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Fig. 1. Our deep generative network DSG-Net encodes 3D shapes with complex structure and fine geometry in a representation that leverages the synergy

between geometry and structure, while disentangling these two aspects as much as possible. This enables novel modes of controllable generation for

high-quality shapes. Left: results of disentangled interpolation. Here, the top left and bottom right chairs (highlighted with red rectangles) are the input

shapes. The remaining chairs are generated automatically with our DSG-Net, where in each row, the structure of the shapes is interpolated while keeping

the geometry unchanged, whereas in each column, the geometry is interpolated while retaining the structure. Right: shape generation results with complex

structure and fine geometry details by our DSG-Net. We show close-up views in dashed yellow rectangles to highlight local details.

3D shape generation is a fundamental operation in computer graphics. While

significant progress has been made, especially with recent deep generative

models, it remains a challenge to synthesize high-quality shapes with rich
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geometric details and complex structures, in a controllable manner. To tackle

this, we introduce DSG-Net, a deep neural network that learns a disentangled

structured & geometric mesh representation for 3D shapes, where two key

aspects of shapes, geometry and structure, are encoded in a synergistic

manner to ensure plausibility of the generated shapes, while also being

disentangled as much as possible. This supports a range of novel shape

generation applications with disentangled control, such as interpolation

of structure (geometry) while keeping geometry (structure) unchanged.

To achieve this, we simultaneously learn structure and geometry through

variational autoencoders (VAEs) in a hierarchical manner for both, with

bijective mappings at each level. In this manner, we effectively encode

geometry and structure in separate latent spaces, while ensuring their

compatibility: the structure is used to guide the geometry and vice versa. At

the leaf level, the part geometry is represented using a conditional part

VAE, to encode high-quality geometric details, guided by the structure

context as the condition. Our method not only supports controllable



able to generate shapes with both complex structures and detailed

geometry. Moreover, disentanglement of structure and geometry

is not addressed in these works. A notable work SAG-Net [Wu

et al. 2019] pioneers the study of 3D shape geometry and structure

disentangled/controllable generation where an attention-based

Gated Recurrent Unit (GRU) network is proposed to jointly encode

shape geometry as voxel maps and structure as fully connected

graphs into a single latent space. However, it remains challenging to

deal with more fine-grained parts and hierarchical shape structures,

as well as fine geometric details. And also, it achieves the controllable

generation by the two-branch variational autoencoder (VAE) and

optimization in a single latent space, rather than two independent

latent spaces, which do not require optimizations for a disentangled

generation.

In this paper, we introduce Disentangled Structure & Geometry

Net (DSG-Net), a novel deep generative model which learns to

generate high-quality shape meshes while disentangling the shape

geometry and structure generation of two independent spaces

as much as possible, enabling many novel disentangled shape

manipulation applications, as shown in Figure 2. Our work uses

the fine-grained shape part hierarchies in the PartNet [Mo et al.

2019b] dataset. In our disentangled shape representation, shape

structure only includes the hierarchical part graphs with symbolic

part semantics and relationships, whereas shape geometry contains

the detailed part geometry. For our network design, we encode both

the structure and geometry hierarchies with an 𝑛-ary tree using

separate variational autoencoders (VAEs) with recursive neural

network architectures. Both the geometry and structure information

flows along the edges of hierarchical graphs and is aggregated into

two latent spaces, allowing these two key aspects to be encoded

separately in a disentangled manner. Furthermore, we design a

Cycled Disentanglement mechanism to decompose the shape space

into two separate spaces and further improve the performance of

disentanglement. During the training, a new shape that combines

the geometry and structure of any two input shapes will be

synthesized, and our new design will encourage its geometry and

structure to be the same as the two input shapes as much as possible.

Compared to the original framework, it only decomposes the shape

with two separate encoders without additional supervision. Our new

designs are capable of improving the disentanglement performance

efficiently. Though disentangled, the two latent spaces need to

be correlated to ensure the plausibility of the generated shapes.

We simultaneously train both structure and geometry VAEs while

ensuring necessary communications between them: the geometry

follows the part semantics and the inter-part relationship edges in

the structure, while the structure requires knowing part geometry

for training.

Our novel solution allows shapes with complex structure and

delicate geometry to be represented and synthesized, outperforming

state-of-the-art methods, e.g. [Gao et al. 2019b; Mo et al. 2019a]. The

disentangled and synergistic formulation allows novel applications,

such as shape generation and interpolation with separate control

of structure and geometry. New shapes can also be synthesized by

mixing structure and geometry from different examples.

Figure 1 demonstrates the capability of our DSG-Net to interpolate

shapes with rich geometry and complex structure in the geometry
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generation applications, but also produces high-quality synthesized shapes, 
outperforming state-of-the-art methods.
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1 INTRODUCTION

3D shapes are widely used in computer graphics and computer 
vision, with applications ranging from modeling, and recognition 
to rendering. Synthesizing high-quality shapes is therefore highly 
demanded for many downstream applications. Ideally, the synthe-
sized shapes should be able to contain fine geometric details and 
complex structures, and the generation process needs to provide 
high-level control to ensure desired shapes are produced.

Shape generation has been extensively researched in recent years, 
benefiting especially from the capabilities of deep generative models. 
This has been true across a variety of 3D representations used to 
represent generated shapes, including point clouds, voxels, implicit 
fields, meshes, etc. However, existing methods still have limitations 
in representing both complex shape structure as well as geometry 
details, which is what is required for many downstream applications.
Moreover, for high-level control in shape generation, it is im-

portant to decompose shapes into multiple aspects that can be 
independently manipulated ś typically geometry and structure (i.e. 
how different parts are related to form the overall shape). On the one 
hand, geometry and structure are synergistic: the structure of an 
object may restrict the specific geometric shapes that are plausible, 
and vice versa. On the other hand, to support high-level control, 
it is beneficial to derive a  representation that disentangles these 
two aspects as much as possible. Such disentangled and synergistic 
representations offer s ignificant benefits, inc luding controllable 
generation of new shapes, e.g. interpolating or transferring structure 
while keeping geometry unchanged, or manipulating geometry 
while retaining the structure.

Disentangled representations have been widely studied in image 
generation, allowing different a spects, s uch a s d ifferent facial 
attributes (e.g. expression, age, gender) to be manipulated separately, 
either in supervised [Xiao et al. 2018a,b] or unsupervised [Chen et al. 
2016] manners. For disentanglement of 3D shapes, existing works 
either focus on specific data kinds such as human faces [Abrevaya 
et al. 2019], or are restricted to intrinsic/extrinsic decomposition, 
where shape geometry and poses are considered [Aumentado-

Armstrong et al. 2019]. None of these methods can handle more 
general shape geometry and structure disentanglement.

Most existing deep shape generation works produce synthesized 
shapes as a whole. This makes it particularly difficult to  control 
the generation, either in a topology or geometry-aware manner. 
Recently, some pioneering works have addressed this shortcoming 
by considering shape generation using parts and their compositions, 
leading to improved geometric detail [Gao et al. 2019b] and better 
handling of complex structure [Mo et al. 2019a]. However, neither is
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Fig. 2. Our method learns a disentangled latent representation which maps

a shape into two separate spaces (the geometric space and the structure

space), enabling new disentangled shape manipulation applications, such as

disentangled shape reconstruction, as shown in this figure, that combines

the structure and geometry from different shapes while ensuring the high

quality of shape generation.

and structure spaces, separately where each row shows interpolation

of a structure while keeping geometry unchanged, and each

column presents interpolation of geometry while retaining the same

structure. Through extensive evaluations and comparisons with

the state-of-the-art deep neural generative models, our method

shows significant advantages and superiority in various shape

categories. Our method supports traditional applications such

as shape generation, synthesis, and interpolation, but now with

independent control on the shape structure and geometry detail,

facilitating the design process.

In summary, we make the following key contributions:

• We propose a novel DSG-Net that learns to decompose shape

space into two disentangled latent spaces, encoding the

geometry and structure of shapes respectively (as illustrated

in Figure 2). Furthermore, we design a Cycled Disentanglement

(CycD) mechanism to further disentangle the structure and

geometry of a shape in a self-supervised manner;

• DSG-Net enables novel shape synthesis applications that

exploit disentangled control of structure and geometry;

• DSG-Net also allows high-quality shapes with complex struc-

ture and fine geometric details to be effectively represented

and synthesized, outperforming state-of-the-art methods.

2 RELATED WORK

3D shape generation is a key research topic in 3D computer vision

and graphics. In this section, we give a brief review on recent

advances in 3D shape representations, modeling 3D shape geometry

and structure, as well as disentangled representation learning.

2.1 3D Shape Representations

In contrast to reaching a great consensus on representing 2D images

as pixel grids, researchers have been exploring a big variation of

representations for 3D data. Recent works have developed deep

learning frameworks for 3D voxel grids [Choy et al. 2016; Maturana

and Scherer 2015], multi-view 2D rendering of 3D data [Kalogerakis

et al. 2017; Su et al. 2018, 2015], 3D point clouds [Achlioptas et al.

2018; Fan et al. 2017; Li et al. 2018; Lin et al. 2021; Qi et al. 2017a,b], 3D

polygonal meshes [Chen et al. 2020; Groueix et al. 2018; Wang et al.

2018], and 3D implicit functions [Chen and Zhang 2019; Mescheder

et al. 2019; Park et al. 2019]. For more detailed discussion and

comparison, we refer the readers to these surveys [Ahmed et al.

2018; Bronstein et al. 2017; Ioannidou et al. 2017; Jin et al. 2020; Xiao

et al. 2020; Yuan et al. 2021].

