitch is not an astrophysical signal. We simply normalise the total

SNR to the desired value.

Regarding the time-shifts, in this case if we have D number of detectors then

we will have D different injections with D different durations each. Glitches are not

correlated between detectors, so we have to train the analysis for the case where

transients are present in multiple detectors in a given analysis segment (instance, 1

second), but not necessarily coincident to within the light travel time. Given that

they are simulated and are used to complicate the noise representation, the more

complex and randomly placed they are the better. Injections in each detector will

have a random shifting on their central times. This shifting will have a range that

will depend on the size of each individual waveform. To help with this we define

a value called disposition D which is the maximum difference between the two

central times of the glitches in any pair of detectors.

When we define a disposition, depending on the number of the detectors D,

central times are created with which we shift our signals. Assuming duration of

instance T = 1s we can have the following central times for each signal given the

number of detectors D.(Note the difference in symbols D: number of detectors, D:

disposition (seconds)).

• D = 2 : [(T −D)/2 , (T +D)/2]

• D = 3 : [(T −D)/2 , T/2, (T +D)/2]

• D = 4 : [(T −D)/2, (T −D/2)/2, (T +D/2)/2, (T +D)/2]

Therefore, the central times of the glitches are equally spaced in time over an interval

of length D, which is centered on the middle of the analysis interval. A central time

shift is given randomly to each detector until all of them are allocated. Additionally

we also add a random variation of maximum 5% of D on each central time to

make sure the positioning retain a randomness, independent for each detector. A

valid question would be why not just randomly shift the glitches instead of using

disposition. This could also be done, but then we would have no control over how
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Figure 4.2: Examples of disposition between different glitch signals. We present
the timeseries for each detector with an offset that depends of the intensity of each
signal so that they are distinguishable. a) Disposition of 0.1 s. You can see that
the central time of Virgo signal (magenta) is 0.1 s away from the central time of the
LIGO H1 signal (red). b) Disposition of 0.2 s. c) Disposition of 0.3 s.

simultaneous the glitches are. Having the central times of the glitches very close

or at the same place poses a much bigger challenge for the network and forces it

to understand coherency. By using disposition we can control the distance between

the central times of the signals and create datasets that will focus the training into

coherency identification.

When we use disposition with a bank of waveforms with duration within one

second, we might come into conflict. For example if the glitches we use are of

duration 0.7 seconds, the disposition cannot be more than 0.3 seconds, because the

– 59 –



4.3. Main pipeline tools

signals could get cropped. Therefore, when we generate such datasets we restrict

the duration of the injections used based on the disposition we want to have. So for

example if we choose a disposition of D = 0.4s the maximum duration of the signals

is chosen to be Ts(max) = 0.6s.

After this is done and given that there is still enough room to shift the glitches

around we apply also a common random shift to all glitches central times (together)

to avoid always having the group of glitches centered in the interval. We present

three examples of disposition in figure (4.2).

4.3 Main pipeline tools

4.3.1 DataPod and DataSet

Our application as already described has a lot of different terms and attributes for

each data instance or injection: duration of segment, duration of injection, number

of detectors, SNR for each detector, type of noise, sample frequency, disposition.

These are only some of the parameters that need to describe our datasets. It is not

uncommon that an unusual result demands investigation and to do that we need all

those metadata. Therefore we need to make it so that each data instance carries

it’s metadata with it. This object we called a DataPod. DataPods carry with

them the main data used in a data instance and also all the important details of

it’s history and creation. For example the waveforms that are used for injections

carry information about their generation by being inside a DataPod. By the time

we add a waveform on the noise background to make an injection, it is impossible

to calculate it’s hrss. DataPods helps preserve this information for us. When the

waveform DataPod is used and added to a noise DataPod, it creates an injection

DataPod that inherits information from the waveform (type, duration, hrss) and the

noise segment (detector, GPS time etc.). Additionally it can create new information

out of this combination such as the SNR value and stop conflicts of information

which prevents bugs, like having zeros in the timeseries or signals cropped due to

lack of information about the waveform duration.

A collection of DataPods with the same data type is called a DataSet. This

object is an organising tool that helps us filter information out of the DataPods

collectively. For example when we use those data for training, the DataSet can

export the data in a shape appropriate for the algorithm to digest and also any

other parameter in the same order, such as labels. That organisation prevents mix-

up of the order of data and true values. DataSets can be fused into one when

we combine different DataSets with different parameters and can check themselves

for any inconsistencies that could create bugs. Their collection structure makes it

possible to apply modifications to each DataPod of a DataSet at the same time. Our

training datasets are DataSet objects.
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Generator function

In the previous sections we described in detail how we combine noise and injections

to create different data instances. The process of this generation is the backbone

of this pipeline. The main function that is used for creating DataSets for training

and testing is called the Generator function. The generator is used in all processes

we describe below and has many parameters and keywords to provide a plurality of

types of datasets. The output of the generator function is a DataSet object.

4.3.2 PlugIns

As we will see later, in our project we use both strain data and also the Pearson

correlation between detectors as inputs to the algorithm. Correlation data were

calculated from the strain data. This gave us an idea of developing an object that

acts externally on DataPods and DataSets. Those objects we called PlugIns.

A PlugIn consists of a function plus a list of attributes that already exist in

a DataPod. For example the strain data, the sample frequency and the number of

detectors are attributes already existing in a DataPod. In the case of the correlation,

the function will return the Pearson correlation for each pair of detectors and add it

as an attribute to the DataPod so that it is callable as the strain data are. Again we

don’t need a DataPod to define a PlugIn but we need to know the attribute names

that we expect the PlugIn to use from the DataPod. Assume we have a DataSet that

has only strain data in it. We can use the already defined PlugIn for the correlation

and add it to the DataSet. Now the DataSet will be able not only to export strain

data but also correlation data.

PlugIns don’t need to be functions, they can also be simple values. Another

example of use for PlugIns could be sky-localisation parameters. The source of

an injection can be described from right ascension and declination, which will be

parameters accompanying any DataPod that has an injection in noise. If we had an

algorithm that estimates the sky position of a signal, we could use PlugIns to define

our metric of location in the sky (numbered tiles for example) without having to

hard-code it in the generator.

Plugins give a flexibility that could make any generated DataSet evolve accord-

ingly to the type of problem and model is going to be used for.

4.3.3 Validation functions

As we will see in chapters 5 and 6, after a model is trained we need to test it to verify

how well it performs. For that procedure we have three main validation functions,

falseAlarmTest, efficiencyTest and zeroLagTest. Each of these functions vali-

date a different aspect of performance of each model, by using the same base tool,

the generator function.
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FalseAlarmTest

This function tests the models for false positives. In the case of real data, it takes

a number of GPS time ranges equal to the number of detectors. For a false alarm

test we don’t want to use the zero-lag data because they might have real signals

present. So it is expected that those GPS time segments are from different times.

Also it takes as an argument, the specified number of tests N to be performed,

where one test is analysis of 1 second of data. If the size of tests N is bigger than

the GPS interval can provide, we use internal time lags to expand the amount of

test performed, using the duration as a step (in our case 1 second). It uses the

generation function to create a DataSet of processed real noise and then feeds that

DataSet into the models and saves the output of the model for each instance into a

table along with the GPS times for each detector.

EfficiencyTest

This function calculates the true positives, for a specific class or parameter, that

are predicted from the models out of a number of N trials for different M values

of intensity. As values of intensity we use either different SNR values or hrss as

we describe them in subsection 2.3. The main parameters given to this function

are the waveform bank list that has different waveforms of the type we want to

test, a list of values for the intensity of the signal and the interval of GPS times to

use for background noise. For each intensity value m it uses a randomly selected

waveform from the list and creates an injection with that intensity. It repeats the

same procedure using the generator function N times for each m intensity value.

Then it saves all the scores in a dictionary with the intensity value as a key. It is up

to the user then to select a threshold (corresponding to a specific false alarm rate)

above which we consider an injection to be detected or not. This function provides

the scores and leaves it to us to use the trials as we see fit to calculate an efficiency

value for the type of waveform tested.

ZeroLagTest

This function is used to create an offline search. It follows the same procedure as

falseAlarmTest, except that all segments are in zero-lag, as we can see them in the

detectors. Furthermore an important additional parameter that we describe more in

the offline search Chapter 6 is the strides. Note that those are not the same strides

that are used in CNN searches. Strides help us “scan” the data with more detail by

using overlapping segments. When stride S is defined, the function runs the same

generator function S times. Each time it adds a small offset to the GPS time equal

to d/S, with d being the duration of the instance (in our case 1 second). All S

DataSets are then fused and fed to the models as described above. Again the way

we will process the results depends on what we will consider a detection. In practice
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we find that injections tend to produce high model scores over multiple consecutive

strides. Therefore, given the threshold, for a detection to occur we need the model

to fire in at least two consecutive strides to consider a candidate. This helps us avoid

single high false positives that are a result of the imperfections of the model.
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Real-time detection of

Unmodelled Gravitational wave

transients using CNNs

This chapter is adapted from a submitted paper, by me, Michael Norman and Patrick

Sutton. I worked on the pipeline creation and the analysis of the results, Michael

Norman worked on the creation of the genetic algorithm that helped choose the

correct model and Patrick Sutton was supervising the project offering direction and

corrections.

5.1 Introduction

Gravitational-wave (GW) astronomy is now an established field of observational

science. To date, the LIGO [58] and VIRGO[59] collaborations have published the

details of 90 detection candidates [52, 60, 61, 62, 63, 64, 65], over the first three

observing runs. The detected signals originate from the binary inspiral and merger

of two black holes [66], two neutron stars [41], or one object of each type [67].

Low-latency detection of candidate signals offers arguably the greatest poten-

tial scientific payoff, as the GW observations can trigger followup observations in

other channels; i.e , multi-messenger astronomy. For example, combined GW and

electromagnetic observations of GW170817 - GRB 170817A [68] have yielded novel

insights into the origin of heavy elements [69], neutron-star structure [70], GRB

astrophysics and host environments [71], and the Hubble constant [72]. Electromag-

netic followup of gravitational-wave signals requires very low latency analysis of the

GW data - preferably at the second scale to capture the highest energy emissions

(e.g., the prompt gamma and x-ray emission of GRBs), so that it produces accurate

sky localisation results to make the follow up possible. Current low-latency GW

analysis techniques rely on hundreds of dedicated CPUs and achieve minute-scale

latency for automated alerts [73].
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CNNs have demonstrated potential for the real-time analysis of data from gravitational-

wave detector networks for the specific case of signals from coalescing compact-object

binaries such as black-hole binaries. Unfortunately, training these CNNs requires a

precise model of the target signal; they are therefore not applicable to a wide class

of potential gravitational-wave sources, such as core-collapse supernovae and long

gamma-ray bursts, where unknown physics or computational limitations prevent the

development of comprehensive signal models.

Recent work by a number of authors [74, 9, 21, 22, 29] has shown that a funda-

mentally different approach using CNNs has the potential to analyse detector data

for GW signals in real time (∼1 s latency) using a single dedicated GPU. However,

CNNs demonstrated to date are only capable of detecting signals with a precisely

defined signal model (i.e., compact binary coalescences) that is used to train the net-

work. Many potential sources are governed by physics which is either unknown (eg.

the neutron star equation of state) [75]) and/or computationally intractable (eg. the

modelling of core-collapse supernovae [76] and accretion-disk instabilities [77]); their

transient signals are commonly known as gravitational wave bursts (GWBs). While

the unknown physics governing GWBs makes the study of such signals exciting, it

also poses a challenge: to fully explore the new GW window we need to be able to

detect signals from the widest possible variety of sources without relying on precise

models for training.

We address this challenge by proposing a novel CNN architecture that analyses

not only the detector strain data directly but also the cross-correlation timeseries

between detectors. By training the CNN with ‘featureless’ randomised signals, we

are able to construct a neural network that detects coherence (amplitude and phase

consistency) between detectors rather than specific signal shapes in individual de-

tectors. We test the trained CNN with real data from the LIGO-Virgo network and

show that it is capable of detecting a variety of simulated GWB signal morphologies

without being specifically trained for them, at sensitivities close to that of standard

GWB searches, but at much lower latency and a tiny fraction of the computational

cost.

In section 5.2 we present the architecture of our CNN and describe the analysis

and training procedures. In Section 5.3 we present the performance of the trained

CNN on both simulated and real LIGO-Virgo data. We discuss the implications of

these results and next steps in Section 5.4.

5.2 A CNN for Unmodelled Burst Detection

5.2.1 Network Architecture

Our goal is to be able to detect sub-second-duration GWBs in data from the three

detectors of the LIGO-Virgo network, without prior knowledge of the signal mor-
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phology. A significant challenge is to distinguish real signals from the background

noise transients, “glitches”, that are common in these detectors [7, 5, 50].

