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Abstract

This paper contains a thorough investigation into plane-strain electro-elastic
surface instabilities of dielectric elastomers. We employ a systematic approach to
our investigation, introducing three ways to actuate an elastomer device, namely,
actuation by means of (i) attached compliant electrodes, (ii) sprayed charges onto
the opposite surfaces and (iii) fixed electrodes between which the device ‘floats’
in vacuum and expands transversally. We examine electro-mechanical instability
with particular attention to the third listed mode of actuation and the features
of the specimen. We then tackle surface instability for the three modes, showing
the relationship between applied pre-stress and the stability domain, as well as
the characteristics of the obtained bifurcation fields. The effects of the stiffness
of the electrode (relevant in the first listed mode of actuation) on surface insta-
bilities are then investigated, by adopting an elastic surface-substrate interaction
model in which the properties of the coating enters in the boundary conditions for
the substrate. Various electrode materials are assumed, demonstrating that their
implementation in the model increases the number of solutions at bifurcation and
changes the overall stability domain. We present this new enriched bifurcation
map, showing the dependence on the wavenumber, and characterise the solutions
by examining the bifurcated fields.
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1 Introduction

Dielectric elastomer actuators (DEAs) typically consist of an elastomer membrane ac-
tuated by a difference in electric potential across the thickness, which induces in-plane
large strains. They have attracted interest in areas such as soft robotics [1, 2, 3], me-
chanical [4, 5, 6], biomedical [7, 8, 9] and energy engineering [10, 11, 12, 13] (the review
[14] provides a broad overview of the topic).

The classic configuration for these actuators (first reported by Pelrine et al. [15]) con-
sists of a film sandwiched between compliant electrodes (carbon grease, ion-implanted
polymers, ionogels, etc.). Spraying charges directly on the surface of the elastomer is an-
other way to actuate a dielectric elastomer film. This method was pioneered by Röntgen
[16] and proposed recently by Keplinger et al. [17] who showed experimentally how sur-
face charges could be sprayed onto the elastomer. A third possible actuation mode is
that where the membrane ‘floats’ between two fixed electrodes surrounded by either a
fluid or a vacuum. This was proposed by Dı́az-Calleja et al. [18] who addressed nonlinear
actuation law and pull-in instability in terms of contrast between dielectric permittivities
of the elastomer and surrounding environment.

DEAs exhibit a wide variety of failure modes making their optimisation and imple-
mentation difficult. While, on the one hand, electric breakdown is the main limitation
due to intrinsic material properties [19, 20], on the other hand, failures associated with
electro-mechanical instability [21, 22], localised bifurcations [23, 24, 25] and diffuse-mode
bifurcations [26] play a major role, the latter being particularly promoted by the slender-
ness of the typical devices. Among diffuse-mode bifurcations, surface instability provides
important indications regarding the limit of short-wavelength mode. For an electro-
elastic half-space, Dorfmann and Ogden [27] present the relevant framework by using
the theory of linearised incremental deformations and electric fields superimposed on a
known underlying configuration, to study a half-space actuated by compliant electrodes
in plane strain.

In this paper, we undertake a systematic approach to investigate surface bifurcations
of electro-elastic half-spaces deforming homogeneously in the fundamental path according
to the three actuation modes introduced earlier, i.e., voltage-actuated, charge-actuated
and voltage-actuated ‘floating’ specimen. The large strain relationships for all paths are
laid out by adopting both neo-Hookean and Gent electro-elastic constitutive models; par-
ticular attention is devoted to the less-studied ‘floating’ actuator surrounded by vacuum
for which conditions for electro-mechanical instability and ‘expansion limit’ are provided.

The effect of the stiffness of electrodes is commonly neglected in electro-elastic actu-
ation as they are assumed to be fully compliant. Elastic surface-substrate interactions,
a valid model for thin, stiff films coating elastic solids, were analysed by Murdoch [28]
and later by Ogden and Steigmann [29, 30] whom refined the theory and introduced the
bending stiffness. The latter approach is used here to take into account the effects of the
electrode on surface bifurcations of half-spaces that are deformed controlling the voltage.
Guided by experimental measurements, three different kinds of electrodes are analysed
possessing a range of material parameters to cover a variety of cases and assess their
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effects on electro-elastic surface instability and bifurcation modes. The results show that
they may limit considerably the stability domain when the half-space contracts.

2 Large deformations and stress state in a soft di-

electric body

In this section, the general theory of large-strain electro-elasticity for a homogeneous
isotropic materials is introduced. This will include general kinematics and constitutive
equations which describe the electro-mechanical response of the material.

2.1 Kinematics and field equations

We assume that in the stress-free configuration the electro-elastic material occupies a
region B0 ∈ R3. After a given deformation χ, the deformed body covers a space B ∈ R3.
We can define a material particle in B0 by its position vector x0 that is transformed to
x = χ(x0) in B; F = ∂χ/∂x0 denotes the deformation gradient. The space surrounding
the body will be denoted by Bsur with the particular case of vacuum being denoted by
B∗.

In the deformed configuration B, we assume that the total stress is denoted by τ
while electric and displacement fields are indicated with E and D, respectively. Under
the assumption of the absence of both volume free charges and body forces, the governing
equations are the following:

divτ = 0, τ T = τ , divD = 0, curlE = 0. (2.1)

The last equation implies that E can be derived from the electric potential ϕ(x) such
that E = −gradϕ(x). In vacuum, eqs. (2.1) specialise to

divT ∗ = 0, T ∗ = (T ∗)T , divD∗ = 0, curlE∗ = 0, (2.2)

where T ∗ is the Maxwell stress, i.e.

T ∗ = ε0

(
E∗ ⊗E∗ − 1

2
(E∗ ·E∗)I

)
. (2.3)

In eq. (2.3), ε0 = 8.85 · 10−12 Fm−1 is the permittivity of the vacuum and I is the
appropriate identity tensor. The electric quantities follow the relationship D∗ = ε0E

∗,
while eq. (2.2)4 implies E∗ = −gradϕ∗(x).

In the deformed configuration, we can define jump conditions at the boundaries across
a surface discontinuity,

n · JDK = −ω, n× JEK = 0, Jτ Kn = t, (2.4)

where the brackets JK indicate a ‘jump’ in the quantity concerned across the surface,
defined as J·K = (·)B − (·)Bsur . Here, n is the outward unit normal to B, ω is the surface
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charge density and t is the mechanical traction. When the discontinuity occurs at the
boundary between the elastomer and an adjacent vacuum the above equations specialise
as

n ·D = −ω + ε0E
∗ · n, n× (E −E∗) = 0, τn = t+ T ∗n. (2.5)

It could be useful to define nominal or Lagrangian measures. Following the usual argu-
ment, the total first Piola-Kirchhoff stress tensor is defined as a two-point tensor as

S = JτF−T , (2.6)

where J = detF , while the Lagrangian electric displacement and electric fields are given
by

D0 = JF−1D, E0 = F TE, (2.7)

respectively. The governing eqs. (2.1) updated to the reference configuration thus be-
come:

DivS = 0, SF T = FST , DivD0 = 0, CurlE0 = 0, (2.8)

where differentiation is taken now with respect to coordinates in B0.