There is a recent trend of studying part-based and structure-

aware 3D shape representations, since 3D shapes naturally ex-

hibit compositional part structures. Part-based shape modeling

decomposes complicated shapes into simpler parts for geometric

modeling and organizes parts as part sequences or part hierarchies

that encode shape part relationships and structures. Many previous

works investigated parsing 3D shapes into parts [Huang et al. 2011;

Tulsiani et al. 2017; Yi et al. 2017a; Zou et al. 2017], representing 3D

shapes as part sequences or hierarchies [Ganapathi-Subramanian

et al. 2018; Kim et al. 2013; Mo et al. 2019a; Niu et al. 2018; Van Kaick

et al. 2013; Wang et al. 2011; Wu et al. 2020; Zhu et al. 2018a],

and generating 3D shapes with part structures [Gao et al. 2019b;

Kalogerakis et al. 2012; Li et al. 2017; Mo et al. 2020; Wu et al. 2019].

We refer to survey papers [Chaudhuri et al. 2020; Mitra et al. 2014;

Xu et al. 2016] for more comprehensive discussion.

2.2 Modeling Shape Geometry

There are several different approaches to generating detailed 3D

shape geometry: direct methods, patch-based methods, deformation-

basedmethods, and others. Directmethods exploit decoder networks

that output 3D contents in direct feed-forward procedures. For

instance, Choy et al. [2016] and Tatarchenko et al. [2017] directly

generate 3D voxel grids using 3D convolutional neural networks.

Fan et al. [2017] and Achlioptas et al. [2018] use Multi-layer Per-

ceptrons (MLPs) to directly generate 3D point clouds. Patch-based

methods generate 3D shapes by assembling many local 3D surface

patches. AtlasNet [Groueix et al. 2018] and Deprelle et al. [2019]

learn to reconstruct each 3D shape by a collection of local surface

elements or point clouds. Recent papers [Genova et al. 2019; Jiang

et al. 2020] learn local implicit functions that are aggregated together

to generate 3D shapes. Deformation-based methods train neural

networks to deform an initial shape template to the output shape.

For example, FoldingNet [Yang et al. 2018] and Pixel2Mesh [Wang

et al. 2018] learn to deform 2D grid surfaces and 3D sphere manifolds

to reconstruct 3D target outputs.

In our paper, we choose a deformation-based mesh representation

for leaf-node parts, where we deform a unified unit cube mesh with

5,402 vertices to describe leaf-node part geometry. Representing 3D

shapes as fine-grained part hierarchies [Mo et al. 2019a,b], we find

that it is effective and efficient for preserving geometry details for

leaf-node parts, as previously shown in the recent works [Gao et al.

2019a,b]. Different from SDM-Net [Gao et al. 2019b], we introduce

a structure-conditioned part geometry VAE, that substantially

improves data efficiency and reconstruction performance. Second,

we build up bijective mappings between the structure and geometry

nodes for synergistic joint learning, which enables disentangled

representations for shape structure and geometry. Compared to

StructureNet [Mo et al. 2019a] that generates 3D point clouds for

leaf-node parts, we find our method generates 3D part geometry

with sharper edges and more details.



as pose and shape transfer. Moreover, CFAN-VAE [Tatro et al. 2020]

proposes to use the intrinsic conformal factor and extrinsic normal

feature to achieve geometric disentanglement (pose and identity of

human shapes) in an unsupervised way. For general textured objects

datasets, VON [Zhu et al. 2018b] presents a fully differentiable

3D-aware generative model with a disentangled 3D representation

(shape, viewpoint, and texture) for image and shape synthesis.

Compared to the above works, our work displays a rather novel

capability - disentanglement of structure and geometry of 3D shapes.

In this work, we learn a disentangled structuredmesh representation

for 3D shapes, where the disentanglement is entirely between

two explicitly defined factors, namely structure and geometry.

Furthermore, the cycle consistency first enables the translation of

images and shapes with unpaired examples in an unsupervised

manner [Gao et al. 2018; Yi et al. 2017b; Zhu et al. 2017]. For

the enhancement of disentangled learning, we adopt the cycle

consistency into our framework to explicitly encourage latent-

space disentanglement. Our network can not only be used to

generate shapes with improved geometric details but also allows us

to exploit independent control of structure and geometry with the

disentangled latent spaces.

3 METHODOLOGY

In this work, every 3D shape is decomposed into semantically

consistent part instances that are organized by an 𝑛-ary part

hierarchy covering parts at different granularities, ranging from

coarse-grained parts (e.g. chair back and base) to fine-grained ones

(e.g. back bars and legs). We propose a disentangled but synergistic

hierarchical representation (Figure 3) and a learning framework

with our Cycled Disentanglement mechanism (Figure 5), enabling

disentangled control of shape geometry and structure in the shape

generation procedure.

In the following subsections, we first describe the detailed

definitions for our disentangled shape representation of structure

hierarchy and geometry hierarchy. Then, we introduce a conditional

part geometry VAE on encoding and decoding the fine-grained part

geometry using a unified deformable mesh. Next, we present our

disentangled network architecture designs for the geometry and

structure VAEs and discuss how to learn the disentangled shape

geometry and structure latent spaces simultaneously where the

geometry and structure VAEs guide the learning processes for each

other. Finally, a post-processing procedure is introduced for result

refinement.

3.1 Disentangled Shape Representation

We adapt the hierarchical part segmentation in PartNet [Mo et al.

2019b] for ShapeNet models [Chang et al. 2015], where each shape is

decomposed into a set of parts P and organized in a part hierarchyH

(i.e. , the vertical parent-child part relationships) with rich part

relationships R (i.e. , the horizontal among-sibling symmetry or

adjacency part relationships). Each part 𝑃𝑖 is associated with a

semantic label 𝑙𝑖 (e.g. chair back, chair leg) defined for a certain

object class, as well as the detailed part geometry 𝐺𝑖 .

We introduce a disentangled but synergistic shape representation

for shape structure and geometry, where we represent each 3D shape
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2.3 Modeling Shape Structure
3D objects, especially man-made ones, are highly compositional 
and structured. Previous works attempt to infer the underlying 
shape grammars [Chaudhuri et al. 2011; Kalogerakis et al. 2012; 
Wu et al. 2016], part-based templates [Ganapathi-Subramanian 
et al. 2018; Kim et al. 2013; Ovsjanikov et al. 2011], and shape 
programs [Sharma et al. 2018; Tian et al. 2019]. Then, Elena et 
al. [2018] proposed a structure-aware and voxel-based shape 
synthesis model that respects structure constraints (landmark 
points), which are predicted by a learned structure detector. There 
are also many papers investigating generating shapes in the part-
by-part manner using consistent part semantics [Dubrovina et al. 
2019; Li et al. 2020; Schor et al. 2019; Wu et al. 2019] and sequential 
part instances [Sung et al. 2017; Wu et al. 2020].

Recently, researchers have been investigating representing shapes 
as part hierarchy, extending part granularity to more fine-grained 
scales. The pioneering work to encode tree structure of object 
GRASS [Li et al. 2017] uses binary part hierarchies and advocates to 
use recursive neural networks (RvNN) to hierarchically encode 
and decode parts along the tree structure. A follow-up work 
StructureNet [Mo et al. 2019a] further extends the framework to 
handle 𝑛-ary part hierarchies with consistent part semantics for an 
object category [Mo et al. 2019b]. SDM-NET [Gao et al. 2019a] 
learns to generate structured meshes with deformable parts by 
leveraging a part graph with rich support and symmetry relations. 
Sun et al. [2019] and Paschalidou et al. [2020] explore learning 
hierarchical part decompositions in unsupervised settings.

Our work adopts the hierarchical part representation introduced 
in StructureNet [Mo et al. 2019a] that can represent ShapeNet [Chang 
et al. 2015] shapes with complicated structures and fine-grained 
leaf-node parts. Different from StructureNet where shape geometry 
and structure are jointly modeled in one RvNN, we learn a pair of 
separate geometry RvNN and structure RvNN in a disentangled but 
synergistic fashion, which enables exploring geometric (structural) 
changes while keeping shape structure (geometry) unchanged. 
We also find t hat b y c ombining t he s tate-of-the-art structure 
learning modules from StructureNet [Mo et al. 2019a] and the latest 
techniques in modeling detailed part geometry from SDM-Net [Gao 
et al. 2019b] in an effective way, we achieve the best from both 
worlds that beats both StructureNet and SDM-Net in performance.

2.4 Disentangled Analysis in Deep Learning
For 2D image generation, the architecture proposed in [Karras et al. 
2019] enables intuitive, scale-specific control of high-level attributes 
for high-resolution image synthesis by automatic unsupervised 
separation. HoloGAN [Nguyen-Phuoc et al. 2019] improves the 
visual quality of generation and allows manipulations by utilizing 
explicit 3D features to disentangle the shape and appearance in an 
end-to-end manner from unlabeled 2D images only.
In 3D shape processing, generative modeling becomes a main-

stream topic thanks to deep learning and tremendous public 3D 
datasets, some of which contain rich realistic textures. Levin-
son et al. [2019] propose a supervised generative model to achieve 
accurate disentanglement of pose and shape in a large-scale human 
mesh dataset, as well as successfully incorporating techniques such
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Fig. 3. An example showing the proposed disentangled but highly

synergistic representation of shape geometry and structure hierarchies.

There is a bijective mapping between the tree nodes in the two hierarchies.