Typical GWB detection algorithms [78, 79, 47, 80] do this by requiring candidate

signals to be seen simultaneously in multiple detectors (simultaneously up to the

light travel time between the detectors) and to be correlated between detectors.

We follow this logic in our analysis by using a network architecture that combines

the outputs of two different CNNs: one that detects coincident signals in multiple

detectors (Coincidence model - Model 1), and a second that detects correlation in

phase and amplitude between the detectors (Coherence model - Model 2).

Coincidence Model - Model 1

The first CNN is a single-input single-output residual neural network whose main

goal is to identify real signals from noise. More specifically it tries to identify coin-

cident signals that appear in at least two detectors. This model takes as input the

whitened timeseries data from each of the three LIGO-Virgo detectors. The output

is a score on [0, 1], where high values indicate signal and low values no signal.

Residual neural networks are proven to boost the performance of simpler CNNs

by reducing the effect of vanishing gradients that makes deep CNNs loose contri-

butions from their first layers and causes their efficiency to saturate. We adapt a

network from [81] that compares different methods of using machine learning on

timeseries data. In addition to that we optimise it using a genetic algorithm (see

below). We find that the resulting residual neural networks outperforms “ordinary”

deep CNNs in our case.

More specifically we optimised a simple CNN model with a relatively good per-

formance (overall accuracy > 95%) and then used it as a “residual block”, where

we feed the output of the block to its input. To find the hyper-parameters of the

model we used a genetic algorithm that trained many generations of different ran-

domly initialised models and found which hyper-parameters seem to increase the

performance. The main two differences from the original model of [81] was the ker-

nel size that is quite bigger in our application and the reduction of one layer, from

three layers to two, in the residual blocks. We also tried to see how many residual

blocks are optimal and we saw that three are enough, as it is in the original model.

Variations on the number of filters had not obvious effect on the performance and

we chose to follow the original sizes on this to make the model less computationally

expensive. The final addition was the use of a cyclical learning rate [82] that boosted

our performance by 2%.

This residual network as we present in Figure 5.1 has three residual blocks. The

first has filter size of 64 and the last two 128. At the end of each residual block

we add the filters of the first layer of that block to the output. By doing this the

gradient can skip the intermediate layer reducing the vanishing effect. Due to the
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fact that we use convolution, all layers are zero-padded to maintain the same size

with the input and make this addition feasible. At the end of each layer we apply

ReLU activation followed by batch-normalisation.

Finally after the last residual block we flatten all the parameters using global

average pooling. Following that we used two fully connected layers with batch-

normalisation before the output layer. The output layer has a sigmoid activation

and for the calculation of the loss we used binary cross-entropy.

As we discussed before this model is trained to identify signals that are present

to at lease two detectors. We trained with simulated noise, signals and glitches with

proportions appropriate to focus on that goal. We discuss this more in the training

methods 5.2.3

Coherency Model - Model 2

The second model has two inputs and one output. The first input is the same

whitened timeseries data fed to the first model, while the second input is the Pear-

son correlation of each pair of detectors, generated using the PlugIn functionality

described in subsection 4.3.2. The reason we decided to feed correlation in the input

is because after a lot of experimentation there was no clear proof that a model can

figure out correlation information (which is crucial for this problem) by just giving

as input the strain data. Furthermore, even if this was possible, it is an unnecessary

computational burden as the Pearson correlation is simple to compute and more

easy to digest by a feature detecting algorithm.

rαβ[n] =

∑N
i=1(dα[i]− d̄α)(dβ[i+ n]− d̄β)√∑N

j=1(dα[j]− d̄α)2
∑N

k=1(dβ[k]− d̄β)2
. (5.1)

Here dα[i] is the whitened data timeseries for detector α, d̄α is the mean over N

samples, and n is an integer time delay between detectors. The correlation is com-

puted for all n corresponding to time delays of up to ±30ms in respect to the first

detector. This is the maximum arrival time delay a signal can have between the

three detector network. These two inputs have their own separate branches and

eventually merge their features in one as we present in Figure 5.2.

Due to the small size of the input the network didn’t need to be as deep as

the coincidence model. We also used a genetic algorithm that tries different hyper-

parameters and trains many generations of models. In the end it keeps the models

with the best performances. An interesting observation was that in this model the

number of filters is a sensitive parameter that can prevent the model from training

at all if it increased or decreased at any of the convolutional layers. On the contrary,

variations on the kernel size had surprisingly no big effect on performance. They

affected stability of training in some cases though. The choice for kernel size was

made based on how often those numbers appeared in the gene pool of last generation
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of successful models, where as gene pool we define the values of different hyper-

parameters that are present in a generation of models.

There has been an attempt to use residual neural network for the “Strain” branch

of the model but is seemed to be an unnecessary complication because the perfor-

mance is the same. That shouldn’t surprise us because the problem that the model is

trying to address is different. The two branches of the coherency model are flattened

using global average pooling which as in model 1 showed to increase the performance

slightly.

This model has also a binary classification output that returns a measure of

coherency among any detectors [0,1]. To achieve that we use a different group of

datasets than the coincidence model. We use simulated noise and signals but also a

combination of coincident and not coincident uncorrelated signals.

5.2.2 Analysis Procedure

In our analysis we use two types of background noise. The one we use for training is

Gaussian noise that follows the design curve for the LIGO detectors [83]. For testing

we use publicly available data from the LIGO-Virgo detectors. They are read from

files accessible from the GW open science center (GWOSC)[84] (https://www.gw-

openscience.org/O2/). Important mention again that real detector noise is used only

for testing and not for training. The three detectors are denoted H (Hanford), L

(Livingston), and V (Virgo). The power spectral density Sα(f) for each detector

α is computed using Welch’s method, and used to whiten the corresponding data

stream. The Pearson correlation is computed between each pair of detectors. The

bandpassed [20,512]Hz - whitened data series and the correlation series are then fed

into the two models. Finally, the scores from the two models are multiplied together

to give a combined score on [0, 1]. In practice we find the scores of both models tend

to be strongly peaked around 0 for noise and weak signals, and strongly peaked

around 1 for strong signals. In this way a candidate signal needs to score highly for

both models; i.e. showing both coincidence in multiple detectors and correlation

between the detectors.

The LIGO-Virgo data used, from [84], were sampled at 4096Hz. We downsample

to 1024Hz, allowing us to detect signals up to 512Hz; this covers the most sensitive

frequency range of the detectors and is sufficient for the purpose of demonstrating

our CNN. (Since the trained network can process data much faster than real time,

we could extend the analysis to higher sample rates.) We chose to focus on signal

durations <1 s by analysing data in 1 s segments. This covers many plausible sig-

nal models, including for example core collapse supernovae [76], perturbed neutron

stars and black holes [67], and cosmic string cusps [56]. We could extend to longer

durations as well (with a corresponding increase in latency). At our chosen sampling

rate this means that the timeseries data is fed to the CNN in an array of size [1024
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x 3]. The Pearson correlation is computed for time delays in steps of one sample

over ±30ms, for a total of 60 samples; this data is therefore in an array of size [60 x

3]. We use H as the reference and apply the time delays to the L and V timeseries.

To estimate the distribution of scores of the background noise, we repeat the

analysis many times after time-shifting the data between detectors by an integer

number of seconds. This procedure is discussed excessively in chapter 4. Since the

time shift is much larger than the largest possible time-of-flight delay between detec-

tors, it prevents a real GW signal from appearing in coincidence between multiple

detectors. All coincident events in the time-shifted series can therefore be assumed

to be uncorrelated and treated as background noise. This is a standard procedure

in GW analysis; see eg. [7].

To estimate the sensitivity to GWBs, we repeat the analysis after adding simu-

lated signals to the data. In General Relativity, a GW has two polarisations, denoted

h+(t) and h×(t). The received signal hα(t) of a given detector α is the combination

hα(t) = F+
α h+(t) + F×

α h×(t) (5.2)

where the antenna response functions F+,×
α are determined by the position and

orientation of the source relative to the detector. We characterise the strength of

the received signal by its network optimal signal-to-noise ratio

ρ =

√√√√∑
α

4

∫ ∞

0

|h̃α(f)|2
Sα(f)

df . (5.3)

Generating simulated signals distributed isotropically over the sky and rescaling to

different ρ values allows us to measure the distribution of CNN scores as a function

of the signal-to-noise ratio of the signal.

5.2.3 Training

The choice of data used to train a CNN is a critical factor for the CNN’s perfor-

mance. For the signal population we use white-noise bursts (WNBs) [47, 7]; these

are signals where the h+ and h× polarisations are independent timeseries of Gaus-

sian noise that is white over a specified frequency range, multiplied by a sigmoid

envelope. We select these as our training sample as they are effectively featureless.

The bandwidth of each injection is selected randomly and uniformly over the range

[40, 480]Hz. The duration of each injection, is selected randomly and uniformly over

the range [0.05, 0.9] s. Given their duration their central time is positioned randomly

inside this 1 second interval in a way that they don’t get cropped. The injections

are distributed uniformly over the sky and projected onto the detectors using equa-

tion (5.2). Finally, the signal is rescaled to a desired network signal-to-noise ratio

ρ as defined in equation (5.3). In the rest of this section we will discuss different
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aspects of our training data and methods, that eventually gave us the current best

model.

Code

All training data was generated using the MLy pipeline [85] as discussed in chapter 4

and its generator function, which uses elements of the PyCBC [86] and GWpy[48]

package to project the signal onto the detectors and apply time-of-flight differences

to the signals arriving at the various detector locations. For training the models we

used Keras [87].

Data types

Each model is trained with different datasets that focus on challenging the models

to achieve their best performance on each of their tasks. All data instances have

background noise and if applicable a type of injection. For the background samples,

we find in practice that the best CNN performance is obtained by training with

simulated detector noise and glitches, rather than real glitchy detector noise. We

therefore use Gaussian noise with a power spectrum that follows the design curve

for the LIGO detectors [83] to model the stationary component of the LIGO-Virgo

background noise. The reason the performance is better is that by using real noise

the occurrence of glitches is not enough for the model to learn to recognise them.

In our application we created noise instances with glitches and we can control the

frequency they appear. As it will be shown later this helps a lot with the reduction

of false alarms.

For the coincidence model we use three types of data instances: noise, glitches

and signals. Noise follows the stationary component of LIGO-Virgo background

with addition of random fluctuations. For the glitches we use the same waveform

bank as we do with signals and we do a single detector injection to a randomly

chosen detector. Those injections will have a variety of SNR values ranging between

[6,70]. Noise and glitch datasets are both labeled as “noise” they belong in the

same classification class. Signals are the only type labeled as “signal” and they are

injected in all three detectors as described above with SNR values inside the range

[12,30]. The limits of this range are chosen based on the fact that lower SNR values

in training increase the false alarm rates dramatically and that higher SNR than

30 is quite obvious to be detected by the simplest pipeline and as proven later the

detection efficiency holds to higher SNR values than trained ones.

For the coherency model we also use three types of data. Noise and signals are

as before with the difference that the range of SNR values now is [10,50], because

after trials on minimum and maximum SNRs included, this was shown to be best.

The third type are the incoherent signals. This type is also labeled as ”noise” and

they represent the extreme cases where glitches or non gaussianities are present in
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at least two detectors. To make this we randomly select three different injections

from our bank and we inject them in the detectors like they are three projections of

the same signal. Their network SNR is in the range [10,70].

There are three subcategories of incoherent signals that are themselves three ex-

tra datasets. Pearson correlation is calculated only around the window of ±30s. We

expect that even different signals will have some kind of excess correlation, although

this correlation will not be the same in all three pairs of detectors (HL,HV,LV).

Moreover each injection can have different duration which will affect the overlap of

those signals. To control their relative positions we created a metric called ”dispo-

sition”, described in detail in section 4.2.4. Disposition is the range of the central

times of those signals. In the case of three detectors and a disposition of 0.5 sec-

onds one randomly selected signal will be put at 0 seconds the next at 0.25 seconds

and the last one at 0.5 seconds. All together will be randomly positioned in the 1

second interval so that no signal gets cropped. Finally given the disposition there is

a restriction imposed on the injections duration, so that the don’t go outside of the

range of 1 second. Meaning that injection duration and disposition are complement-

ing each other to 1 second. We explain this in detail on section 4.2.4. We generate

three datasets with disposition options. The first one has range of [100,500] (3a)

milliseconds, the second [0,100] (3b) and the last one has zero disposition (3c) to

challenge the model with coincident incoherent signals.

The list below summarises all the types of data we used. All the types are

described in detail in Chapter 4:

• Type 1: Gaussian LIGO-Virgo noise, with no injections. Labeled as noise.

