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The emergence of the severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) Omicron (B.1.1.529) variant of 
concern (VOC) has destabilized global efforts to control the 
impact of coronavirus disease 2019 (COVID-19). Recent data 
have suggested that B.1.1.529 can readily infect people with 
naturally acquired or vaccine-induced immunity, facilitated 
in some cases by viral escape from antibodies that neutral-
ize ancestral SARS-CoV-2. However, severe disease appears 
to be relatively uncommon in such individuals, highlighting a 
potential role for other components of the adaptive immune 
system. We report here that SARS-CoV-2 spike-specific CD4+ 
and CD8+ T cells induced by prior infection or BNT162b2 vac-
cination provide extensive immune coverage against B.1.1.529. 
The median relative frequencies of SARS-CoV-2 spike-specific 
CD4+ T cells that cross-recognized B.1.1.529 in previously 
infected or BNT162b2-vaccinated individuals were 84% and 
91%, respectively, and the corresponding median relative 
frequencies for SARS-CoV-2 spike-specific CD8+ T cells were 
70% and 92%, respectively. Pairwise comparisons across 
groups further revealed that SARS-CoV-2 spike-reactive CD4+ 
and CD8+ T cells were functionally and phenotypically similar 
in response to the ancestral strain or B.1.1.529. Collectively, 
our data indicate that established SARS-CoV-2 spike-specific 
CD4+ and CD8+ T cell responses, especially after BNT162b2 
vaccination, remain largely intact against B.1.1.529.

Natural infection with SARS-CoV-2 and vaccination with 
messenger RNA (mRNA) constructs encoding the viral spike 
protein typically generate effective immunity against COVID-
19. However, the current pandemic has been fueled by the con-
tinual emergence of VOCs, such as Omicron (B.1.1.529). Recent 
data indicate that B.1.1.529 is more transmissible than previous 
VOCs1. This phenotype can be explained by key mutations in the 
receptor-binding domain, which confer enhanced affinity for the 
ACE2 receptor2. Another major concern is that B.1.1.529 harbors 
a large number of additional mutations in the spike protein that 
could feasibly subvert immune recognition (https://www.ecdc.
europa.eu/sites/default/files/documents/threat-assessment-covid

-19-emergence-sars-cov-2-variant-omicron-december-2021.pdf). 
In line with this possibility, emerging reports have shown that neu-
tralizing antibodies elicited against the ancestral Wuhan reference 
strain, in the context of either infection or vaccination, are less able 
to combat B.1.1.529 (refs. 2,3). These observations likely align with 
the propensity of B.1.1.529 to cause breakthrough infections4,5.

Preliminary data suggest that breakthrough infections with 
B.1.1.529 are associated with a lower risk of hospitalization and/
or severe illness compared with the Delta VOC (B.1.617.2) (refs. 
6,7). One possible inference from these clinical observations is that 
additional immune mechanisms beyond antibody production 
attenuate the course of infection with B.1.1.529. Previous studies 
have demonstrated that robust CD4+ and CD8+ T cell responses 
are induced following SARS-CoV-2 infection or vaccination8–14. 
Several lines of evidence further suggest that CD4+ and CD8+ 
T cell responses can modulate disease severity in humans and 
suppress viral replication in animal models15–18. However, it has 
remained unclear to what extent ancestral SARS-CoV-2-specific 
CD4+ and CD8+ T cells cross-recognize B.1.1.529, especially 
given the unprecedented number of mutations in the spike pro-
tein, which likely shift the antigenic landscape more profoundly 
in relation to antecedent VOCs19.

To address this question, we collected peripheral blood mono-
nuclear cells (PBMCs) from vaccinated individuals 6 months after a 
second dose of the Pfizer/BioNTech mRNA BNT162b2 formulation 
(median age, 53 years; n = 23 females and 17 males), individuals in 
the convalescent phase 9 months after mild (median age, 54 years; 
n = 8 females and 18 males) or severe COVID-19 (median age, 
58 years; n = 3 females and 19 males) and seronegative individu-
als (unclassified demographics, total n = 48) (Supplementary Table 
1). Cells were stimulated in parallel with overlapping peptide pools 
spanning the entire spike protein sequences of the Wuhan reference 
strain (wild-type) or B.1.1.529. Activation-induced marker assays 
were used to quantify spike-specific CD4+ T cell responses via the 
upregulation of CD69 and CD40L (CD154) and spike-specific CD8+ 
T cell responses via the upregulation of CD69 and 4-1BB (CD137) 
(Extended Data Fig. 1a).
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The overall magnitude of the SARS-CoV-2 spike-specific CD4+ 
T cell response against B.1.1.529 showed a median reduction of 9% 
in BNT162b2-vaccinated individuals and a median reduction of 
16% in convalescent individuals relative to the wild-type response 