In the structure hierarchy, we consider symbolic part semantics and a rich set

of part relationships (orange arrows), such as adjacency (𝜏𝑎) , translational

symmetry (𝜏𝑡 ) , reflective symmetry (𝜏𝑟 ) and rotational symmetry (𝜏𝑜 ) . In

the part geometry hierarchy, the part geometry is represented by meshes.

as a pair of a structured hierarchy and a geometry hierarchy. In

our disentangled representation (see Figure 3), a structure hierarchy

abstracts away the part geometry and only describes a symbolic

part hierarchy with part structures and relationships, namely

(⟨𝑙1, 𝑙2, · · · , 𝑙𝑁 ⟩,H,R), while a geometry hierarchy describes the part

geometry ⟨𝐺1,𝐺2, · · · ,𝐺𝑁 ⟩. There is a bijective mapping between

the tree nodes of the structure and geometry hierarchies where the

part semantic label 𝑙𝑖 defined in the structure hierarchy corresponds

to the part geometry 𝐺𝑖 included in the geometry hierarchy. Also,

the geometry hierarchy implicitly follows the same part hierarchy

H and part relationships R as specified in the structure hierarchy.

Part Geometry Representation. For each part geometry𝐺𝑖 , we use

a mesh representation to capture more geometric details, such as the

decorative patterns and sharp boundary edges, than the point cloud

representation used in StructureNet [Mo et al. 2019a]. Given a closed

box mesh manifold 𝐺𝑏𝑜𝑥 with 𝑉 = 5402 vertices, we first calculate

the oriented bounding box (OBB) 𝐵𝑖 of each part 𝑃𝑖 and deform

𝐺𝑏𝑜𝑥 , initialized with the shape 𝐵𝑖 , to the target part geometry 𝐺𝑖
by adjusting the vertex positions through a non-rigid registration

procedure. Then, for each part, we use the ACAP (as-consistent-

as-possible) feature [Gao et al. 2019a,b] 𝑋𝑖 as the representation of

the deformed box mesh. The ACAP feature 𝑋𝑖 ∈ R
𝑉×9 captures the

local rotation and scale information in a one-ring neighbor patch

of every vertex on the mesh and is capable of capturing large-scale

local geometric deformations (e.g. rotation greater than 180◦). We

show an example registration result in Figure 4 (a). For the detailed

calculation, please refer to the work [Gao et al. 2019a]. Since the

ACAP feature is invariant to spatial translation of the part, we

incorporate an additional 3-dimensional vector to describe the part

center 𝑐𝑖 . Overall, each part geometry is represented as a pair of an
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Fig. 4. We present: (a) the non-rigid part mesh registration process, and (b)

the architecture of our conditional part geometry variational autoencoder.

In (a), we deform a box mesh to any given part geometry and then extract

ACAP [Gao et al. 2019a] feature based on the registration. In (b), for a single

part mesh geometry, the encoder maps the part ACAP feature and its center

position into a 128-dimensional geometric latent code, while the decoder

reconstructs the part geometry by decoding the ACAP feature and the center

vector. Both networks are conditioned on the part structure information

along the structure hierarchy to generate specialized part geometry for

different structure contexts.

ACAP feature 𝑋𝑖 and a part center vector 𝑐𝑖 , as shown in Figure 4

(b), i.e. , 𝐺𝑖 = (𝑋𝑖 , 𝑐𝑖 ).

Geometry Hierarchy. The geometry hierarchy for a 3D shape is

a hierarchy of part geometries ⟨𝐺1,𝐺2, · · · ,𝐺𝑁 ⟩ (Figure 3 right). It

decomposes a complicated shape geometry into a hierarchy of parts

ranging from coarse-grained levels to fine-grained levels. Each part

geometry𝐺𝑖 in the geometry hierarchy corresponds to a tree node in

the structure hierarchy and gives a concrete geometric realization

given the context of the entire shape structure to generate. The

geometry hierarchy implicitly follows the structural hierarchy and

part relationships H and R defined in the structure hierarchy.

Structure Hierarchy. We consider a symbolic structure hierarchy

(⟨𝑙1, 𝑙2, · · · , 𝑙𝑁 ⟩,H,R) as the structure representation for a shape,

inspired by a recent work PT2PC [Mo et al. 2020]. Figure 3

(left) presents an example for the symbolic structure hierarchy.

It only includes the semantic information of shape parts and the

relationships between parts, while abstracting away the concrete

part geometry. PT2PC learns to generate 3D point cloud shapes

conditioned on a given symbolic structure hierarchy as a fixed

skeleton for shape generation. In this work, we extend PT2PC to

consider encoding and decoding the symbolic structure hierarchy

and investigate its disentangled but synergistic relationship to the

geometry hierarchy.

In the symbolic structure hierarchy, we represent each part with a

semantic label 𝑙𝑖 (e.g. chair back, chair leg) without having a concrete

part geometry in the representation. We include the rich sets of

part relationships defined in the PartNet dataset in the symbolic

structure hierarchy representation. There are two kinds of part

relationships: the vertical parent-child inclusion relationships (e.g.

a chair back and its sub-component chair back bars), as defined in

H, and the horizontal among-sibling part symmetry and adjacency

relationships (e.g. chair back bars have translational symmetry), as

denoted in R. We use the part relationships H and R as provided in

StructureNet [Mo et al. 2019a].

Coupling Geometry and Structure Hierarchies. Even though we

are attempting a disentangled shape representation, the structure

and geometry need to be compatible with each other for generating

plausible and realistic shapes. On the one hand, shape structure
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provides a high-level guidance for part geometry. If four legs of a

chair are specified to be symmetric to each other in the structure

hierarchy, the four legs should have identical part geometry to

satisfy the structural requirement. On the other hand, given a certain

type of part geometry, only certain kinds of shape structures are

possible. For example, it is nearly impossible to manufacture a swivel

chair if no lift handle or gas cylinder parts are provided.

Concretely, in our disentangled shape representation, the ge-

ometry hierarchy ⟨𝐺1,𝐺2, · · · ,𝐺𝑁 ⟩ and the structure hierarchy

(⟨𝑙1, 𝑙2, · · · , 𝑙𝑁 ⟩,H,R) of a shape are highly correlated and tightly

coupled. There is a bijective mapping between each part geometry

node 𝐺𝑖 and the part structure symbolic node 𝑙𝑖 . We set up

communication channels between the two hierarchies in the joint

learning process. The geometry hierarchy uses the part hierarchy H

and relationship R in the encoding and decoding stages for passing

messages and synchronizing geometry generation among related

nodes. To train the decoding stage of the structure hierarchy, we

leverage the corresponding geometry nodes to help match the

prediction to the ground-truth parts. Thus, the synergy between the

structure and geometry hierarchies is essential for simultaneously

learning the embedding spaces.

3.2 Conditional Part Geometry VAE

In the geometry hierarchy of a 3D shape, each part geometry 𝐺𝑖
is represented as a pair of ACAP feature 𝑋𝑖 ∈ R

𝑉×9 and the part

center 𝑐𝑖 ∈ R
3. We propose a part geometry conditional variational

autoencoder (VAE) with a conditional part geometry encoder 𝐸𝑛𝑐𝑃𝐺
that maps the part geometry 𝐺𝑖 = (𝑋𝑖 , 𝑐𝑖 ) into a 128-dimensional

latent feature and a conditional part geometry decoder𝐷𝑒𝑐𝑃𝐺 which

reconstructs 𝐺𝑖 from the latent code. Both the encoder and decoder

are conditioned on the part semantics and its current structural

context, in order to generate part geometry that is synergistic to the

current structure tree nodes. We use the mesh graph convolutional

operator to aggregate the local features around the vertex, which is

also suitable for shape analysis [Monti et al. 2017; Wang et al. 2020].

Figure 4 (b) illustrates the proposed part geometry conditional

VAE architecture. The encoder network 𝐸𝑛𝑐𝑃𝐺 performs two

sequential mesh graph convolutional operations over the𝑋𝑖 ∈ R
𝑉×9

feature map within local one-ring neighborhood around each vertex,

extracts a global part geometry feature via a single fully-connected

layer, which is then concatenated with the part center vector 𝑐𝑖 ,

and finally predicts a 128-dim geometry feature 𝑓𝐺𝑖 for part 𝑃𝑖 .

The decoder network 𝐷𝑒𝑐𝑃𝐺 decodes the part ACAP feature 𝑋𝑖
and the part center 𝑐𝑖 through fully-connected and mesh-based

convolutional layers. Then, the decoded ACAP feature 𝑋𝑖 is applied

on every vertex of the closed box mesh𝐺𝑏𝑜𝑥 to reconstruct the part

mesh𝐺𝑖 and the reconstructed center 𝑐𝑖 moves the part mesh to the

correct position in the shape space. Both the encoder and decoder are

conditioned on a structure code condition 𝑓 𝑆𝑖 summarizing certain

part semantics and its structural context.

Different from SDM-NET where they train separate PartVAEs for

different part semantics, we propose to use a single shared PartVAE

to encode and decode shape part geometry that is conditional on

the part structure information 𝑓 𝑆𝑖 . The reason is three-fold: firstly,
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Fig. 5. We train two disentangled but synergistic geometry and structure

variational autoencoders (VAEs) with recursive encoders and decoders

to learn disentangled latent spaces for shape geometry and structure.

The figure illustrates the joint learning procedure of the structure VAE

(red) and the geometry VAE (blue). In the encoding stage, the structure

features summarize the symbolic part semantics and recursively compute

sub-hierarchy structure contexts, while the geometry features encode

the detailed part geometry for leaf nodes and propagate the geometry

information along the same hierarchy. The decoding procedures of the

VAEs are supervised to reconstruct the hierarchical structure and geometry

information in an inverse manner.

