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Abstract 

Rare coding variation has historically provided the most direct connections between 

gene function and disease pathogenesis. By meta-analyzing the whole-exomes of 24,248 

cases and 97,322 controls, we implicate ultra-rare coding variants (URVs) in ten genes as 

conferring substantial risk for schizophrenia (odds ratios 3 - 50, P < 2.14 x 10-6), and 32 genes 

at a FDR < 5%. These genes have the greatest expression in central nervous system neurons 

and have diverse molecular functions that include the formation, structure, and function of the 

synapse. The associations of NMDA receptor subunit GRIN2A and AMPA receptor subunit 

GRIA3 provide support for the dysfunction of the glutamatergic system as a mechanistic 

hypothesis in the pathogenesis of schizophrenia. We observe an overlap of rare variant risk 

between schizophrenia, autism spectrum disorders (ASD)1, epilepsy and severe 

neurodevelopmental disorders (DD/ID)2, though in some shared genes different mutation types 

are implicated. Most genes described here however are not implicated in neurodevelopment 

and we demonstrate that genes prioritized from common variant analyses of schizophrenia are 

enriched in rare variant risk3, suggesting that common and rare genetic risk factors at least 

partially converge on the same underlying pathogenic biological processes. Even after 

excluding significantly associated genes, schizophrenia cases still carry a substantial excess of 

URVs, implying that more risk genes await discovery using this approach. 

Introduction 

Schizophrenia is a severe psychiatric disorder with signs and symptoms that include 

hallucinations, delusions, disorganized speech and behavior, diminished emotional expression, 

social withdrawal, and cognitive impairment. The disorder has a lifetime risk of ~0.7%, is often 

disabling, and reduces life expectancy by nearly 15 years4,5. Existing therapies largely address 

primarily positive symptoms (e.g., hallucinations and delusions) and response to existing 

antipsychotic medications is highly variable with ~30% of patients classified as treatment 

resistant6. The lack of progress in therapeutic development is in part a consequence of our limited 

understanding of the molecular etiology of psychiatric disorders6,7. 

 

It is well-established that schizophrenia has a substantial genetic component with 

contributions from across the allele frequency spectrum8–11. As initially theorized, the high 
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heritability, consistency of prevalence across populations and increasing risk observed for 

individuals in more densely affected families suggested that polygenic predisposition should play 

a dominant role in defining schizophrenia risk in the population4,12. This has been borne out by 

genome-wide association studies (GWAS) which have now, in a companion paper, identified 270 

common (minor allele frequency [MAF] > 1%) risk loci of individually small effect (median odds 

ratio [OR] < 1.05)13. As a class of variation, common variants explain ~24% of the variance in 

disease liability14. Several rare (MAF < 0.1%) recurrent copy number variants (CNVs) have also 

been robustly associated with schizophrenia, as exemplified by the dramatically higher rates of 

schizophrenia in 22q11.2 deletion carriers10,15. This suggests a role for rare gene-disrupting 

mutations with much larger effects on individual risk (OR 2 - 60). Although the variants we have 

been able to implicate have large effects on risk in the individual, because they are rare they 

make only a small contribution to overall heritability in the population. Despite these successes 

in locus discovery, it remains challenging to move from individual associations to specific genes 

and disease mechanisms. Because causal variants in schizophrenia GWAS are predominantly 

non-coding, challenges related to fine-mapping and interpretation of intergenic and intronic 

elements limit our ability to confidently identify underlying genes, infer the mechanism by which 

they influence disease risk, and determine the direction of effect. CNVs of large effect, on the 

other hand, often disrupt hundreds of kilobases of the genome and multiple genes 

simultaneously, limiting our ability to derive clear functional insights10. 

 

Analyzing rare coding variants offers a powerful complementary approach to identify 

genes in complex traits. Theory predicts that the forces of natural selection will tend to keep 

large effect risk variants at much lower frequencies in the population, especially in disorders 

such as schizophrenia that are associated with reduced fecundity16. However, most rare 

variants will have little or no functional consequence or impact on risk, posing a significant 

challenge in identifying those that are truly causal and complicating required analyses in which 

rare variants are tested as a group rather than individually. The most natural grouping for rare 

variants is within a gene, based on predicted functional consequence or evidence for 

deleteriousness16,17. Protein-truncating variants (PTVs) are among the most interpretable 

associations as they suggest that the effect on disease most commonly tracks with decreasing 

expression of the gene18. Earlier schizophrenia sequencing studies have established that ultra-

rare and de novo mutations contribute to risk as a category, and have prioritized disease-

relevant tissues and processes, specifically observing an enrichment in neuronal genes and 

synaptic processes9,11,19–23. Furthermore, these risk alleles are concentrated in genes with a 

near-complete depletion of protein-truncating variants in population studies, a result shared 

with other neurodevelopmental disorders9,11 and suggesting strong direct selection against 

such mutations. However, the analysis of URVs has had limited success in delivering individual 

gene discovery in schizophrenia because of power limitations, with only a single gene, 

SETD1A, identified as robustly associated16,21. 