(Fig. 1a,b). The corresponding response frequencies, defined using 
a threshold stimulation index, were also slightly lower for B.1.1.529 
(Fig. 1c). Pairwise comparisons further revealed maximum reduc-
tions in magnitude of 58% among BNT162b2-vaccinated individu-
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als who were vaccinated, 56% among convalescent individuals and 
75% among individuals who were seronegative for SARS-CoV-2 
spike-specific CD4+ T cell responses against B.1.1.529 versus 
wild-type (Fig. 1d). These results were validated using indepen-
dently synthesized peptide pools spanning each spike protein 
(Extended Data Fig. 1b).

To extend these findings, we investigated the phenotypic 
characteristics of SARS-CoV-2 spike-specific CD4+ T cells that 
cross-recognized B.1.1.529, with a particular focus on markers of 
T helper polarization (CCR4, CCR6, CXCR3 and CXCR5) and 
memory differentiation (CCR7 and CD45RA). No significant dif-
ferences in T helper polarization were detected across intragroup 
comparisons of SARS-CoV-2 spike-specific CD4+ T cell responses 
against B.1.1.529 versus wild-type (Fig. 1e). Central memory 
T cells predominated among SARS-CoV-2 spike-specific CD4+ 
T cells in BNT162b2-vaccinated, convalescent and seronega-
tive individuals, but again, no significant differences in subset 
composition were detected across intragroup comparisons of 
SARS-CoV-2 spike-specific CD4+ T cell responses against B.1.1.529 
versus wild-type (Fig. 1f). We also assessed the functionality of 
SARS-CoV-2 spike-specific CD4+ T cells in BNT162b2-vaccinated 
individuals, measuring the intracellular expression of interferon-γ, 
tumor necrosis factor and interleukin-2 alongside CD69 and 
CD154. No significant differences in the ability of SARS-CoV-2 
spike-specific CD4+ T cells to deploy multiple functions were appar-
ent in response to stimulation with peptides representing B.1.1.529 
versus wild-type (Fig. 1g).

The overall magnitude of the SARS-CoV-2 spike-specific CD8+ 
T cell response against B.1.1.529 showed a median reduction of 8% 
in BNT162b2-vaccinated individuals and a median reduction of 
30% in convalescent individuals relative to the wild-type response 
(Fig. 2a,b). These differences were mirrored in the correspond-
ing response frequencies, defined using a threshold stimulation 
index (Fig. 2c). Pairwise comparisons further revealed maximum 
reductions in magnitude of 55% among BNT162b2-vaccinated 
individuals, 63% among convalescent individuals and 60% among 
seronegative individuals for SARS-CoV-2 spike-specific CD8+ T cell 
responses against B.1.1.529 versus wild-type (Fig. 2d). These results 
were again validated using independently synthesized peptide pools 
spanning each spike protein (Extended Data Fig. 1c).

In further experiments, we investigated the phenotypic char-
acteristics of SARS-CoV-2 spike-specific CD8+ T cells that 
cross-recognized B.1.1.529, focusing on classic markers of memory 
differentiation (CCR7 and CD45RA). Late effector memory T cells 
predominated among SARS-CoV-2 spike-specific CD8+ T cells in 
BNT162b2-vaccinated, convalescent and seronegative individuals, 
but no significant differences in subset composition were detected 
across intragroup comparisons of SARS-CoV-2 spike-specific CD8+ 
T cell responses against B.1.1.529 versus wild-type (Fig. 2e). We 
also assessed the functionality of SARS-CoV-2 spike-specific CD8+ 
T cells in BNT162b2-vaccinated individuals, measuring the intracel-
lular expression of granzyme B, interferon-γ, tumor necrosis factor 

and interleukin-2 alongside CD69 and CD137. Akin to the corre-
sponding analyses of SARS-CoV-2 spike-specific CD4+ T cells, no 
significant differences in the ability of SARS-CoV-2 spike-specific 
CD8+ T cells to deploy multiple functions were apparent in response 
to stimulation with peptides representing B.1.1.529 versus wild-type 
(Fig. 2f).