2.2 Electro-elastic constitutive equations

The material considered in the analysis can be defined by an electro-elastic strain-energy
function W which is based on the deformation gradient and nominal electrical displace-
ment D0 such that W = W (F ,D0). Throughout the paper the material is assumed to
be incompressible such that J = 1. For such a material, the constitutive equations take
the form

S =
∂W

∂F
− pF−T , E0 =

∂W

∂D0
, (2.9)

where p represents an unknown hydrostatic pressure to be defined by boundary condi-
tions. Isotropy requires that W (F ,D0) be a function of both the invariants of the right
Cauchy-Green tensor C = F TF , namely

I1 = trC, I2 =
1

2

[
(trC)2 − tr(C2)

]
, I3 = detC = 1, (2.10)

and those involving both C and D0, i.e.

I4 = D0 ·D0, I5 = D0 ·CD0, I6 = D0 ·C2D0. (2.11)

It is to note that a convenient form of the energy function W (Ii) (i = 1, . . . , 6) is the
one where the purely elastic part is split from the remaining part involving coupled
electrostatic effects, namely W (Ii) = Welas(I1, I2) +Welec(I4, I5, I6).

For the elastic part, two models are employed: the first one is the simple neo-Hookean
solid, defined as

Welas(I1) =
µ

2
(I1 − 3), (2.12)
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where µ is the shear modulus of the material; the second one is the Gent material model,
whose energy is given by

Welas(I1) = −µJm
2

Ln

(
1− I1 − 3

Jm

)
. (2.13)

The latter model is better suited for rubber-like material at large strains as it incorporates
the idea of a limit stretch as the polymer chains extend fully. This limit is defined by the
Gent parameter Jm = I lim1 − 3 where I lim1 is the first invariant evaluated at the stretch
limit value. As Jm → ∞, the neo-Hookean model is obtained.

Our goal is to investigate electro-elastic problems where the material behaves as an
ideal dielectric, i.e. the permittivity ε is independent of the strain. This behaviour can
be captured by a function Welec(I5) in which the coefficient in front of the invariant
is constant. However, for some reasons that will be described later, we introduce the
expression of Welec proposed by Gei et al. [31] that depends on all the three invariants
I4, I5, I6, namely

Welec =
1

2ε
(γ̄0I4 + γ̄1I5 + γ̄2I6), (2.14)

where ε is to be read as the permittivity of the material in the natural configuration and
γ̄i (i = 0, 1, 2) are dimensionless constants such that

∑
i γ̄i = 1. As γ̄0, γ̄2 → 0 (and then

γ̄1 → 1), the energy function becomes that of an ideal dielectric where the permittivity
is independent of the current strain for which, through eq. (2.9)2 and eqs. (2.7), the
relationship between E and D becomes

D = εE. (2.15)

2.3 Linearized incremental deformation formulation

This section summarizes the linear incremental deformation theory that allows for the
study of the onset of diffuse and localised bifurcation modes, referring to Bertoldi and Gei
[22] and Dorfmann and Ogden [27] for more details. This method will then be specialised
for the electro-elastic surface instability problems addressed later on.

The way the method works is by superimposing incremental deformations upon a
given configuration. A perturbation of nominal surface charges and tractions applied on
the boundary of B0, namely ω̇0 and ṫ0, respectively, is considered such that a new equi-
librium configuration is reached where eqs. (2.4) and (2.8) are satisfied. The incremental
displacement and deformation gradient are defined similarly to the finite counterpart as
ẋ = χ̇(x0) and Ḟ = Gradχ̇, respectively, where onwards a superposed dot ( ˙ ) represents
the increment in the quantity concerned. In the current framework, the governing eqs.
(2.8) turn into the following

DivṠ = 0, DivḊ0 = 0, CurlĖ0 = 0. (2.16)
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The constitutive eqs. (2.9) can be linearised provided that all incremental quantities are
small, as:

ṠiJ = −ṗF−1
Ji + pF−1

Li ḞkLF
−1
Jk + C0

iJkLḞkL +B0
iJMḊ0

M ,

Ė0
M = B0

iJM ḞiJ + A0
MNḊ

0
N , (2.17)

where ṗ is an incremental hydrostatic pressure. The components of the relevant tensor
appearing in eqs. (2.17) are highlighted to facilitate the understanding between the
different quantities. The electro-elastic moduli tensors C0, B0, A0 can be expressed in
terms of the strain energy as

C0
iJkL =

∂2W

∂FiJ∂FkL

, B0
iJM =

∂2W

∂FiJ∂D0
M

, A0
MN =

∂2W

∂D0
M∂D0

N

, (2.18)

which imply the following symmetries

C0
iJkL = C0

kLiJ , A0
MN = A0

NM .

The Lagrangian formulation implied by eqs. (2.16) can be turned into an updated
Lagrangian one by using push-forward operations based on the new quantities

Σ = ṠF T , D̂ = FḊ0, Ê = F−T Ė0. (2.19)

As a consequence, the updated governing equations take the form

divΣ = 0, divD̂ = 0, curlÊ = 0. (2.20)

The corresponding incremental boundary conditions can be derived from the boundary
conditions given in eqs. (2.4) assuming u(x) = ẋ. In the updated Lagrangian formula-
tion, they are

Ju0K = 0, JΣKndA = ṫ0dA0, JD̂K · ndA = −ω̇0dA0, n× JÊK = 0 . (2.21)

The boundary conditions can be specialised, analogous to eqs. (2.5), when the disconti-
nuity is adjacent to a vacuum as follows:

ΣndA = ṫ0dA0 +Σ∗ndA, D̂ · ndA = −ω̇0dA0 + D̂∗ · ndA, (2.22)

where
Σ∗ = Ṫ ∗ + T ∗(tr[L]I −LT ), D̂∗ = ε0(Ė

∗ + (tr[L]I −L)E∗). (2.23)

The constitutive equations can be updated through L = gradu, to yield

Σir = CirksLks + pLri − ṗδir +BirkD̂k,

Êi = BkriLkr + AikD̂k, (2.24)

where δij is the Kronecker delta and the updated electro-elastic moduli become

Cirks = C0
iJkLFrJFsL, Birk = B0

iJMFrJF
−1
Mk, Aik = A0

JMF−1
Ji F

−1
Mk, (2.25)

with symmetries applying as before.
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2.4 Three electro-elastic problems for a thin elastomer

Throughout the paper, for the same thin elastomer, three electro-elastic problems are
investigated, differing from each other by the type of the imposed electric actuation. They
are sketched in Fig. 1, which shows the three devices in the deformed configurations. In
all cases, the coordinate x1 singles out the longitudinal axis of the actuator, x2 is directed
across the thickness whereas x3 is the out-of-plane axis. The material is an ideal dielectric
and is assumed to be incompressible. The first problem (Fig. 1 (a)) is the classical one
where two perfectly compliant electrodes are attached to the two opposite sides of the
membrane [15]. In the second one, Fig. 1 (b), charges are applied directly (typically
sprayed) on the surfaces of the material without the use of electrodes [17], a method that
was first studied experimentally by Röntgen in 1880 [16]. The third and final problem,
Fig. 1 (c), consists of the elastomer deforming (and floating) in vacuum between two
electrodes held at a fixed distance L, as first studied by Diaz-Calleja et al. [18] (the
vacuum can be also substituted by an ideal fluid, in that case the permittivity should be
adjusted). Su et al. [32] also examined the instability of a dielectric slab floating in a
conductive fluid undergoing equi-biaxial deformation.

