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ABSTRACT 
The issue of carbon neutrality for manufacturing industry 

attracts increasing attention. As a major contributor, the carbon 
emission prediction of machining processes has been established 
as one of the most crucial research targets. However, due to the 
complexity of machining, the carbon emissions of which are 
influenced by many factors, and show dynamic characteristics. 
At the moment, these indicators and characteristics are difficult 
to be fully considered in the existing method, which may cause 
the inaccurate results of the carbon emission prediction. The 
purpose of this study is to design a carbon emission prediction 
model of machining through a data-driven approach. First of all, 
the multiple sources and impact factors of carbon emissions in 
machining are studied, and the dynamic characteristics of 
carbon emissions are described through the relationship between 
them. Based on the collection of the related data, a carbon 
emission prediction approach is designed, and data feature 
extraction and predictive methods are proposed by using the 
ridge regression and the BP neural network based on Genetic 
Algorithm (GA-BP) respectively. An experimental study using 
the carbon emission data of a real turning machining shows the 
merits of the proposed approach.  

Keywords: Carbon emission prediction, Data-driven, 
Approach design, Machining, Ridge regression, BP neural 
network based on Genetic Algorithm 
 
1. INTRODUCTION 

Climate warming caused by a significant increase in carbon 
dioxide emissions has become a global environmental crisis. The 
industrial sector is one of the major contributors to cause carbon 
emissions, as it consumes large amounts of resources and energy, 
and discharge waste. Statistics from the International Energy 
Agency (IEA) show that the industry is still the third-largest 
source of global carbon emissions, which generate nearly 36% 
of the global carbon emissions [1, 2]. Therefore, moving to low 
carbon economy is of critical importance to the sustainable 
development of the industry. 

Manufacturing, as an important part of industry sectors, 
plays an essential role in the global economy. In the meantime, 
its energy-intensive operations contribute significantly to the 
carbon emissions [3]. Especially in China, the manufacturing 
industry accounts for over 30% of the end-use energy and 
produces large amounts of carbon emissions [4, 5]. Machining 
with machine tools in the manufacturing consumes massive 
energy and resources, which is seen as a major source of the 
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carbon emissions [6]. It is noted that only about 25% of the 
energy is used to cut the parts in machining, a large portion of 
energy is consumed when the machines are idle [7]. Therefore, 
reducing the carbon emissions of machining has a huge potential, 
and has become an emerging topic nowadays. 

Carbon emission prediction is helpful to identify the 
improvements, which is a priori technology for carbon emission 
reduction. However, due to the complexity of machining, there 
are many impact factors related to the carbon emissions. It is 
difficult to take all the factors into account, which may cause the 
inaccurate results of the carbon emission prediction. To this end, 
this paper designed a data-driven method to predict the carbon 
emissions of machining considering whole impact factors. The 
rest of the paper is organized as follows. Section 2 introduces 
research status of carbon emission prediction approach in 
machining. Section 3 analyzes the characteristics and impact 
factors for the carbon emissions of machining. Section 4 outlines 
the designed data-driven approach for carbon emission 
prediction. Section 5 presents a case study to demonstrate the 
effectiveness and practicability of the method. Section 6 
concludes with our work summary. 
 
2. LITERATURE REVIEW 
2.1 Carbon emission characteristics of machining 

In machining, the carbon emissions are caused by the 
materials consumption (both raw materials and auxiliary 
materials), energy consumption and waste disposal [8]. Based on 
the analysis of machining system, Li et al. [9, 10] pointed out the 
indirect characteristics and generalized boundary of carbon 
emissions of machining, and established a series of models to 
quantify the carbon emission caused by material removal, cutting 
fluid consumption, chip recycling, electricity consumption, etc., 
respectively.  

Within this analysis framework, several works are found to 
analyses the carbon emissions from conventional machining, 
such as turning, milling etc. Zhao et al. [11] studied the carbon 
emission characteristics in turning machining, and proposed a 
carbon emission calculation method. Cao et al. [12] focus on the 
energy and materials consumption of machine tools, and 
presented a carbon efficiency method to characterize the carbon 
emissions throughout the life cycle. Sihag et al. [13] established 
a mathematical model to calculate the carbon emissions in a 
milling process. Zhou et al. [14] studied the relationship between 
carbon emission and cutting parameter in turning machining, and 
presented a carbon emission optimization method. 

Some scholars studied the characteristics and quantification 
methods of carbon emissions from unconventional machining. 
Zheng et al. [15] studied the carbon emission characteristics of a 
WEDM process, and proposed a predictive model for the CO2 
emissions. Zhang et al. [16] presented a quantitative method of 
the carbon emissions in the FDM process according to its 
characteristic and the electric power consumption. 

 
2.2 Predictive approach for carbon emissions 

When the characteristics and impact factors of carbon 
emission of machining are understood, several prediction or 
quantification methods are proposed by different researchers. 
Gao et al. [17] presented a method for carbon emission 
forecasting for the industrial sectors based on Gompertz's law 
and fractional grey model. Ma et al. [18] identified the multi-
dimensional factors of carbon emission from different scenarios 
of machining with association rule algorithm, and established a 
hybrid carbon emission prediction model through the 
relationship of them. Zhou et al. [19] established a novel grey 
rolling prediction model for the Chinese carbon emissions. Liu 
et al. [20] developed an ensemble system for short term carbon 
dioxide emission forecasting, which were composed of model 
selection, phase space reconstruction, ensemble point prediction, 
and interval prediction. Aiming at previous studies only focused 
on carbon emissions forecasting accuracy and neglected 
stability, Qiao et al. [21] proposed an improved lion swarm 
optimization algorithm for carbon emission prediction. Fang et 
al. [22] proposed an improved Gaussian processes regression 
method for carbon emissions forecasting. These methods will 
contribute positively to help the carbon emissions calculation in 
this paper. 