Finally, we merged the SARS-CoV-2 spike-specific CD4+ and 
CD8+ T cell data by group, aiming to evaluate cross-recognition 
en masse. The overall magnitude of the combined SARS-CoV-2 
spike-specific CD4+ and CD8+ T cell response against B.1.1.529 
was significantly lower in convalescent individuals, but not in 
BNT162b2-vaccinated individuals, relative to the wild-type response 
(Extended Data Fig. 1d). Although potentially reflecting differences 
in the chronology and/or context of antigen exposure, these results 
suggest that ancestral SARS-CoV-2 spike-specific CD4+ and CD8+ 
T cells elicited by natural infection provide comprehensive but rela-
tively incomplete coverage against B.1.1.529.

The current global pandemic has been destabilized by the 
recent emergence of B.1.1.529, which continues to spread rap-
idly and supersede other VOCs. Our collective data indicate that 
SARS-CoV-2 spike-specific CD4+ and CD8+ T cells elicited by 
BNT162b2 vaccination or prior infection remain largely intact 
against B.1.1.529. Alongside intrinsic viral factors, such as altered 
tropism and decreased replication in the lower respiratory tract20, 
such heterologous immune reactivity may explain why severe dis-
ease appears to be relatively uncommon after infection with this 
particular VOC. Moreover, the degree of cross-reactivity varied 
to some extent among individuals, most likely as a consequence 
of genetically encoded differences in antigen presentation, which 
could further modulate clinical outcomes associated with B.1.1.529. 
It should be noted that we did not formally assess cytotoxic func-
tions beyond the expression of granzyme B and that our evaluations 
were confined to peripheral blood samples, which do not neces-
sarily reflect the entirety of the cellular immune response against 
SARS-CoV-2 (ref. 21). In addition, we found that SARS-CoV-2 
spike-specific CD4+ and CD8+ T cells cross-recognized B.1.1.529 
less comprehensively in convalescent versus BNT162b2-vaccinated 
individuals, suggesting that booster immunization may provide 
benefits that extend beyond the induction of broadly neutralizing 
antibodies to enhance natural protection against recurrent episodes 
of COVID-19 (ref. 2).
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Fig. 1 | Cross-reactive CD4+ T cell responses against B.1.1.529. a, Representative flow cytometry plots showing spike-specific CD4+ T cell responses 
(CD69+CD154+) to peptide pools representing wild-type SARS-CoV-2 (WT) or B.1.1.529. b, Frequencies of all spike-specific CD4+ T cells in 
BNT162b2-vaccinated, convalescent and seronegative individuals. Numbers indicate median reduction in the frequency of detected responses. 
Comparisons used two-sided Wilcoxon signed rank tests. *P = 0.012. c, Stimulation indices calculated as fold change in frequency relative to the negative 
control. Numbers indicate the percentage of individuals with a detectable response. d, Cross-reactive responses depicted on an individual basis as 
percentage B.1.1.529/wild-type. e, Helper polarization of spike-specific CD4+ T cells with representative gating and dot plots showing the distribution 
of subsets across individuals with detectable responses. Pie charts show the mean frequency of each subset across all individuals in each group. f, 
Canonical memory differentiation profiles of spike-specific CD4+ T cells with representative gating and dot plots showing the distribution of subsets 
across individuals with detectable responses. g, Functional profiles of spike-specific CD4+ T cell responses in BNT162b2-vaccinated individuals with 
representative gating and pie charts showing the mean frequency for each combination. Polyfunctional responses were compared using a permutation 
test. Data in dot plots are shown as median ± interquartile range. Each dot represents one donor.
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Fig. 2 | Cross-reactive CD8+ T cell responses against B.1.1.529. a, Representative flow cytometry plots showing spike-specific CD8+ T cell 
responses (CD69+CD137+) to peptide pools representing wild-type SARS-CoV-2 (WT) or B.1.1.529. b, Frequencies of all spike-specific CD8+ T cells 
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Numbers indicate the percentage of individuals with a detectable response. d, Cross-reactive responses depicted on an individual basis as percentage 
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test. Data in bar charts are shown as mean ± 95% confidence intervals, and data in dot plots are shown as median ± interquartile range. Each dot 
represents one donor. GrzB, granzyme B; NS, not significant.