In all cases, the elastomer is deformed homogeneously in plane-strain conditions from
a thickness d0 to d (fringing effects are neglected), therefore d = λ2d0 = λ−1

1 d0. The
electric field has only the transverse component, therefore E = [0, E2, 0]. A relationship
between the potential difference Φ across the device and E2 can be derived from the
fact that in piecewise problems, like those addressed here, the latter is the change in
voltage over a given distance. In addition, a (current) pre-stress τpre could be applied
on the deformed configuration along axis x1. The finite electro-elastic actuation laws
of the three problems are summarised below for the neo-Hookean strain-energy. It is
understood that a similar procedure can be followed for the Gent material.

2.4.1 A) Attached compliant electrodes

For the first problem, the electric field outside the elastomer vanishes and the potential
difference across the electrodes is simply

Φ = E2d, (2.26)

or, in terms of d0, and knowing that D2 = εE2 (eq. (2.15)),

Φ =
d0D2

ελ1

. (2.27)

The neo-Hookean strain-energy function (2.12) is used in eqs. (2.9) and (2.6) to obtain
the total stress τ . The boundary conditions are specialised for the case where no electric
field is present on the two outer sides of the film; τ22 = 0 is used to solve the pressure
term p, and τ11 = τpre is employed to obtain the variable D2. We can hence obtain the
relation for Φ in terms of λ1 given as

Φ =
d0
√

ε−1((λ4
1 − 1)µ− τpreλ2

1)

λ2
1

. (2.28)
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(a) Compliant Electrodes (b) Charge-Controlled (c) ‘Floating’ Elastomer

Figure 1: Diagram of the three electro-elastic devices analysed in the paper. d is the thickness of the
deformed elastomer, ε the permittivity of the material, L the distance between electrodes and ε0 the
permittivity of the vacuum. The signs in b) indicate the type of charges applied directly to the surface
of the elastomer for the charge-controlled case. A pre-stress τpre is possibly applied to the elastomer.

2.4.2 B) Charge-controlled actuation

When actuation is controlled by the amount of surface charges, whose nominal density
is denoted by ±ω0, the current longitudinal stretch can be obtained by noting that the
jump in the electric displacement, eq. (2.4)1, specialises now to D2 = ω. Therefore, for
the neo-Hookean strain energy, it turns out that

ω =
√

ε((λ2
1 − λ−2

1 )µ− τpre). (2.29)

It is worth to point out that due to the connection between electric field and electric
displacement field, the relationship between Φ and λ1 coincides with that in eq. (2.28).

2.4.3 C) ‘Floating’ elastomer in vacuum

In the third problem, the electric potential difference across the fixed electrodes is given
by

Φ = E∗
2(L− d) + E2d, (2.30)

where E∗
2 is the only non-vanishing component of the electric field in the vacuum. As

the interface between vacuum and elastomer is free from surface charges, from eq. (2.4)
we know that D is continuous across this interface and hence D∗

2 = D2, revealing that
the electric displacement field is constant in the space between electrodes. This leads to
the equality ε0E

∗
2 = εE2, which helps to achieve an expression for Φ in terms of E2 as

follows,

Φ =
E2

ε0
((L− d)ε+ dε0) =

E2

ε0
((L− d0λ

−1
1 )ε+ d0λ

−1
1 ε0). (2.31)

Equivalently, using eq. (2.15), eq. (2.31)2 can be expressed in terms of electric displace-
ment D2, i.e.

Φ =
D2

ε0ε

(
(L− d0λ

−1
1 )ε+ d0λ

−1
1 ε0

)
. (2.32)

The neo-Hookean strain energy is used in eqs. (2.9) and (2.6) to obtain the total stress τ .
The boundary conditions are specialised for the case where a vacuum is in the surrounding
space and the Maxwell stress is present; τ22 = T ∗

22 determines the pressure term p, and
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Figure 2: Fundamental loading paths for the actuated ‘floating’ elastomer in vacuum (neo-Hookean
strain energy) with non-dimensional pre-stress τpre/µ = 2.5 (various values of the geometric ratio d0/L
are considered). λ1 varies with the non-dimensional electric potential jump V̄ . Dots mark the expansion
limit, while crosses indicate the onset of the electro-mechanical instability.

τ11 = τpre+T ∗
11 yields the electric displacement field D2. We can hence obtain the relation

for Φ in terms of λ1 given as

Φ =
(d0(ε0 − ε) + Lελ1)

√
(λ4

1 − 1)µ− τpreλ2
1

λ2
1

√
εε20 − ε2ε0

. (2.33)

An equation for the electro-mechanical instability can be obtained by setting dΦ/dλ1 = 0.
This gives the following polynomial

Lελ1µ(1 + λ4
1)− d0(ε− ε0)(τpreλ

2
1 + 2µ) = 0, (2.34)

where the positive real root corresponds to the onset of electro-mechanical instability.

2.4.4 Analysis of the electro-elastic response of the actuated ‘floating’ elas-
tomer in vacuum

The fundamental path of the actuated ‘floating’ elastomer depends on the geometry
of the device in the initial configuration. Therefore, we can define a geometrical ratio
d0/L whereby changing it we can obtain different electro-mechanical loading curves.
In the floating elastomer configuration, opposite to the charge-controlled and attached
compliant electrodes configurations, the elastomer contracts longitudinally and expands
transversly, attracted by the fixed electrodes.

Figure 2 shows the loading paths for a neo-Hookean strain energy with an elastomer
pre-stressed such that τpre/µ = 2.5. In the figure the dimensionless electric potential

difference V̄ = (Φ/L)
√

(ε/µ) is reported against the longitudinal stretch λ1. The black
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dots represent the threshold beyond which the elastomer expands more than the distance
L between the electrodes, hereafter called expansion limit. The black crosses show where
electro-mechanical instability triggers. Using such a setup, an elastomer with a d0/L > 1
is pre-stressed, causing a transversal contraction and allowing the elastomer to be placed
between the fixed electrodes. For large values of d0/L (e.g. 1.6 in the figure), the
elastomer does not exhibit electro-mechanical instability before reaching the ‘expansion
limit’. In contrast, for d0/L ⪅ 1.491 the elastomer has enough space to expand and
the electro-mechanical instability, analytically predicted by a positive real solution of eq.
(2.34), becomes critical. The condition Φ = 0 provides the points where the electro-elastic
curve intersects the horizontal axis. Eq. (2.32) yields two solutions, namely

D2 = 0,
d

L
=

ε/ε0
ε/ε0 − 1

. (2.35)

The former is a trivial solution, i.e. null electric actuation; the latter denotes a configura-
tion not physically meaningful, as the left-hand side must be less than one (equal to one
at the expansion limit), while the right-hand side has to be greater than one, as any ma-
terial will always have a permittivity higher than that of the surrounding vacuum. The
expansion of the elastomer will always be limited by the electrodes before this solution
can be reached (i.e. the black dot in the figure). Compared to the case with τpre = 0, not
reported in a figure, in a pre-stressed elastomer, the expansion limit appears much later
along the curve. The pre-stressed elastomer also allows for higher voltages to be reached
before electro-mechanical instability occurs.