• Type 2: Gaussian LIGO-Virgo noise with coherent WNB injections in all

detectors, simulating a real GWB. Labeled as signal.

• Type 3: Gaussian LIGO-Virgo noise with different (incoherent) WNB in-

jections in each detector, simulating unrelated glitches or excess noise in each

detector. The injections may be simultaneous or offset in time from each other

to simulate simultaneous or nearly simultaneous glitches. Labeled as noise.

• Type 4: Gaussian LIGO-Virgo noise with a single WNB injection in a ran-

domly chosen detector, simulating a glitch in a single detector. Labeled as

noise.

Reproducibility

It is crucial for one method or model to have reproducible results if it is going to

be compared with another. The weights of each model are initialised with random

normal numbers before training starts. Furthermore the path that the gradient

decent will follow during training is never the same, even with identical initialisation.
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This can lead to different results if we train the same model with the same data two

independent times. To address this issue we train a given model multiple times to

see how important is this effect on the variance of the results. This is a crucial issue

for the next subsections where we compare different methods of training.

The variation is present on the false alarm rate test and the efficiency curve (see

section 5.3). For the false alarm rate what varies is the score of the loud events.

For the efficiency the variation depends on how sensitive is the model to a signal

but it also depends on the the loudest false alarm rate event because it defines the

threshold.

In Figure 5.3, we trained a pair of models 1 and 2, ten times each. This pro-

vides a good enough estimation of the variance and mean of the false alarm curve.

Additionally by combining all the possible pairs we get 100 independent tests of the

final model. This practice is followed in the next subsections where we investigate

different methods of training.

Input ratios

In more common classification problems the training data have the same amount of

examples in each case, because all classes are equal and there is not preference in

the performance. In this problem we prioritise the reduction of false alarms (false

positives) and the ability of the network to understand how noise looks like, instead

of what is a signal. Even with our best model, a 50-50 ratio gives back a false alarm

rate of 1/day. Furthermore we have more than just simple noise and injection in

our data types, and we try to simulate a real noisy detector with Gaussian noise and

WNBs, so we also needed to investigate what are the optimal proportions of each

type. We trained both models with different ratios of the data types to check which

one provides the best performance.

For model 1 we tried 12 different proportions of different training data. We tested

combinations of 3,6, 3,6,12 and 3,6 of 104 instances of Type 2, 4 and 1 respectively.

For model 2 we have 16 combinations. The tested combinations are of Type 2, 3a

& b together, 3c and 1 with choices being (5,10) 104 for each of them. For all those

different proportions we train 7 models and we use the mean false alarm curve and

efficiency test for comparisons. We get in total 192 different combinations of model

1 & 2. As is described in more detail in section 5.3, the ranking of a model is defined

by the 50% threshold of its efficiency on a fixed false alarm rate. After training, all

models were tested for false alarms with the same background noise from O2 LIGO-

Virgo scientific run during August 2017. Additionally we run an efficiency test on

various waveform types to all models, using again the same exact background data

and injections for all models so that the comparison is robust.

The combination of proportions with the best performance from each type is

the one that follows 3-6-3 (Type 2 - Type 4 - Type 1) proportion for model 1 and
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5-10-5-5 (Type 2 - Type 3a&b - Type 3c - Type 1) for model 2. In both cases it is

interesting to see that for the best training we need much more glitch like data than

plain noise or signals. That supports the idea that noise by itself is not enough to

train the algorithm to ignore glitches.

Virgo elevation

As it is stated, before we train with artificial Gaussian noise that follows the PSD of

the advanced LIGO and Virgo detectors. Although that PSD is not representative

of the real data, especially when the real data are from the O2 observing run. More

specifically, the distance between the Virgo and LIGO detector noise level is smaller

in the artificial data, than what it is in real data. For that reason we experimented

on training the best model from the previous investigation (5.2.3) with different

noise level elevations for Virgo, by multiplying with powers of two the background

of the artificial data: [0.5,1,2,4,8,16,32]. The case of 1 is the same models used in

the previous section and the case of 0.5 is for a sanity check on the method. Again

for each model we trained seven independent models with the same parameters and

used the mean to compare the methods.

As we present in Figure 5.4 the higher the elevation the better the false alarm

rate. That is expected because if Virgo is much louder than LIGO detectors most of

the SNR contribution will go to Hanford and Livingston strains. Eventually a lower

false alarm threshold, makes more injections detectable. As we present in Figure

5.5, making Virgo around 10 times louder than the other detectors will increase the

probability of a randomly localised injection to be detected. This is a controversial

situation where we practically teach the model to ignore Virgo, unless the injection

is really loud. It is not the first time [4] where HL analysis is better than HLV,

assuming that our case of a loud Virgo resembles an HL analysis.

5.3 Evaluation

Following the investigation to find the best working model we found one with the best

performance compared to others. The evaluation below describes how we calculated

the values we talked about in previous sections but focusing on the best current

model for the final results.

5.3.1 False Alarm Rate

A standard means to assess the performance of a GWB detection algorithm (see

eg. [7]) is to measure the detection efficiency for various signal morphologies as a

function of the signal amplitude (signal-to-noise ratio) at a fixed false alarm rate.

We calculate the FAR as a function of score by analysing background data sam-

ples that are independent from those used in the training. For the final model we
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measured the FAR using real LIGO-Virgo data from the second observing run during

times when all three detectors were operating (1 - 25 Aug 2017), with time shifts ap-

plied as discussed in Section 5.2.2. For this calculation we used the falseAlarmTest

function and its scheduler function as they were discussed in section 4.3.

We consider that 1 per year for unmodelled searches is a good starting thresh-

old to see if our models could be relevant for triggering electromagnetic follow-up

observations. This choice is motivated by LIGO-Virgo for issuing public alerts of

candidate signals [88]. We calculate the FAR up to 10 years in our results to show

the limits of the current models and methods.

From this distribution we can find our false alarm rate threshold (1/year) and

calculate the detection efficiency. In Figure 5.6 you see the false alarm rate for the

current best model found from the above investigation.

5.3.2 Detection Efficiency

We calculate the detection efficiency of our model for a selection of different possible

GWB signals, both for the case of simulated Gaussian background noise and for

real LIGO-Virgo data from the second observing run. In each case we generate new

sets of signal injections (different from the training data) and add them to a noise

background from the O2 observing run. We measure our sensitivity to five distinct

waveform morphologies:

WNB These are the same type of signal as the Type II used for training.

CSG A circularly polarised sinusoidal signal with Gaussian envelope. These ad hoc

waveforms are standard for testing GWB analyses [7, 5].

CCSN The N20-2 waveform of [54], from a 3D simulation of a neutrino-driven

core-collapse supernova (CCSN) explosion.

Cusp The GW emission expected from cosmic string cusps [?].

BBH The GW signal from a black-hole binary merger. We used the IMRPhenomD

waveform model [53][89]. The black-hole masses and spins were selected ran-

domly and uniformly over the intervals [10, 100]M⊙ and [−1, 1], with the re-

striction that the spectrum of the signal from the binaries producing those

waveforms does not exceed 512Hz.

To create the efficiency curve we select a range of SNR values and for each one of

those SNR values we generate 1000 injections (Type 2) where each one of them is re-

scaled to match this value. Each injection is embedded to the background timeseries

and it is processed by the models giving a score. The injection is considered to be

detected if the output score is larger than that of the false alarm rate test threshold.

We test those 1000 signals of each morphology at each value of the range ρ =
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0, 1, 2, . . . , 50, where the ρ = 0 case corresponds to pure noise (where we expect small

efficiency for a small FAR). For the efficiency calculation we used the efficiencyTest

function and its scheduler function as they were discussed in section 4.3.

Fig.5.8 shows the detection efficiency for each case. We see that we are able to

detect >50% (>90%) of all signals that have amplitudes ρ ≥ 19 (ρ ≥ 27), with the

exception of cusps for which the sensitivity is lower. The performance for CCSN and

BBH signals is very similar to that for WNBs, even though the signal morphologies

are quite different. The performance for CSGs is even better, which we attribute to

the very small time-frequency volume that it occupies. The performance for cusps

is poorer, which probably occurs because cusps are linearly polarised and WNB

training injections are elliptically polarised. This is also apparent in the difference in

performance of SGE153Q8D9 compared to SGL153Q8D9 where a similar reduction

of performance is detected for the linearly polarised signals. This is an interesting

demonstration of where our training could potentially be improved to handle a yet

broader range of signals.

We tested the models also on the five BBH signals that appear in August 2017 on

the O2 run. Although as expected, due to their SNR being below our 50% threshold,

we were not able to detect them.

5.3.3 Comparison with the all-sky search in O2

Except for the performance test for the various waveforms above we also do a com-

parison with the all-sky search results for short duration bursts in the O2 observing

run [90]. In this performance test we follow exactly the same procedure as before

but instead we use the hrss as a metric of intensity of the signal. Note here that

the hrss calculation happens before the whitening of the data. Hence signals with

frequencies of low detector sensitivity will result to a reduced representation in SNR.

There is no clear matching between SNR and hrss due to that fact. The reason we

use hrss is because we need to have the same metric to compare the waveforms. In

Figure 5.9 we show the efficiency curves of all the waveforms we compare, with the

addition of one linearly polarised one that we don’t compare with.

In Table 5.1 we see that the 50% efficiency thresholds are very close. Although

this shows the potential of our models. SGL1538D9 are the same type of waveforms

with SGE1538D9 with the only difference that they are linearly polarised. Their

performance is worse than the elliptical polarisation as it was also observed by the

Cusps performance.

5.3.4 Inference Time

We note that the CNN analysis of data is very fast: we find that the average time

required to process 1 second of data, given that the data are already downloaded

and processed, is 51ms on a 3.5GHz Xeon E3-1240v5 quad-core CPU with 32GB
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Performance comparison on the O2 HLV data set

Morphology
cWB [5]

(10−22Hz−1/2)

MLy

(10−22Hz−1/2)

Gaussian pulses

t=2.5 ms 2.8 3.5

Sine-Gaussian wavelets

f0=70 Hz, Q=3 1.5 1.9
f0=153 Hz, Q=8.9 1.3 1.7
f0=235 Hz, Q=100 0.9 1.4

White-Noise Bursts

flow=100 Hz, ∆f=100 Hz,
t=0.1 s

1.2 1.7

flow=250 Hz, ∆f=100 Hz,
t=0.1 s

1.4 1.8

Table 5.1: The values shown refer to hrss, in units of 10−22Hz−1/2, at the 50%
efficiency threshold. Comparing waveforms from cWB results [5] but modified for
iFAR of 1 per year. We were provided with the efficiencies for FAR values of 1
per year for cWB by Shubhanshu Tiwari, a member of cWB team. We restrict the
comparison to injections with frequencies and durations that are in the range for
which we have trained the MLy models (duration < 1s , frequencies in the 20 Hz -
480 Hz band).

of RAM. This is much faster than the minute-scale latency typical of current LIGO-

Virgo low-latency searches [73]. Also the time to train both models on a Tesla

V100-SXM2-16GB GPU is 4 hours.

Important to note is that due to the fact we train with artificial noise the training

is independent of the observing run. A false alarm rate calculation would need to

be repeated only to make sure that it stays stable along the run once in a while. By

the time it is trained and tested, inference is the only thing we need to do.

Finally, given the low latency inference of those models, we suggest that it’s

combination with sky-localisation pipelines [91, 29] can be a complete set for an

unmodelled signal search. Although we understand that this needs more work to be

generalised to unmodelled signals except CBCs.

5.4 Discussion

Unlike previous CNN-based analyses, our pipeline is capable of detecting waveforms

with morphologies that are not included in the training set while rejecting real

detector noise glitches. The analysis is shown to be sensitive to a variety of wave-

form morphologies at signal-to-noise ratios and false alarm rates relevant for issuing

rapid alerts to the astronomical community, with very low latencies and computing

requirements.
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Our pipeline uses a multi-component architecture where one CNN detects tran-

sients that are simultaneous in multiple detectors while a second detects correlation

between the detectors to eliminate coincident background glitches. The second CNN

takes as input both the whitened detector timeseries data and the Pearson correla-

tion between detectors computed for all physically allowed light travel time delays

between detectors, allowing the CNN to detect signal correlation rather than signal

shape.

We suggest using separate models to identify different aspects or properties of

the desired signal may be a useful approach generally for GW detection with ma-

chine learning methods. While our model already has sensitivity approaching that

of standard low-latency analyses, we consider this investigation to be a promising

first attempt with potential for improvement. For example, training with more so-

phisticated simulated and real glitches may reduce the threshold required for the

target false alarm rate, while training over a wider range of parameter space (like

polarisations) may increase sensitivity to transients similar to cosmic string cusps.