Nature Medicine | VOL 28 | March 2022 | 472–476 | www.nature.com/naturemedicine 475

https://doi.org/10.1038/s41586-021-04386-2
https://doi.org/10.1038/s41586-021-04388-0
https://doi.org/10.1056/NEJMc2119270
http://www.nature.com/naturemedicine


Brief Communication NATuRE MEDICInE

	5.	 Goga, A., et al. Breakthrough COVID-19 infections during periods of 
circulating Beta, Delta and Omicron variants of concern, among health care 
workers in the Sisonke Ad26.COV2.S vaccine trial, South Africa. Preprint at 
medRxiv https://doi.org/10.1101/2021.12.21.21268171 (2021).

	6.	 Ferguson, N., et al.; on behalf of the Imperial College COVID-19 response 
team. Report 50: Hospitalisation Risk for Omicron Cases in England. (Imperial 
College London, 2021).

	7.	 Wolter, N. et al. Early assessment of the clinical severity of the SARS-CoV-2 
Omicron variant in South Africa. Lancet 399, 437–446 (2022).

	8.	 Braun, J. et al. SARS-CoV-2-reactive T cells in healthy donors and patients 
with COVID-19. Nature 587, 270–274 (2020).

	9.	 Grifoni, A. et al. Targets of T cell responses to SARS-CoV-2 coronavirus in 
humans with COVID-19 disease and unexposed individuals. Cell 181, 
1489–1501 (2020).

	10.	Kalimuddin, S. et al. Early T cell and binding antibody responses are 
associated with COVID-19 RNA vaccine efficacy onset. Med (N. Y) 2, 
682–688 (2021).

	11.	Le Bert, N. et al. SARS-CoV-2-specific T cell immunity in cases of 
COVID-19 and SARS, and uninfected controls. Nature 584, 457–462 (2020).

	12.	Oberhardt, V. et al. Rapid and stable mobilization of CD8+ T cells by 
SARS-CoV-2 mRNA vaccine. Nature 597, 268–273 (2021).

	13.	Peng, Y. et al. Broad and strong memory CD4+ and CD8+ T cells induced by 
SARS-CoV-2 in UK convalescent individuals following COVID-19. Nat. 
Immunol. 21, 1336–1345 (2020).

	14.	Sekine, T. et al. Robust T cell immunity in convalescent individuals with 
asymptomatic or mild COVID-19. Cell 183, 158–168 e114 (2020).

	15.	Israelow, B. et al. Adaptive immune determinants of viral clearance and 
protection in mouse models of SARS-CoV-2. Sci. Immunol. 6, eabl4509 
(2021).

	16.	McMahan, K. et al. Correlates of protection against SARS-CoV-2 in rhesus 
macaques. Nature 590, 630–634 (2021).

	17.	Rydyznski Moderbacher, C. et al. Antigen-specific adaptive immunity to 
SARS-CoV-2 in acute COVID-19 and associations with age and disease 
severity. Cell 183, 996–1012 (2020).

	18.	Tan, A. T. et al. Early induction of functional SARS-CoV-2-specific T cells 
associates with rapid viral clearance and mild disease in COVID-19 patients. 
Cell Rep. 34, 108728 (2021).

	19.	Tarke, A. et al. Impact of SARS-CoV-2 variants on the total CD4+ and CD8+ 
T cell reactivity in infected or vaccinated individuals. Cell Rep. Med. 2, 
100355 (2021).

	20.	Meng B., et al. SARS-CoV-2 Omicron spike mediated immune escape, 
infectivity and cell-cell fusion. Preprint at bioRxiv https://doi.
org/10.1101/2021.12.17.473248 (2021).