Figure 3 shows the loading paths using the Gent strain energy eqs. (2.14) and (2.13).
We define λlim from eq. (2.13) as the limiting stretch under plane-strain conditions. In
this case we specialise I lim1 and obtain that λ2

lim + λ−2
lim − 2 = Jm. The adopted Gent

parameter was Jm = 91, corresponding to λlim ≈ 0.1037. This asymptotic effect is seen
for low values of d0/L, with the transition occurring at d0/L ≈ 0.13. Actually, just below
that threshold the electro-mechanical instability becomes less pronounced until it quickly
disappears (the curve for d0/L = 0.12 is monotonic). This is caused by the stretch limit
preventing further material expansion.

Figure 4 shows all the fundamental paths starting from the natural configuration
for both strain-energy functions and a pre-stressed neo-Hookean function represented on
an electric displacement curve. The normalised electric displacement D̄ = D2/

√
µε is

plotted. The electric displacement curve does not depend on the geometry and as such
encapsulates all fundamental paths. The black markers represent the expansion limit
for each curve. As the d0/L parameter decreases, a higher electric displacement can be
reached before encountering the expansion limit. The Gent curve is steeper as it reaches
asymptotically the extension limit of the polymer chains λlim.
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Figure 3: Fundamental loading paths for the actuated ‘floating’ elastomer in vacuum (Gent strain
energy with Jm = 91, various values of the geometric ratio d0/L are considered). λ1 varies with the
non-dimensional electric potential jump V̄ . Dots mark the expansion limit while crosses indicate the
onset of the electro-mechanical instability.

3 Electro-elastic surface instability

In this section, we specialise the incremental theory to identify electro-elastic surface
instabilities on a pre-stressed elastomer half-space under plane-strain conditions. We
then introduce incremental boundary conditions suitable for the loading paths introduced
in Section 2.4 A), B) and C). The numerical results, highlighting the onset of surface
instability for the three cases are then discussed. The theory is further enriched by
introducing the surface-coating theory, to take into account the effect of the stiffness of
the electrode to the surface instability of a substrate, following the path described in
Section 2.4 A).

3.1 Perfectly compliant electrode

The electro-elastic modelling framework is specialised to seek bifurcation with a possible
presence of an external electric field normal to its boundary. The substrate is possibly
pre-stressed along the x1 direction (τpre ̸= 0) and is subjected to a plane incremental
deformation. In turn, this means that the out-of-plane component of the displacement
is null, i.e. u3 = 0, and u depends only on coordinates x1 and x2, i.e. ui = ui(x1, x2)
(i = 1, 2). Similarly, it is also assumed that D̂3 = 0, D̂i = D̂i(x1, x2) (i = 1, 2) and
ṗ = ṗ(x1, x2). By adopting the updated Lagrangian formulation, eqs. (2.20) can be
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Figure 4: Fundamental loading paths for the actuated ‘floating’ elastomer in vacuum (for both neo-
Hookean and Gent strain energies). λ1 varies with the non-dimensional electric displacement D̄. Black
markers mark the expansion limit for each curve; ratio d0/L is varied from 0.15 to 0.65 in increments of
0.10.

written in component as

Σ11,1 + Σ12,2 = 0, Σ21,1 + Σ22,2 = 0,

D̂1,1 + D̂2,2 = 0, Ê1,2 − Ê2,1 = 0, (3.1)

where a comma represents partial differentiation. Field eqs. (3.1) are satisfied by a
solution of the form (the domain is the half-space x2 ≥ 0)

ui(x1, x2) = vi(x2)exp(ikx1),

D̂i(x1, x2) = ∆i(x2)exp(ikx1),

ṗ(x1, x2) = q(x2)exp(ikx1), (3.2)

with k being the wave-number of the perturbation. We expect that the electro-elastic
surface instability be independent of k. The incompressibility constraint u1,1 + u2,2 = 0
imposes to eqs. (3.2) that

ikv1(x2) + v′2(x2) = 0; (3.3)

similarly, eq. (3.1)3 dictates

ik∆1(x2) + ∆′
2(x2) = 0. (3.4)

Bifurcation modes must decay deep in the half-space, as x2 → ∞, therefore an admissible
general form of v2, ∆2 and q is

v2(x2) = Uexp(skx2),

∆2(x2) = W exp(skx2),

q(x2) = Qexp(skx2), (3.5)
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where s < 0. By substituting them into eqs. (3.2), we obtain a system of equations for the
three unknowns U , W and Q. A non-trivial solution requires that the determinant of the
coefficients vanishes, leading to a polynomial equation (of the 6th order) in s. However,
the only admissible solutions are the three negative roots of s, namely sj < 0 (j = 1, 2, 3).
Therefore, the general expressions for the bifurcation fields are

v2(x2) =
3∑

j=1

Ujexp(sjkx2),

∆2(x2) =
3∑

j=1

Wjexp(sjkx2),

q(x2) =
3∑

j=1

Qjexp(sjkx2). (3.6)

The coefficients appearing in (3.6) are not independent and eqs. (3.2) can be employed
to find their connection. In particular, Qj and Wj can be expressed in terms of Uj (j =
1, 2, 3).

Incremental equations in vacuum. In some of the analysed problems, it is manda-
tory to deal with the external incremental fields in vacuum B∗, where Maxwell’s equa-
tions hold for D∗ and E∗. In those cases, we assume the existence of an electric potential
ϕ∗(x1, x2) that satisfies the Laplace’s equation

ϕ∗
,11 + ϕ∗

,22 = 0. (3.7)

A solution compatible with the decaying of effects as x2 → −∞ is

ϕ∗(x1, x2) = ϕcexp(kx2)exp(ikx1), (3.8)

where ϕc is the amplitude. It may be useful to recall that, as a function of ϕ∗, the
incremental Maxwell stress tensor has the following non-zero components

Ṫ ∗
11 = Ṫ ∗

33 = −Ṫ ∗
22 = ε0E

∗
2ϕ

∗
,2,

Ṫ ∗
12 = Ṫ ∗

21 = −ε0E
∗
2ϕ

∗
,1. (3.9)

Incremental boundary conditions and bifurcation equation. We recall eqs. (2.23),
which are the incremental boundary conditions specialised for a discontinuity between
the elastomer surface and an adjacent vacuum. For relevant practical applications, both
the surface tractions and the surface charges are independent of deformation and as such
ṫ0 = 0 and ω̇0 = 0. On x2 = 0, eq. (2.23)1 reduces to the following scalar equations

Σ21 + T ∗
11u2,1 + T ∗

21u2,2 − Ṫ ∗
21 = 0,

Σ22 + T ∗
22u2,2 + T ∗

21u2,1 − Ṫ ∗
22 = 0. (3.10)
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Similarly, for eq. (2.23)2 on x2 = 0, it turns out

D̂2 +D∗
1u2,1 +D∗

2u2,2 − Ḋ∗
2 = 0,

Ê1 − E∗
1u1,1 − E∗

2u2,1 − Ė∗
1 = 0. (3.11)

This provides a system of four homogeneous equations. For a non-trivial solution of
the bifurcation problem, the determinant of the coefficients Uj (j = 1, 2, 3) and ϕc must
vanish yielding the bifurcation equation. It is worth to mention that an alternative way
to study bifurcation is to use the fields (3.6), (3.2) and (3.8) into the integral formulation
obtained by Gei et al. [31] and applied by Siboni et al. [33]. The fields can also be
adapted to be used in the Stroh formulation [34].