With the development of information and data technology, 
more and more data related to the carbon emissions could be 
collected utilizing the Industrial Internet and Internet of Things 
(IoT) technologies. Several novel data analyzing approaches are 
also proposed to predict the carbon emissions. It will provide a 
strong support for the carbon emission prediction of machining. 
For instance, Hosseini et al. [23] proposed a predictive method 
for carbon emission in Iran by using the Multiple Linear 
Regression (MLR) and Multiple Polynomial Regression (MPR). 
Ren et al. [24] established a model to predict the carbon emission 
with Fast Learning Network (FLN) algorithm. Abbas Mardani et 
al. [25] proposed a carbon emission prediction method by using 
the clustering and machine learning techniques. Zhang et al. [26] 
propose a digital twin-driven carbon emission prediction and 
low-carbon control of intelligent manufacturing job-shop. These 
works show the great potential for carbon emission prediction. 
However, there are few of them are used in machining. 

Summarizing the findings of the above discussion, it can be 
claimed that, the work on carbon emission prediction of 
machining is limited. In fact, we believe that the carbon emission 
reduction will hardly be achieved without a predictive model of 
carbon emissions of machining. 
 
3. CARBON EMISSION SOURCES AND IMPACT 

FACTORS IN MACHINING 
According to the functional model of manufacturing 

process, the carbon emission characteristics could be described 
in FIGURE 1. 
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FIGURE 1. CARBON EMISSIONS OF MACHINING 

 
The carbon emissions in machining are mainly caused by 

raw material consumption, auxiliary material consumption, 
energy consumption, and waste disposal [27]. It could be 
expressed with Eq (1). 

 
𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐶𝐶𝐸𝐸𝑟𝑟 + 𝐶𝐶𝐸𝐸𝑎𝑎 + 𝐶𝐶𝐸𝐸𝑒𝑒 + 𝐶𝐶𝐸𝐸𝑤𝑤           (1) 
 

Where: 𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  is the total carbon emissions of a 
machining process, 𝐶𝐶𝐸𝐸𝑟𝑟 , 𝐶𝐶𝐸𝐸𝑎𝑎 , 𝐶𝐶𝐸𝐸𝑒𝑒  and 𝐶𝐶𝐸𝐸𝑤𝑤  present the 
carbon emissions caused by raw materials consumption, 
auxiliary materials consumption, energy consumption and waste 
recycling respectively. 

There are numerous impact factors related to the carbon 
emissions in machining. For instance, the 𝐶𝐶𝐸𝐸𝑟𝑟 is affected by the 
part size, part material type, and part removal amount, etc. the 
𝐶𝐶𝐸𝐸𝑎𝑎  is mainly caused by tools consumption, cutting fluid 
consumption, which is related to tool material, cutting fluid type, 
cutting fluid flow and machining time, etc. the 𝐶𝐶𝐸𝐸𝑒𝑒  is generated 
from the electricity consumption, which is affected by the 
performance of machine tools, and machining parameters, etc. 
the 𝐶𝐶𝐸𝐸𝑤𝑤 is the carbon emissions caused by the recycle process 
of waste chips, and waste fluid, etc., which is related to the 
treatment amount of the waste. 

Specially in machining, the impact factors of 𝐶𝐶𝐸𝐸𝑟𝑟  mainly 
include the blank material (such as hardness, strength, and 
toughness, etc.), blank size (length and diameter, etc.) and so on. 
The blank size determines the removed volume of the parts. The 

larger the volume removed, the more energy will be consumed, 
and the more carbon emissions are indirectly produced. The 
removed material is turned into waste, and the disposal of waste 
also produces carbon emissions. 

The impact factors of 𝐶𝐶𝐸𝐸𝑎𝑎  consist of tool material 
(hardness, strength, etc.), tool parameters (rake angle, relief 
angle, leading angle, etc.), cutting fluid consumption, cutting 
fluid type, cutting fluid flow rate, number of cutting fluid 
changes, fixture material (hardness, strength, etc.). Different 
factors such as tools, fixtures and coolants determine the energy 
consumption in preparing the material, and influence the amount 
of carbon emissions. Due to the action of force, the tool will be 
worn during the using time, and the worn part will turn into 
waste. The difference of tool determines the difficulty of 
processing, thus affecting the processing efficiency and energy 
consumption. The fixture function is fixing the workpiece during 
the processing of workpiece, so it will be subjected to force, and 
causing wear and tear, thereby producing waste. The cutting fluid 
functions are cooling, lubricating and chip removal. A large 
amount of cutting fluid will be used in the workpiece processing, 
although part of it is reused, it will also produce a large amount 
of waste fluid, and dealing with the waste fluid will also produce 
a large amount of carbon emissions. 