	21.	Niessl, J. et al. Identification of resident memory CD8+ T cells with functional 
specificity for SARS-CoV-2 in unexposed oropharyngeal lymphoid tissue. Sci. 
Immunol. 6, eabk0894 (2021).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long 

as you give appropriate credit to the original author(s) and the source, provide a link to 
the Creative Commons license, and indicate if changes were made. The images or other 
third party material in this article are included in the article’s Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons license and your intended use is not permitted by statu-
tory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.
© The Author(s) 2022

Nature Medicine | VOL 28 | March 2022 | 472–476 | www.nature.com/naturemedicine476

https://doi.org/10.1101/2021.12.21.21268171
https://doi.org/10.1101/2021.12.17.473248
https://doi.org/10.1101/2021.12.17.473248
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturemedicine


Brief CommunicationNATuRE MEDICInE

Methods
Samples. Healthy individual volunteers (n = 40) were sampled 6 months after 
a second dose of the BNT162b2 vaccine (Pfizer/BioNTech) as part of a clinical 
trial registered at EudraCT (2021-000175-37) (ref. 22). Two standard doses of the 
vaccine were administered with an interval of 21 days. The study was approved 
by the Swedish Medical Product Agency (ID 5.1-2021-5881). Additional samples 
(n = 15) were collected 3 months after the second dose for validation purposes 
(Extended Data Fig. 1). Convalescent individual volunteers were sampled 9 months 
after reverse-transcription polymerase chain reaction-verified infection with 
SARS-CoV-2 leading to mild (nonhospitalized, n = 26) or severe (hospitalized, n 
= 22) disease during the first wave of the pandemic in March–April 2020, before 
the emergence of the Alpha, Beta and Delta VOCs. None of these individuals 
had received a COVID-19 vaccine at the time of sample collection. Seronegative 
volunteer samples were acquired from healthy blood donors in late 2020. The 
absence of spike-specific antibodies was confirmed using the Anti-SARS-CoV-2 
S Immunoassay (Roche). Cohort details are summarized in Supplementary 
Table 1. All participants provided written informed consent in accordance with 
the principles of the Declaration of Helsinki. Convalescent and seronegative 
cohorts were approved by the Regional Ethics Committee in Stockholm, Sweden. 
Population characteristics of each cohort were not considered and did not factor 
in for inclusion into this study. PBMCs were isolated via standard density gradient 
centrifugation and cryopreserved in fetal bovine serum (FBS) containing 10% 
dimethyl sulfoxide (DMSO).

Peptides. Overlapping peptides were designed to span the entire spike protein 
sequence of SARS-CoV-2 corresponding to the ancestral Wuhan strain (wild-type) 
or B.1.1.529. Test peptides comprising 15mers overlapping by ten amino acids were 
synthesized as crude material for functional screens (TC Peptide Lab). Validation 
peptides comprising 20mers overlapping by ten amino acids were synthesized to 
an equivalent specification (Sigma-Aldrich). All peptides were reconstituted in 
DMSO, diluted to stock concentrations of 100 μg ml−1 in phosphate-buffered saline 
(PBS) and stored at −20 °C.

Activation-induced marker assays. PBMCs were thawed quickly; resuspended in 
RPMI 1640 containing 10% FBS, 1% l-glutamine and 1% penicillin/streptomycin 
(complete medium) in the presence of DNase I (10 U ml−1, Sigma-Aldrich); 
and rested at 1 × 106 cells per well in 96-well U-bottom plates (Corning) for 4 
h at 37 °C. The medium was then supplemented with anti-CXCR5-BB515 and 
anti-CD40 (unconjugated), followed 15 min later by the relevant peptide pools (1 
μg ml−1 per peptide). Negative control wells contained equivalent DMSO. After 12 
h, cells were washed in PBS supplemented with 2% FBS and 2 mM EDTA (FACS 
buffer) and stained with anti-CCR4/CD194–BB700, anti-CCR6/CD196–BUV737, 
anti-CCR7–APC-Cy7 and anti-CXCR3-AF647 for 10 min at 37 °C. Additional 
surface stains were performed for 30 min at room temperature in the presence 
of Brilliant Stain Buffer Plus (BD Biosciences). Viable cells were identified by 
exclusion using a LIVE/DEAD Fixable Aqua Dead Cell Stain Kit (Thermo Fisher 
Scientific). Stained cells were washed in FACS buffer, fixed in PBS containing 
1% paraformaldehyde (Biotium), and acquired using a FACSymphony A5 (BD 
Biosciences). The gating strategy is shown in Extended Data Fig. 1. All flow 
cytometry reagents are detailed in Supplementary Table 2.