In the next chapter we will use this model to run a search on O1, O2 and O3

observing runs.
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Figure 5.1: Coincidence model architecture (model 1). For each layer we show the
kernel size on left (if applicable) and the number of filters on the right. The plus
symbol indicates the summation of weights between outputs of different layers.
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Figure 5.2: Coherency model architecture (model 2)
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Figure 5.3: False alarm test results for 10 different trainings of Model1 (blue) and
Model2 (red) and their combination (100 models - magenta) of scores. For the false
alarm tests we used the same instances among the models. We tested 1 month of
data and we present here the 1000 loudest events for each model. We highlight with
a bold line the mean result for each model. The gray area represent one standard
deviation for each case.
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Figure 5.4: Average false alarm rates of models trained with elevated Virgo level.
For each average curve we calculated the false alarm rate of 49 models ( 7 model1,
7 model2 combinations), using the same data instances.
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Figure 5.5: The average efficiency curve (out of 49 different combinations of model1
and model2) for WNB signals based on thresholds of 1 per month false alarm rates
for each case.
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Figure 5.6: False alarm rate of the current best model, up to once per 10 years. We
compare the performance of Gaussian Noise and O2 real noise. The score thresholds
of 0.11 and 0.30 false alarm rates of 1/month and 1/year are also shown respectively.
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Figure 5.7: Examples of testing signals of high SNR embeded in Gaussian noise:
white noise burst (WNB), binary black hole merger (BBH), core-collapse supernova
(CCSN), circularly polarised sine-Gaussian (CSG) and cosmic string cusp.
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Figure 5.8: Detection efficiency : The percentage of simulated signals that are de-
tected at a false alarm rate of 1 event per year versus the signal-to-noise ratio (SNR)
defined by equation 5.3. The waveform morphologies are white noise burst (WNB),
core-collapse supernova (CCSN), circularly polarised sine-Gaussian (CSG), cosmic
string cusp, and binary black hole merger (BBH).
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Figure 5.9: Detection efficiency for generic sub-second bursts for iFAR 1/year.
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Chapter 6

Offline search using CNNs for

generic subsecond waveforms

In the previous chapter we described our pipeline for real-time detection of unmod-

elled gravitational wave transients. We showed in Figure 5.8 that the current best

model can detect WNB sub-second generic waveforms with a false alarm rate of

once per year when SNR values exceed ∼ 19. In this chapter will extend our results

by applying our best model to an off-line search on O1, O2 and O3 observing run

datasets. In section 6.1 we discuss two modifications to the analysis procedure re-

quired for performing a search for real signals in the O1, O2 and O3 observing run

datasets.

6.1 Process

For each off-line search we follow the same process with small differences in some

details related to how we access the data. We use the same code to process the data

that we use to calculate the false alarm rates and the efficiency curves as described

in Chapter 4 and 5. In this off-line analysis we don’t use time-lags. All our data are

processed in zero lag as they were observed from the detectors. Finally we will add

an extra feature to make the search more efficient and to make sure we don’t loose

any signals. This feature is called the time-strides.

A time-stride is the time step between two successive data instances that we

process. In the false alarm testing we use the default stride of 1 second because we

don’t want any data to be repeated during the tests. During a search we want to

make sure that any signal will have the opportunity to pass through the center of

our process window. For that reason we use a stride of S = 1/8 = 0.125 s. The

choice for that number is based on computational costs. In theory we can use a

stride of 1/fs, although the computational cost would be excessive. Using 0.125

seconds as a stride is enough to give us an idea of how long the algorithm reacts to

each trigger. We expect that a short-duration trigger will have a continuous high
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score as it passes through the one-second processing window.

By using the strides a short duration signal might be inside the analysis window

up to T/S times, where T the duration of the analysis window. In our case T = 1 s

so S = 1/8 s. Triggers that have a distance in time equal to the stride, are grouped

together in a super-event. For each super-event we keep the highest score as the

overall score of the super event and the GPS time of that highest score as the time

of the super event.

6.1.1 An HL search with an HLV trained model. How?

The MLy pipeline demonstrated in Chapter 4 is designed to analyse data from the

three-detector HLV network. However, for a large fraction of the O1, O2 and O3

runs (including all of O1) only the HL pair were operating. As you will see below we

do an HLV analysis, but also an HL analysis using the same model for each observing

run. We will explain here how is this possible. At the beginning we attempted to

see how the model would react if the data from one of the detectors is only zeros

and found that the performance was reduced dramatically. This is expected because

the models were never trained with zeros in their input. We note however that by

applying the Virgo elevation technique in the training we effectively taught the model

to ignore Virgo data provided there is not a loud correlated signal in them. We take

advantage of that and instead of creating a whole new model, that is trained with

only two detector data, we add an elevated simulated Virgo noise whenever Virgo is

not in observing mode. It is important to note here that even with a very elevated

Virgo, after whitening the data, there is no difference in the noise level from the

other detectors. In this way we feed a familiar representation of a detector without

signal, so that the model doesn’t react unpredictably. Finally we have to note that

for the moment we chose not to analyse data when only the HV or LV detectors were

operating. We do this because without two LIGO detectors operating the overall

sensitivity of the network is much lower. Testing the performance on these networks

while substituting Gaussian noise for the missing H or L detector is a subject we

leave to future study.

To test this theory we created a series of 200 injections of WNB signals and we

embedded them in 200 different real LIGO-Virgo noise instances. First we injected

the signal in the HLV detectors and noted the scores. We then used exactly the

same pairs of injection and noise but omitted to inject the signals into Virgo. Note

that we did that without adjusting the intensity of the signal in the LIGO detectors.

We want to prove that in most cases, if the signal is missing in Virgo, there will be a

minimal effect to the score compared to the HLV score. In addition to that we repeat

the same procedure but now we zero out the Livingston injection to demonstrate

that if we omit any other detector except Virgo, the model will fail.

In Figure 6.1 we present the comparison of HLV scores, HL (Virgo missing) scores
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and HV (Livingston missing) scores for three different hrss values. The first value

of 1.8 × 10−22Hz−0.5 corresponds to the 50% threshold for WNBs in the frequency

range 250-350 Hz in the O2 search as presented in Table 5.1 and Figure 5.9. The

second is 4× 10−22Hz−0.5 which the 90% threshold of the same type and the third

value is 2× 10−21Hz−0.5 which is just an really high intensity of the signal.

It can be seen that for the 50% threshold value the HL search (magenta) stays

in mostly the same scores with HLV, with a ∼ 10% of them being outliers scattered

around. The outliers are expected due to the random sensitivity machine learning

can show to unknown features. All outliers are equally distributed to both sides of

the dashed line. On the contrary HV values (blue) are all zero, showing that the

model will not detect signals if Livingston is empty. For the 90% threshold value

we see a similar behaviour, although HL scores are closer to 1 this time. In the

last exaggerated intensity case we see nearly all HL values to 1, with the expected

outliers. The HV case continues to be zero.

This test demonstrates that we can expect to be able to analyse times when the

Virgo detector is offline using our three-detector model by substituting simulated

Gaussian noise for the Virgo data stream. We stress that to test the validity of

an HL analysis we still have to run a separate false alarm and efficiency tests for

that kind of data. We will show below that this technique makes it possible for

our model to detect HL-only events such as GW150914 with high confidence. This

approach will have the further benefit in the future scenario of an online analysis,

in that only one model will be needed and no switching between three-detector

and two-detector models will be required. In the following applications of the HL

search, we will run the search along all the available coincident times of H1 and

L1 and we will not exclude times were Virgo is online for convenience. Although it

might be advantageous to combine the analysis of data with both HLV and HL-not

V technique. For example if an event is detected in both versions of the search,

it could possibly reduce its false alarm rate. Although due to the fact we use the

same model for both searches we cannot treat HLV and HL-not V version as totally

independent and more research needs to be conducted about that matter. Hence

this search we will treat HLV and HL-not V as separate searches without combining

their findings.
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Figure 6.1: Test of the importance of the L and V detectors to the score assigned to
200 WNB injections by the three-detector CNN model. Horizontal axis: ordinary
HLV score. Vertical axis: score assigned to the injection when the injection data
stream for L (“L missing” - blue) or V (“V missing” - magenta) is replased by zeros.
Top plot is for injections with hrss value of 1.8× 10−22Hz−0.5 which corresponds to
the 50% detection efficiency for this signal type, the middle plot value corresponds
to 90% and the bottom plot is a very high value for reference 2× 10−21Hz−0.5.
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6.2 O1: The first observing run analysis

During the first observing run there have been three gravitational wave detections

[6] including the first confirmed gravitational wave signal ever detected: GW150914

observed at 09:50:45 UTC [92], which was the merger of two black holes with masses

36 M⊙ and 29 M⊙, SNR of 23 and luminosity distance of 420 Mpc. The other two

signals were GW151226 at 03:38:53 UTC [93] and GW151012 at 09:54:43 UTC [94]

had pairs of masses 14−7 M⊙, 23−13 M⊙, SNR of 13-9.7 and luminosity distances

of 850−1600 Mpc respectively. Those events were detected using two independently

implemented match filter analyses, PyCBC [95, 86] and GstLAL[96, 97, 98]. There

were no non-BBH signals [99, 100] detected in O1 and the only unmodelled search

was that of cWB [7]. O1 run spanned from the 12th of September 2015 until the

19th of January 2016. This was the first observing run of Advanced LIGO. During

this run only the two LIGO detectors in Hanford (H1) and Livingston (L1) were

online. From those 130 (calendar) days, an equivalent of 75 days were in analysis

mode for H1 and 65 days for L1. The times we could utilise for this search were the

coincident times of the two detectors which were 48 days of data. The sensitivity of

both detectors during O1 is shown in Figure 6.2.

Figure 6.2: The sensitivity of LIGO detectors during O1 along with the final design
sensitivity for Advanced LIGO and also the sensitivity of the last science run of the
initial LIGO detectors, S6 [2]
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In this run we have only two detectors and to actually run a search with our

models we will have to add strain data in the Virgo input that is made from simulated

Gaussian noise that follows the exaggerated Virgo sensitivity curve that we also used

for the training data. We described the process in section 6.1. For the false alarm

rate during the time of the search we used the real H1 and L1 data and applied

time-lags to create independent noise segments of equivalent duration of 10 years.

We present the false alarm rates for O1 in Figure 6.3.

Figure 6.3: The false alarm rate of the HL network in comparison with the false
alarm rate of Gaussian noise during O1 observing run. The score thresholds of 0.14
and 0.47 false alarm rates of 1/month and 1/year are also shown respectively.

We choose the false alarm rate of 1 per year, which corresponds to score thresh-

old score value of 0.47. Based on that threshold we will calculate the expected

efficiencies to other known various waveform morphologies. In Figure 6.4 we present

the efficiency curves for the main groups of waveforms as described in section 4.2.

During the first observing run we had three gravitational wave events, including

GW150914, the first gravitational wave detection. Our search on the first observ-

ing run, had only one trigger and it was on GW150914, with a score 0.986 which

corresponds to a false alarm smaller than 1 per 10 years. Our loudest false alarm

– 92 –



Chapter 6. Offline search using CNNs for generic subsecond waveforms

Figure 6.4: The detection efficiency of the MLy pipeline algorithm as a function
of the network SNR for signals from various waveform morphologies described in
subsection 4.2.1 and for a false alarm rate of 1 per year, during the O1 observing
run.

Event UTC time PyCBCB GstLAL cWB MLy*

GW150914 09:50:45.4 23.6 24.4 25.2 0.986
GW151012 09:54:43.4 9.5 10.0 ... 0.002
GW151226 03:38:53.6 13.1 13.1 11.9 0.002

Table 6.1: The official transient search pipelines for O1 [6] and their network SNR
as reported from PyCBC, GstLAL and cWB. In comparison we show the score of
MLy pipeline that correspond to detection. MLy pipeline has a threshold of 1/year
(0.47) and events below that threshold are not present here.

in the 10 year test had score 0.931. The other two gravitational wave events were

not detected. These results are consistent with the efficiency on the MLy pipeline

to detecting BBH injections. From Figure 6.4 we see that the detection probability
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at SNR 13(10) is ∼ 10%(∼ 1%), while at SNR 24 it is ∼ 93%. These estimated

efficiencies are consistent with MLy detecting the GW150914 event.

