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ABSTRACT 

Aviation flight crews rely on a large number of complex 
standard documents and operation manuals when performing 
flight tasks. In order to relieve the pressure of manual retrieval 
of documents, intelligent question-answering technology based 
on reading comprehension is gradually applied. In this paper, the 
flight crew operation manual SQuAD dataset is studied and 
built, based on which the reader-retriever framework of text 
content-based reading question answering system (TCQA) is 
analyzed and established. Experiments are conducted to 
compare the relevant indexes of the QA system with different 
combinations of reader and retriever models under the open- 
source tool haystack. Based on the comparison of response speed 
and retrieval capability, the best model combination is obtained 
for the flight crew operation manual dataset, and suggestions are 
made for the model-related performance improvement. 

Keywords: NLP, TCQA, SQuAD, reader-retriever 
framework 

 
1.  INTRODUCTION 

The aerospace industry relies on a large number of 
normative standard documents in practice. Take the flight crew 
operating manual (FCOM) file as an example, this file contains 
the operating and safety instructions for a specific type of aircraft 
in various scenarios. The relevant FCOM files for each aircraft 
are usually thousands of pages, and most of them are in paper or 
electronic pdf format. Manually retrieving specific information 
from such massive documents takes a lot of time and effort. 
While in actual flight scenarios, the time is usually limited, 
which makes it difficult for the flight crew to find the required 
information within the specified time [1]. Therefore, it has 
gradually become a necessary trend to explore intelligent 
technologies for retrieving FCOM files to facilitate the use of 
relevant documents by enterprise personnel. 

Intelligent question-answering technology combining 
natural language understanding and interactive document 

retrieval can be a measure to address the above needs. After the 
relevant files are converted into the corresponding format and 
imported into the background of the system, users can interact 
with the question answering system (QA system) by inputting 
questions organized in natural language. The system will process 
the questions and retrieve the background text. The intelligent 
QA system can effectively alleviate the need for users to 
understand the FCOM document structure and query syntax and 
significantly improves the users’ retrieval speed, ensuring their 
work efficiency. Therefore, the related FCOM documents is 
planned to be processed, and an intelligent QA system for FCOM 
files is researched and designed. Its related performance is also 
be evaluated. 

The rest of the paper is organized as follows. In section 2, 
the classification, development and composition of the 
intelligent QA system are introduced. In section 3, the intelligent 
QA system framework of FCOM files is established and the 
functions of the core components and various models are 
introduced in detail. Section 4 discusses experiments and the 
evaluation results of the QA system. Section 5 presents a 
summary of the main findings and future prospects. 
 
2. BRIEF REVIEW OF LITERATURE 
 
2.1 Classification of QA systems 

Machine reading comprehension is an important task in QA 
system, and understanding natural language and completing 
basic reasoning are necessary in the task. The main purpose of 
the task is to extract the answer or generate the answer according 
to the given text and the question asked by the user. According 
to the answer type, the QA system can be divided into two types: 
extractive QA system and generative QA system [2]. 

In an extractive QA system, the machine is able to extract a 
span of text from the corresponding context as the answer to the 
question. In a few extractive QA systems, answers can also be 
multimedia forms. With the application of deep learning methods 
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and the emergence of datasets such as SQUAD [3], NewsQA [4], 
and TriviaQA [5], the accuracy of extractive QA systems has also 
been greatly improved, resulting in wider applications.  

The generative QA system cannot directly extract the 
answer from the text, but needs to reason based on multiple texts 
and summarize the generated answer. The answer form of the 
generative QA system is not limited, which is more suitable for 
practical scenarios. Compared with the extractive QA system, 
the answer form of the generative QA system is more diverse and 
the answer is easier to understand. However, the method is more 
difficult, and there is a lack of means for evaluation [6].  The 
system meets the actual needs, which can track the relevant 
documents according to the problems, and obtain the original 
document information. 

QA systems can also be divided into open domain QA 
systems and closed domain QA systems. Open-domain QA 
systems can answer almost all questions, and their texts come 
from websites such as Wikipedia. Closed-domain QA systems 
are able to answer domain-specific questions, and can be trained 
to build domain-specific QA systems to solve specific problems 
[7]. Therefore, this paper will introduce a closed-domain 
extractive QA system constructed using text and training datasets 
from the aerospace field to solve the application problem of 
documents. 
 