PartNet gives far more part semantic labels than the SDM-NET

data, where training separate networks for different part semantics

is extremely costly and empirically hard to converge; secondly,

the data sample for some rare part categories is not sufficient to

train a separate network; lastly, our conditional PartVAE can be

conditioned on structure codes summarizing the part semantics and

sub-hierarchy information, allowing effective specialization for part

geometry generation given different structure contexts.

To train the proposed conditional PartVAE, we define the loss as

follows:

Lcond-PartVAE = 𝜆1L
recon
cond-PartVAE + LKL

cond-PartVAE (1)

where Lrecon
cond-PartVAE

= ∥𝑋𝑖 −𝑋𝑖 ∥
2
2 + ∥𝑐𝑖 − 𝑐𝑖 ∥

2
2 is the reconstruction

loss and LKL
cond-PartVAE

is the standard KL divergence loss to

encourage the learned embedding space to be close to a unit

multivariate Gaussian distribution.

3.3 Disentangled Geometry and Structure VAEs

To learn disentangled latent spaces for shape geometry and structure,

we design two Variational Autoencoders (VAEs) with Recursive

Neural Network (RvNN) encoders and decoders that are trained in

a disentangled but synergistic manner. Besides, we also propose a

novel Cycle Disentanglement for disentanglement learning of the

shape space in a self-supervised fashion. Figure 7 and Figure 5

provide an overview for the proposed disentangled framework,

including the disentangled VAEs. The geometry VAE (the blue part)

and the structure VAE (the red part) learn two disentangled latent

spaces for shape geometry and structure. Though disentangled,

the structure and geometry VAEs are jointly learned in a highly

synergistic manner.
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Fig. 6. We illustrate the detailed architecture of recursive graph encoders (𝐸𝑛𝑐𝑅𝑣𝐺 , 𝐸𝑛𝑐𝑅𝑣𝑆 ) and recursive graph decoders (𝐷𝑒𝑐𝑅𝑣𝐺 , 𝐷𝑒𝑐𝑅𝑣𝑆 ). We show

the geometry encoder and decoder in blue branches while presenting the structure ones in red. On the left, the geometry and structure encoders operate

independently in summarizing features among children’s part nodes to the parent nodes, while sharing the same structure information (part relationships) for

graph message-passing iterations. On the right, the geometry and structure decoders are trained to reconstruct the geometry and structure of children nodes

from the given parent nodes in a disentangled fashion, but with rich communications between the two that the decoded set of part geometry determines the

structure while the graph convolution operations for the geometry branch are guided by the predicted structure.

3.3.1 Structure VAE

Given a structure hierarchy (⟨𝑙1, 𝑙2, · · · , 𝑙𝑁 ⟩,H,R) describing a

symbolic tree with part semantics, hierarchy and relationships, the

structure VAE is trained to learn a structure latent space. For the

encoding process, a part structure encoder 𝐸𝑛𝑐𝑃𝑆 first summarizes

the leaf-node part semantics and then a recursive graph structure

encoder 𝐸𝑛𝑐𝑅𝑣𝑆 propagates features from the leaf nodes to the

root in a bottom-up manner according to the part hierarchy H and

relationships R. Inversely, the decoding process contains a recursive

graph structure decoder 𝐷𝑒𝑐𝑅𝑣𝑆 that hierarchically predicts the

structure features from the root to the leaf nodes in a top-down

fashion and a part structure decoder 𝐷𝑒𝑐𝑃𝑆 that decodes part

semantic labels for the leaf nodes.

The structure VAE uses a similar recursive neural network

architecture to StructureNet [Mo et al. 2019a], but we are encoding

and decoding symbolic structure hierarchies with no concrete part

geometry. It is thus difficult to train the decoding procedure given

no part geometry since we are not able to perform node matching

between a set of decoded children and the set of ground-truth

parts. To address this challenge, we borrow the corresponding part

geometry decoded from the geometry VAE to perform the node

matching for the training, where a communication channel between

the structure and geometry VAEs is established. Below, we discuss

more details on the four network components for the structure VAE.

Encoders. To encode a symbolic structure hierarchy represented

as (⟨𝑙1, 𝑙2, · · · , 𝑙𝑁 ⟩,H,R), we need to introduce an additional part

instance identifier for each part 𝑑𝑖 , where 𝑑𝑖 = 0, 1, 2, · · · , similar to

PT2PC [Mo et al. 2020]. Part instance identifiers help differentiate

the part instances with the same part semantics for a parent node.

For example, if a chair base contains four chair legs, we mark them

with part instance identifiers 0, 1, 2, 3. The part instance identifiers

are only necessary for the encoding stage and will be ignored in the

decoding procedure.

For each leaf node part 𝑃𝑖 , the part structure encoder 𝐸𝑛𝑐𝑃𝑆
encodes the part semantics 𝑙𝑖 and its part instance identifier 𝑑𝑖
into a part structure latent code 𝑓 𝑆𝑖 .

𝑓 𝑆𝑖 = 𝐸𝑛𝑐𝑃𝑆 ( [𝑙𝑖 ;𝑑𝑖 ]) (2)

where 𝐸𝑛𝑐𝑃𝑆 is simply a fully-connected layer, [; ] denotes the vector

concatenation, and we represent both 𝑑𝑖 and 𝑙𝑖 as one-hot vectors.

For the non-leaf part 𝑃𝑖 , the recursive graph structure encoder

𝐸𝑛𝑐𝑅𝑣𝑆 gathers all children node features, performs graph message-

passing along the part relationships defined in R among the children

nodes, and finally computes 𝑓 𝑆𝑖 by aggregating the children nodes’

features, as illustrated in the red branch of Figure 6 (left). Namely,

𝑓 𝑆𝑖 = 𝐸𝑛𝑐𝑅𝑣𝑆

(

{

𝑓 𝑆𝑗

}

(𝑃𝑖 ,𝑃 𝑗 ) ∈H
, 𝑙𝑖 , 𝑑𝑖

)

(3)

where (𝑃𝑖 , 𝑃 𝑗 ) ∈ H denotes that part 𝑃 𝑗 is a child of 𝑃𝑖 . The

module 𝐸𝑛𝑐𝑅𝑣𝑆 is composed of two iterations of graph message-

passing similar to StructureNet [Mo et al. 2019a], a max-pooling

operation over the obtained node features and a fully-connected

layer producing the part structure feature 𝑓 𝑆𝑖 given the pooled

feature and the part identifiers [𝑙𝑖 ;𝑑𝑖 ] for the part. Here, please

note that the part instance identifiers are necessary, due to the max-

pooling operation, to distinguish and count the different occurrences

of part instances with the same part semantics, and such crucial

information would otherwise be lost.

We repeatedly apply the part structure encoder 𝐸𝑛𝑐𝑅𝑣𝑆 until

reaching the root node 𝑃root. The final root node structure feature

𝑓 𝑆𝑟𝑜𝑜𝑡 is then mapped to the final structure embedding space through

a fully-connected layer. We use a KL divergence loss to encourage

the learned structure latent space to be close to a unit multivariate

Gaussian distribution.

Decoders. The decoding process of a structure VAE takes a

structure latent code as input and recursively decodes a symbolic

structure hierarchy (⟨𝑙1, 𝑙2, · · · , 𝑙𝑁 ⟩, Ĥ, R̂) as the output. The part

instance identifiers are not involved in the decoding procedure.

The recursive graph structure decoder 𝐷𝑒𝑐𝑅𝑣𝑆 consumes the

parent structure feature 𝑓 𝑆𝑖 and infers a set of children node

structure features {𝑓 𝑆𝑖,1, 𝑓
𝑆
𝑖,2, · · · , 𝑓

𝑆
𝑖,10}, where we assume there is

a maximum of 10 children parts per parent node. Following

StructureNet [Mo et al. 2019a], we predict a semantic label and an

existence probability for each part, by another fully-connected layer

followed by classification output layers. Besides the node prediction,

by connecting all pairs of parts, we also predict a set of symmetric
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or adjacent edges R̂𝑖 among the existing nodes. Along the predicted

edges, node features {𝑓 𝑆
𝑖,𝑘

}𝑘 are updated via two graph message-

passing operations and finally we decode a set of structure part

nodes {𝑓 𝑆𝑗1
, 𝑓 𝑆𝑗2

, · · · , 𝑓 𝑆𝑗𝐾𝑖
}, where 𝐾𝑖 denotes the number of existing

nodes for part 𝑃𝑖 . We refer the readers to StructureNet [Mo et al.

2019a] for more details. The red branch in Figure 6 (right) illustrates

this process. More formally,
{

𝑓 𝑆𝑗1 , 𝑓
𝑆
𝑗2
, · · · , 𝑓 𝑆𝑗𝐾𝑖

, R̂𝑖

}

= 𝐷𝑒𝑐𝑅𝑣𝑆

(

𝑓 𝑆𝑖

)

(4)

We repeat the recursive structure decoding procedure until

reaching the leaf nodes. For a leaf node part 𝑃𝑖 , the part structure

decoder 𝐷𝑒𝑐𝑃𝑆 simply decodes the part semantic label via a fully-

connected layer followed by outputting a likelihood score for each

part semantic label. Finally, we get

𝑙𝑖 = 𝐷𝑒𝑐𝑃𝑆

(

𝑓 𝑆𝑖

)

(5)

𝐵

There are two communication channels that allow the synergistic

structure hierarchy to guide the geometry VAE encoding and

decoding procedures. Firstly, the part geometry encoder 𝐸𝑛𝑐𝑃𝐺 and

decoder 𝐷𝑒𝑐𝑃𝐺 are conditioned on the structure context produced

by the structure VAE, which allows for generating different kinds

of part geometry according to different part semantics and shape

structures. Secondly, the graph message-passing procedures in the

recursive graph geometry encoder 𝐸𝑛𝑐𝑅𝑣𝐺 and decoder 𝐷𝑒𝑐𝑅𝑣𝐺
borrow the part hierarchy and relationships defined in the structure

hierarchy.