The impact factors related to 𝐶𝐶𝐸𝐸𝑒𝑒  include machine tool 
standby power, spindle rated power, material removal power, 
feed shaft power loss, coolant spray power, etc. Some of the 
power in the CNC machine tool processing are usually relatively 
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large, the higher the power, the longer the processing time, the 
more electricity consumed, and the more carbon emissions 
produced indirectly. 

The impact factors of 𝐶𝐶𝐸𝐸𝑤𝑤  are composed of tool loss, 
waste processing, waste liquid processing, fixture loss, etc. The 
amount of tool wear is usually small, but the it can produce a 

large amount of carbon emissions. The amount of waste debris 
and waste liquid are usually relatively large, and a lot of carbon 
emissions will be produced in post-processing. 

Based on the above analysis, the impact factors and their 
relationships could be described in FIGURE 2. 
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FIGURE 2: THE DESCRIPTION FOR IMPACT FACTORS OF CARBON EMISSIONS IN MACHINING 
 
4. DESIGN OF THE PROPOSED APPROACH 
    The proposed data-driven approach for carbon emission 
prediction is designed with four parts, namely data collection and 
preprocessing, feather selection, prediction model establishment 
and model validation. The details of the four parts are as follows. 

 
4.1 Data collection and preprocessing 

With the help of the Internet of Things (IoT) and industrial 
internet technologies, more and more data could be obtained 
through various intelligent sensors, and some advanced 
approaches, such as data mining, data transport, and data 
warehousing, etc., are also used to process the data. These 
technologies and methods are helpful to the carbon emission 
prediction of machining. Comprehensive considering the above 
impact factors related to the carbon emission of machining, a 
framework for data collection and preprocessing are established 
in this paper, as shown in FIGURE 3. 

In FIGURE 3, the data of material hardness, material 
strength, cutting fluid type, tool material, etc. are obtained by the 
look-up table. The data of blank length, blank diameter, etc. are 

collected by their CAD model. The data of energy consumption, 
such as machine standby power, spindle rated power, material 
cutting power are obtained by the power analyzer. The data of 
cutting fluid usage, waste liquid volume could be collected with 
the intelligent liquid flowmeter. Meanwhile, the carbon emission 
coefficient could be obtained from the previous work [28-29]. 
Then, the collected data are transmitted to the server using wired 
network to the servers, and the relational databases are employed 
to store these data, such as SQL Server, Oracle, MySQL, etc. 

In order to establish the carbon emission predictive model, 
the collected raw data should be preprocessed, including data 
cleaning, data normalization and data integration. 

Aiming at data missing, format inconsistency and logical 
errors, using the method of data cleaning can remove or fill 
missing data, verify data, and correct data, etc. Compared with 
the traditional Euclidean distance calculation method, k-means 
can ignore the magnitude limitation in calculation process. Thus, 
in this paper, the k-means are employed to fill the missing values. 
the k-means calculation formula is as follows. 
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𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥𝑚𝑚, 𝑥𝑥𝑛𝑛) = �(𝑥𝑥𝑚𝑚 − 𝑥𝑥𝑛𝑛)𝑇𝑇 ∑(𝑥𝑥𝑚𝑚 − 𝑥𝑥𝑛𝑛)−1    (2) 
 

Where, ∑ is the covariance matrix; 𝑥𝑥𝑚𝑚  is the missing data; 𝑥𝑥𝑛𝑛 
is the no-missing data. 

The normalization method is applied as Eq (3). 
 

𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖−𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚−𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

                  (3) 
 

where: 𝑥𝑥𝑖𝑖  is the data value corresponding to the i-th group of 
samples; 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚  is smallest sample data value; 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 is largest 
sample data value. By establishing data integration rules, 
designing middleware, and obtaining a global data model to 
access database of different information systems. Based on it, 
subsequent the carbon emissions prediction is expanded. 
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FIGURE 3. THE FRAMEWORK FOR DATA COLLECTION 
AND PREPROCESSING 
 
4.2 Feature selection 

Feature extraction is an effective way to improve the 
accuracy and efficiency of carbon emission predictive model 
[30]. Thus, the data should be treated with feather selection. the 
purposes of feature selection are to eliminate the features which 
have little impact or irrelevant on carbon emissions, and 
selecting features with large impact as the input variables of the 
predictive model. 

In this paper, the ridge regression is employed to extract the 
feature data considering the better stability of its regression 
coefficients [31]. The regression function of the ridge regression 
can be expressed the following formula. 

 
𝜀𝜀 = min(𝑋𝑋𝑋𝑋 − 𝑌𝑌)2                (4) 
 

where: 𝑋𝑋  is the independent variable matrix; 𝑊𝑊  is the 
regression coefficient matrix; 𝑌𝑌  is the dependent variable 
matrix, and 𝜀𝜀 is the error. 

We can solve the weights for 𝑊𝑊  with the following 
formula. 

 
𝑊𝑊 = (𝑋𝑋𝑇𝑇𝑋𝑋)−1𝑋𝑋𝑇𝑇𝑌𝑌                 (5) 
 

When the 𝑋𝑋𝑇𝑇𝑋𝑋  's value approach to “0”, the error will 
become extremely large, which is obviously not allowed. In 
order to solve this problem, an “L2” regular term can be added 
to the regression function, and the regression function can be 
transformed into formula (6). 