2.2 Development of QA system framework 

The QA system can be regarded as an extension of the 
search engine. Compared with the search engine, the answer 
provided by the QA system is more accurate, rather than simply 
returning the results based on the keyword search. The 
development of the QA system originated in 1961. Green et al. 
proposed the BASEBALL system to transmit the information of 
the American baseball league. The answers of the system are 
mainly in the form of date and location [8]. In 1973, Woods et al. 
proposed the Lunar system, which provided relevant information 
about soil samples [9]. Although these early systems had 
relatively good performances, the lack of information in the 
repositories limited the application of these early systems [10]. 

With the continuous development of research, open-domain 
QA systems such as IBM Watson [11] are also emerging, and these 
systems are no longer limited to QA in a single domain. At the 
same time, the application range of QA system is also wider, and 
it can play a very important role in medical [12], agriculture [13], 
tourism [14] and other fields. There are also QA systems in the 
aviation field. Alexandre [15] et al. introduced a QA system that 
helps aircraft pilots obtain document information. Pilots can ask 
questions to the system in natural language and interact with the 
system to obtain answers, which effectively improves the 
application efficiency of aviation documents. 

Early search engines were mainly based on information 
retrieval, but it was difficult for information retrieval to 
accurately locate the answer. Therefore, the improved QA 
systems use traditional information retrieval techniques 
combined with machine reading comprehension (MC) methods 
to complete paragraph retrieval and answer processing tasks 
respectively[16]. After optimization, the QA system generally 
adopts a pipeline structure, including three main modules: 
Question Analysis, Passage Retrieval, and Answer Extraction [17-

19]. 
Chen [20] et al. continued to simplify the framework and 

proposed the Retriever-Reader two-stage framework. The 

framework is shown in Figure 1. Retriever is used to filter 
paragraphs containing correct answers, while Reader is used to 
extract correct answers in paragraphs. The two-stage framework 
is also used in QA system frameworks such as DrQA[20]. 

 
FIGURE 1: FRAME DIAGRAM OF TWO-STAGE QA SYSTEM 

[20] 

 

2.3 Development of Retriever and Reader 
Retriever in QA system often adopts traditional information 

retrieval methods such as TF-IDF or BM25 [21]. These traditional 
methods filter out candidate documents by matching keywords. 
However, these traditional methods cannot be trained, so it is 
difficult to perform complex retrieval tasks well. In recent years, 
models such as Bert [22] overcome the limitation with self-
supervised learning. These models allow Retriever to be trained 
using specific datasets. 

Retriever models are usually constructed with dual 
encoders, where one encoder is used to encode the question and 
the other is used to encode the text [23]. Both supervised and 
unsupervised learning methods can be used to train Retriever 
models. Lee [24] et al. used the reverse cloze task to train 
Retriever and evaluated it on open datasets, demonstrating the 
effectiveness of the unsupervised learning method. Karpukhin et 
al. [25] applied the supervised learning method of Dense Passage 
Retriever and demonstrated that the performance is better than 
traditional retrieval methods such as BM25. The improvement 
and optimization of the existing Dense Passage Retriever 
methods have also achieved good results [26-27]. 

The traditional Reader model uses pattern matching [28] or 
machine learning methods to extract answers from texts. With 
the emergence of large-scale training datasets deep learning 
methods after 2015, the Reader model has also grown rapidly. 
Both the ELMo model [29] and the Bert model [22] use pre-training 
to improve the performance of the Reader model. The former is 
an autoregressive model. The training direction of the model is 
from left to right, but it cannot use context information at the 
same time, and its ability to represent text is weak. The latter 
belongs to the self-encoding language model, and the text 
representation ability is greatly enhanced, and it can better 
represent the effective information and context information of 
the text. 

As the Attention mechanism is widely used in the field of 
natural language processing, many Reader models have also 
added the Attention mechanism to optimize model 
performance. The DrQA model [20] simply uses a bilinear term 
to compute the attention weights, resulting in word-level 
question-merged paragraph representations. The Match-LSTM 
[30] model applies the LSTM model to extract features in the 
text and applies the attention mechanism from two directions. 
Wang [31] applied the self-attention mechanism to the reading 
comprehension model and proposed the gated self-matching 
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network R-Net. They utilize a gated attention-based recurrent 
network to generate question-aware paragraph representations 
capable of pinpointing important parts of text. 