Finally we calculated the efficiency thresholds for specific gravitational wave

signals used in the all-sky search for short gravitational-wave bursts in the first

Advanced LIGO run [7]. In Figure 6.5 we present the efficiency curves of those

waveforms from which we inferred their 50% detection efficiency thresholds, and in

Table 6.2 we present the 50% detection efficiency thresholds in comparison to what

cWB inferred for the first observing run [7] for iFAR of 1 year. It is important to

note that the G2D5 and SGL152Q8D9 injection sets were linearly polarised, while

our training set consisted exclusively of unpolarised signals (WNBs with equal am-

plitudes in the two polarisations but no relation between the signals except duration

and frequency parameters). We believe this to be the reason for MLy’s poor limiting

performance at high amplitudes for these injection sets.

In the cWB O1 search paper [7], the results are in FAR 1/100 years. To be able to

compare our results we need the efficiencies for two orders of magnitude higher false

alarm rate. For the next two subsection for O2 and O3 we managed to produce this

calculation with the help of a member of cWB team, Shubhanshu Tiwari. Although

unfortunately we were not able to produce the 1 per year results for O1. We will

use the ratio between 1 year and 100 years of 50% efficiency thresholds of O2 HL

analysis as a way to calculate the cWB thresholds in table 6.2 for O1. This is a

rough estimate.

Performance comparison on the O1 data set

Morphology
cWB [7]

(10−22Hz−1/2)

MLy

(10−22Hz−1/2)

Gaussian pulses

t=2.5 ms 8.3 4.0

Sine-Gaussian wavelets

f0=70 Hz, Q=3 N/A 2.4
f0=153 Hz, Q=8.9 1.3 1.5
f0=235 Hz, Q=100 3.8 1.4

White-Noise Bursts

flow=100 Hz, ∆f=100 Hz, t=0.1 s 2.0 1.8
flow=250 Hz, ∆f=100 Hz, t=0.1 s 1.7 1.6

Table 6.2: The values shown refer to hrss, in units of 10−22Hz−1/2, at the 50%
efficiency threshold. Comparing waveforms from cWB results [7] and MLy pipeline
at FAR of 1 per year. We restrict the comparison to injections with frequencies and
durations that are in the range for which we have trained the MLy models (duration
< 1s , frequencies in the 20 Hz - 480 Hz band) The cWB thresholds are only an
estimation base on the behaviour in O2 observing run.

Based on the results in Table 6.2, we cannot claim (and we do not) that the MLy

pipeline is more sensitive than cWB in O1. However we can see that out of almost
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Figure 6.5: The detection efficiency of the MLy pipeline as a function of the hrss for
generic sub-second burst signals and for a false alarm rate of 1 per year, during the
O1 observing run.

all tested morphologies , any signal loud enough to be confidently detected by the

cWB, would have shown up in the MLy search as a trigger loud enough to trigger

an alert under or close to the alert threshold of FAR < 1/year.
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6.3 O2: The second observing run analysis

During the second observing there have been detected 7 BBH signals (GW170104

[101], GW170608 [102], GW170729 [103], GW170814 [104], GW170809, GW170818,

GW170823 [6]) and the first binary neutron star merger signal (BNS) GW170817

[105]. Those events were detected using two independently implemented analyses,

PyCBC [95, 86] and GstLAL [96, 97, 98, 106]. There were no burst or long duration

signals as reported by [107, 108] and the unmodelled search of cWB [5].

The first BNS signal GW170817 was also the event that was the first example

of multi-messenger astronomy utilising gravitational wave astronomy.. This merger

not only emitted a gravitational wave signal with a duration ∼ 60 s, but also had

an electromagnetic counterpart that was identified and observed by a collaboration

of teams from different observatories around the world [109, 110]. The implications

of that detection affected different parts of physics, from particle physics and the

equation of state of a neutron star [75], to the Hubble constant [111] and testing

general relativity [112]. The existence of such an event demonstrated the need

for fast reactions to events with a possible electromagnetic counterpart, such as join

super-novae and any other unmodelled signal we try to detect with the MLy pipeline.

The second observing run spanned from the 1 November 2016 until 25 August

2017. At the beginning of the run only LIGO Hanford and Livingston detectors

were in observing mode. During the last month of the run, on 1st of August 2017,

Virgo joined for the first time creating the first three detector network.

Figure 6.6: Sensitivity curves of the three detectors H1 (red), L1 (blue) and V1
(purple) during the O2 observing run in August 2017. Plot taken from [3].
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As can be seen from Figure 6.6, H1 and L1 had very similar sensitivities while

Virgo was 2 to 3 times less sensitive depending the frequency. H1 and L1 were in

observing mode at the same time on around 75% (118 days) of the total time they

were on. Virgo was in observing mode 85% of the 25 days it was on, and 51% of

that time it was in triple coincidence with the H1 and L1 detectors providing 15

days of three detector data.

6.3.1 HLV analysis

For the HLV analysis we used all the coincident times of H1 L1 and V1. We generated

an equivalent of 10 years of noise out of those 15 days to calculate our false alarm

rate. We have shown in the previous chapter, in Figure 5.6 the false alarm rates

down to 10 years for the coincident times of three detectors in O2. We use as a

detection threshold the false alarm rate of once per year and we find it to be 0.30.

For this analysis there were no zero-lag triggers that exceeded that threshold.

The efficiency expected for known groups of waveforms is shown in Figure 5.8.

During the second observing run we had six gravitational wave events, listed in Table

6.3 that happened while all three detectors were active. None of these events were

Event UTC time PyCBCB GstLAL cWB MLy

GW170729 18:56:29.3 9.8 10.8 10.2 0.002
GW170809 08:28:21.8 12.2 12.4 ... < 10−3

GW170814 10:30:43.5 16.3 15.9 17.2 < 10−3

GW170817 12:41:04.4 30.9 33.0 ... 0.003
GW170818 02:25:09.1 ... 11.3 ... < 10−3

GW170823 13:13:58.5 11.1 11.5 10.8 < 10−3

Table 6.3: The transient events for O2 present in all three detectors [6], and their
network SNR as reported from PyCBC, GstLAL and cWB and MLy pipeline. *MLy
pipeline has a threshold of 1/year and events below that threshold are not present
here.

detected from our pipeline or they had an insignificant score and hence very high

false alarm rate. The non-detection of those BBH events is expected given their SNR

values as estimated from the three pipelines in Table 6.3, are lower than 19 which

is the calculated 50% threshold on BBH signals, shown in Figure 5.8. The highest

SNR event GW170817, was a loud BNS merger and was not detected because its

SNR was spread over nearly 60 s and our pipeline is not trained on long-duration

signals. Hence we didn’t expect to detect it.

6.3.2 HL analysis

For the HL analysis we used all the coincident times of H1 and L1. During O2

the coincident times of H1 and L1 were 118 days and from them we calculated an
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equivalent of 10 years of noise. H1 and L1 have very similar sensitivities. We remind

here that the HL analysis uses all HL data and in the place of Virgo detector input

it feeds Gaussian noise the same distribution as that used for training as described

in the beginning of this chapter.

Figure 6.7: The false alarm rates of the HL network in comparison with the false
alarm rates of Gaussian noise during O2 observing run. The score thresholds of 0.14
and 0.61 false alarm rates of 1/month and 1/year are also shown respectively.

From Figure 6.7 that shows the false alarm rates, we select as detection thresh-

old 0.61 that represents the threshold for once per year. In this search we found

one trigger that exceeded the threshold at GPS 1168270760.375 (UTC: 2017-01-12

15:39:02.375). This time is the start time of the one second interval that provided

the highest score. The specific trigger was the loudest glitch of the hour and it was

identified by GravitySpy [35] as a loud Koi-fish and a blip glitch [113] in very close

coincidence that is within the time delay of the two detectors.

The efficiency expected for our sample groups of waveforms for the HL search is

shown in Figure 6.8. During the second observing run we had six gravitational wave

events that happened while all detectors were observing (shown in table 6.3 and two

events while only the two LIGO detectors were active. In table 6.4 we present the
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results for those two events.

Figure 6.8: The detection efficiency of the MLy pipeline as a function of the network
SNR for signals from various waveform morphologies described in subsection 4.2.1
and for a false alarm rate of 1 per year, during the O2 HL observing run.

Event UTC time PyCBCB GstLAL cWB MLy*

GW170104 10:11:58.6 13.0 13.0 13.0 < 10−3

GW170608 02:01:16.5 15.4 14.9 14.1 0.015

Table 6.4: The official transient events for O2 present only in detectors H1 and
L1, and their network SNR as reported from PyCBC, GstLAL and cWB [6].*MLy
pipeline has a threshold of 1/year and events below that threshold are not present
here.

Our O2 HL search didn’t detect any of the events in Tables 6.3 and 6.4. The

predicted 50% detection threshold for BBH signals is SNR 19 as it is shown in Figure

6.8. All BBH signals in O2 had an SNR ≤ 19. With a rough estimation of their

– 99 –



6.3. O2: The second observing run analysis

probabilities of not being detected based on Figure 6.8 and by multiplying all of

these probabilities, we find that the probability of not detecting any signal based on

our efficiency is ∼ 50%. Therefore we cannot verify the consistency of our efficiency

tests with the detected events for the O2 results.

Finally we also calculated the 50% detection thresholds for generic sub-second

burst signal groups, shown in Figure 6.9. The 50% detection thresholds are shown in

the table 6.5. It is important to note that the G2D5 and SGL152Q8D9 injection sets

were linearly polarised, while our training set consisted exclusively of unpolarised

signals (WNBs with equal amplitudes in the two polarisations). We believe this

to be the reason for MLy’s poor limiting performance at high amplitudes for these

injection sets.

Figure 6.9: The HL detection efficiency of the MLy pipeline as a function of the hrss
for generic sub-second burst signals and for a false alarm rate of 1 per year, during
the O2 observing run.

The results in Table 5.1 and 6.5, show that MLy pipeline is not better than cWB.

– 100 –



Chapter 6. Offline search using CNNs for generic subsecond waveforms

Performance comparison on the O2 HL data set

Morphology
cWB [7]

(10−22Hz−1/2)

MLy

(10−22Hz−1/2)

Gaussian pulses

t=2.5 ms 2.8 3.7

Sine-Gaussian wavelets

f0=70 Hz, Q=3 1.5 2.1
f0=153 Hz, Q=8.9 1.3 1.4
f0=235 Hz, Q=100 0.9 1.3

White-Noise Bursts

flow=100 Hz, ∆f=100 Hz, t=0.1 s 1.2 1.7
flow=250 Hz, ∆f=100 Hz, t=0.1 s 1.4 1.6

Table 6.5: The values shown refer to hrss, in units of 10−22Hz−1/2, at the 50% effi-
ciency threshold. Comparing waveforms from cWB results [7] and the MLy pipeline
at FAR of 1 per year. We were provided with the efficiencies for FAR values of 1 per
year by Shubhanshu Tiwari, a member of cWB team. We restrict the comparison
to injections with frequencies and durations that are in the range for which we have
trained the MLy models (duration < 1s , frequencies in the 20 Hz - 480 Hz band)

The results show the potential of the pipeline even if the FAR is increased in both

HL and HLV searches. The HL analysis comparison to cWB is slightly better than

the HLV analysis, which could be due to the fact that cWB analysis is also just HL

and not HLV.

We can also observe an increase in false alarm rate from O1 results. Along with

that increase, we have an increase in our threshold. The most obvious reason for

that increase is the occurrence of glitches. O2 has more glitches that O1 because the

noise level is higher. Hence glitches that were not identified in O1 are seen in O2.

Moreover, the more glitches in the noise the higher the chance for them to appear

close to coincidence when we apply time-lags. In the end of this analysis we will

also discuss why does this affect our analysis with more details.
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6.4 O3: The third observing run analysis

During the third observing run the amount of gravitational wave detections increased

significantly. During its first half we had 47 CBC events [8] that we also show in

Table 6.10. We had a lot of interesting events. Starting by GW190425 [114], a

CBC signal with total mass ∼ 3.4M⊙. The components of this merger could be

neutron stars or black holes and there was no electromagnetic counterpart. We

also had two BBH mergers with quite asymmetric masses. GW190412 [115] was a

black hole with mass 30 M⊙ with a companion of only 8 M⊙, and GW190814 [116]

a 23 M⊙ black hole with a companion of 2.5 M⊙ which could be the first black

hole - neutron star merger ever detected. The last special event for the first part

of O3 is the largest BBH ever detected GW190521 [117], making it’s post merger

black hole to be the first intermediate mass black hole (IMBH) to be observed.

Those were detected using four matched-filter independently implemented analyses,

PyCBC [118, 86, 119, 120, 121], GstLAL [98, 106, 122], MBTA [123] and SPIIR [124].

There were no non-BBH signals [125, 126] identified in the unmodelled search. The

only unmodelled search pipeline was cWB [4].