 

The Schizophrenia Exome Sequencing Meta-Analysis (SCHEMA) Consortium was 

formed as a global collaborative effort to analyze sequence data from many studies to advance 

gene discovery. Here, we generated, aggregated, harmonized variant identification, and meta-

analyzed the exome sequences of 24,248 individuals with schizophrenia and 97,322 controls 
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from seven continental populations. This analysis is, to our knowledge, one of the largest 

sequencing studies of a complex trait to date. As predicted by apparent rare variant burden in 

schizophrenia, increasing the sample size has led to the identification of 10 genes with URVs 

that confer substantial risk at exome-wide significance. Combining these findings with other 

large-scale sequencing studies, we find shared and distinct genetic signals between 

schizophrenia and other neurodevelopmental disorders. In tandem with a companion paper 

from the Psychiatric Genomics Consortium13, we provide evidence that common and ultra-rare 

coding variants identify an overlapping set of genes. Finally, we demonstrate that increased 

scale following this approach will uncover additional risk genes and help complete the genetic 

architecture of schizophrenia. 

Results 

Data description, generation, and quality control 

 We aggregated exome sequence data consisting of 24,248 individuals diagnosed with 

schizophrenia and 50,437 individuals without a known psychiatric diagnosis, recruited in eleven 

global collections that had previously contributed to common variant association efforts 

(Supplementary Methods, Figure 1A, Table S1). The sequence data for 7,979 cases had been 

previously presented in earlier publications9,11,19–22, while the remaining 16,269 cases are 

presented here for the first time. To ensure calibrated analyses, these samples were included 

in joint re-processing and variant calling using a standardized BWA-Picard-GATK pipeline as 

part of the larger Genome Aggregation Database (gnomAD) effort (Supplementary Methods); 

consequently, SCHEMA case-control samples with appropriate permissions are also included 

in the gnomAD v2 release24. After extracting SCHEMA samples from this callset, we performed 

quality control steps to ensure high quality of sequence data, exclude contaminated samples, 

identify parent-proband trios and other related individuals, and infer global ancestries 

(Supplementary Methods, Figure 1B, Figures S1-7, Table S2). We subsequently applied site- 

and genotype-level filters to generate a robust set of coding SNPs and indels for a well-

matched case-control analysis (Supplementary Methods). Previous studies have shown that 

PTVs are concentrated in 3,063 genes under strong constraint in schizophrenia cases 

compared to controls11,25, and we replicated this result with consistent signals across our major 

cohorts (Pmeta = 7.6 x 10-35; OR = 1.26, 95% CI = 1.22 - 1.31, Figure 1C, Figure S8).  

Analysis approach 

 To increase power for gene discovery, we incorporated variant counts from additional 

samples from non-psychiatric and non-neurological collections that were aggregated as part of 

the gnomAD consortium effort (Supplementary Methods)24.  We attempted to control for 

technical and methodological batch effects that may arise from this approach in both variant 

calling and additionally via permutation testing described below. All samples in gnomAD and 

SCHEMA consortia were re-processed and joint called using the same pipeline, and the same 

variant filters were applied to arrive high-quality calls. Importantly, we restricted our analysis to 
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coding exons with high-quality data across all major exome capture technologies, reducing any 

artifacts that may arise from coverage differences(Supplementary Methods, Figures S1-2). 

After incorporating variant counts from additional 46,885 gnomAD controls, our combined 

discovery data set is composed of 24,248 cases and 97,322 population controls (Figure 1A, 

1B, Table S3).  

 

Because only summary-level variant counts were available for the 46,885 external 

controls, we tested for an excess of disruptive variants per gene using a Fisher’s exact test in 
which statistical significance was determined by case-control permutations within each strata 

(Supplementary Methods, Table S3). As in other sequencing studies, we enriched for 

pathogenic variants by restricting our analysis to ultra-rare variants (defined as minor allele 

count [MAC] ≤ 5) that are also either PTVs (defined as stop-gained, frameshift, and essential 

splice donor or acceptor variants) or damaging missense variants as defined by the MPC 

pathogenicity score1,26(Supplementary Methods). We found that missense variants with MPC > 

3 have a global signal on par with PTVs in schizophrenia, autism spectrum disorders, and 

severe neurodevelopmental disorders, while variants with MPC 2 - 3 has a significant but 

weaker signal than PTVs and were therefore analyzed separately (Figure 1C, Figures S9, S10, 

S11, Table S4, Supplementary Methods). Motivated by these observations, we performed a 

burden test of PTVs and MPC > 3 variants (Class I) to generate a P value for 18,321 protein-

coding genes (Supplementary Methods). In the 4,512 genes with MPC 2 - 3 (Class II) variants, 

we perform an additional test aggregating these variants, and meta-analyze these gene 

statistics with Class I P values using a weighted Z-score method (Supplementary Methods). To 

ensure the robustness of the results generated by this approach, we observed the expected 

null distribution of P values in gene-based tests of synonymous variants in each strata and in 

the meta-analysis (Figure S12, S13). Additionally, we observed no inflation of synonymous P 

values using the Mantel-Haenszel test even after limiting our analysis to genes with larger total 

numbers of alleles (gene-wide MAC > 10, 50, or 100), where we had greater power to detect 

potential artifacts (Figure S14, S15).  