Intracellular cytokine staining. PBMCs were thawed quickly, resuspended in 
complete medium in the presence of DNase I (10 U ml−1, Sigma-Aldrich) and 
rested at 1 × 106 cells per well in 96-well U-bottom plates (Corning) for 4 h at 
37 °C. The medium was then supplemented with anti-CXCR5–BB515, followed 
15 min later by the relevant peptide pools (1 μg ml−1 per peptide) and a further 
1 h later by brefeldin A (1 μg ml−1, Sigma-Aldrich), monensin (0.7 μg ml−1, BD 
Biosciences) and anti-CD107a–BV785. Negative control wells contained equivalent 
DMSO. After 9 h, cells were washed in FACS buffer and stained with anti-CCR4/
CD194–BB700, anti-CCR6/CD196–BUV737, anti-CCR7–APC-Cy7 and 
anti-CXCR3–BV750 for 10 min at 37 °C. Additional surface stains were performed 
for 30 min at room temperature in the presence of Brilliant Stain Buffer Plus (BD 
Biosciences). Viable cells were identified by exclusion using a LIVE/DEAD Fixable 
Aqua Dead Cell Stain Kit (Thermo Fisher Scientific). Cells were then washed in 
FACS buffer and fixed/permeabilized using a FoxP3 Transcription Factor Staining 
Buffer Set (Thermo Fisher Scientific). Intracellular stains were performed for 30 
min at room temperature. Stained cells were washed in FACS buffer, fixed in PBS 
containing 1% paraformaldehyde (Biotium) and acquired using a FACSymphony 
A5 (BD Biosciences). All flow cytometry reagents are detailed in Supplementary 
Table 2.

Data analysis and statistics. All samples from each cohort were randomly 
assigned and analyzed with wild-type and Omicron variant peptides in the 
same experiment. Flow cytometry data were analyzed using FlowJo version 
10.8.0 (FlowJo). Stimulation indices were calculated as fold change in frequency 
relative to the negative control (equivalent DMSO). Positive responses were 
identified using a threshold stimulation index >2 to exclude background or 
nonspecific responses. Only memory populations were included for the analysis of 
spike-specific responses by the exclusion of the naive subset (CD45RA+CCR7+). 

Data exclusion criteria were established before all experiments. The investigators 
were not blinded to allocation during experiments and outcome assessment. 
Statistical analyses were performed using Prism version 9 (GraphPad). Significance 
between paired groups was assessed using two-sided Wilcoxon signed rank tests. 
Functional profiles were deconvoluted using Boolean gating in FlowJo version 
10.8.0 (FlowJo) followed by downstream analyses in SPICE version 6.1 (https://
niaid.github.io/spice/).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All requests for raw and analyzed preclinical data and materials will be promptly 
reviewed by the corresponding author (M.B.) to determine if they are subject to 
intellectual property or confidentiality obligations. Any data and materials that can 
be shared will be released via a material transfer agreement (requested to M.B.). 
Personal data underlying this article cannot be shared publicly as they are sensitive. 
Enquiries regarding data availability should be directed to marcus.buggert@ki.se.
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Extended Data Fig. 1 | Peptide validation experiments. a, Representative flow cytometry plots showing the gating strategy used to assess spike-specific 
CD4+ and CD8+ T cell responses to peptide pools representing wild-type SARS-CoV-2 (WT) or B.1.1.529. b,c, Frequencies of spike-specific CD4+ (b) and 
CD8+ T cells (c) in BNT162b2-vaccinated individuals, comparing test 15mer peptide pools versus validation 20mer peptide pools representing wild-type 
SARS-CoV-2 (WT) or B.1.1.529. d, Pairwise analysis of spike-specific CD4+ (red lines) and CD8+ T cell responses (blue lines) in BNT162b2-vaccinated 
and convalescent individuals. Data in dot plots are shown as median ± IQR. Each dot represents one donor. **P = 0.007 (Two-sided Wilcoxon signed rank 
test). ns, not significant.

Nature Medicine | www.nature.com/naturemedicine

http://www.nature.com/naturemedicine






γ

≥




	Ancestral SARS-CoV-2-specific T cells cross-recognize the Omicron variant

	Online content

	Fig. 1 Cross-reactive CD4+ T cell responses against B.
	Fig. 2 Cross-reactive CD8+ T cell responses against B.
	Extended Data Fig. 1 Peptide validation experiments.