The third observing run started on 1 April 2019 and ended on 27 March 2020,

it was stopped earlier than expected due to the Covid-19 pandemic. During this

run LIGO Hanford, LIGO Livingston and Virgo detector were all online. In the

middle of the run, from 1st of October to 1st of November 2019 there was a com-

missioning break. This, and the fact that all three detectors were online, gives us

the opportunity to separate the search into “O3a” and “O3b” periods so that the

background representation is more accurate. During summer months we expect a

less noisy detector due to the fact that the bad weather affects the detector back-

ground noise. Many of the LIGO-Virgo collaboration searches were broken up this

way too [8, 127, 4]. In Figure 6.10 we show the relative background levels of noise

for all three detectors during O3. For each part of the O3 observing run we run

separate HL and HLV analyses.

6.4.1 O3a HLV analysis

The first part of the third observing run, O3a lasted from the 1 of April 15:00 UTC

to 1 October 2019 15:00. Each detector was online for 130.2, 138.5 and 139.5 days

in total for H1, L1 and V1 respectively. Out of those times only 81 days were of

triple coincidence between H1, L1 and V1.

First step of the analysis is again to calculate the 10 year equivalent false alarm

rates of those six months of O3a. In Figure 6.11 we see the false alarm rates for O3a

for the HLV network. It is obvious that the false alarm rate is elevated compared

to O2 and O1. We are going to discuss later that this is due to having selected the

optimal models based on their FAR performance for the O2 HLV data set, without

having tested their performance on O3. Based on this our threshold score will be
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Figure 6.10: The representative sensitivity of LIGO-Virgo detectors during O3a.
Plot taken from [4].

0.96 and we can use that to define triggers in our search. Out of the six months

of O3a we found one trigger on GPS 1253732203.875, which was caused by two

coincident glitches, a Koi-fish glitch in Hanford and a Tomte glitch in Livingston

as classified by GravitySpy [35, 113]. We believe that the reason that the model

reacted to them was due to their similar peak frequency (42 , 49 Hz).

In Figure 6.12 we see the performance on the selected waveforms for the three

detector case for O3a. It is obvious that the performance is poorer compared to O1

and O2 with the 50% detection efficiency thresholds to be lower than the previous

observing runs and also the SNR values above 50 are still at ∼ 90%. This is due to

the higher score threshold for FAR=1/year.

In addition to that we tested all the official triple coincidence events for O3a

that are shown in Table 6.10 [8]. Out of the 27 triple coincidence events we had four

sub-threshold detection events that corresponded to those events. Sub-threshold

events are defined as all the known gravitational wave events with scores at least

once per month and less than once a year. In table 6.6 we present those events in

one table along with the scores of the individual models. It is observed that Model

2 tends to provide lower score than Model 1. Model 2 works are a regulative model

that reduces the confidence of Model 1.
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Figure 6.11: The false alarm rates of the HLV network in comparison with the false
alarm rates of Gaussian noise for O3a. The score thresholds of 0.23 and 0.96 false
alarm rates of 1/month and 1/year are also shown respectively.

Event Name Model1 Model2 Final Score iFAR(years)

GW190412 0.998 0.702 0.839 0.920
GW190519 0.993 0.639 0.634 0.720
GW190521 0.992 0.873 0.866 0.950
GW190828 0.997 0.283 0.282 0.170

Table 6.6: Scores and false alarm rates for sub-threshold official BBH events in O3a.
We also show the scores for the two individual models.

We compare the performance of the model to the generalised short duration

search for O3a [4]. We were provided with the efficiencies for FAR values of 1 per

year by Shubhanshu Tiwari, a member of cWB team. In Figure 6.13 we present the

performance of all generic burst types used for the comparison and in Table 6.7 the

direct comparison of the 50% efficiency detection thresholds for each burst class. We

observe that the G2D5 and SGL152Q8D9 injection sets under-perform as they did

in previous runs.
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Figure 6.12: The detection efficiency of the MLy pipeline as a function of the network
SNR for signals from various waveform morphologies described in subsection 4.2.1
and for a false alarm rate of 1 per year, during the O3a HLV observing run.

If we compare the performance of the signals from O1 in table 6.2 and O2 in

table 6.5, we see that the 50% efficiency threshold is not significantly different than

O3a. Although if we see the efficiency plot of various waveforms (figure 6.12) and

the comparison waveforms (figure 6.13), we see that the performance in higher SNR

values starts reducing. This suggests that higher SNR values are affected more from

the FAR thresholds than smaller SNR values.
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Figure 6.13: The HLV detection efficiency of the MLy pipeline as a function of the
hrss for generic sub-second burst signals and for a false alarm rate of 1 per year,
during the O3a observing run.
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Performance comparison on the O3a HLV data set

Morphology
cWB [4]

(10−22Hz−1/2)

MLy

(10−22Hz−1/2)

Gaussian pulses

t=2.5 ms 1.6 2.9

Sine-Gaussian wavelets

f0=70 Hz, Q=3 0.9 1.5
f0=153 Hz, Q=8.9 0.6 1.2
f0=235 Hz, Q=100 0.6 1.1

White-Noise Bursts

flow=100 Hz, ∆f=100 Hz, t=0.1 s 0.8 1.3
flow=250 Hz, ∆f=100 Hz, t=0.1 s 0.8 1.1

Table 6.7: Same comparison like table 5.1, but this time for O3a three detector
search. We were provided with the efficiencies for FAR values of 1 per year by
Shubhanshu Tiwari, a member of cWB team.
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6.4.2 O3a HL analysis

During O3a, for the two detector network analysis, we had 104 days of coincidence

for H1 and L1. The first step of the analysis is to calculate the 10 year equivalent

false alarm rates for the HL network using those 104 days.

Figure 6.14: The false alarm rates of the HL network in comparison with the false
alarm rates of Gaussian noise for. The score thresholds of 0.20 and 0.98 false alarm
rates of 1/month and 1/year are also shown respectively.

In Figure 6.14 we see the false alarm rates for O3a for the HL network analysis.

It is obvious that the false alarm rate is at high scores compared to O2 and O1 for

the HL case too. Based on this our threshold score will be 0.96 and we can use that

to define triggers in our search. Out of the six months of O3a we found one glitch

trigger on GPS 1253732203.875, which were two coincident signals, a Koi-fish glitch

in Hanford and Tomte glitch in Livingston according to GravitySpy [35, 113]. This

glitch is the same we found with the O3a HLV analysis. We also see that the 1 per

year threshold is much higher than it was in O2. We will discuss the reasons behind

this in the end of this section.

In Figure 6.15 we see the performance on the other various waveform morpholo-

gies for the three detector case of O3a. It is obvious here too, that the performance

– 108 –



Chapter 6. Offline search using CNNs for generic subsecond waveforms

Figure 6.15: The detection efficiency of the MLy pipeline as a function of the network
SNR for signals from various waveform morphologies described in subsection 4.2.1
and for a false alarm rate of 1 per year, during the O3a HL observing run.

is poorer compared to O1 and O2 with the 50% detection efficiency thresholds being

higher and also SNR values above 50 are still at ∼ 90%. This is due to the higher

score threshold for FAR=1/year.

We also tested all the double coincidence events on H1 and L1 for O3a that

are shown in Table 6.10. Out of the 39 HL coincidence events we had five sub-

threshold detection events that corresponded to those events. A reminder here that

sub-threshold events we defined as all the gravitational wave detection events with

score at least once per month and less than once a year. We see that all the sub-

threshold events that are detected are the same with the HLV ones with the addition

of one more, which wasn’t loud enough in the HLV analysis.

In Figure 6.16 we present the detection efficiency of MLy for each of the generic

burst types used for the comparison with cWB and in Table 6.9 the direct comparison
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Event Name Model1 Model2 Final Score iFAR(years)

GW190412 0.999 0.849 0.848 0.910
GW190519 0.991 0.678 0.673 0.840
GW190521 0.989 0.877 0.877 0.930
GW190521b 0.999 0.956 0.956 0.970
GW190828 0.997 0.360 0.359 0.550

Table 6.8: Scores and false alarm rates for sub-threshold official BBH events in O3a
HL analysis.

of the 50% thresholds for each burst class for MLy and cWB.

Figure 6.16: The HL detection efficiency of the MLy pipeline as a function of the
hrss for generic sub-second burst signals and for a false alarm rate of 1 per year,
during the O3a observing run.
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Performance comparison on the O3a HL data set

Morphology
cWB [4]

(10−22Hz−1/2)

MLy

(10−22Hz−1/2)

Gaussian pulses

t=2.5 ms 1.6 3.1

Sine-Gaussian wavelets

f0=70 Hz, Q=3 0.9 1.8
f0=153 Hz, Q=8.9 0.6 1.4
f0=235 Hz, Q=100 0.6 1.3

White-Noise Bursts

flow=100 Hz, ∆f=100 Hz, t=0.1 s 0.8 1.6
flow=250 Hz, ∆f=100 Hz, t=0.1 s 0.8 1.3

Table 6.9: Same comparison like table 6.5, but this time for O3a two detector search.
We were provided with the efficiencies for FAR values of 1 per year by Shubhanshu
Tiwari, a member of cWB team.
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Event Name UTC time Detectors SNR MLy HLV MLy HL

GW190403 05:15:19 HL 8.0 N/A < 10−3

GW190408 18:18:02 HLV 14.8 0.078 0.206
GW190412 05:30:44 HLV 19.7 0.839 0.848
GW190413 05:29:54 HLV 8.6 < 10−3 < 10−3

GW190413b 13:43:08 HLV 10.0 < 10−3 < 10−3

GW190421 21:38:56 HL 10.6 N/A 0.002
GW190424 18:06:48 L 10.0 N/A N/A
GW190425 08:18:05 LV 13.0 N/A N/A
GW190426 19:06:42 HL 9.6 N/A < 10−3

GW190426b 15:21:55 HLV 10.1 < 10−3 < 10−3

GW190503 18:54:04 HLV 12.2 < 10−3 0.07
GW190512 18:07:14 HLV 12.2 < 10−3 < 10−3

GW190513 20:54:28 HLV 11.9 < 10−3 < 10−3

GW190514 06:54:16 HL 8.3 N/A < 10−3

GW190517 05:51:01 HLV 10.6 < 10−3 < 10−3

GW190519 15:35:44 HLV 13.0 0.634 0.673
GW190521 03:02:29 HLV 14.4 0.866 0.868
GW190521b 07:43:59 HL 24.7 N/A 0.956
GW190527 09:20:55 HL 8.9 N/A < 10−3

GW190602 17:59:27 HLV 12.1 0.010 0.016
GW190620 03:04:21 LV 10.9 N/A N/A
GW190630 18:52:05 LV 15.6 N/A N/A
GW190701 20:33:06 HLV 10.2 < 10−3 < 10−3

GW190706 22:26:41 HLV 12.7 0.008 0.009
GW190707 09:33:26 HL 13.0 N/A < 10−3

GW190708 23:24:57 LV 13.1 N/A N/A
GW190719 21:55:14 HL 8.0 N/A < 10−3

GW190720 00:08:36 HLV 11.7 < 10−3 < 10−3

GW190725 17:47:28 HLV 9.8 < 10−3 < 10−3

GW190727 06:03:33 HLV 12.3 < 10−3 < 10−3

GW190728 06:45:10 HLV 13.6 < 10−3 < 10−3

GW190731 14:09:36 HL 8.5 N/A < 10−3

GW190803 02:27:01 HLV 9.0 < 10−3 < 10−3

GW190805 21:11:37 HL 8.3 N/A < 10−3

GW190814 21:10:39 LV 22.2 N/A N/A
GW190828 06:34:05 HLV 16.6 0.282 0.359
GW190828b 06:55:09 HLV 11.1 < 10−3 < 10−3
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Event Name UTC time Detectors SNR MLy HLV MLy HL

GW190909 11:41:49 HL 8.5 N/A < 10−3

GW190910 11:28:07 LV 13.4 N/A N/A
GW190915 23:57:02 HLV 13.1 < 10−3 < 10−3

GW190916 20:06:58 HLV 8.2 < 10−3 < 10−3

GW190917 11:46:30 HLV 9.5 < 10−3 < 10−3

GW190924 02:18:46 HLV 13.2 < 10−3 < 10−3

GW190925 23:28:45 HV 9.9 N/A < 10−3

GW190926 05:03:36 HLV 9.0 < 10−3 < 10−3

GW190929 01:21:49 HLV 9.9 < 10−3 < 10−3

GW190930 13:3541 HL 10.0 N/A < 10−3

Table 6.10: The extended catalogue of transient events [8] for O3a and network SNR
from the pipeline with the highest significance, as reported from MBTA, GstLAL or
PyCBC or PyCBC-BBH [8] UTC time refers to the merger time. Detectors indicate
which detectors were operational at the time of the event. When a signal is present
only in HL, the HLV model is non-applicable (N/A). The same is happening in the
case when H or L detectors are not observing. In such case non of our models are
applicable. In this work we analyse only HL and HLV times.
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6.4.3 O3b HLV analysis

The second part O3b of the third observing run was from the 1st of November 2019

to 27st of March 2020. Each detector was online for 115.7, 115.5 and 113.2 days in

total, for H1, L1 and V1 respectively. Out of those times only 75 days were of triple

coincidence between H1, L1 and V1. The step of the analysis is to calculate the 10

year equivalent false alarm rates of O3b.