As follows, we describe the encoding and decoding stages for

learning geometry VAE in more detail.

Encoders. We start from encoding each leaf node part geometry

𝐺𝑖 = (𝑋𝑖 , 𝑐𝑖 ) into a latent part geometry feature space. We use the

conditional part geometry encoder 𝐸𝑛𝑐𝑃𝐺 introduced in Sec. 3.2

that maps the part ACAP feature 𝑋𝑖 and the part center 𝑐𝑖 to a

128-dimensional feature 𝑓𝐺𝑖 , namely,

𝑓𝐺𝑖 = 𝐸𝑛𝑐𝑃𝐺

(

[𝑋𝑖 ; 𝑐𝑖 ] , 𝑓
𝑆
𝑖

)

(6)

The network is conditioned on the structure code 𝑓 𝑆𝑖 generated in

the structure VAE, in order to gain some structural context on what

the semantics for the current part is and what role the part plays in

generating the final shape.

For each sub-hierarchy of the part geometry, we recursively

produce the intermediate part geometry node feature 𝑓𝐺𝑖 by

aggregating its children geometry node features {𝑓𝐺𝑗 } 𝑗 through

the recursive graph geometry encoder 𝐸𝑛𝑐𝑅𝑣𝐺 , as illustrated in the

blue branch of Figure 6 (left). Similar to the design of 𝐸𝑛𝑐𝑅𝑣𝑆 for

structure VAE, it performs two iterations of graph message-passing

operations among the children geometry node features based on

the part relationships between sibling part nodes, and conduct a

simple max-pooling operation to compute 𝑓𝐺𝑖 , where we have

𝑓𝐺𝑖 = 𝐸𝑛𝑐𝑅𝑣𝐺

(

{

𝑓 𝑆𝑗

}

(𝑃𝑖 ,𝑃 𝑗 ) ∈H

)

(7)

Different from 𝐸𝑛𝑐𝑅𝑣𝑆 as shown in Eq. 3, we do not encode the part

geometry for the non-leaf node since the geometry is more complex

and the registration to a box mesh is less accurate. The increased

geometric complexity also makes it harder to effectively embed

them in a low-dimensional latent space. For the message-passing

operations, we borrow the part relationships defined in the structure

hierarchy. This is achieved by maintaining a bijective mapping

among the tree nodes in the structure and geometry hierarchies.

We repeatedly apply the recursive graph geometry encoder 𝐸𝑛𝑐𝑅𝑣𝐺
until reaching the root node 𝑃root. The final root node geometry

feature 𝑓𝐺𝑟𝑜𝑜𝑡 is then mapped to the final geometry embedding space

through a fully-connected layer.

Decoders. The decoding process of a geometry VAE takes a

geometry latent code as input and recursively decodes a geometry

hierarchy ⟨𝐺1,𝐺2, · · · ,𝐺𝑁 ⟩ for a shape.

As illustrated in the blue branch in Figure 6 (right), the recursive

graph geometry decoder 𝐷𝑒𝑐𝑅𝑣𝐺 takes the parent geometry feature

𝑓𝐺𝑖 as input and decodes a set of children node geometry features

{𝑓𝐺𝑖,1, 𝑓
𝐺
𝑖,2, · · · , 𝑓

𝐺
𝑖,10}. Then, based on the structural predictions on

To train the hierarchical decoding process, StructureNet [Mo 
et al. 2019a] predicts part geometry for the intermediate nodes and 
establishes a correspondence between the predicted set of parts and 
the ground-truth set of parts. However, it is difficult to directly adapt 
this training procedure to decode the symbolic structure hierarchy 
by matching the part semantic labels. We resolve this challenge by 
building a communication channel between the structure hierarchy 
and the geometry one and borrowing the corresponding part 
geometry decoded in the geometry VAE for the matching procedure.

In our implementation, we utilize the conditional part geometry 
decoder 𝐷𝑒𝑐𝑃𝐺 introduced in Sec. 3.2 and predict an oriented 
bounding box (OBB) geometry ˆ 𝑗 for each part 𝑃 𝑗 where 𝑗 = 
𝑗1, 𝑗2, · · · , 𝑗𝐾𝑖 . We choose to use the OBB geometry for the matching 
process instead of the mesh geometry 𝐺𝑖 since we observe a 
decreased accuracy for registering the box mesh 𝐺𝑏𝑜𝑥 to an 
intermediate part geometry, which is usually more complex than 
leaf-node parts.
To train the part existence scores, part edge predictions and the 

part semantic labels, we follow StructureNet [Mo et al. 2019a] and 
refer the readers to the paper for more details.

3.3.2 Geometry VAE
Given a geometry hierarchy ⟨𝐺1, 𝐺2, · · · , 𝐺𝑁 ⟩ encoding the part 
geometry of shape parts, the geometry VAE learns to map the 
shape geometry to a geometry latent space, disentangled from the 
structure latent space. The geometry latent space is also modeled to 
be a unit multivariate Gaussian distribution.
The geometry VAE shares a similar network architecture to the 

structure VAE. The encoding process starts from extracting part 
geometry features for all leaf-node parts via a part geometry encoder 
𝐸𝑛𝑐𝑃𝐺 and then recursively propagates the geometry features 
along the hierarchy to the root node, summarizing the geometry 
information for the entire shape through a recursive graph part 
geometry encoder 𝐸𝑛𝑐𝑅𝑣𝐺 . For the decoding process, we first use 
a recursive graph geometry decoder 𝐷𝑒𝑐𝑅𝑣𝐺 that hierarchically 
decodes the geometry features from the root to the leaf-node parts 
in an inversely recursive manner. Then, we leverage a part geometry 
decoder 𝐷𝑒𝑐𝑃𝐺 to reconstruct the part geometry for leaf-node parts.
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Fig. 7. We propose a new Cycled Disentanglement mechanism to further

disentangle the geometry and structure of shapes. Based on the pre-trained

DSG-Net, we decouple two shapes (𝐴 and 𝐵) into geometry (𝐺𝐴 , 𝐺𝐵 )

and structure (𝑆𝐴 , 𝑆𝐵 ) features respectively. And we can combine the two

features (𝑆𝐴 ,𝐺𝐵 ) to synthesize new shape𝐶 , which fuses the structure of

shape 𝐴 and geometry of shape 𝐵. For the successful disentanglement, we

extract the structure 𝑆𝐶 and geometry𝐺𝐶 features of the newly synthesized

shape C to encourage 𝑆𝐶 = 𝑆𝐴,𝐺𝐶 = 𝐺𝐵 as much as possible by the MSE

loss, where there are two cycles (as shown in the right part of the figure).

Furthermore, we also constrain the reconstructed shapes 𝐴′, 𝐵′ are as close

as possible to the input shapes by the original DSG-Net loss.

part existence scores, part semantic labels and part edge information

from the synergistic structure VAE, we conduct two iterations of

graph message-passing over the children node geometry features

along the predicted pairwise part relationships R̂𝑖 . The decoder

𝐷𝑒𝑐𝑅𝑣𝐺 then produces a final set of children nodes with the

predicted part geometry features.
{

𝑓𝐺𝑗1 , 𝑓
𝐺
𝑗2
, · · · , 𝑓𝐺𝑗𝐾𝑖

}

= 𝐷𝑒𝑐𝑅𝑣𝐺

(

𝑓 𝑆𝑖 , R̂𝑖

)

(8)

where 𝐷𝑒𝑐𝑅𝑣𝐺 is conditioned on the decoded part relationships R̂𝑖
in the structure VAE and 𝐾𝑖 denotes the number of existing part

nodes predicted by the recursive graph structure decoder 𝐷𝑒𝑐𝑅𝑣𝑆 .

We repeat the recursive graph geometry decoding procedure

until reaching the leaf nodes. For a leaf node part 𝑃𝑖 , we use the

conditional part geometry decoder 𝐷𝑒𝑐𝑃𝐺 introduced in Sec. 3.2

that reconstructs 𝐺𝑖 = (𝑋𝑖 , 𝑐𝑖 ) from an input part geometry feature

𝑓𝐺
𝑖
. Formally, we have

𝐺𝑖 = 𝐷𝑒𝑐𝑃𝐺

(

𝑓𝐺𝑖 , 𝑓
𝑆
𝑖

)

(9)

Notice that the network 𝐷𝑒𝑐𝑃𝐺 is conditioned on the part structure

code 𝑓 𝑆
𝑖
predicted in the coupled structure VAE decoding procedure.

The geometry VAE is trained jointly with the structure VAE and

the conditional part geometry VAE. To supervise the reconstruction

of the leaf-node part geometry in the decoding process, we simply

adapt the loss terms defined in Eq. 1 from Sec. 3.2. We also add a

KL divergence loss term to train the geometric latent space to get

closer to the unit multivariate Gaussian distribution.

3.4 Cycled Disentanglement Mechanism (CycD) for

Disentangled Geometry & Structure VAEs

Furthermore, in order to ensure that the geometry and structure are

effectively disentangled and improve the performance of disentan-

glement, we propose a new Cycled Disentanglement mechanism to

further disentangle the geometry and structure of shapes. Figure 7

illustrates our pipeline.