 
𝜀𝜀 = min ((𝑋𝑋𝑋𝑋 − 𝑌𝑌)2 + (𝜆𝜆𝜆𝜆)2)          (6) 
 

where: 𝜆𝜆 = 𝑎𝑎𝑎𝑎𝑎𝑎h𝑎𝑎 × 𝐼𝐼, 𝐼𝐼 is the identity matrix, and alpha is the 
coefficient. 

Therefore, 𝑊𝑊 can be described as Eq (7), as follows. 
 

𝑊𝑊(𝑘𝑘) = (𝑋𝑋𝑇𝑇𝑋𝑋 + 𝑎𝑎𝑎𝑎𝑎𝑎h𝑎𝑎 × 𝐼𝐼)−1𝑋𝑋𝑇𝑇𝑌𝑌         (7) 
 

The transformed formula obviously does not have 𝑋𝑋𝑇𝑇𝑋𝑋 's 
value approach to “0”, which prevents error have abnormal 
changed. 
 
4.3 Carbon emission prediction model 

Back propagation neural network (BPNN) is a common 
approach to establish the carbon emission prediction model. It 
could reach a good predictive accuracy as well as meet the 
requirement of efficient operation [32]. However, there are still 
some deficiencies in BPNN, it is easy to fall into the local 
optimum and the overfit [33]. 

To overcome these drawbacks, a BP neural network based 
on Genetic Algorithm (GA-BP) is designed to predict the carbon 
emissions of machining. Garcia et al. [34] proposed the Genetic 
Algorithm flexibility against non-differentiable functions and 
convergence to a viable solution with low computational cost.  
In this sense, the Genetic algorithm is a commonly used 
algorithm to improve BP neural network, which is usually used 
to solve the optimal solution problem, and the algorithm has 
strong adaptability. In this paper, the genetic algorithm is 
selected to optimize the BP neural network, because the BP 
neural network use the way of repeated iterations to obtain the 
ideal weights and thresholds. But in actual process, learning rate, 
weights, and thresholds etc. randomness parameters may appear 
some problems, such as low learning effect and low prediction 
accuracy of the model. Aiming at this shortcoming, genetic 
algorithm is used to optimize the parameters of BP neural 
network, which is a computational model for searching for the 
global optimal solution and obtain the optimal parameter values, 
it can greatly improve the learning effect and prediction accuracy 
of BP neural network. 

Based on this, this paper proposes to optimize the carbon 
emission prediction model with GA-BP. The flowchart of the 
prediction model is shown in FIGURE 4. 
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FIGURE 4. FLOWCHART FOR CARBON EMISSION 
PREDICTION WITH GA-BP 

 
The main steps are as follows. 

(1) Establishing and initializing the BP neural network model. 
Including the number of layers and neurons in the neural 
network, the learning efficiency, the maximum number of 
iterations and the minimum performance gradient. 

(2) Initializing the genetic algorithm parameters. Including 
population size, maximum number of iterations, crossover 
probability and mutation probability, and encodes the real 
number of population individuals. 

(3) Determining the fitness function and calculate the fitness 
value, and obtaining the initial weight and threshold by 
decoding the individual. 

(4) According to the obtained fitness value, using the genetic 
algorithm to perform crossover and mutation operations on 
individuals to form a new population. In order to avoid 
generating local optimal solutions, recalculating the fitness 
value for the new population. 

(5) By looping operation (3) and operation (4) to find the 
optimal fitness value. The maximum number of iterations is 
used as the standard to decide whether to end. When the 
maximum number of iterations is reached, the operation is 
stopped and output the optimal fitness value. 

(6) By decoding the individuals corresponding to obtain 
optimal fitness values and decoding it into the weights and 
thresholds of the BP neural network, obtaining the optimal 
parameters. 

(7) By the genetic algorithm obtain new weights and thresholds 
are used as the initial weights and thresholds of the BP 
neural network, constructing the GA -BP predictive model. 

 
 

4.4 Model validation 
The purpose of model validation is to evaluate the 

efficiency and accuracy of prediction model. In this paper, the 
root means square error (RMSE) and the mean relative 
percentage error (MPAE) are selected as the evaluation 
indicators to describe the model performance. The formulas are 
as follows. 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑛𝑛
∑ [𝑓𝑓(𝑥𝑥𝑖𝑖) − 𝑦𝑦𝑖𝑖]2𝑛𝑛
𝑖𝑖=1              (8)  

 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 1

𝑛𝑛
∑ | 𝑓𝑓(𝑥𝑥𝑖𝑖)−𝑦𝑦𝑖𝑖

𝑦𝑦𝑖𝑖
𝑛𝑛
𝑖𝑖=1 | × 100%          (9)  

 
Where: 𝑓𝑓(𝑥𝑥𝑖𝑖)  is Group 𝑖𝑖  measurement; 𝑦𝑦𝑖𝑖  is Group 𝑖𝑖 

actual value. 
 
5. CASE STUDY 
5.1 Experimental conditions and parameter settings 

In order to verify the above approach, a CNC turning 
experiment is designed. In this experiment, the two types of 
machine tools, three types of blanks, four types of tools and two 
types of cutting fluid are used. The detail of the experimental 
conditions and equipment is listed in FIGURE 5, FIGURE 6 and 
TABLE 1 respectively. 