Figure 6.17: The false alarm rates of the HLV network in O3b in comparison with
the false alarm rates of Gaussian noise. The score thresholds of 0.84 and 0.99 false
alarm rates of 1/month and 1/year are also shown respectively (the 1/month score
is shown slightly to the left to avoid overlapping).

In Figure 6.17 we see the false alarm rates for O3b for the HLV network.It is

obvious that the false alarm rate is at high scores compared to O2 and O1 for the

HL case too. Based on this our threshold score will be 0.9943 and we can use that

to define triggers in our search. A threshold that high, hints that our training has a

fault and we need to investigate a better method. We will discuss the fault in more

detail a the end of the section.

In Figure 6.18 we see the performance on the various waveform morphologies for

the three detector case of O3b. It is clear that the high threshold value increases a
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Figure 6.18: The detection efficiency of the MLy pipeline as a function of the network
SNR for signals from various waveform morphologies described in subsection 4.2.1
and for a false alarm rate of 1 per year, during the O3b HLV observing run.

lot the 50% efficiency detection threshold for all waveforms. We also compare the

performance of the model to the general short duration search for O3b [4].

In Figure 6.19 we present the performance of all generic burst types used for the

comparison and in Table 6.12 the direct comparison of the 50% thresholds for each

burst class.
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Figure 6.19: The HLV detection efficiency of the MLy pipeline as a function of the
hrss for generic sub-second burst signals and for a false alarm rate of 1 per year,
during the O3b observing run.
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Performance comparison on the O3b HLV data set

Morphology
cWB [4]

(10−22Hz−1/2)

MLy

(10−22Hz−1/2)

Gaussian pulses

t=2.5 ms 1.5 6.0

Sine-Gaussian wavelets

f0=70 Hz, Q=3 0.9 3.1
f0=153 Hz, Q=8.9 0.6 2.6
f0=235 Hz, Q=100 0.6 2.5

White-Noise Bursts

flow=100 Hz, ∆f=100 Hz, t=0.1 s 0.8 2.8
flow=250 Hz, ∆f=100 Hz, t=0.1 s 0.9 3.2

Table 6.11: Same comparison like table 5.1, but this time for O3b three detector
search. We were provided with the efficiencies for FAR values of 1 per year by
Shubhanshu Tiwari, a member of cWB team.
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6.4.4 O3b HL analysis

During O3b, for the two detector network, we had 93.4 days of coincidence for H1

and L1. First step of the analysis is to calculate the 10 year equivalent false alarm

rates for the HL network in O3b.

Figure 6.20: Same comparison like table 6.5, but this time for O3a three detector
search. We were provided with the efficiencies for FAR values of 1 per year by
Shubhanshu Tiwari, a member of cWB team.

In Figure 6.20 we see the false alarm rates for O3b for the HL network.It is

obvious that the false alarm rate is at high scores compared to O2 and O1 for the

HL case too. Based on this our threshold score will be 0.9953 and we can use that

to define triggers in our search.

In Figure 6.21 we see the performance on the various waveform morphologies for

the HL detector analysis of O3b. It is clear that the high threshold value increases

a lot the 50% detection threshold for all waveforms in this case too.

We also compare the performance of the model to the generalised short dura-

tion search for O3b [4]. In Figure 6.22 we present the performance of all generic

burst types used for the comparison and in Table 6.12 the direct comparison of the

50% thresholds for each burst class. It is important to note that the G2D5 and
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Figure 6.21: The detection efficiency of the MLy pipeline as a function of the network
SNR for signals from various waveform morphologies described in subsection 4.2.1
and for a false alarm rate of 1 per year, during the O3b HL observing run.

SGL152Q8D9 injection sets were linearly polarised, while our training set consisted

exclusively of unpolarised signals (WNBs with equal amplitudes in the two polari-

sations). We believe this to be the reason for MLy’s poor limiting performance at

high amplitudes for these injection sets.
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Figure 6.22: The detection efficiency of the MLy pipeline as a function of the network
SNR for signals from various waveform morphologies described in subsection 4.2.1
and for a false alarm rate of 1 per year, during the O3b HL observing run.
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Performance comparison of the O3b HL data set

Morphology
cWB [4]

(10−22Hz−1/2)

MLy

(10−22Hz−1/2)

Gaussian pulses

t=2.5 ms 1.5 3.8

Sine-Gaussian wavelets

f0=70 Hz, Q=3 0.9 2.3
f0=153 Hz, Q=8.9 0.6 1.9
f0=235 Hz, Q=100 0.6 2.0

White-Noise Bursts

flow=100 Hz, ∆f=100 Hz, t=0.1 s 0.8 2.1
flow=250 Hz, ∆f=100 Hz, t=0.1 s 0.9 1.5

Table 6.12: Same comparison like table 6.5, but this time for O3b two detector
search. We were provided with the efficiencies for FAR values of 1 per year by
Shubhanshu Tiwari, a member of cWB team.
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6.5 Discussion

We conducted an off-line search on the O1 O2 and O3 observing run data-sets using

two CNN models trained on simulated Gaussian noise that follow the PSD curves

of the detectors. We used the same models for all observing runs to actually test

the generality of the model among runs. It is obvious from the results, especially

when we compare the performance of O2 and O3, that the model is not performing

the same on each run. Apparently the FAR for all thresholds (1/month, 1/year)

increase with each run. As a result the efficiency of detecting various waveforms is

decreasing overall. Here we will discuss the possible reasons behind those issues and

investigations to fix them.

The first possible reason was the fact that we chose the best model based on O2-

HL and O2-HLV performance. In Chapter 5, we discussed how we trained 7 different

Model1 instances and 7 Model2 instances. In total those are 49 independent models

when we combine their scores. Based on their performance on real noise from three

detectors for August 2017, we chose the best model. We hoped that given that the

model is not trained on real noise the dependency on the observing run will be small.

Although the FAR of O1 is still smaller than O2, which suggests that this might not

be the case. We repeated the procedure of model selection based on the performance

of FAR for all the runs (O1, O2 ,O3a O3b) individually. For each run we have a

best performing model. Although the differences were minimal and in some cases

there was a common best model between runs (O2 and O1). This indicated to us

that the issue has to be in the background noise.

Specifically in O3a and O3b the amount of loud false alarms makes the search

impractical and raises concern on how would this model generalise in an even more

advanced observing run like O4. Therefore we had to investigate in detail what type

of triggers make MLy pipeline give such high scores. It was not a surprise to find

some coincident glitches among those high scores. Most of those glitches had very

similar morphologies and SNR values above 50. Among those triggers though a big

proportion had no signal within the process window of one second. Those specific

triggers were not making any sense, so we investigated the background that was used

to create the PSD used by the whitening of those triggers. In our surprise those

“empty” triggers had loud glitches included on their PSD calculation.

After some further testing we realised there was a bug in the outdated (at the

time) version of GWpy we were using. That bug made the default version of PSD

calculation to be labeled as the “median” method (using the median of the FFTs of

overlapping segments), but instead it was the Weltch methdod (using the mean of

the FFTs of overlapping segments). So practically we were using the mean method

while we thought we were using the median. That had two consequences:

• If two loud glitches appear at any point in the background used for the calcu-

lation of a PSD in different detectors, their overlapping frequencies will create
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background noise that looks to be coherent. The louder the glitches the more

intense the coherency between the “noise” backgrounds. This creates condi-

tions under which our pipeline will react with a high score, creating those

triggers.

• During the creation of the training data, if a signal has a high SNR, due to

the fact that we use the mean method for the PSD, it will have a considerable

contribution to the PSD and hence it will reduce the intensity of the signal

itself. This will prevent the creation of accurately loud signals of SNR 40 and

above. As a result we cannot claim that we trained our model with really loud

glitches, and that might be a reason it recognises really loud coincident glitches

as signals. Additionally this might make all the signals we are generating

appear of lower than specified SNR. This won’t have an important effect in

lower SNR values as it is proportionate the intensity of the signal.

We attempted to run all our FAR and efficiency calculations using the median

method when we process the data, only to find that the FAR was significantly

increased. Which makes sense from the perspective that we test with data that

are processed differently from the training data. Then we attempted to generate

new training data using the median method and retrain the models with the same

parameters from scratch. Unfortunately the FAR was increased dramatically again

indicating that we need to optimise the models based on the new way of processing

the data. This is a quite interesting result. It demonstrates how sensitive the

parameters of the models are to the data processing we use and that we need to be

absolutely consistent with the training data, and for what are we optimising them

for. Optimising the models for the “correct” type of data format is a matter of

future investigation.

Although after conducting an investigation on the glitches that created those

triggers we noticed that all of them are identified by GravitySpy [35] to be of different

specific classes. Assuming that we have a glitch classification algorithm parallel to

MLy pipeline, those glitches would have been identified and not produce triggers.

This is of course a very optimistic statement, but it allows us to demonstrate how

the FAR would look like in such case.

In figure 6.23 we present how the “loud tail” of FAR in O3a would look like in

the case of a loud glitch classification running in parallel and ignoring triggers that

involve coincident glitches within the 16 seconds used for the creation of the noise

instance. As it is shown the cleaned FAR tail is smooth, following the Gaussian

noise FAR curve closely.

A fair argument would be that we claim that our models are good on ignoring

glitches, so hasn’t the pipeline failed to do its job? It would be probably impossible to

have a single model that ignores any glitch, especially when we do a generic search

as is this. Our model is ignoring single glitches successfully, although coincident
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Figure 6.23: The false alarm rates of the HLV network in O3a in comparison with
the the same false alarm rates when we ignore instances that involve coincident
glitches.

glitches will always be a challenge that we will try to get better at. At the current

state, this model has a limit at once per year FAR rates, which is enough for a low

latency online search similar to O2 (for searches similar to O3 we have work to do).

Other than the issues to be addressed there are some interesting observations

to be made from our results. For example the same seasonal effect that makes the

winter background more noisy than the summer one, is present in our search too.

O3a and O3b have the same average noise level, although O3b is much more noisy

than O3a due to environmental disturbances during winter from wind, waves and

storms. That affects the background. O3b is much more noisy than O3a as is shown

in FAR tests for both HL and HLV searches.

In all false alarm test plots, we always included the Gaussian noise performance

along with the real noise case. We did that to show the expected limitations of our

model. We can confirm, at least for the O2 case, that by simulating the intricacies

of the real noise using Gaussian noise and artificial glitches, we can achieve a back-

ground distribution of the search statistic that is very similar to that for Gaussian
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noise, down to FARs or approximately 1/year.

Overall MLy pipeline seems to be sensitive equally to most types of signals. In

the efficiency plots we observed specific signal types to consistently under-perform.

Those signal types are all linearly polarised, in comparison to other signals that are

either unpolarised or elliptically polarised.

We were able to detect (FAR < 1/year) only one event GW150914 in O1.

We also detected five sub-threshold events (1/month < FAR < 1/year) in O3a.

Those detections confirm that our estimated detector efficiencies, at least on BBH

signals are consistent with our results. Our performance comparison to the cWB

search on generic burst signals shows a lot of potential for this pipeline for possible

off-line searches if the FAR is reduced by two orders of magnitude. Given the FAR

thresholds and the efficiency comparisons we believe MLy pipeline to be a promising

pipeline for low-latency analysis, as long as it continues to evolve with the observing

run demands.
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Conclusion

In the research on which we base this thesis, we investigated many different model

configurations to make a machine learning algorithm detect gravitational waves sig-

nals. We started by describing the two subjects we try to connect, first we had

a simple introduction on gravitational wave astronomy based on Bernard Schutz

book on general relativity [10] and then an introduction to the basic concepts in

machine learning and how it works and giving a description of all the techniques

used. Later we described the fundamental tools we created during this research, to

generate data-sets and tools to validate the models we train but most importantly

to make the process reproducible and easy to expand in other problems. Finally we

used those tools to find out the best configuration for a model so that it can detect

generic sub-second gravitational wave transients with low enough false alarm rate

to be useful for an online search. Then we presented the results of that model on

offline searches in all three observing runs.