For any two input shapes (𝐴, 𝐵), our new framework extracts

their geometry and structure features ({𝐺𝐴, 𝑆𝐴}, {𝐺𝐵, 𝑆𝐵}) by DSG-

Net. Then, we can synthesize a new shape 𝐶 by combining features

from structure and geometry of the two shapes, such as 𝑆𝐴 and 𝐺𝐵 .

So, the newly synthesized shape 𝐶 has the geometric features from

shape 𝐴 and the structural features from shape 𝐵. The disentangled

performance of our framework can be ensured and improved

via paired self-supervised losses. During training, the loss terms

L𝑠𝑡𝑟𝑢𝑐𝑡 ,L𝑔𝑒𝑜 encourage the geometry code 𝐺𝐶 and structure code

𝑆𝐶 of Shape 𝐶 to be the same as 𝐺𝐵 and 𝑆𝐴 under the MSE metric,

i.e.,

L𝑠𝑡𝑟𝑢𝑐𝑡 = | |𝑆𝐶 − 𝑆𝐴 | |
2

2
,L𝑔𝑒𝑜 = | |𝐺𝐶 −𝐺𝐵 | |

2

2
(10)

Furthermore, the geometry code𝐺𝐶 and structure code 𝑆𝐶 of shape

𝐶 can be used to reconstruct the original shape 𝐴 and 𝐵 as 𝐴′, 𝐵′.

Hence, in addition to the constraints on the shape geometry and

structure codes, we have added the supervisions on the shapes

𝐴′, 𝐵′, which aims to make the disentanglement more successful in

a shape-aware manner.

3.5 Post-Processing for Detached Parts

Though explicitly considering part relationships as soft constraints

in the modeling already helps generate shapes whose parts are well

structured and connected, we still observe some occasional failure

cases of floating parts or part disconnections. We thus propose to

use a post-processing module that directly optimizes the position

of each part and further resolves the issue of detached parts.

Concretely, we fix the pre-trained parameters of the encoder

and decoder, except for the center prediction MLP in the decoder

network, so that we only optimize the center position of each part.

Then, taking as input an object with disconnected parts, we optimize

for the final location for each part by adjusting the part center

positions.We employ two loss terms for the optimization: a structure

loss, which enforces the adjacent parts to get closer to each other

and the symmetric parts to satisfy the symmetric constraints, and

an identity loss, which encourages the optimized shape to be similar

to the input shape geometry, avoiding the degraded case that all

parts are clustered together. During the optimization process, we

balance the two loss terms with weights 1 and 100.

4 EXPERIMENTS

Learning disentangled latent spaces for shape structure and ge-

ometry allows us to generate high-quality 3D shape meshes with

complex structure and detailed geometry in a controllable manner.

DSG-Net not only demonstrates the state-of-the-art performance for

structured shape generative modeling, but also enables generating

shape meshes with controllable structure and geometry factors.

In this section, we present extensive experiments on the tasks of

shape reconstruction, generation and interpolation, where we show

the superior performance of our proposed method on the PartNet

dataset [Mo et al. 2019b], compared to several strong baselines,

including StructureNet [Mo et al. 2019a], SDM-Net [Gao et al. 2019b],

IM-Net [Chen and Zhang 2019] and BSP-Net [Chen et al. 2020]).

We also propose and formulate the tasks of disentangled shape

reconstruction, generation and interpolation, where we manipulate

one factor of shape structure and geometry while keeping the
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(a) Chair (b) Table

(c) Cabinet (d) Lamp

4.2 Shape Reconstruction

In this section, we present the shape reconstruction performance of

our DSG-Net and provide quantitative and qualitative comparisons

to the state-of-the-art 3D shape generative models. Figure 8 shows

the shape reconstruction results for our DSG-Net on the four shape

categories in PartNet. We present more reconstructed results in the

supplementary material. We observe that our method successfully

captures both the complex shape structure and the fine-grained

geometry details. Next, we present qualitative results on PartNet

and provide quantitative evaluations on the synthetic dataset where

we are provided with the ground-truth re-synthesized outputs.

Please refer to the supplementary material for more results on shape

reconstruction.

Baselines. We compare DSG-Net to four state-of-the-art methods

for learning 3D shape representations ś IM-Net [Chen and Zhang

2019], BSP-Net [Chen et al. 2020], StructureNet [Mo et al. 2019a], and

SDM-Net [Gao et al. 2019b], as well as an ablated version (SN +Mesh)

of our method. IM-Net learns an implicit function representation

for encoding 3D shapes, while BSP-Net puts attention on designing

a compact mesh representation for 3D shapes. They both represent

a shape as a whole, without explicit modeling of shape parts and

structures. StructureNet and SDM-Net are more relevant baselines

to our method since they both explicitly represent shapes as part

hierarchies. StructureNet uses point cloud representation for the

part geometry, whichwe empirically find less effective on generating

fine-grained shape geometry details. SDM-Net represents shapes

with shallower part hierarchies, which prevents it from generating

shapes with complicated structures. The SN + Mesh is a naive

combination of StructureNet [Mo et al. 2019a] backbone and ACAP

mesh representation [Gao et al. 2019a,b], to validate that our

proposed disentangled structure and geometry representation and

the cycled disentanglement indeed help improve the performance

for learning 3D shape generative models. For the performance of

SN+Mesh, please refer to supplementary material. All the methods

are trained on the same data for the four object categories. We also

compare to SAGNet [Wu et al. 2019] in the supplementary material.

Metrics. We adopt two kinds of metrics for quantitative compar-

isons to alternative methods: the geometry metrics and the structure

metrics. For the geometry metrics, we compare the reconstructed

shapes against the input shapes without explicitly considering the

shape parts and structures. We follow the commonly used metrics in

the literature: Chamfer Distance (CD) [Barrow et al. 1977] and Earth

Mover’s Distance (EMD) [Rubner et al. 2000]. The CD and EMD

are two permutation-invariant metrics for evaluating the difference

of two unordered point sets, which have been used in the litera-

ture [Fan et al. 2017]. The CDmeasures the nearest distance for each

point in one set to another point set. The EMD solves an optimization

for bijective mapping between two point sets. For the structure

metric, we use the HierInsSeg score proposed in PT2PC [Mo et al.

2020]. To compute the HierInsSeg score, Mo et al. [2020] first parse

the reconstructed shape point cloud into the PartNet part hierarchy

leveraging a pre-trained shape hierarchical instance segmentation

network, and then compute the normalized tree-editing distance

between the reconstructed and ground-truth part hierarchies. We

Fig. 8. The gallery of shape reconstruction results on PartNet. For each set 
of results, the left column shows the ground-truth targets and the right 
column presents our reconstruction results. We observe that our method 
can capture both complex shape structures and detailed part geometry.

other unchanged. We further benchmark our performance for 
disentangled shape reconstruction on a synthetic dataset. In the end, 
ablation studies for some key designs of our network are presented. 
All experiments were carried out on a computer with an i9-9900K 
CPU, 64GB RAM, and a GTX 2080Ti GPU.

4.1 Data Preparation
We primarily use the PartNet dataset [Mo et al. 2019b] for the 
majority of our experiments. PartNet provides fine-grained, multi-

scale and hierarchical shape part segmentation for ShapeNet [Chang 
et al. 2015] models. We use the four biggest and most commonly 
used object categories for our experiments: chairs, tables, cabinets 
and lamps. We follow the official training and test data splits.
All the PartNet shapes from the same object category share a 

canonical part template with consistent part semantics. The vertical 
parent-child relationships are defined consistently according to the 
shared part semantics set, while the horizontal part symmetry and 
adjacency relationships are detected from the part annotations that 
provide different part structures for different shapes. We directly 
follow the part semantics, hierarchy and relationships introduced 
in StructureNet [Mo et al. 2019a], but we disentangle the unified 
part hierarchy into two disentangled but synergistic structure and 
geometry hierarchies (Figure 3). Following StructureNet [Mo et al. 
2019a], we only use the shapes where each parent part has a 
maximum of 10 children parts.

Moreover, for quantitatively evaluating the task of disentangled 
shape reconstruction, we further introduce a synthetic dataset that 
contains 10,800 shapes with 54 kinds of shape structures and 200 
geometric variations. Each shape is generated by picking one shape 
structure and one geometric variation, granting us access to the 
ground-truth shape synthesis outcome for every configuration pair. 
The dataset is divided into the training and test sets with a ratio 
of 3:1. For the detailed implementation, dataset description and 
training of our network, please refer to the supplementary material. 
We will release the code and data for facilitating future research.
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Table 1. Shape reconstruction quantitative evaluations. We use two

geometry metrics (CD and EMD) and one structure metric (HierInsSeg).

DSG-Net achieves the best geometry and structure performance compared

to all baseline methods. Thanks to the cycled disentanglement, DSG-Net

achieves the best HierInsSeg scores, followed by StructureNet , and DSG-

Net outperforms them in terms of the geometric metrics by a large margin.