 

 
Figure 1 

FIGURE 5. CNC turning experimental equipment 
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FIGURE 6. 3D drawing of CNC turning parts 

 
Serial number Name Type 
1 Raw materials 45Steel,6061aluminum 

alloy, QT500-7 ductile 
iron 

2 CNC machine CK6136i, CK6153i 

3 Tool materials YG8, YT5, W18Cr4V, 
W6Mo5Cr4V2 

4 Cutting fluid Clearedge EP 690 water-
soluble cutting fluid, 
MCF-2012 micro-
emulsion 

TABLE 1. THE TYPE OF PROCESSING MATERIALS AND 
PROCESSING EQUIPMENT 

 
Then, the related parameters are set and collected the 

relevant raw data and preprocessing the data-set. Getting the 
relevant characteristic attribute of carbon emissions and ranges, 
there are shown in TABLE 2. 

 
property 
number 

property name Ranges 

1 Workpiece 
hardness/HB 

(97, 262, 200) 

2 Tool material 
hardness/HRC 

(63~81) 

3 Tool rake angle/° (-7,8~10,25~30) 
4 Turning length/mm (30~90) 
5 Spindle speed/ 

(r·min-1) 
(150~2000) 

6 Feed rate/ (mm·r-1) (0.05~0.4) 
7 Depth of cut/mm (0.5~2.4) 

8 Part diameter/mm (20~60) 
9 Cutting time/s (80~100) 
10 Cutting fluid 

dosage/L 
(30~40) 

11 Machine standby 
power/W 

(361,371) 

12 Spindle rated 
power/kW 

(5.5,7.5) 

13 Coolant power/W (0,132,270) 
14 Carbon emission/g (600~1400) 

TABLE 2.THE VALUE RANGE OF THE FEATURE 
ATTRIBUTE OF THE MACHINING PROCESS OF THE 
MACHINE TOOL 

 
Normalizing the filtered feature attribute data set, using the 

ridge regression feature selection algorithm to calculate the data 
set, and selecting seven main features, including: turning length, 
part diameter, cutting time, machine standby power, spindle 
rating power, spray coolant power and cutting fluid 
consumption. 

Divide the data set into training set and test set, BP neural 
network by genetic algorithm optimized is used to train the 
training set data respectively, and then use the trained model to 
predict the test set. The parameters related to the model are set 
as follows:

 (1) Setting of the initialization parameters of the genetic 
algorithm: the population size is 10; the maximum number of 
iterations is 1000; the crossover probability is 0.2; the mutation 
probability is 0.1. 

(2) Setting of initialization parameters of BP neural 
network: the number of input neurons is 7, the number of output 
neurons is 1, the number of neurons in the hidden layer is related 
to many factors The minimum number of layers is 5. The input 
layer includes turning length, part diameter, cutting time, 
machine tool standby power, spindle rated power, cooling fluid 
power and cutting fluid consumption, and the output layer is 
carbon emissions, the network structure is 7-5-1. The learning 
rate is 0.09; the maximum number of iterations is 1000; the 
minimum performance gradient is 1e-5. 
 
5.2 Analysis of results 

The ridge regression algorithm is used to extract features 
from the above data. The generated ridge trace is shown in 
FIGURE 7, and the resulting data is shown in TABLE 3: 
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FIGURE 7. RIDGE TRACE 
 

Variable Parameter 
estimating 

Standard 
error 

t value Pr>|t| 

Intercept 
X1 
X2 
X3 
X4 
X5 
X6 
X7 
X8 
X9 
X10 
X11 
X12 
X13 
X14 
X15 
X16 
X17 
X18 

-1.5639 
0.5326 
0.0259 
0.3006 
0.1269 
-0.3533 
0.0265 
0.5548 
-0.2366 
0.1355 
0.1562 
0.4516 
0.6233 
-0.1289 
0.1568 
0.2645 
0.2255 
-0.3352 
0.1212 

 
0.1523 
0.3056 
0.1101 
0.1056 
0.2462 
0.1562 
0.3455 
0.2014 
0.1806 
0.1256 
0.3625 
0.2325 
0.1203 
0.1452 
0.3125 
0.2814 
0.1002 
0.2042 

 
4.625 
0.233 
0.556 
3.012 
0.946 
5.011 
0.988 
0.045 
4.956 
0.265 
0.663 
4.652 
0.205 
0.625 
0.846 
0.698 
0.852 
0.125 

 
2.36e-6 
0.2235 
0.1312 
2.42e-4 
0.6568 
6.53e-6 
0.3254 
0.2547 
1.53e-5 
0.4321 
0.3225 
3.36e-6 
0.4136 
0.3354 
0.2526 
0.3111 
0.1236 
0.4231 

α  0.0326    
TABLE 3. RELATED PARAMETER VALUES 
 

In FIGURE 7, when the 𝛼𝛼 value is 0.03, all the ridge trace 
curves tend to be stable. The relevant parameter values are 
shown in TABLE 3. From the view of t value in table, when the 
𝛼𝛼 value is 0.0326, the impact of most variables are not large. 
From the view of p value, the variables below 0.05 are impacted, 
and corresponding this requirement factors are X1, X4, X6, X9, 
X12, and other variables are not impacted, so these five variables 
are extracted as characteristic factors, and others are removed. 
The selected five characteristic factors are: turning length, part 
diameter, spindle rated power, spray coolant power and cutting 
fluid consumption. And then the five characteristic factors will 
be used as the input variables of the GA-BP neural network 
prediction model for training and prediction. 