Specialised boundary conditions for the three electro-elastic problems. We
adapt the general theory to the three fundamental loading paths introduced in Section
2.4 to study the onset of surface instabilities for each type of actuation. To solve our
incremental equation system, eqs. (3.10) and (3.11), boundary conditions need to be
specified for the three cases. Just as a reminder, for all three configurations we assume
that the electric actuation is along the thickness of the elastomer, therefore

D∗
1 = E∗

1 = 0, D1 = E1 = 0. (3.12)

The elastomer may be subjected to a (current) pre-stress τpre along x1. As such, the
stress boundary conditions (2.1) specialise in

τ22 = T ∗
22, τpre = τ11 − T ∗

11. (3.13)

In both cases detailed in Section 2.4 A) and B), there is no external electric field, namely

D∗
2 = E∗

2 = 0 (3.14)

and, as a consequence, the Maxwell stress tensor vanishes, T ∗ = 0. Conversely, for the
elastomer ‘floating’ between electrodes (Section 2.4 C)), its components are obtained
from eq. (2.3) and are given as follows,

T ∗ =

(
− (ε0E∗

1 )
2

2ε0
0

0
(ε0E∗

2 )
2

2ε0

)
=

(
− (D∗

1)
2

2ε0
0

0
(D∗

2)
2

2ε0

)
. (3.15)

Only two components are shown as we are dealing with a two-dimensional plane-strain
case where the elastomer remains undeformed out-of-plane. The incremental boundary
conditions may also be specialised to the three configurations. Likewise the finite-strain
counterparts, for attached compliant electrodes and charged-controlled configurations,
the incremental Maxwell stress tensor is null, Ṫ ∗ = 0. However, in the former case there
are no fields in the vacuum and there the incremental electric field is also null, Ḋ∗

2 =
Ė∗

2 = 0, differently from charge-controlled actuation where the charges are constrained
on the surface of the substrate causing incremental fields to exist in the adjacent vacuum.
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(a) Electric Displacement (b) Voltage

Figure 5: Limit of the stability domains for a neo-Hookean substrate with either attached compliant
electrodes or charge-controlled boundary condition. Dotted lines represent loading paths with τpre/µ
starting from 0 with increments of 0.5. Figures (a) and (b) represent the same results, but with a
different non-dimensional electric variable on the ordinate.

3.1.1 Results

The bifurcation equation was obtained and solutions sought for the three different electro-
elastic actuation paths, introduced in Section 2.4, were plotted using the specialised
boundary conditions in the previous section. In order to obtain the bifurcation equation,
the expression of Welec presented in eq. (2.14) was used to avoid double multiplicity of
roots s occurring when the ideal dielectric strain-energy equation is adopted. We then
verified that the limit γ̄0, γ̄2 → 0, γ̄1 → 1 converges.

Figure 5 shows the limit of the stability domains for the half-space with attached
compliant electrodes and charge-controlled actuation in blue and orange, respectively.
They are plotted together with the fundamental loading paths, shown by the dotted lines,
obtained from eq. (2.28). The pre-stress τpre/µ is varied, starting from 0 to 2.5, increasing
in increments of 0.5. In Fig. 5 (a) the normalised electric displacement D̄ is reported
in the ordinate, whereas in (b) the normalised voltage V̄ is selected. For the attached
compliant electrodes and charge-controlled configurations the voltage is normalised using
the initial thickness as V̄ = (Φ/d0)

√
(ε/µ). Surface instabilities occur at lower values

of the electric actuation over the whole domain for the finite deformation induced by
attached compliant electrodes. This shows the stabilising effect from the presence of
the incremental outer electric field, as Ḋ∗

2 and Ė∗
2 are not null for the charge-controlled

actuation.
In both cases, the elastomer could theoretically reach high values of D̄ or V̄ by

controlling the loading path to make the stable path to reach the local maxima evi-
dent in the bifurcation domains. This peak is more pronounced in the charge-controlled
actuation compared to the attached compliant electrodes and can be seen even more
marked when the voltage is represented allowing theoretically much higher voltages to
be reached. Given the almost flat trend of the curves limiting the stability domains
between 1 < λ < 2, the pre-stress does not have much influence on the onset of sur-
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Figure 6: Limit of the stability domain for a neo-Hookean substrate actuated as a ‘floating’ elastomer
in vacuum. Dotted lines represent loading paths with τpre/µ going from 0 to 2.5 in increments of 0.5.
Actuation is represented by the non-dimensional electric displacement D̄.

face instabilities. To highlight the magnitude of voltages at bifurcation, we consider an
elastomer with thickness d0 = 700 µm, and material parameters set as ε = 4.68 ε0 and
µ = 100 kPa, which model well PDMS/silicone-based dielectric elastomers [35]. Fol-
lowing the fundamental loading curve for τpre = 0, we obtain that surface instability
occurs at approximately 23.4 kV and 29.7 kV for compliant attached electrodes and
charge-controlled configurations, respectively.

Figure 6 shows the stability domain for the ‘floating’ elastomer configuration plotted
as a λ vs. D̄ diagram. The electric displacement is instrumentally used, as it is inde-
pendent of the aspect ratio d0/L of the film, thus representing the critical states of all
possible geometries. Again, the dotted lines show the fundamental loading path from
eq. (2.33) with a pre-stress τpre/µ going from 0 to 2.5 in increments of 0.5. Differently
from the previous cases, the bifurcation curve does not show a local maximum. Now
a tensile pre-stress is more influential as it allows the elastomer to experience higher
values of D̄ in a stable configuration. Continuing the comparison with the two previ-
ous actuation methods, for the ‘floating’ elastomer case the surface instability occurs
at a lower value of D̄. Specific geometries for the specimen were then analysed using
the non-dimensionalised voltage V̄ . Figure 7 shows two characteristic loading paths (in
blue) combined with bifurcation curves (in orange) for two extreme values of d0/L (the
expansion limit is represented by a black dot along the curve). When the elastomer is
very thick compared to the gap between the electrodes, as in Fig. 7 (b), the elastomer
hits the expansion limit before the onset of surface instabilities. With low values d0/L
(Fig. 7 (a)), the elastomer expands a lot more and intersects the bifurcation curve be-
fore it reaches that limit, implying that surface instabilities are promoted by a thinner
elastomers.
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(a) d0/L of 0.1 (b) d0/L of 0.8

Figure 7: Fundamental path for a neo-Hookean substrate actuated as a ‘floating’ elastomer (blue)
and the limit of the stability domain (orange) for d0/L = 0.1 (a) and d0/L = 0.8 (b). Dots mark the
expansion limit in each case. λ1 varies with the non-dimensional electric potential jump V̄ .