 

Previous studies had integrated case-control and trio-based de novo mutations for gene 

discovery1,21, and to this end, we aggregated and re-annotated de novo mutations from 3,402 

published parent-proband trios (Supplementary Methods). Despite the sizable number of trios, 

there were few de novo mutations for analysis with only 325 genes with one or more de novo 

PTV and only 449 with at least one Class I or Class II mutations. Using Poisson rate tests 

based on expected mutation rate27, we found these de novo mutations are enriched for the 244 

genes with P < 0.01 in our case-control analysis (Figure S16, Table S5), with limited or no 

signal in the remaining genes in the genome (Figure 1D). The most striking enrichment was 

observed for the 52 genes with case-control P < 0.001 (Class I mutations: P = 2.1 x 10-11; Rate 

ratio = 8.3, 95% CI = 4.9 - 13), which provides additional reassurance of the robustness of our 

case-control gene results. Motivated by these observations, we calculated de novo Class I and 

II P values in the 244 genes with Pcase-control < 0.01 using the Poisson rate test and meta-

analyzed them with our case-control test statistic using a weighted Z-score method to increase 

power (Supplementary Methods).  
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Risk genes implicated by rare protein-coding variants 

Combined, our meta-analysis of 24,248 cases, 97,322 controls, and de novo mutations 

from 3,402 trios implicates 10 genes in which ultra-rare coding variants are significantly 

associated with schizophrenia (P < 2.14 x 10-6 corresponding to 0.05/23,321 tests; Figure 2A, 

2B). These top associations as a group are supported by complementary types of variation that 

include case-control PTVs, damaging missense variants, and de novo mutations (Table 1, Table 

S5). Although confidence intervals are wide, URVs in these genes appear to confer substantial 

risk, with odds ratio of PTVs and Class I variants ranging from 3 to 50. As expected, all ten genes 

are among the most constrained genes in the genome, with a substantial depletion of PTVs 

compared to chance expectation24. The annotated functions of these genes are diverse and 

include ion transport (CACNA1G, GRIN2A, and GRIA3), neuronal migration and growth (TRIO), 

transcriptional regulation (SP4, RB1CC1, and SETD1A), nuclear transport (XPO7), and ubiquitin 

ligation (CUL1, HERC1).  We include a brief discussion of the known biological functions of these 

genes in Box 1. Beyond these ten genes, we identify 22 additional genes at a False Discovery 

Rate (FDR) < 5% (Figure 2A, Table S5). We observe notable deviation at the tail of the 

distribution beyond the associated genes, suggesting that more genes remain to be discovered 

(Figure 2B). We report all high-quality variants, relevant annotations, and gene-level results on 

a public browser at https://schema.broadinstitute.org. 

 

The identification of individual genes provides support for more specific mechanistic 

hypotheses underlying schizophrenia pathogenesis. Developed from neuropharmacological 

and neuropathological observations, the glutamatergic hypothesis postulates that the 

hypofunction of glutamatergic signaling through NMDA receptors is a possible mechanism of 

disease28 (Box 1). Here, we find that PTV and damaging missense variants in NMDA receptor 

subunit GRIN2A confer substantial risk for schizophrenia (P = 7.37 x 10-7; Class I [PTV and 

MPC > 3] OR 24.1, 95% CI 5.36 - 221; Class II [MPC > 2] OR 2.37, 95% CI 1.1 - 4.92). 

Schizophrenia GWAS also identified a common variant at GRIN2A (OR = 1.057, P = 1.57 x 10-

10), providing an allelic series in which different perturbation of gene function results in severity 

of disease risk (Figure 3A)8.The NMDA receptor changes in composition during prenatal to 

postnatal neurodevelopment with GRIN2A predominantly expressed during late childhood and 

adolescence, recapitulating expected epidemiological observations on schizophrenia age-of-

onset (Supplementary Methods, Figure 3B)29. We additionally find that risk URVs in AMPA 

receptor subunit GRIA3 confer substantial risk (P = 5.98 x 10-7; Class I [PTV and MPC > 3] OR 

20.1 95% CI 4.28 - 188; Table 1). Combined, our results from exome sequencing support the 

dysregulation of the glutamatergic system as a mechanistic hypothesis for the development of 

schizophrenia, and that the specific identification of genes by coding variation may provide new 

avenues of understanding disease pathogenesis. 
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Shared genes and processes identified by common variants and 
ultra-rare protein-coding variants 

 Pathway analyses of common variants have prioritized disease-relevant tissues and cell 

types, and in some cases, independently recapitulating known biology8,30,31. To derive insights 

from global patterns of rare coding variants, we tested for an excess burden of URVs in 

schizophrenia cases compared to controls in 1,732 broadly-defined gene sets from databases 

of biological pathways (e.g. Gene Ontology, REACTOME, KEGG) and experimental data 

(Supplementary Methods)11. We observed significant enrichment of URVs in 33 gene sets (P < 

2.9 x 10-5) that recapitulated consistent and overlapping cellular compartments and biological 

processes, including definitions of the postsynaptic density (human cortex biopsy post-synaptic 

density; P = 1.2 x 10-12), chromatin modification (GO:0016568; P = 1.8 x 10-12), regulation of ion 

transmembrane transport (GO:0034765; P = 6.7x 10-7), axon guidance (P = 5.4 x 10-6), 

voltage-gated cation channel activity (GO:0022843; P = 8.1 x 10-6), and synaptic transmission 

(GO:0007268; P = 1.79 x 10-5) (Table S6, Figure S19). Because of the clear synaptic signal, 

we investigated in the refined synaptic ontology defined by the SynGO consortium32, and found 

consistent enrichment for postsynaptic components and processes (GO:0098794; P = 3.9 x 10-