The 370 groups data in data-set are used as training-set and 10 
groups are used as testing-set, and GA-BP neural network is used 
to train the training-set.  

Then, using the GA-BP neural network to predict the 
testing-set and compare it with the actual value. And the result 
of RMSE and MAPE are as follows. 

 
Result: RMSE=12, MAPE=1.31%  
 
In TABLE 4, the predicted and actual value of RMSE and 

MAPE are both relatively small, the RMSE value is 12 and the 
MAPE value is 1.31%. In this paper, it means that using the GA-
BP neural network can achieve the target of accurate predict the 
test samples, and the validity and reliability of the data-driven 
model proposed in this paper are demonstrated. 
 

Sample Predictive 
value 

Actual 
value 

Absolute 
error 

Relative 
error 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

928 
890 
901 
965 
1099 
800 
985 
1000 
1040 
900 

940 
860 
890 
970 
1100 
792 
986 
978 
1050 
880 

12 
30 
11 
5 
1 
8 
1 

22 
10 
20 

1.28% 
3.49% 
1.24% 
0.52% 

0 
1.01% 
0.10% 
2.25% 
0.95% 
2.27% 

TABLE 4. COMPARISION OF PREDICTION AND 
ACTUAL VALUES 

 
6. CONCLUSION 

Aiming at the problem of carbon emission prediction in the 
process of CNC lathe processing, this paper proposes a data-
driven method, by the steps of raw data acquisition, data 
preprocessing, feature attribute preprocessing, feature selection, 
and energy consumption prediction to achieve the purpose of 
predicting carbon emissions in the machining process. This 
paper proposed a scheme of optimizing BP neural network by 
genetic algorithm to predict carbon emissions, the experimental 
results verify that this paper proposed the scheme that has high 
accuracy, and contributed new ideas to research in related fields. 

The content of this paper is mainly based on the data-driven 
method to predict the carbon emissions in CNC machining 
process, which provides technical support and theoretical basis 
for research in this field. However, due to the CNC system is 
very complex, the research has limitations in this paper. For 
example, the processing parts are too simple in this experiment 
and few types of experimental equipment. Therefore, there still 
have some problems to be solved. 
 
ACKNOWLEDGEMENTS 

The authors would like to thank the support from the 
National Natural Science Foundation of China (NO.51975432). 



 9 © 2022 by ASME 

 
REFERENCES 
[1] IEA (International Energy Agency). “Tracking Industrial 

Energy Efficiency and CO2 Emissions.” 2007. 
[2] Abbas Mardani, Dalia Streimikiene and Fausto Cavallaro 

et al. “Carbon dioxide (CO2) emissions and economic 
growth: A systematic review of two decades of research 
from 1995 to 2017.” Science of The Total Environment 
Vol.649(2019): pp.31-49.DOI: 
https://doi.org/10.1016/j.scitotenv.2018.08.229 

[3] T. Gutowski. “The carbon and energy intensity of 
manufacturing.” 40th CIRP International Manufacturing 
Systems Seminar at Liverpool University: pp.1–6. 
Liverpool, UK, 30 May to 1 June,2007. 

[4] Zhang Yi, Liu Qiong and Zhou Yingdong et al. “Integrated 
optimization of cutting parameters and scheduling for 
reducing carbon emissions.” Journal of cleaner production 
Vol.149(2017): pp.886-895.DOI: 
https://doi.org/10.1016/j.jclepro.2017.01.054 

[5] Dong Feng, Yu Bolin and Hadachin Tergel et al. “Drivers 
of carbon emission intensity change in China.” Resources, 
Conservation and Recycling Vol.129(2018): pp.187-
201.DOI:https://doi.org/10.1016/j.resconrec.2017.10.035 

[6] Li Wen, Sami Kara and Christoph Herrmann et al. “An 
Investigation into Fixed Energy Consumption of Machine 
Tools.” Glocalized Solutions for Sustainability in 
Manufacturing: pp.268-273.2011.DOI: 
https://doi.org/10.1007/978-3-642-19692-8_47 

[7] Huang Zhengtao, Zhang Chaoyong and Luo Min et al. “An 
energy consumption model of CNC turning based on the 
principle of energy conservation.” China Mechanical 
Engineering Vol.18(2015). DOI: 10.3969/j.issn.1004-
132X.2015.18.002. 

[8] Liu Qilin Zhang Wenhua and Yao Mingtao et al. “Carbon 
emissions performance regulation for China's top 
generation groups by 2020: Too challenging to realize?” 
Resources, Conservation and Recycling Vol.122(2017): 
pp.326-334.DOI: 
https://doi.org/10.1016/j.resconrec.2017.03.008 

[9] Li Congbo, Cui Longguo and Liu Fei et al. “Carbon 
emissions quantitative method of machining system based 
on generalized boundary.” Computer Integrated 
Manufacturing System Vol.19(2013): pp.2229-2236. 