To better understand the characteristics of the surface instability, incremental fields
at the onset of bifurcation were studied. The simple loading path with no pre-stress was
chosen, at the point of intersection with the bifurcation curve. Coefficients Uj (j = 1, 2, 3)
and ϕc were solved for the specific case. They were normalised such that the displacement
u2 at the surface was 5% of the wavelength of the deformation. Figure 8 displays the
plot of this quantity into the thickness of the elastomer normalised with the wavelength
x2k/(2π) (k selected as a unitary value). reported curves show that the attached compli-
ant electrodes and the charge-controlled cases exhibit a similar incremental deformation.
They decay a lot faster into the thickness, within one wavelength, compared to the ac-
tuated ‘floating’ elastomer counterpart. In addition, in the latter mode, the elastomer
exhibits a maximum expansion just under the surface before decaying. Figure 9 demon-
strates how the boundary conditions influence the component parallel to the surface, of
the normalised incremental electric field Ē1 = Ê1/

√
µ/ε. Following our specialised incre-

mental boundary conditions, as expected it can be noted that for the attached compliant
electrodes (in orange) Ē1 is null, whereas that is not the case for the other two configura-
tions. For the first analysed fundamental path, Ē1 increases significantly into the depth
of the elastomer before decaying again. For the other two actuation cases this does not
occur. The difference between the charged-controlled and floating configurations is that
the former shows the longitudinal incremental electric field decaying slower even though
it has a lower maximum value. This correlates to the incremental displacement field plots
in Fig. 8.

3.2 Effect of the stiffness of the electrode

The effect of the stiffness of the electrode on surface instability can be analysed by
using the theory of surface coating to obtain boundary conditions for the electro-elastic
substrate. This follows the work done by Steigmann and Ogden [29, 30], who explored
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Figure 8: Incremental displacement u2 into the elastomer thickness normalised with the wavelength
(x2k/(2π)) for the three analysed electro-elastic problems.

Figure 9: Normalised incremental longitudinal electric field Ē1 into the elastomer thickness normalised
with the wavelength (x2k/(2π)) for the three analysed electro-elastic problems.

bifurcation of and wave propagation on an elastic half-space with a thin coating on its
plane boundary. In this section, we recall the basic notions of the surface-coating theory
suitable for incremental fields.

The electrode film is assumed to be fully compliant to the elastomer such that, in the
pre-bifurcation state, the stretch λ is the same in both elements. As shown in Fig. 10,
ν1(S) is the unit tangent to the surface that is described by an arc length S. Vectors
e1 and e2 form the orthonormal unit basis associated with x0

1 and x0
2. The leftward unit

normal is defined by ν2(S) = k × ν1(S), where k = e1 × e2. If θ(S) is the counter-
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clockwise angle between ν1 and e1, differentiation with respect to S yields

ν ′
1(S) = κ(S)ν2(S), κ(S) = θ′(S), (3.16)

where ()′ = d/dS and κ(S) is the nominal curvature of the film. The coating is char-
acterised by the elastic strain energy per unit length U(Λ, κ), where the first argument
is the current axial stretch of the electrode. Axial force and bending moment can be
obtained by partial differentiation, namely,

F = U,Λ and M = U,κ. (3.17)

In addition to the axial component, the total force at a generic point of the surface has
a normal component, say G, such that

f = Fν1 +Gν2. (3.18)

G is not obtained by a constitutive equation as the thin film is assumed to have vanishing
thickness: it is an unknown of the problem. Following [29, 30], linear momentum and
moment-of-momentum balances for the film give the local equations

f ′ = SN , M ′ + ΛG = 0, (3.19)

being the latter the required condition to determine G.
We require incremental boundary conditions to add to our bifurcation problem.

Therefore, we take the increment of the eqs. (3.19) and update them from S to cur-
rent arc length s, given that Λ = ds/dS, yielding

ḟ ′(s) = Σn, Ṁ(s) + Λ−1Λ̇G+ Ġ = 0. (3.20)

The incremental counterpart of eq. (3.18) gives ḟ = Ḟν1 + Ġν2 + F ν̇1 + Gν̇2, and by
knowing that ν̇1 = θ̇ν2 and ν̇2 = −θ̇ν1, the following equation is achieved

ḟ = (Ḟ −Gθ̇)ν1 + (F θ̇ + Ġ)ν2. (3.21)

The expression for ḟ ′ can be obtained from eq. (3.21) once Ġ and G are known. To
solve the terms Ġ and G, eqs. (3.20) and (3.19) are employed. The use of ν1 = θ′ν2 =
Λ−1κν2 = −θ′ν1, ν

′
2 = −θ′ν1 = −Λ−1κν1 and θ̇′ = Λ−1κ̇ yields

ḟ ′ = Tν1 +Nν2, (3.22)

where

T = Ḟ ′ + Λ−1κ̇M ′ +M ′′θ̇ − Λ−1κ(F θ̇ +M ′Λ−1Λ̇− Ṁ ′),

N = Λ−1κ̇F + F ′θ̇ + Λ−1M ′(Λ̇′ − Λ−1Λ′Λ̇) + Λ−1Λ̇M ′′ − Ṁ ′′ + Λ−1κ(Ḟ +M ′θ̇). (3.23)

The following kinematic expressions are needed to solve the incremental variables:

Λ̇ = Λν1 · u′, κ̇ = Λν2 · u′′ − κν1 · u′, θ̇ = ν2 · u′, (3.24)
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Figure 10: Sketch of the electro-elastic half-space in the reference configuration (B0) coated by a
‘stiff’ electrode. B∗ represents the surrounding vacuum.

where u is the incremental displacement field at the boundary of the half-space defined
in previous sections.

The Cartesian coordinate system specific of our problem and indicated in Fig. 10 is
aligned with the basis such that ν1 = e1, ν2 = e2, n = −e2 and κ = M ′ = G = 0.
We also specialise to the previously introduced dielectric body problem by noting that
Λ = λ, as the electrode deforms with the elastomer homogeneously. Therefore, with the
help of eqs. (3.24), we can simplify eqs. (3.23) and insert the results into eq. (3.20) to
obtain our boundary conditions for the incremental problem, i.e.

Σ12 = −Uλλλu
′′
1 − Uλκλu

′′′
2 , Σ22 = Uκκλu

′′′′
2 + Uκλλu

′′′
1 − Uλu

′′
2. (3.25)

A simple elastic strain-energy function for the electrodes can be chosen [30] as

U(λ, κ) =
1

2
m(λ− 1)2 +

1

2
nκ2, (3.26)

which is an expression analogous to that of structural plates with stretching and bending.
As such, it can be deduced that the parameters m and n may be interpreted as

m =
Ech

1− ν2
c

, n =
Ech

3

12(1− ν2
c )
, (3.27)

where Ec and νc are the Young’s modulus and Poisson’s ratio for the coating material,
respectively, and h is the film thickness. Additional terms could be added to U(λ, κ) to
take residual stresses into account, but are assumed to be null in this investigation.

3.2.1 Effect of the stiffness of the electrode on surface instability

In this section we examine three different types of electrodes to show a range of materials
that might be typically encountered, and obtain the bifurcation equation to analyse
electro-elastic surface instabilities.
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We recall eqs. (3.11) and (3.10) being the generic incremental boundary conditions for
the elastomer. These conditions are specialised as previously described for the attached
compliant electrodes case, which is the pertinent case when wanting to include electrode
stiffness effects. To take the stiffness of the electrodes into account, we use the boundary
conditions derived and given by eqs. (3.25), acting on the incremental stress terms.
Using these new conditions and the strain-energy function for the electrode eq. (3.26),
the bifurcation equation was obtained as previously described. It is important to note
that the introduction of the electrode stiffness causes the bifurcation equation to be
dependent on the wavenumber, in particular, due to the fourth-order derivative in eq.
(3.25)2, it is a quartic in k. We then expect a complex set of solutions depending on the
wavenumber as also discussed by Ogden and Steigmann [30] and Gei [36]. It is worth
to mention that we have verified our model by obtaining the elastic results presented in
[30], where the electric field is absent.