To get the results we present here we went through a lot of trials of performance

but also a need to create a protocol that lead us to creating a pipeline. Earlier year

research we focused on learning the basics of machine learning by trying replications

of investigations on CBC signals. When we were confident enough we stared building

a consistent pipeline with the goal to make similar investigations much easier without

spending 90% of the time on data generation and preparation. Now it is much easier

for us and anyone deciding to work on similar problems to work on improving the

models.

The state of our current best model is good enough to show that there is potential

on using machine learning for short duration burst searches. Even more it removes

the obstacle of using real noise, by trying to simulate it for training. We have also

shown that having one model trained cannot justify which approach of training is

the best, and we need to treat models as we do test samples. This provides us

with the tools to rely less on the black-box mentality which is usually how machine

learning algorithms are used.

This research is not finished and the models are not optimised in all ways possible.
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Chapter 7. Conclusion

In Chapter 6 we saw that our performance is reduced with each observing runs due

to the frequency of the occurrence of glitches in coincidence. In addition to that

we can see from the different scores on events that model 2 seems to always score

less than model 1, acting like a moderator in the result. This was an example of

the optimisation still need. We need to find a balance between the two so that the

contribute equally to the final score, and possibly this will be done by finding the

optimal lowest SNR limit for training data in both models, which is something we

haven’t investigated as much as we have with input ratios. Another aspect we need

to address is how general the model is. We saw that CUSP signals and SGL153Q8d9

signals under-perform. The common thing they have between them is that they are

both lineally polarised. So we need to investigate the impact of polarisation in the

training, which is something we found out recently.

In the near future we need to integrate the model creation with a complete

genetic algorithm that would make the parameter selection a non-manual process.

Further more we need to focus our optimisation on the new data whitening method

(using the median of the FFTs) to hope to overcome the glitch issue. We don’t

expect to overcome the glitch issue completely so if MLy-pipeline wants to continue

being successful in the future runs, it needs to have a glitch classification running

in parallel, to help remove the glitches that appear in the detectors for off-line and

low-latency searches. This is only one of the few important additions needed for

MLy pipeline. The main goal for the current algorithm is to decrease the false

alarm rate and find clever ways to have reduced reactions on non signals. Our

metric of intensity (score) is ranging between [0,1]. As we discussed before this

restricts our results and makes it impossible to differentiate between loud and week

signals. Having a quantified measure of intensity will be a very important step to

help differentiate different intensity of signals.

To eventually have a complete search pipeline, we also need a basic parameter es-

timation. We need independent models that will return a signal duration, frequency

range and other useful generic parameters. Most importantly we need to develop

a sky-localisation follow-up for the triggers of this algorithm. All those might be

projects distributed to other future students or collaborators.

Focusing again to the classification problem we discussed in this thesis we need

to extend those models to bigger range of parameters. A potential first extension

is the duration of the signals. We could also use models that identify low intensity

short duration signals and use them to provide continues triggers. Potentially this

could lead to long duration burst search. The other extension of parameters could

be the frequency range. Such an extension would require a lot more examples of

injections and much more space for the training datasets. Both those extension of

parameters are not trivial and they will need a functional optimisation algorithm.

Finally until all the above future plans come to fruition, we need to change

MLy code itself and the way it calculates the false alarm rates and efficiencies, to
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be compatible with low-latency. Due to technical issues we cannot calculate a FAR

more that 1 per 10 years in a reasonable time, and this is really restricting our power

to compare with other pipelines. This technical issue will be solved by creating a

file system with processed data ready to be used for FAR calculation.

– 128 –



Bibliography

[1] Giles Hammond, Stefan Hild, and Matthew Pitkin. Advanced technologies for

future ground-based, laser-interferometric gravitational wave detectors. Jour-

nal of Modern Optics, 61(sup1):S10–S45, June 2014.

[2] D. V. Martynov, E. D. Hall, and et al. Sensitivity of the advanced ligo detectors

at the beginning of gravitational wave astronomy. Physical Review D, 93(11),

Jun 2016.

[3] LIGO Scientific Collaboration and Virgo Collaboration. Ligo virgo strain

data from observing run o2 (nov 2016 - aug 2017) https://www.gw-

openscience.org/o2/, 2019.

[4] The LIGO Scientific Collaboration the Virgo Collaboration and the KA-

GRA Collaboration. All-sky search for short gravitational-wave bursts in the

third advanced ligo and advanced virgo run. Phys. Rev. D, 104:122004, Dec

2021.

[5] All-sky search for short gravitational-wave bursts in the second advanced LIGO

and advanced Virgo run. Phys. Rev. D, 100:024017, Jul 2019.

[6] B. P. Abbott, R. Abbott, and et al. Gwtc-1: A gravitational-wave transient

catalog of compact binary mergers observed by ligo and virgo during the first

and second observing runs. Physical Review X, 9(3), Sep 2019.

[7] All-sky search for short gravitational-wave bursts in the first advanced LIGO

run. Phys. Rev. D, 95:042003, Feb 2017.

[8] The LIGO Scientific Collaboration and the Virgo Collaboration. Gwtc-2.1:

Deep extended catalog of compact binary coalescences observed by ligo and

virgo during the first half of the third observing run, 2021.

[9] Hunter Gabbard, Michael Williams, Fergus Hayes, and Chris Messenger.

Matching matched filtering with deep networks in gravitational-wave astron-

omy. Physical Review Letters, 120(14):141103, April 2018. arXiv: 1712.06041.

[10] Bernard Schutz. A first course in general relativity, 2009.

– 129 –



Bibliography

[11] A. L. Samuel. Some studies in machine learning using the game of checkers.

IBM Journal of Research and Development, 3(3):210–229, 1959.

[12] D. H. Hubel and T. N. Wiesel. Receptive fields of single neurones in the cat's
striate cortex. The Journal of Physiology, 148(3):574–591, October 1959.

[13] D. H. Hubel and T. N. Wiesel. Receptive fields and functional architecture

of monkey striate cortex. The Journal of Physiology, 195(1):215–243, March

1968.

[14] Kunihiko Fukushima. Neocognitron. Scholarpedia, 2(1):1717, 2007.

[15] Christian Szegedy, Wei Liu, and et al. Going deeper with convolutions. CoRR,

abs/1409.4842, 2014.

[16] NYU Corinna Cortes Yann LeCun, Courant Institute and et al. The mnist

database of handwritten digits http://yann.lecun.com/exdb/mnist/.

[17] Y. NESTEROV. A method for unconstrained convex minimization problem

with the rate of convergence o(1/k2). Doklady AN USSR, 269:543–547, 1983.

[18] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods

for online learning and stochastic optimization. Journal of Machine Learning

Research, 12(61):2121–2159, 2011.

[19] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-

tion. 1412.6980 arXiv, 2017.

[20] Daniel George and E. A. Huerta. Deep Learning for Real-time

Gravitational Wave Detection and Parameter Estimation with LIGO

Data. arXiv:1711.07966 [astro-ph, physics:gr-qc], November 2017. arXiv:

1711.07966.

[21] Christopher Bresten and Jae-Hun Jung. Detection of gravitational waves using

topological data analysis and convolutional neural network: An improved ap-

proach. arXiv:1910.08245 [astro-ph, physics:gr-qc, physics:physics], October

2019. arXiv: 1910.08245.

[22] He Wang, Zhoujian Cao, Xiaolin Liu, and et al. Gravitational wave sig-

nal recognition of O1 data by deep learning. arXiv:1909.13442 [astro-ph,

physics:gr-qc], September 2019. arXiv: 1909.13442.

[23] Alexander Schmitt, Kaiyu Fu, Siyu Fan, and Yuan Luo. Investigating deep

neural networks for gravitational wave detection in advanced ligo data. In

Proceedings of the 2nd International Conference on Computer Science and

Software Engineering, CSSE 2019, page 73–78, New York, NY, USA, 2019.

Association for Computing Machinery.

– 130 –



Bibliography

[24] Timothy D. Gebhard, Niki Kilbertus, Ian Harry, and Bernhard Schölkopf.

Convolutional neural networks: a magic bullet for gravitational-wave detec-

tion? Physical Review D, 100(6):063015, September 2019. arXiv: 1904.08693.

[25] Chayan Chatterjee, Linqing Wen, Foivos Diakogiannis, and Kevin Vinsen.

Extraction of binary black hole gravitational wave signals from detector data

using deep learning. Phys. Rev. D, 104:064046, Sep 2021.

[26] Dwyer S. Deighan, Scott E. Field, Collin D. Capano, and Gaurav Khanna.

Genetic-algorithm-optimized neural networks for gravitational wave classifica-

tion. Neural Computing and Applications, April 2021.

[27] Hua-Mei Luo, Wenbin Lin, Zu-Cheng Chen, and Qing-Guo Huang. Extraction

of gravitational wave signals with optimized convolutional neural network.

Frontiers of Physics, 15(1):14601, November 2019.

[28] XiLong Fan, Jin Li, Xin Li, YuanHong Zhong, and JunWei Cao. Applying deep

neural networks to the detection and space parameter estimation of compact

binary coalescence with a network of gravitational wave detectors. Science

China Physics, Mechanics & Astronomy, 62(6):969512, February 2019.

[29] Chayan Chatterjee, Linqing Wen, Kevin Vinsen, Manoj Kovalam, and Ami-

tava Datta. Using deep learning to localize gravitational wave sources. Physical

Review D, 100(10), Nov 2019.

[30] Hongyu Shen, E. A. Huerta, Zhizhen Zhao, and et al. Deterministic

and Bayesian Neural Networks for Low-latency Gravitational Wave Param-

eter Estimation of Binary Black Hole Mergers. arXiv:1903.01998 [astro-ph,

physics:gr-qc, stat], March 2019. arXiv: 1903.01998.

[31] Stephen R. Green, Christine Simpson, and Jonathan Gair. Gravitational-

wave parameter estimation with autoregressive neural network flows. Physical

Review D, 102(10), Nov 2020.

[32] Hunter Gabbard, Chris Messenger, Ik Siong Heng, Francesco Tonolini, and

Roderick Murray-Smith. Bayesian parameter estimation using conditional

variational autoencoders for gravitational-wave astronomy. Nature Physics,

18(1):112–117, Dec 2021.

[33] Sebastian Khan and Rhys Green. Gravitational-wave surrogate models pow-

ered by artificial neural networks. Physical Review D, 103(6), Mar 2021.

[34] S. B. Coughlin, S. Bahaadini, N. Rohani, and et al. Classifying the unknown:

discovering novel gravitational-wave detector glitches using similarity learning.

Physical Review D, 99(8):082002, April 2019. arXiv: 1903.04058.

– 131 –



Bibliography

[35] M Zevin, Coughlin, and et al. Gravity spy: integrating advanced ligo detector

characterization, machine learning, and citizen science. Classical and Quantum

Gravity, 34(6):064003, Feb 2017.

[36] Massimiliano Razzano and Elena Cuoco. Image-based deep learning for clas-

sification of noise transients in gravitational wave detectors. Classical and

Quantum Gravity, 35(9):095016, apr 2018.

[37] R Essick, L Blackburn, and E Katsavounidis. Optimizing vetoes for

gravitational-wave transient searches. Classical and Quantum Gravity,

30(15):155010, Jun 2013.

[38] Joshua R Smith, Thomas Abbott, Eiichi Hirose, Nicolas Leroy, and et al. A hi-

erarchical method for vetoing noise transients in gravitational-wave detectors.

Classical and Quantum Gravity, 28(23):235005, Nov 2011.

[39] Robert E. Colgan, K. Rainer Corley, Yenson Lau, and et al. Efficient

gravitational-wave glitch identification from environmental data through ma-

chine learning. Phys. Rev. D, 101:102003, May 2020.

[40] Rahul Biswas, Lindy Blackburn, Junwei Cao, and et al. Application of machine

learning algorithms to the study of noise artifacts in gravitational-wave data.

Phys. Rev. D, 88:062003, Sep 2013.

[41] Multi-messenger observations of a binary neutron star merger. The Astrophys-

ical Journal Letters, 848:L12:59, 2017.

[42] Hongyu Shen, Daniel George, E. A. Huerta, and Zhizhen Zhao. Denoising

Gravitational Waves using Deep Learning with Recurrent Denoising Autoen-

coders. arXiv:1711.09919 [astro-ph, physics:gr-qc], November 2017. arXiv:

1711.09919.

[43] Wei Wei and E.A. Huerta. Gravitational wave denoising of binary black hole

mergers with deep learning. Physics Letters B, 800:135081, 2020.

[44] Rich Ormiston, Tri Nguyen, Michael Coughlin, Rana X. Adhikari, and Erik

Katsavounidis. Noise reduction in gravitational-wave data via deep learning.

Phys. Rev. Research, 2:033066, Jul 2020.
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