DataSet Method

Geometry Metrics Structure Metrics

CD×10−3↓ EMD×10−2↓ HierInsSeg (HIS) ↓

Chair

StructureNet 9.34 6.45 0.51

IM-Net 3.39 1.45 0.60

BSP-Net 8.27 2.07 0.78

SDM-Net 8.64 3.15 0.94

Ours 1.98 0.73 0.39

GT 0.32

Table

StructureNet 14.63 5.68 0.97

IM-Net 5.04 2.08 1.13

BSP-Net 10.62 4.11 1.20

SDM-Net 9.73 4.63 1.38

Ours 3.42 0.75 0.85

GT 0.65

Cabinet

StructureNet 16.34 5.74 0.57

IM-Net 4.73 3.82 0.72

BSP-Net 6.67 4.65 0.84

SDM-Net 18.02 7.9 1.38

Ours 2.96 0.97 0.45

GT 0.35

Lamp

StructureNet 17.31 7.12 0.71

IM-Net 13.20 5.11 0.73

BSP-Net 17.17 7.56 0.98

SDM-Net 51.21 8.72 0.76

Ours 7.15 1.63 0.61

GT 0.54

refer the readers to Fan et al. [2017] and Mo et al. [2020] for more

details on the definitions of the metrics.

Results. Table 1 presents the quantitative comparisons between

DSG-Net and the alternativemethods. Ourmethod performs the best

on the geometry metrics, indicating that DSG-Net captures better

shape geometry. Our DSG-Net also outperforms IM-Net, BSP-Net,

and SDM-Net on the structure metric by significantly large margins,

while achieving slightly better performance than StructureNet

thanks to our cycled disentanglement. We observe that StructureNet

achieves a comparable HierInsSeg score since it tends to generate

parts that are more disconnected as shown in Figure 9 (e), which is

beneficial to make the part structure clearer but is detrimental to the

overall shape geometric appearance. Figure 9 presents the qualitative

comparison to the baseline methods. It is clear to obverse that

IM-Net, BSP-Net and SDM-Net fail to generate complicated shape

structures, while our method can successfully capture these complex

(a) Input (b) IM-Net (c) BSP-Net (d) SDM-Net (e) SN (f) Ours

Fig. 9. Shape reconstruction comparison with the baseline methods. DSG-

Net can reconstruct high-quality shape meshes with complex shape

structures and detailed part geometry. IM-Net, BSP-Net, and SDM-Net

fail to reconstruct the complicated shape structures (e.g. chair back bars

and table leg stretchers), while StructureNet (SN) generates point cloud

shapes with less part geometry details and inaccurate part geometry. For

instance, StructureNet fails to reconstruct the slanted bars for the chair in

the first row and loses accuracy for the aspect ratio of the table top surface

in the last row.

shape structures. Compared with StructureNet, we reconstruct the

shape geometry more accurately.

Fig. 10. Shape generation results. We sample random Gaussian noises in

both latent spaces of shape structure and geometry and use DSG-Net to

generate realistic shapes with complex structures and detailed geometry.

We show six generation results for each of the four object categories in

PartNet.

4.3 Shape Generation

The main goal of DSG-Net is to generate high-quality shapes with

complex structures and fine-grained geometry. Given a noise vector

sampled from a unit Gaussian distribution, a 3D shape generative

model maps it to a realistic 3D shape. We evaluate the shape

generation performance of DSG-Net and compare to several state-of-

the-art baseline methods. Quantitative evaluations and user-study

results further validate our superior performance over baselines.

Equipped with two disentangled latent spaces for shape structure

and geometry, DSG-Net also enables a novel task of generating
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(a) Random
Generation

(b) Top-5 retrieved shapes in training sets

Fig. 11. Examples demonstrating generation of novel shapes.We present top-

five retrieved shapes in the training sets, with CD as the retrieval metric, to

our generated results shown in the left most column. Our generated shapes

are different from the shapes in training sets, showing that DSG-Net does

not simply overfit the training data.

(a) SDM-Net (b) StructureNet (c) SN+Mesh (d) Ours

Table 2. Quantitative comparison on Shape generation. We report the

coverage and quality scores relative to DSG-Net (i.e. all the reported

scores are divided by the corresponding DSG-Net scores for normalization)

under the geometry metric (Chamfer-Distance) and the structure metric

(HierInsSeg), compared to StructureNet, SDM-Net, and our ablated version

(SN+Mesh). Meanwhile, we also adopt Frechét Point-cloud Distance

(FPD) [Shu et al. 2019] to evaluate the variety, coverage, and quality

of generated shapes, which can be seen as an extension of Inception

Score [Salimans et al. 2016] to point clouds. We follow PT2PC [Mo et al.

2020] to calculate the FPD on point clouds, which is the same as SAG-Net.

The lower FPD score, the better. We observe that DSG-Net achieves the

best performance across all metrics.

Method

Geometry Structure

FPD ↓
Coverage ↑ Quality ↑ Coverage ↑ Quality ↑

SDM-Net 0.59 0.23 0.42 0.48 18.20

StructureNet 0.70 0.77 0.76 0.98 12.57

SN+Mesh 0.80 0.93 0.78 0.93 10.94

Ours 1.00 1.00 1.00 1.00 9.73

Table 3. User study results on shape generation. We show the average

ranking scores of the four methods: SDM-Net, StructureNet, SN+Mesh, and

ours. The ranking ranges from 1 (the best) to 4 (the worst). The results are

calculated based on 119 trials. We see that our method achieves the best on

all metrics.

Method Structure Geometry Overall

SDM-Net 3.56 2.53 2.44

StructureNet 2.64 3.73 3.65

SN+Mesh 2.05 2.04 2.11

Ours 1.75 1.70 1.80

novelty of the generated shapes by comparing them to the top five

retrieved training shapes. In Figure 12, we compare our method to

SDM-Net, StructureNet and our ablated version (SN+Mesh), where

we clearly see that DSG-Net generates better shape geometry than

StructureNet and produces shapes with more complicated structures

than SDM-Net.We further show quantitative comparisons in Table 2,

where we see that DSG-Net obtains clear improvements over the

baselines. In addition, we conduct a user study to further evaluate

how realistic the generated shapes are for humans. We render the

shapes into images and ask the users to rank the three algorithms

according to three different criteria (geometry, structure and overall).

In Table 3, we observe that our generated shapes perform the best

to human users in all the three criteria. See supplementary for more

results.

Disentangled Shape Generation. DSG-Net learns two disentangled

latent spaces for modeling shape structure and geometry, which

enables a novel task of generating shapes with a given shape

structure or geometry pattern. We demonstrate that given an input

shape, DSG-Net can extract the structure code from the shape and

pair it with a random geometry code, which allows us to explore

shape geometry variations satisfying a certain shape structure. It

also works well to explore structure variations while keeping the

geometry code unchanged. We show four controllable generation

results on the four categories in Figure 13. In the experiments, given

an input shape, the geometry code and structure code are extracted

Fig. 12. Qualitative comparisons on shape generation. We compare our 
generated shapes to the baseline methods and show that our method learns 
to generate shapes with complex structures and fine-grained geometry. For 
each example, we show shapes generated by alternative methods which 
are nearest to our results under the CD metric. We can observe that, 
compared to our DSG-Net, StructureNet fails to generate high-quality shape 
geometry, SDM-Net cannot generate shapes with complex part structures, 
and the SN+Mesh is not able to generate shapes with compatible structure 
relationships.

shapes with a given structure or geometry pattern. Please refer to 
the supplementary material for more results on shape generation.

Metrics. The shape generation task aims to generate diverse and 
realistic shapes with complex structure and geometry. Following 
StructureNet [Mo et al. 2019a], we measure shape generation 
performance by the coverage and quality scores. The coverage score 
computes the average distance from a real shape to the closest 
generated shape, while the quality score calculates the average 
distance from a generated shape to the closest real shape. The 
coverage score reflects i f t he d iversity o f t he g enerated results 
is large enough to cover all real samples, and the quality score 
measures if the generated results contain bad examples that are 
far from the real data distribution. To compare with the baseline 
methods, we generate 1000 shapes and compute the coverage and 
quality scores regarding the geometry metric (CD) and the structure 
metric (HierInsSeg).

Results. Figure 10 shows our shape generation results, where 
we observe the complicated structure and fine mesh geometry are 
generated at the same time. In Figure 11, we further validate the
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(a) Given Shape

(b) Random generation

Fig. 13. Qualitative results for disentangled shape generation on four

categories. Given an input shape (a), we extract the geometry code and

structure code. We fix one of them, and randomly sample code in the other

latent space to generate new shapes (b). For the first row of (b), we keep

the geometry code unchanged and randomly explore the structure latent

space. And, for the second row, we keep the structure code unchanged and

randomly sample over the geometry latent space. For the table example, we

can see that the generated shapes share a similar size and length of table

surface and legs in the first row but the other parts and shape structure are

changing, while in the second row, the geometry of all parts is changing but

the structure remains unchanged. We can also observe similar results for

the cabinet and lamp examples.

by running it through the encoding procedures. And then, we can

keep one of them unchanged and randomly sample in the other

latent space. We see that when we preserve the geometry code, the

chair/table legs usually maintain similar width and length to the

input shapes. And, when we keep the structure code unchanged, we

are generating shapes with geometric variations but satisfying the

same symbolic structure hierarchy. Please refer to supplementary

material for more disentangled generation results.

Fig. 14. Shape interpolation results. We linearly interpolate between input

shape pairs (the left most and the right most shapes) jointly in the structure

and geometry latent spaces. We see both continuous geometry variations

and discrete structure changes. For the chair examples, in the first row,

we see that the armrests become smaller and then disappear while the

backrest changes from a square to round fashion in a more natural manner,

while in the second row, the backrest gradually becomes square, while the

supporter disappears form the first chair to the second chair. We observe

similar behaviors for the table, lamp, and cabinet results.