Material properties for the electrodes are needed to obtain the material parameters
m and n in eqs. (3.27), namely, Young’s modulus and Poisson’s ratio. The material
properties m and n have dimensions of length×pressure and length3× pressure, respec-
tively. As such (n/m)1/2 can be used as a length scale to normalise the wavenumber as
k̄ = k(n/m)1/2. To compare the three electrode materials, m and n are also normalised
such that m̄ = n̄ = (m/µ)(m/n)1/2; in addition, they are assumed as incompressible. All
the chosen materials may undergo large strains as they are highly stretchable and offer
good conductivity.

The first material consists of a PDMS matrix combined with conductive materials
such as graphene or carbon black. Typical values for Young’s modulus is shown to be
0.9 MPa with an electrode thickness of h = 30 µm [37, 38], giving m = 35.5 Pa m,
n = 2.66 × 10−9 Pa m3 and m̄ = 41.57. The second material shares the matrix with
the first one, but the reinforcement is composed of metal ions, such as gold or titanium,
that are implanted into the PDMS matrix. Information on the manufacturing process
and their material parameters were shown by Niklaus and Shea [39] and Shea [40], which
measured a Young’s modulus of 2 MPa and an electrode thickness of h = 50 nm. This
provides m = 0.13 Pa m, n = 2.74× 10−17 Pa m3, and m̄ = 91.17. Alternative electrode
materials are ionogels which consist of an ionic liquid immobilised in a polymer matrix.
Material values were taken by Ji et al. [41], with a Young’s modulus of 192 kPa and an
electrode thickness of h = 750 nm, yielding m = 0.19 Pa m, n = 8.88× 10−15 Pa m3 and
m̄ = 8.75.

As the bifurcation diagrams are similar for the three kinds of electrode, we analyse that
of the graphene-implanted electrode (the first of the three) for which the dimensionless
stiffness m̄ = 41.57 is the median one among the three materials. Figure 11 shows the
bifurcation diagrams where λ is plotted against k̄ for an increasing D̄. For low values
of the electric displacement, Fig. 11 (a) where D̄ = 0.01, there is only one solution of
the bifurcation equation as for the uncoated half-space. The critical λ in this case is the
maxima of the curve (i.e., k̄ = 0.290, λ = 0.799). It is of note that, as k̄ → 0, the solution
for negligible electrode stiffness (i.e., uncoated half-space) is obtained. For D̄ > 0.773,
a new branch emerges (see Fig. 11 (b)). This provides two additional solutions at low
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(a) D̄ of 0.01 (b) D̄ of 0.87

(c) D̄ of 0.90 (d) D̄ of 1.00

Figure 11: Bifurcation diagram for an actuated neo-Hookean elastomer coated with a ‘stiff’ electrode.
The material parameters for a graphene implanted electrode were used, i.e. m̄ = 41.57. λ1 is plotted
against the normalised wavenumber k̄ and various values of D̄ are considered in the different plots. Blue
and orange represent two different branches of the solution to the bifurcation equation.

k̄. As D̄ is increased further, the maxima from the first branch has a higher critical λ
than the lowest solution of the new second branch (Fig. 11 (c)). This causes the overall
bifurcation curve (displayed in Fig. 12) to have only one solution which is the one with
the highest λ. The solution then switches form and the two branches merge into one
(Fig. 11 (d)). The highest λ as k̄ → 0 continues to be the dominant critical stretch as
the maxima from the first branch disappears.

This instability curves for the various electrodes are plotted in Fig. 12. These are
obtained checking carefully the critical λ (more than one solution may exist) on the bi-
furcation diagram analysed in Fig. 11 at a given D̄. The curves pertain to ionogel (red),
graphene-implanted (blue) and ion-implanted (green) electrodes, together with the solu-
tion where electrode stiffness is disregarded (orange) obtained in the previous subsection.
Dotted lines represent loading paths of a dielectric elastomer (attached compliant elec-
trode) with various states of pre-stress. Taking into account the stiffness of the electrodes
causes the bifurcation curve to start at higher critical stretches for low D̄, though always
for λ < 1. The curves then go up much more linearly with a high slope until they reach
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Figure 12: Limit of the stability domain for a neo-Hookean elastomer shown as various electrode
materials with varying stiffness are assumed (varying m̄). Dotted lines represent loading paths of a
dielectric elastomer with τpre/µ going from 0 to 2.5 in increments of 0.5. Actuation is described by the
non-dimensional electric displacement D̄.

that for a fully compliant electrode, which then takes over. Compared to the uncoated
case, the peak that was present vanishes in all the three cases. As m̄ increases the bi-
furcation curve becomes more vertical and the critical lambda at D̄ = 0 also increases.
However, following the fundamental paths considered in this investigation, this effect is
not actually seen as the original curve takes over at a critical λ lower than the intersection
of the fundamental paths.

To analyse the features of the bifurcation modes for the various branches described
earlier, let us consider the parameter D̄ = 0.85, k̄ = 0.001, a case similar to that displayed
in Fig. 11 (b). Again, the graphene-implanted electrode case is adopted (m̄ = 41.57).
The three critical values of λ for the given k̄ are equal to 0.482, 0.955 and 2.055. These
values were used to calculate the eigensystem of the three coefficients (U1, U2, U3, cf. eq.
(3.6)), and the modes were normalised such that the incremental displacement u2 = 1 at
the surface of the half-space. The incremental displacement fields are displayed in Fig.
13. Functions u2 and u1 are plotted into the thickness of the elastomer x2 normalised with
the wavelength 2π/k. The orange and green curves correspond to the solutions appearing
only at a higher D̄ corresponding to the orange branch in Fig. 11 (b), and are similar
in nature. The blue curve, corresponding to the first branch with the lowest λcrit, has a
peak just inside the surface for the displacement u2 and an inversion in u1. In general, the
two solutions from the second branch are more localised to the surface of the half-space,
a findings similar to those observed in [30, 36] in analogous purely-elastic problems. This
is also the case for the normalised transverse component of the incremental electric field,
Ē2 in Fig. 14. For the electric fields, the general shape of the curve is very similar.
However, with lower λcrit values, the incremental electric field is much higher (over five
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(a) u2 (b) u1

Figure 13: Incremental displacement fields u2 and u1, into the thickness x2 of a neo-Hookean elas-
tomer, normalised with the wavelength 2π/k. The actuation case is that of an attached compliant
electrodes with the stiffness taken into account. The material parameters for a graphene implanted
electrodes was used with m̄ = 41.57. Curves represent the three solutions when k̄ = 0.001 and D̄ = 0.85,
with varying λcrit values.