[10] Li Congbo, Tang Ying and Cui Longguo et al. “A 
quantitative approach to analyze carbon emissions of CNC-
based machining systems.” Journal of Intelligent 

Manufacturing Vol.26(2015): pp.911-922.DOI: 
https://doi.org/10.1007/s10845-013-0812-4 

[11] Zhao Guoyong, Zhao Qinzhi and Xu Yunli et al. “Energy 
consumption prediction method in CNC turning for low 
carbon manufacturing.” 2014 the third national academic 
conference on modern manufacturing integration 
technology: pp.1-9. Xi’an, China, September 26,2014. 

[12] Cao Huajun, Li Hongcheng and Cheng Haiqin et al. “A 
carbon efficiency approach for life-cycle carbon emission 
characteristics of machine tools.” Journal of cleaner 
production Vol.37(2012): pp.19-28.DOI: 
https://doi.org/10.1016/j.jclepro.2012.06.004 

[13] Sihag Nitesh and Sangwan Kuldip Singh. “Development of 
a multi-criteria optimization model for minimizing Carbon 
emissions and processing time during machining.” 
Procedia CIRP Vol.69(2018): pp.300-305. DOI: 
https://doi.org/10.1016/j.procir.2017.11.060 

[14] Zhou Guanghui, Lu Qi and Xiao Zhongdong et al. “Cutting 
parameter optimization for machining operations 
considering carbon emissions.” Journal of cleaner 
production Vol.208(2019): pp.937-950.DOI: 
https://doi.org/10.1016/j.jclepro.2018.10.191 

[15] Zheng Jun, Ren Yicheng and Yao Jinkang et al. “Energy 
and CO2 emissions modeling for unconventional machining 
industry considering processing characteristics.” Science of 
The Total Environment Vol. Available online (2021). DOI: 
https://doi.org/10.1016/j.scitotenv.2021.151542 

[16] Zhang Lei, Zhang Beikun, Bao Hong, Zhang Cheng, Zhang 
Weiwei. “Carbon Emissions Quantitative Methodology of 
Product Fused Deposition Manufacturing.” Journal of 
mechanical engineering Vol. 53 (2017): 50-59. DOI：
10.3901/JME.2017.05.050 

[17] Gao Mingyun, Yang Honglin and Xiao Qinzi et al. “A novel 
method for carbon emission forecasting based on 
Gompertz's law and fractional grey model: Evidence from 
American industrial sector.” Renewable Energy 
Vol.181(2022): pp.893-819.DOI: 
https://doi.org/10.1016/j.renene.2021.09.072 

[18] Ma Xuejiao, Jiang Ping and Jiang Qichuan. “Research and 
application of association rule algorithm and optimized 
grey model in carbon emissions forecasting.” 
Technological Forecasting and Social Change 
Vol.158(2020).DOI: 
https://doi.org/10.1016/j.techfore.2020.120159 

[19] Zhou Wenhao, Zeng Bo and Wang Jianzhou et al. 
“Forecasting Chinese carbon emissions using a novel grey 
rolling prediction model.” Chaos, Solitons & Fractals 
Vol.147(2021).DOI: 
https://doi.org/10.1016/j.chaos.2021.110968 

https://dr2am.wust.edu.cn/--/com/sciencedirect/www/_/science/article/pii/S0048969718331930#!
https://dr2am.wust.edu.cn/--/org/doi/hs/_/10.1016/j.scitotenv.2018.08.229?__dp=https
https://dr2am.wust.edu.cn/--/org/doi/hs/_/10.1016/j.jclepro.2017.01.054?__dp=https
https://doi.org/10.1016/j.resconrec.2017.10.035
https://doi.org/10.1007/978-3-642-19692-8_47
https://doi.org/10.1016/j.resconrec.2017.03.008
https://dr2am.wust.edu.cn/--/org/doi/hs/_/10.1016/j.jclepro.2012.06.004?__dp=https
https://dr2am.wust.edu.cn/--/org/doi/hs/_/10.1016/j.procir.2017.11.060?__dp=https
https://dr2am.wust.edu.cn/--/org/doi/hs/_/10.1016/j.jclepro.2018.10.191?__dp=https
https://dr2am.wust.edu.cn/--/org/doi/hs/_/10.1016/j.scitotenv.2021.151542?__dp=https
https://dr2am.wust.edu.cn/--/org/doi/hs/_/10.1016/j.renene.2021.09.072?__dp=https
https://dr2am.wust.edu.cn/--/org/doi/hs/_/10.1016/j.techfore.2020.120159?__dp=https
https://dr2am.wust.edu.cn/--/org/doi/hs/_/10.1016/j.chaos.2021.110968?__dp=https


 10 © 2022 by ASME 

[20] Liu Zhenkun, Jiang Ping and Wang Jianzhou et al. 
“Ensemble system for short term carbon dioxide emissions 
forecasting based on multi-objective tangent search 
algorithm.” Journal of Environmental Management 
Vol.302(2022): DOI: 
https://doi.org/10.1016/j.jenvman.2021.113951 

[21] Qiao Weibiao, Lu Hongfang and Zhou Guofeng et al. “A 
hybrid algorithm for carbon dioxide emissions forecasting 
based on improved lion swarm optimizer.” Journal of 
Cleaner Production Vol.244(2020): DOI: 
https://doi.org/10.1016/j.jclepro.2019.118612 