6; Table S7). These global observations are consistent with the known functions of the 

individual risk genes now implicated by rare variation (Box 1). Following earlier reports studying 

heritability enrichment in GTEx tissues8,31, we found that genes with the highest specific 

expression in brain regions showed the strongest enrichment of risk URVs, most significantly in 

the human frontal cortex (P = 1.63 x 10-8) and with limited signal in the other tissue types 

(Figure S20, Table S8, S9). To further deconvolute this signal, we investigated which single cell 

types in the mouse nervous system show the highest specific expression for the 32 (FDR < 

5%) schizophrenia risk genes (Supplementary Methods)33,34.  Here, we found widespread 

enrichments across central nervous system neurons with limited to no signal in glial cells and 

peripheral nervous system neurons (Table S10, Figure S21). Thus, at a high level, global 

analysis of ultra-rare protein-coding variation independently recapitulated known biology 

related to schizophrenia pathogenesis, including processes, cellular components, and tissues 

previously implicated by common variant analyses. 

 

To evaluate the overlap of schizophrenia associations from common variants and ultra-

rare coding variant analyses, we jointly analyzed our results with the largest GWAS of 

schizophrenia to date, which identified common variant associations at 270 distinct loci from 

the analysis of 69,369 cases and 236,642 controls13. Statistical fine-mapping prioritized the 

likely underlying protein-coding gene at 64 of these associations (Table S11, Figure S22), and 

we found a case-control enrichment of URVs in these genes (Pmeta = 3.9 x 10-4; ORClass I = 1.46, 

1.2 - 1.77 95% CI; Figure 4A, Table S12). Beyond the statistical enrichment, GRIN2A and SP4, 

two of the ten significant rare variant genes, had clear associations in schizophrenia GWAS 

(Figure 3A, Figure 4B). Furthermore, FAM120A and STAG1 resided in more complex GWAS-

associated regions containing multiple genes but were prioritized among their neighbors as 

FDR < 5% in our sequencing study (Figure 4C, 4D). Combined, these results suggest there is 

at least partial convergence in the genes and biological processes implicated by common and 
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ultra-rare genetic variation, and that ultra-rare coding variants can be leveraged to prioritize 

genes within GWAS loci.  

Shared and distinct genetic risk with other neurodevelopmental 
disorders 

 Exome sequencing studies of autism spectrum disorders (ASD) and severe 

neurodevelopmental disorders (DD/ID) have leveraged ultra-rare coding variants to identify risk 

genes. These studies have established that the genetic signals were concentrated in 

constrained genes and shared between the two disorders35,36. Most recently, the analysis of de 

novo mutations from 31,058 DD/ID trios implicated 299 genes, while the analysis of 11,986 

ASD cases identified 102 genes at FDR < 10% (Table S11)1,37. We found a significant excess 

of URVs in schizophrenia cases compared to controls in the 299 DD/ID-associated genes 

(Pmeta = 1.5 x 10-14; ORClass I = 1.44, 1.3 - 1.6 95% CI), and in the 102 ASD-associated genes 

(Pmeta = 3.7 x 10-7; ORClass I = 1.45, 1.23 - 1.72 95% CI; Figure 5A; Table S12).  Thus, some 

schizophrenia rare variant risk appears to be shared with other neurodevelopmental disorders.  

 

With 31,058 trios, the scale of gene discovery in severe DD/ID provided sufficient power 

to evaluate the individual schizophrenia risk genes associated in our study for a role in broader 

neurodevelopmental disorders. Nine of the ten schizophrenia genes showed limited de novo 

PTV signal in DD/ID, with a combined 8 de novo PTVs observed in these genes (Xexp = 4.98; 

PPois = 0.13; Figure 5B; Table S13). SETD1A had a significant de novo PTV signal in DD/ID 

(Xobs = 8, Xexp = 0.41; P = 1.3 x 10-8), supporting an earlier report that described SETD1A as a 

gene associated with both schizophrenia and broader neurodevelopmental disorders21. We 

also observed a missense signal in SETD1A in our study (Table 1; Figure S23). Extending this 

analysis to the additional 22 FDR < 5% genes, we found that six genes (STAG1, ASH1L, 

ZMYM2, KDM6B, SRRM2, and HIST1H1E) were significantly associated with DD/ID in addition 

to schizophrenia (Figure 5B; Table S13). Among these FDR < 5% genes, ASH1L, KDM6B and 

NR3C2 were associated with ASD 1 (Table S13). Broadly speaking, while PTV mutations in 

certain genes are joint risk factors for schizophrenia and DD/ID, the majority of schizophrenia 

associations reported here appear to have little or no role in DD/ID despite the enormous 

power of published DD/ID studies to date. 

 

Notably, three of the ten risk genes for schizophrenia (TRIO, GRIN2A, and CACNA1G) 

were associated with risk of severe DD/IDs exclusively through de novo missense mutations 

that cluster within each gene (Figure 5B; Table S13), while the schizophrenia signal was 

largely driven by PTVs. De novo missense mutations in TRIO significantly disrupted the exons 

preceding or containing the RhoGEF domain (Figure 5C)37,38, and de novo missense mutations 

in GRIN2A cluster at the base of the ion channel with the most mutations in the exon encoding 

for the pore of the complex (Figure 5D). STAG1, which had a common and rare variant signal 

in schizophrenia (Figure 4D), was associated with DD/ID primarily through de novo missense 

mutations (Figure 5B; Table S13). These observations suggest schizophrenia and childhood 

onset neurodevelopmental disorders share some genes and biological processes, but that at 
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least in some cases, the severity or the nature of the functional impairment differs between 

disorders. 