Figure 14: The normalised transverse incremental electric field Ê2, is shown into the thickness x2

of a neo-Hookean elastomer, normalised with the wavelength 2π/k. The actuation case is that of an
attached compliant electrodes with the stiffness taken into account. The material parameters for a
graphene implanted electrodes was used with m̄ = 41.57. Curves represent the solutions when k̄ = 0.001
and D̄ = 0.85, with varying λcrit values.

times more) meaning an instability mode where the electric field plays a bigger role. It is
also interesting to note that with the largest solution λcrit = 2.055 there is a difference in
the component Ē1 that distinguishes it from the other two solutions. While they all start
off as Ē1 = 0 on the surface due to the electric boundary conditions, for this particular
solution there is a peak just inside the thickness of the elastomer of a value around 10%
the maximum Ē2. For the other solutions Ē1 is of several order of magnitudes lower.

23



(a) λcrit of 0.482 (b) λcrit of 0.955 (c) λcrit of 2.055

Figure 15: Contour plots of the incremental von Mises stress at the onset of instability for a neo-
Hookean elastomer with a stiff electrode (m̄ = 41.57). The domain has been normalised with the
wavelength 2π/k. The three solutions correspond to k̄ = 0.001 when D̄ = 0.85, with varying values of
λcrit plotted separately.

We define the incremental von Mises stress as

Σv =

√
1

2
[(Σ11 − Σ22)2 + (Σ22 − Σ33)2 + (Σ33 − Σ11)2] + 3(Σ2

12 + Σ2
23 + Σ2

31). (3.28)

In Fig. 15, the contour plots of incremental von Mises stress are plotted for the three
values λcrit. Here again we can see the big difference in decay into the thickness of the
half-space with a lower λcrit. It can also be observed that in Fig. 15 (a) there is a big
inversion just inside the thickness of the elastomer implying an instability mode that
has large varying stresses just under the surface. In Fig. 15 (b) the inversion is still
present, but it appears when the incremental stress has already decayed and is almost
null whereas in Fig. 15 (c) the plotted quantity decays monotonically with depth.

4 Conclusions

In coupled mechanics, the investigation of surface instability is an important step toward
the complete understanding of the type of bifurcations occurring in a homogeneous body
when subjected to external stimuli. In this paper we address plane-strain electro-elastic
surface instability and, in particular, we aim at assessing the effect of the stiffness of
electrodes on the stability domain.

To reach our goal, we introduce three ways to actuate an elastomer device (possi-
bly pre-stressed), namely, actuation by means of (i) attached compliant electrodes, (ii)
sprayed charges onto the opposite surfaces and (iii) fixed electrodes between which the de-
vice ‘floats’ in vacuum and expands transversally. The third mode is analysed in detailed
with reference to the occurrence of the electro-mechanical instability and the expansion
limit.
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Surface instability is then tackled for the three actuation modes by specialising the
relevant incremental theory where linearised fields are superimposed on the finite-strain
path. The stability domains are obtained in the plane ‘longitudinal stretch–dielectric
displacement (or voltage jump)’. A first conclusion is that among the three modes, the
instability is more sensible to pre-stress for specimens in the ‘floating’ configuration,
while a half-space deformed by sprayed charges is more stable than the same actuated
by voltage.

Surface-coating model can be profitably adopted to investigate the effects of electrodes
on surface instability. Electrodes composed of three different materials are considered
afterwards in the paper as employed in various applications. Their implementation in the
model considerably changes the stability domain that is significantly reduced when the
half-space contracts (longitudinal stretch less than one). New bifurcation modes come
into play in this enriched approach and each one has been studied and characterised
by analysing various incremental fields obtained solving the eigensystem governing the
problem.

Acknowledgements. PL acknowledges the support by the UK Engineering and
Physical Sciences Research Council (EPSRC) grant EP/R513003/1 for the Cardiff Uni-
versity Centre for Doctoral Training. MG is grateful to the support provided by Univer-
sity of Trieste through grant FRA2021 ‘NEO-PHONON’.

References

[1] Kofod, G., Wirges, W., 2007, Energy minimization for self-organized structure for-
mation and actuation. Appl. Phys. Lett., 90, 081916.

[2] Shintake, J., Cacucciolo, V., Shea, H., Floreano, D., 2018, Soft Biomimetic Fish
Robot Made of Dielectric Elastomer Actuators. Soft Rob., 5, pp. 466-474.

[3] Calabrese, L., Berardo, A., De Rossi, D., Gei, M., Pugno, N.M., Fantoni, G., 2019, A
soft robot structure with limbless resonant, stick and slip locomotion. Smart Mater.
Struct., 28, 104005.

[4] Dubois, P., Rosset, S., Niklaus, M., Dadras, M., Shea, H., 2008, Voltage Control of
the Resonance Frequency of Dielectric Electroactive Polymer (DEAP) Membranes.
AJ. Microelectromech. Syst., 17, pp. 1072-1081.

[5] Anderson, I.A., Gisby, T.A., McKay, T.G., O’Brien, B.M., Calius, E.P., 2012, Multi-
functional dielectric elastomer artificial muscles for soft and smart machines. J. Appl.
Phys., 112, 041101.

[6] Cao, C., Burgess, S., Conn, A.T., 2019, Toward a Dielectric Elastomer Resonator
Driven Flapping Wing Micro Air Vehicle. Front. Robot. AI, 5, pp. 137.

25



[7] Chiang, C., Lin, C.K., Ju, M., 2007, An implantable capacitive pressure sensor for
biomedical applications. Sens. Actuators, A, 134, pp. 382-388.

[8] Carpi, F., Frediani, G., Gerboni, C., Germignani, J., De Rossi, D., 2014, Enabling
variable-stiffness hand rehabilitation orthoses with dielectric elastomer transducers.
Med. Eng. Phys., 36, pp.205-211.

[9] Calabrese, L., Frediani, G., Gei, M., De Rossi, D., Carpi, F., 2018, Active compres-
sion bandage made of dielectric elastomers. IEEE ASME Trans. Mechatron., 23, pp.
2328-2337.

[10] McKay, T.G., O’Brien, B.M., Calius, E.P., Anderson, I.A., 2011, Soft generators
using dielectric elastomers. Appl. Phys. Lett., 98, 142903.

[11] Kornbluh, R.D., Pelrine, R., Prahlad, H., Wong-Foy, A., McCoy, B., Kim, S., Eck-
erle, J., Low, T., 2011, From boots to buoys: promises and challenges of dielectric
elastomer energy harvesting. SPIE Proc., 7976, 797605.

[12] Bortot, E., Denzer, R., Menzel, A., Gei, M., 2014, Analysis of a viscous soft dielectric
elastomer generator operating in an electric circuit. Int. J. Solids Struct., 78-79, pp.
205-215.

[13] Moretti, G., Rosati Papini, G.P., Daniele, L., Forehand, D., Ingram, D., Vertechy,
R., Fontana, M., 2019, Modelling and testing of a wave energy converter based on
dielectric elastomer generators. Proc. R. Soc. A, 475, 20180566.

[14] Lu, T., Ma, C., Wang, T., 2020, Mechanics of dielectric elastomer structures: A
review. Extreme Mech. Lett., 38, 100752.

[15] Pelrine, R., Kornbluh, R.D., Joseph, J., 1998, Electrostriction of polymer dielectrics
with compliant electrodes as a means of actuation. Sens. Actuators, A, 64, pp. 77-85.
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