4.4 Shape Interpolation

We evaluate our DSG-Net on shape interpolation and demonstrate

that our network learns smooth latent spaces. Next, we propose

a novel task of disentangled shape reconstruction that takes two

shapes as inputs to re-synthesize a novel shape with ingredients

of the structure of one shape and the geometry of the other shape.

Moreover, with the help of the novel cycled disentanglement and our

learned disentangled latent spaces for shape structure and geometry,

we can also achieve controllable interpolation between two shapes,

varying shape structure while keeping geometry unchanged and

vice versa. Please refer to the supplementary material for more

results on shape interpolation.

Results. Figure 14 shows some interpolated results that interpo-

late jointly in the structure and geometry latent spaces. We see both

continuous geometry variations and discrete structure changes in

the interpolation, which validates that DSG-Net learns a smooth

manifold for shape generation.

Disentangled Shape Interpolation. Our disentangled representa-

tions for shape structure and geometry also allow us to achieve

controllable interpolation between two shapes that one may keep

the structure or geometry factor unchanged while interpolating the

other factor. Figure 16 shows some disentangled shape interpolation

results. From the results, we find that DSG-Net can achieve disen-

tangled shape interpolation and every interpolated step produces a

very realistic and reasonable shape.

Disentangled Shape Reconstruction. Our methods learn two dis-

entangled latent manifolds (structure and geometry) for shape
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Fig. 15. Disentangled shape reconstruction and interpolation results on PartNet Cabinet and Table. Here, the top left and bottom right shapes (highlighted

with orange boxes) are the input shapes. The remaining shapes are generated automatically with our DSG-Net, where in each row, the structure of the shapes

is interpolated while keeping the geometry factor unchanged, whereas in each column, the geometry is interpolated while retaining the structure. The vertical

axis and horizontal axis represent the variation of structure and geometry respectively.

Table 4. Quantitative evaluations of disentangled shape reconstruction on

the synthetic data (for details please refer to Sec. 4.1). We compare two

ablated versions of our method, namely ours (w/o edge) and ours (w/o CycD)

since there is no applicable external baseline method for this novel task.

We observe that allowing edge communications between the structure and

geometry hierarchies and novel cycled disentanglement are essential.

Method
Geometry Metrics Structure Metrics

CD×10−3↓ EMD×10−2↓ HierInsSeg(HIS) ↓

Ours (w/o edge) 1.50 1.39 1.92

Ours (w/o CycD) 1.29 0.61 1.87

Ours 1.02 0.58 1.43

GT 1.19

where in each row, the structure of the shapes is interpolated while

keeping the geometry factor unchanged, whereas in each column,

the geometry is interpolated while retaining the structure. The

figure demonstrates that our method is able to re-synthesize novel

shapes with pairs of geometry and structure configurations.

We further quantitatively benchmark the performance of DSG-

Net for disentangled shape reconstruction on the synthetic dataset,

where we have access to the ground-truth reconstruction results

given a pair of structure and geometry configurations. Table 4 shows

the quantitative results of the synthetic data. Since there is no

applicable baseline method for this novel task, we compare two

ablated versions of our method: 1. ours (w/o edge), where we ignore

the part relationships from the part hierarchies and remove the

graph message-passing procedures, which further reduces the com-

munication between the structure and geometry; 2. ours (w/o CycD),

where we remove the novel cycled disentanglement and losses

(L𝑠𝑡𝑟𝑢𝑐𝑡 and L𝑔𝑒𝑜 ), which further reduces the capability of the

disentanglement of geometry and structure. We see that removing

edge communications or cycled disentanglement provides us with

worse performance, which proves the importance of maintaining

the synergy between the disentangled structure and geometry

hierarchies. For more results on disentangled interpolation on Lamp

and Chair categories and some qualitative results on the synthetic

data, please refer to supplementary material.

4.5 Ablation Studies

Weperform four sets of ablation studies to demonstrate the necessity

and effectiveness of the key components and training strategies for

representations, which opens up new possibilities for controllable 
shape editing and re-synthesis tasks. Given two input shapes, one 
can push the two shapes through our structure and geometry VAE 
encoders and obtains the structure and geometry features for both 
shapes. Then, by re-combining the structure code of one shape 
and the geometry code of the other shape, DSG-Net is able to re-
synthesize a novel shape that follows the structure of the first shape 
and the geometry of the second shape.
Figure 15 shows a set of qualitative results on the PartNet 

dataset (Cabinet and Table). The shapes in each row share the same 
geometry code while the shapes in every column have the same 
structural feature. Here, the top left and bottom right shapes are 
the inputs. The remaining shapes are generated with our DSG-Net,
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(a) Source (b) Target

Fig. 16. Qualitative results for disentangled shape interpolation. Columns

(a) and (b) respectively show the source and target shapes. For the two result

rows in the middle, the first row interpolates the structure between two

shapes while using the geometry code of the target shape, while the second

row interpolates the geometry code between two shapes while fixing the

structure code of the target shape. We see a clear disentanglement of the

shape structure and geometry in the interpolated results.

our method. First, the evaluation on the post-processing procedure

shows its effectiveness for resolving the issue of detached parts.

Then, we compare cascaded training and end-to-end training for

the part geometry VAE and the disentangled backbone VAEs.

We observe similar performances for the two strategies. We take

the end-to-end training approach due to its simplicity. We also

validate the design choice of learning a unified conditional part

geometry VAE, instead of training separate VAEs for each part

semantics as used in SDM-Net [Gao et al. 2019b]. Finally, we

demonstrate that explicitly considering part relationships and

conducting graph message-passing operations along the edges are

important. Removing the edge components from our network gives

significantly worse results. In terms of the cycled disentanglement,

we also demonstrate its importance for our disentangled represen-

tation of shape structure and geometry on shape reconstruction,

including the disentangled shape reconstruction on synthetic data.

Moreover, the ablated version (StructureNet + Mesh) is a naive

combination of StructureNet [Mo et al. 2019a] backbone and ACAP

mesh representation [Gao et al. 2019a,b]. We also evaluate it to

validate that our proposed disentangled structure and geometry

representation and the cycled disentanglement indeed help improve

the performance for learning 3D shape generative models.

We validate the post-processing stage in the main paper, while

presenting the other four in the supplementary material.

Effectiveness of post-processing on detached parts. Although we

explicitly consider the part relations for minimizing the gaps

between the adjacent parts, there are still some failure cases of

floating parts or part disconnections. We thus proposed a post-

processing module to address the part connectivity issue in Sec. 3.5.

From the result shown in Figure 17, we see that the post-processing

optimization procedure successfully removes the unwanted part

(a) Input Shape with De-
tached Parts

(b) Input Shape with De-
tached Parts (manually
move the detached parts)

(c) Optimized Results

Fig. 17. Qualitative result of the post-processing optimization. We optimize

the center positions of the disconnected parts for our generated results.

(a) presents one output table shape produced by our network, and (b)

shows a shape where we magnify the part detachment issue by manually

adjusting the part positions for better illustrating the effectiveness of the

post-processing optimization. We show the final optimized shape output

using the post-processing optimization in (c), where we observe that the

post-processing has the ability to fix the part connectivity issue.

gaps and fixes the part connectivity issue inmost cases. Furthermore,

we notice that some other post-optimization methods (e.g. as the one

introduced in the SDM-Net paper) may also help address this issue.

There is also a recent work COALESCE [Yin et al. 2020] that aims to

synthesize part connections and joints. We leave it as future work

to incorporate these techniques in end-to-end learning pipelines

with 3D shape generative models.

5 LIMITATIONS AND FUTURE WORKS

Our method depends on heavily annotated shape structure hier-

archies and fine-grained part geometric annotations for a large-

scale collection of 3D shapes as input to our networks. It is a non-

trivial task to obtain such data from automatic algorithms. One

may consider predicting such hierarchies by training hierarchical

part instance segmentation networks (as shown in PartNet [Mo

et al. 2019b] Sec. 5.3 and StructureNet [Mo et al. 2019a] shape

abstraction experiments). But, these methods all require a large-

scale training dataset of fine-grained part and structure annotations.

For unsupervised methods, although recent works, e.g. Cuboid

Abstraction [Sun et al. 2019], show promising results for learning

such fine-grained shape parts and structures, it still remains a

challenging topic in the research community.

Finally, although our method achieves the state-of-the-art per-

formance in generating shapes with fine geometry and complex

structure, our method still has some failure cases as shown in

Figure 18: (1) some generated shapes may have detached parts

and asymmetric parts (c), especially for rare shapes, as well as

missing parts (a), detached parts (b), extra parts (d), duplicate

parts (e), or incompatible size of parts (f), etc.; (2) our network

restricts the maximum number of siblings to 10, which is the same

as StructureNet. This is to improve the efficiency of memory

consumption. But as a result, our network cannot handle shapes

with more than 10 siblings for a part. Future works can work on

addressing these issues.

6 CONCLUSION

In this paper, we have presented DSG-Net, a novel deep generative

model that learns to represent and generate 3D shapes in disentan-

gled latent spaces of geometry and structure, while considering their
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(a) (b) (c) (d) (e) (f)

Fig. 18. Failure cases. We present some problematic generation results, such

as missing parts (a), detached parts (b), asymmetric parts (c), extra parts

(d), duplicate parts (e), and incompatible size of parts (f).

synergy to ensure the plausibility of generated shapes. Through

extensive evaluation, our method produces high-quality shapes with

complex structures and fine geometric details, outperforming state-

of-the-art methods. Our method also enables disentangled control

of geometry and structure in shape generation, supporting novel

applications such as interpolation of geometry (structure) while

keeping structure (geometry) unchanged.
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