 

We explored what properties may differ between schizophrenia- and DD/ID-associated 

risk genes, and hypothesized that DD/ID genes were under stronger evolutionary constraint 

with a bias towards prenatal expression when compared to schizophrenia genes. While 

schizophrenia genes (FDR < 5%) were under substantial genic constraint compared to 

expectation (Figure S24; M-W U test; P = 2.9 x 10-7; Supplementary Methods), they are 

significantly less constrained than DD/ID-associated genes (M-W U test; P = 3.5 x 10-5). 

Furthermore, schizophrenia genes as a group did not show pre- or postnatal bias in brain 

expression (P = 0.21; Figure S25), while DD/ID-associated genes were overwhelmingly 

prenatal in expression (P = 7.5 x 10-20). Indeed, individual genes like SETD1A, TRIO, and SP4 

exhibited prenatal expression while GRIN2A and GRIA3 showed postnatal expression (Figure 

S26). These observations offer the possibility that certain properties may differentiate genes for 

adult psychiatric disorders and more severe DD/IDs. 

Contribution of ultra-rare PTVs to schizophrenia risk 

Efforts in the past decade are beginning to generate a more comprehensive view of the 

genetic architecture for schizophrenia, composed of common variants of small effects, large 

CNVs with elevated frequencies driven by genomic instability, and now, URVs of large effect 

implicating individual genes (Figure 6A)8,10. Because schizophrenia as a trait is under strong 

selection39–41, we expect that URVs of large effect to be frequently de novo or of very recent 

origin and contribute to risk in only a fraction of diagnosed patients. We quantified the 

contribution of PTVs to risk first in our full schizophrenia data set, and then partitioned the de 

novo and inherited contributions in 2,304 parent-proband trios. We restrict these analyses to 

the 3,063 PTV-intolerant (pLI > 0.9) genes in which schizophrenia risk URVs are concentrated. 

We observed 0.057 (0.049 - 0.065 95% CI) extra singleton PTV variants per individual in cases 

compared to controls, suggesting ~5.7% of cases carried a PTV relevant to disease risk. In the 

2,304 trios, 0.0394 (0.014 - 0.065 95% CI; 74%) extra singleton PTV variants were inherited 

per proband, and 0.0121 (0.0022 - 0.02 95% CI; or 26%) extra de novo PTV mutations in 

constrained genes were identified in cases compared to controls. In contrast, DD/ID probands 

have 0.111 (0.103 - 0.119 95% CI) extra de novo PTV mutations in constrained genes, while 

ASD individuals have 0.0478 (0.0387 - 0.0568 95% CI) extra de novo PTV mutations (Figure 

S27; Supplementary Methods). In the ten schizophrenia-associated genes, 7 de novo 

mutations and 13 transmitted variants are observed in 2,304 trios, suggesting that 0.86% of 

patients are carriers and ~35% of variants are de novo. Finally, the genome-wide signal in 

constrained genes (pLI > 0.9: OR = 1.26, P = 7.6 x 10-35) remains significant even after 

excluding the 32 FDR < 5% genes (OR = 1.23, P = 4.3 x 10-27; Figure 6B, Table S4), 

reaffirming the genetic heterogeneity underlying schizophrenia risk and suggesting that the 

majority of schizophrenia risk genes in which rare variants confer risk remain to be discovered. 
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Discussion 

In one of the largest exome sequencing studies to date, we identify genes in which 

disruptive coding variants confer substantial risk for schizophrenia at exome-wide significance. 

This effort required re-processing a decade of sequence data, harmonization of variant calling 

and quality control, inclusion of external controls, and integration of PTV, damaging missense, 

and de novo variants. Global, collaborative efforts such as this provide a template for tackling 

the genetic contributions in other complex diseases.  

 

Genome-wide analyses recapitulated known biological processes and reaffirm that 

schizophrenia risk genes are involved in the postsynaptic density and broader synaptic 

function, and enriched in expression in neuronal tissues. Furthermore, the identification of 

specific genes supports more specific mechanistic hypotheses. The association of PTVs in the 

NMDA receptor subunit GRIN2A to schizophrenia risk provides genetic support for the 

dysregulation of glutamatergic signaling as a possible mechanism of disease. A natural dose-

response curve occurs at this gene in which common regulatory variants modestly influence 

disease risk and PTV and predicted damaging missense variants increase risk more 

substantially. Interestingly, the NMDA receptor is composed of two GRIN2 units (GRIN2A 

and/or GRIN2B) along with two constitutive GRIN1 units, and GRIN2A increases dramatically 

in expression later in childhood and adolescence, mimicking the age of onset of disease for 

schizophrenia. De novo mutations in GRIN2B conversely are associated with more severe 

disorders of neurodevelopment that manifest in childhood, including intellectual disability and 

autism42. Such findings provide a unique opportunity to identify experiments of nature which 

help to build and support mechanistic hypotheses that may lead to a better understanding of 

disease biology. 

 

Joint analysis with genetic data from DD/ID and ASD consortia have provided evidence 

for shared genes between neuropsychiatric and broader neurodevelopmental disorders. 

Indeed, seven of the 32 FDR < 5% genes are also associated with DD/ID, providing additional 

confidence in those associations. The shared genes suggest that there is at least some 

contribution from early brain developmental processes that predisposes to schizophrenia. 