[22] Fang Debin, Zhang Xiaoling and Yu Qian et al. “A novel 
method for carbon dioxide emission forecasting based on 
improved Gaussian processes regression.” Journal of 
Cleaner Production Vol.173(2018): pp.143-150.DOI: 
https://doi.org/10.1016/j.jclepro.2017.05.102 

[23] Seyed Mohsen Hpsseini et al. “Forecasting of CO2 
emissions in Iran based on time series and regression 
analysis.” Energy Reports Vol.5(2019): pp.619-631.DOI: 
https://doi.org/10.1016/j.egyr.2019.05.004 

[24] Ren Feng and Long Dinghong. “Carbon emission 
forecasting and scenario analysis in Guangdong Province 
based on optimized Fast Learning Network.” Journal of 
Cleaner Production Vol.317(2021): DOI: 
https://doi.org/10.1016/j.jclepro.2021.128408 

[25] Abbas Mardani, Liao Huchang and Mehrbakhsh Nilashi et 
al. “A multi-stage method to predict carbon dioxide 
emissions using dimensionality reduction, clustering, and 
machine learning techniques.” Journal of Cleaner 
Production Vol.275(2020).DOI: 
https://doi.org/10.1016/j.jclepro.2020.122942 

[26] Zhang Chaoyang and Ji Weixi. “Digital twin-driven carbon 
emission prediction and low-carbon control of intelligent 
manufacturing job-shop.” Procedia CIRP Vol.83(2019): 
pp.624-629.DOI: 
https://doi.org/10.1016/j.procir.2019.04.095 

[27] Yi Qian, Li Congbo and Tang Ying et al. “Multi-objective 
parameter optimization of CNC machining for low carbon 
manufacturing.” Journal of Cleaner Production 
Vol.95(2015): pp.256-264.DOI: 
https://doi.org/10.1016/j.jclepro.2015.02.076 

[28] Ou Xunmin, Yan Xiaoyu and Zhang Xiliang. “Life-cycle 
energy consumption and greenhouse gas emissions for 
electricity generation and supply in China.” Applied Energy 
Vol.88(2011): pp.289-297.DOI: 
https://doi.org/10.1016/j.apenergy.2010.05.010 

[29] Li Congbo, Cui Longguo and Liu Fei et al. “Multi-objective 
NC machining parameters optimization model for high 
efficiency and low carbon.” Journal of mechanical 
engineering Vol.49(2013): pp.87-96.DOI: 
10.3901/JME.2013.09.087 

[30] Guyon I, Elisseeff A. “An introduction to variable and 
feature selection.” Journal of machine learning research Vol 
3(2003): 1157-1182. 

[31] Shao Zhifei, Er Mengjoo and Wang Ning. “An effective 
semi-cross-validation model selection method for extreme 
learning machine with ridge regression.” Neurocomputing 
Vol.151(2015): pp.935-942. DOI: 
https://doi.org/10.1016/j.neucom.2014.10.002 

[32] Raunak Bhinge, Jinkyoo Park and Kincho H. law et al. 
“Toward a Generalized Energy Prediction Model for 
Machine Tools.” Journal of Manufacturing Science and 
Engineering Vol.139(2017): pp.1-12.DOI: 
https://doi.org/10.1115/1.4034933 

[33] Sang Bin. “Application of genetic algorithm and BP neural 
network in supply chain finance under information 
sharing.” Journal of Computational and Applied 
Mathematics Vol.384(2021): pp.113170.  
DOI: https://doi.org/10.1016/j.cam.2020.113170 

[34] Luciano Garim Garcia et al. “A parameter optimizer based 
on genetic algorithm for the simulation of carbonate 
facies.” Intelligent Systems with Applications 
Vol.12(2021): DOI: 
https://doi.org/10.1016/j.iswa.2021.200057 

 

https://dr2am.wust.edu.cn/--/org/doi/hs/_/10.1016/j.jenvman.2021.113951?__dp=https
https://dr2am.wust.edu.cn/--/org/doi/hs/_/10.1016/j.jclepro.2019.118612?__dp=https
https://dr2am.wust.edu.cn/--/org/doi/hs/_/10.1016/j.jclepro.2017.05.102?__dp=https
https://dr2am.wust.edu.cn/--/org/doi/hs/_/10.1016/j.egyr.2019.05.004?__dp=https
https://dr2am.wust.edu.cn/--/org/doi/hs/_/10.1016/j.jclepro.2021.128408?__dp=https
https://dr2am.wust.edu.cn/--/org/doi/hs/_/10.1016/j.jclepro.2020.122942?__dp=https
https://dr2am.wust.edu.cn/--/org/doi/hs/_/10.1016/j.procir.2019.04.095?__dp=https
https://dr2am.wust.edu.cn/--/org/doi/hs/_/10.1016/j.jclepro.2015.02.076?__dp=https
https://doi.org/10.1016/j.apenergy.2010.05.010
https://dr2am.wust.edu.cn/--/cn/chinadoi/dx/_/10.3901/JME.2013.09.087
https://dr2am.wust.edu.cn/--/org/doi/hs/_/10.1016/j.neucom.2014.10.002?__dp=https
https://doi.org/10.1115/1.4034933
https://dr2am.wust.edu.cn/--/org/doi/hs/_/10.1016/j.cam.2020.113170?__dp=https
https://dr2am.wust.edu.cn/--/org/doi/hs/_/10.1016/j.iswa.2021.200057?__dp=https