Despite this sharing, PTVs in 9 of the 10 most confidently associated genes are associated 

with schizophrenia and not for DD/ID, which may provide avenues for identifying disease-

specific processes. Of further interest, we observe allelic series in GRIN2A, TRIO, and 

CACNA1G in which PTVs increase schizophrenia risk and de novo missense mutations confer 

strong DD/ID risk. De novo missense mutations in these genes clustered in specific domains 

and are associated with more severe neurodevelopmental, syndromic disorders with cognitive 

impairment, suggesting an alternate or gain-of-function effect. Analyses estimating relative 

penetrance for different phenotypes will increase in power as consortium efforts studying 

specific diseases and biobank efforts continue to grow, all of which would be fruitful in 

informing what is shared and distinct across disorders. 

 

We show for the first time that common regulatory variants from GWAS and ultra-rare 

coding variants disrupt an overlapping set of genes, including an allelic series in four genes in 
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which common variants and rare coding variants increase risk to varying degrees. Combined, 

these results suggest that exome sequencing  identifies some common, shared underlying 

biology that is dysregulated across the allele frequency spectrum, rather than syndromic forms 

of disease with unrelated biology regulated by common variation. Furthermore, because of this 

sharing, coding variants can help refine and fine-map common variant associations like at the 

STAG1 and FAM120A loci. As common and rare variant association studies continue to grow, 

we can better determine the actual degree of overlap of genes that are regulated by both types 

of variation. Ultimately, the emerging evidence of an overlap between common and ultra-rare 

variation gives confidence that the integration of results from sequencing consortia with the 

GWAS efforts will have significant value for identifying specific genes beyond what any single 

strategy can achieve on its own. 

 

A decade of genotyping and sequencing studies now establish specific genetic 

contributions from common variants, copy number variants, and ultra-rare coding variants as 

conferring risk for schizophrenia. Despite this progress, it is clear that we are still in the early 

stages of gene discovery13. The vast majority of risk alleles, their direction and magnitude of 

effect, mode of action, and responsible genes are yet to be discovered. These emerging 

genetic findings will serve in part to direct and motivate mechanistic studies that begin to 

unravel disease biology. The success of common variant association studies, and now exome 

sequencing, suggest concrete progress towards understanding the causes of human complex 

traits and diseases, and provide a clear roadmap towards understanding the genetic 

architecture of schizophrenia. 
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Box 1  

Here, we provide a brief review of literature on exome-wide significant genes. 

 

SETD1A (SET Domain Containing 1A, Histone Lysine Methyltransferase) 

SETD1A encodes a catalytic subunit of the COMPASS histone methyltransferase complex that 

performs mono-, di-, and tri-methylation at Histone H3 Lysine 4. Through epigenetic 

modification, SETD1A influences transcriptional regulation that downstream affects axonal 

branching and cortical synaptic dynamics43. Paralogs of this gene, including KMT2A 

(Wiedemann-Steiner syndrome), KMT2B, KMT2C, and KMT2D (Kabuki syndrome), have been 

associated with severe neurodevelopmental disorders21,44. 

 

CUL1 (Cullin 1) 

CUL1 is a core component of a E3 ubiquitin-protein ligase involved in the ubiquitination of 

proteins broadly involved in signal transduction, gene regulation, and cell cycle progression45,46. 

CUL1, RBX1, and SKP1 form the invariable components of the SCF complex that recruits 

proteins for degradation47. Mouse studies have demonstrated that CUL1 is required for early 

development, and mutant mice fail to regulate G1 cyclin (cyclin E) during embryogenesis47. 

 

XPO7 (Exportin-7) 

XPO7 is involved in the trafficking of specific proteins through the nuclear pores to the 

cytoplasm as part of the Ran-GTP pathway48. In a GTP-bound form, exportins bind to nuclear 

export signal sequences of select proteins, interact with nucleoporins to transit into the 

cytoplasm, release the cargo protein, and relocate to the nuclear compartment. While exportins 

are generally involved in nuclear export, XPO7 may be involved in the nuclear import of select 

substrates as well48. 

 

TRIO (Trio Rho Guanine Nucleotide Exchange Factor) 

TRIO encodes for a Rho GDP to GTP exchange factor that promote actin cytoskeleton 

reorganization through the direct activation of the signaling G protein RAC1. TRIO has been 

demonstrated to regulate neuronal migration, axonogenesis, axon guidance, and 

synaptogenesis through actin cytoskeleton remodeling. Mutations in TRIO are associated with 

intellectual disability and neurodevelopmental disorders, with mutational hotspots at the 

seventh spectrin repeat and RAC1-activating GEF1 domain38,49. Specific mutations in these 

domains cause hyper- or hypo-activation of RAC1, resulting in varying severities of 

developmental delay38. TRIO is been shown to directly affect glutamatergic neurotransmission 

in rodent neurons in vitro: specific hypomorphs in the GEF1/Rac1 activating domain reduce 

synaptic AMPA receptor expression, while hyperfunctional mutations enhance glutamatergic 

signaling and synaptogenesis50.  

 

CACNA1G (Calcium Voltage-Gated Channel Subunit Alpha-1G subunit) 

CACNA1G, also known as Cav3.1, encodes for the alpha 1 G subunit of a T-type voltage-

sensitive calcium channel that mediates calcium influx into excitable cells51. T-type channels 

produce transient and small currents that modulate the firing patterns of neurons and cardiac 
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nodal cells, which has been shown to influence muscle contraction, neurotransmitter release, 

cell division and growth, cell motility, and sleep stabilization52,53. A specific functional mutation 

in CACNA1G has been linked to hereditary cerebellar ataxia in a single family54. 

 

SP4 (Sp4 Transcription Factor) 

SP4 encodes a transcription factor that binds to GT and GC promoter elements to activate 

transcription. SP1 and SP3 transcription factors recognize similar DNA elements, but SP4 has 

stronger specific abundance in the central nervous system55. SP4 knockout mice develop until 

birth without abnormalities but two-thirds die within four weeks of birth and the remaining third 

suffer severe developmental delay55,56. These mice also experience robust deficits in 

sensorimotor gating and contextual memory associated with hippocampal vacuolization57. 

Furthermore, SP4 knockout causes dramatically decreased expression of GRIN1, the 

constitutive subunit of the NMDA receptor, which may impact NMDA neurotransmission58. 

 

GRIA3 (Glutamate Ionotropic Receptor AMPA Type Subunit 3) 

GRIA3, or GluA3, encodes for a subunit of the tetrametric AMPA-sensitive glutamate receptor, 

which, as part of the glutamate receptor family, serve the predominant excitatory 

neurotransmitter receptors in the mammalian brain. AMPA receptors are well-characterized in 

their involvement mammalian central nervous system function, and moderates fast excitatory 

synaptic transmission and are involved in long-term potential and synaptic plasticity59–61. 

Individual mutations in two AMPARs, GRIA2 and GRIA3, have been linked with intellectual 

disability in small patient cohorts62,63. 

 

GRIN2A (Glutamate Ionotropic Receptor NMDA Type Subunit 2A) 

GRIN2A, also known as NR2A or GluN2A, encodes for the 2A subunit of the glutamatergic N-

methyl-D-aspartate receptors (NMDARs) which, along with AMPARs, are implicated in 

learning, memory and synaptic plasticity involving long-term potentiation. NMDA receptor 

dysregulation has been long postulated as a hypothesis for schizophrenia etiology64. NMDAR 

channel blockers (ketamine and phencyclidine) induce schizophrenia-like symptoms and 

cognitive deficits in healthy individuals65,66, and anti-NMDAR encephalitis, an autoimmune 

disorder originating from a antibody-mediated attack on NMDARs, result in psychosis-like 

symptoms and memory deficits67. Protein-truncating and specific missense mutations in 

GRIN2A and GRIN2B cause neurodevelopmental disorders with prominent speech features 

and epilepsies42,68. A patient cohort of 248 individuals show that missense variants in the 

transmembrane and linker domains are associated with severe developmental phenotypes, 

while PTVs and missense variants outside the pore result in mild cognitive defects69. 
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HERC1 (HECT And RLD Domain Containing E3 Ubiquitin Protein Ligase Family Member 

1) 

HERC1 is a large E3 ubiquitin protein ligase with HECT and RCC1-like as its characteristic 

protein domains. HERC1 is involved in membrane trafficking and cell proliferation through its 

interactions with clathrin, M2-pyruvate, and TSC270–72. A specific recessive missense mutation 

in the RCC1-like domain causes severe ataxia and early death through progressive Purkinje 

cell degeneration72.  

 

RB1CC1 (RB1 Inducible Coiled-Coil 1) 

RB1CC1 encodes for a DNA-binding transcriptional factor that coordinates cell proliferation, 

autophagy, and cell migration73,74. It binds to a GC-rich region upstream of the RB1 promoter 

and forms a complex with p53 to activate RB1 expression. Deletions of RB1CC1 have 

increased frequencies in human breast cancers, with its involvement in cancer development 

primarily attributed through its regulation of RB173. 
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Figure and table legends 

Figure 1. Study design and analytic approach. 
A: Study design. Case-control and parent-proband trio sample sizes, variant classes, and analytical methods are 

described. The case-control stage is shown on the left, and the de novo mutation stage is shown on the right. 

B: Principal components analysis of SCHEMA samples. 1000 Genomes samples with reported ancestry are plotted 

in the background, and SCHEMA samples are displayed in the foreground. For each global ancestry group, we 

report the number of cases and controls in the discovery data set in red and blue respectively, and the number of 

external controls in black. AFR: African, ASJ: Ashkenazi Jewish, AMR: Latin American, EAS: East Asian, EST: 

Estonian, FIN: Finnish, EUR: non-Finnish European, SAS: South Asian. 

C: Case-control enrichment of ultra-rare protein-coding variants in genes intolerant of protein-truncating variants. P 

values displayed are from comparing the burden of variants of the labeled consequence in cases compared to 

controls. By definition, MPC enrichment is only shown for pLI > 0.9 genes. Bars represent the 95% CIs of the point 

estimates. pLI: probability of loss-of-function intolerant in the gnomAD database.  

D: Enrichment of schizophrenia de novo mutations in P value bins derived from the Stage 1 (case-control) gene 

burden analysis. The enrichment P values displayed are calculated as a Poisson probability having equal or greater 

than the observed number of mutations given the baseline mutation rate in 3,402 schizophrenia trios. The relative 

rate is given by the ratio of observed to expected rate of de novo mutations. Bars represent the 95% CIs of the point 

estimates. 

 

Figure 2. Results from the meta-analysis of ultra-rare coding variants in 3,402 trios, 

24,248 cases, and 97,322 controls. 
A: Manhattan plot. –log10 P-values are plotted against the chromosomal location of each gene. Genes reaching 

exome-wide significance are in red, and genes significant at FDR < 5% are in orange. Red dashed line: P = 2.14 x 

10-6; Blue dashed line: FDR < 5%, or P = 8.23 x 10-5. 

B: Q-Q plot.  Observed –log10 P-values are plotted against expectation given a uniform distribution. Genes reaching 

exome-wide significance are plotted with a larger size. The direction of effect is indicated by the color of each point. 

Dark blue dashed line: P = 2.14 x 10-6; Light blue dashed line: FDR < 5%. 

 

Figure 3. Biological insights from exome sequence data. 
A: Common and rare allelic series at NMDA receptor subunit GRIN2A. The Locus Zoom plot (top) displays the 

common variant association of the gene. The color of each dot corresponds to the LD with the index SNP, and the 

properties of the index SNP are displayed. The gene plot (bottom) displays the protein-coding variants that 

contribute to the exome signal in GRIN2A. Variants discovered in cases are plotted above the gene, and those from 

control are plotted below. Each variant is colored based on inferred consequence, and the protein domains and 

missense constrained regions of the gene are also labelled26,75. The frequencies and counts in cases and controls 

are displayed for each variant class. AF: allele frequency, AC: allele count. 

B: Temporal expression of GRIN2A in the human brain. We show GRIN2A expression in four prenatal and four 

postnatal periods derived from whole-brain tissue in BrainSpan29. The expression values plotted are in transcript-

per-million (TPM). 

 

Figure 4. Shared genetic signal with schizophrenia GWAS. 
A: Case-control enrichment of ultra-rare protein-coding variants in genes prioritized from fine-mapping of the PGC 

schizophrenia GWAS13. The reported P value is the Fisher combined P value of Class I and Class II variants. Bars 

represent the 95% CIs of the point estimates.  

B, C, D: Prioritization of GWAS loci using exome data. The Locus Zoom plot of three GWAS loci is displayed. For 

each gene in or adjacent to the region, we show the case-control counts of PTVs in the exome data, along with the 

meta-analysis P-value. SP4, STAG1 and FAM120A are highlighted as the only genes with notable signals in the 

exome data within each locus. 

 

https://paperpile.com/c/BHqFfq/94ZTh+HfIbf
https://paperpile.com/c/BHqFfq/UxK2d
https://paperpile.com/c/BHqFfq/XK1zI


 

Figure 5. Shared genetic signal between schizophrenia and other neurodevelopmental 

disorders. 
A: Case-control enrichment of ultra-rare protein-coding variants in DD/ID and ASD-associated genes. We test for 

the burden of schizophrenia URVs in genes identified in the most recent exome sequencing studies of ASD and 

DD/ID1,37. The reported P value is the Fisher combined P value of Class I and Class II variants. Bars represent the 

95% CIs of the point estimates.  

B: Heatmap displaying the strength of association for schizophrenia-associated genes in our discovery data set and 

in genes implicated by de novo mutations in trios diagnosed with DD/ID. We display three groups of genes: 

Bonferroni significant in schizophrenia and DD/ID, Bonferroni significant only in schizophrenia, and FDR < 5% in 

schizophrenia and Bonferroni significant in DD/ID. The degree of association from each sequencing study is 

displayed as the color corresponding to –log10 P-values in that study. The case-control P-value is reported for 

schizophrenia, while de novo enrichment from a Poisson rate test is reported for DD/ID. Results are further stratified 

to tests of Class I (PTV and MPC > 3) and Class II (missense [MPC 2 - 3]) variants. 

C: Allelic series in TRIO between schizophrenia and DD/ID risk variants. The gene plot displays the protein-coding 

variants that contribute to the exome signal in TRIO. Variants discovered in schizophrenia cases are plotted above 

the gene, and missense de novo mutations from DD/ID probands are plotted below. Each variant is colored based 

on inferred consequence, and the protein domains of the gene are also labelled. The variant counts are displayed 

for each variant class.  

D: Allelic series in GRIN2A. See D for description. 
 

Figure 6. The contributions of ultra-rare PTVs to schizophrenia risk. 
A: Genetic architecture of schizophrenia. Significant genetic associations for schizophrenia from the most recent 

GWAS, CNV, and sequencing studies are displayed. The in-sample odds ratio is plotted against the minor allele 

frequency in the general population. The color of each dot corresponds to the source of the association, and the size 

of the dot to the odds ratio. The shaded area represented the loess-smoothed lines of the upper and lower bounds 

of the point estimates. 

B: Case-control enrichment of ultra-rare protein-coding variants in genes intolerant of protein-truncating variants 

after excluding schizophrenia-associate genes. We perform the test with all constrained genes (pLI > 0.9) and after 

excluding all schizophrenia-associated genes with FDR < 5%. P values displayed are from comparing the burden of 

variants of the labelled consequence in cases compared to controls. Bars represent the 95% CIs of the point 

estimates. 

 

Extended Figure Table 1. Case-control and de novo counts of the ten Bonferroni 

significant genes in the main analysis. Case-control counts displayed are the total counts for variants 

with minor allele count <= 5. PTV: protein-truncating variant, mis3: missense variants with MPC > 3, mis2: missense 

variants with MPC 2 - 3; Q value: adjusted P value after FDR adjustment; Class I: PTV and missense variants (MPC 

> 3); Class II: missense variants (MPC 2 - 3). 
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