 
3. INTELLIGENT QA SYSTEM FRAMEWORK 

Through the literature research in Section 2, it can be found 
that currently applied QA systems are usually built in a pipeline 
format, which mainly consists of different components. The 
functions of components are question processing, document 
retrieval, and answer processing, respectively. Based on the 
uniqueness of industry proper nouns in FCOM files, the text 
characteristics of some chapters with similar structure and the 
relevant requirements of QA system, this paper establishes a 
complete intelligent QA system framework for FCOM files 
shown in Figure 2. 

 
FIGURE 2: FRAMEWORK OF INTELLIGENT QA SYSTEM 

FOR FCOM FILES 
 

The framework is composed of three parts, the data 
preparation part, the retriever part and the reader part. The data 
processing part mainly processes the reference texts, prepares for 
the initial offline process of the QA system, and supports staff to 
update through the background. The retriever and the reader part 
participate in the processing and interaction of the user's online 
query. The relevant content will be described in detail below. 

 
3.1 Data preparation 

The function of the document reading component is to 
extract valid text from the electronic document. After 
investigating the existing text extraction tools and algorithms, it 
is found that the PDFminer tool in python can extract text and 
recognize noisy texts such as headers and footers, which is 
consistent with the text structure of FCOM files and meets the 
extraction requirements of this paper. Therefore, the PDFminer 
is selected as the text extraction tool for FCOM files in pdf 
format. 

While doing the document reading work, it is noticed that 
the FCOM file is a structured document. Its structure is usually 
a multi-level heading structure. The above titles have obvious 
difference in font and size, which can be recognized by 
PDFminer. The structure and title information of the document 
play an important role in understanding the content of the 
document. Document data conventionally stored by strings 
cannot reflect the structural characteristics of FCOM files. 
Therefore, it is necessary to convert the read text content into a 
specific data format. The data format not only needs to reflect 
the document structure characteristics, but also needs to support 
the storage of Q&A pairs corresponding to the text, so as to 
facilitate the subsequent training of the reader component and 
the performance evaluation of the QA system. Based on the 
above requirements, this paper chooses SQuAD as the data 
storage form of the QA system. 

SQuAD is an open-domain reading comprehension dataset 
launched by Stanford University in 2016 [3]. Its original data 
includes 100,000 (question, original text, answer) triples, which 
is currently the most widely used NLP QA dataset. Since the 
SQuAD dataset is an extractive QA dataset, it is more in line with 
the data characteristics of FCOM files and the relevant 
assessment forms of flight crews.  

Figure 3 shows the data structure of SQuAD. SQuAD 
assigns a specific number (id) to each specific Q&A pair, and 
stores the question text in the value of “question”, It also stores 
the textual fragment of the answer in the “text” value, and marks 
the position where the answer starts in the text as “answer_start”. 
At the same time, the entire text is stored in the “context” value, 
and the titles of all levels of this text is stored in the “title” value. 
The document processing stage mainly completes the SQuAD 
format conversion of text and title. Figure 4 is a schematic 
diagram of the related text extraction and structuring. 

 
FIGURE 3: SCHEMATIC DIAGRAM OF SQUAD DATA 

STRUCTURE 
 

 
FIGURE 4: SCHEMATIC DIAGRAM OF TEXT EXTRACTION 

AND STRUCTURING 
 

After completing the format conversion of the document, in 
order to meet the data training needs in the reader components, 
it is necessary to add Q&A pairs to the generated SQuAD format 
dataset, which is called the data annotation process. The 
traditional way to generate Q&A pairs in SQuAD is to hire 
crowdsourcers to manually annotate the text. To save time and 
reduce costs, questgen, an open-source NLP library for question 
generation algorithms, is used for automatic generation of Q&A 
pairs. Questgen mainly uses the T5 language model developed 
by Google to complete the Q&A pair generation for specified 
texts. The supported question generation features include 
multiple choice, Boolean questions, general FAQs, and 
paraphrase questions. The questgen online demo interface is 
shown in Figure 5. In order to ensure the quality of the Q&A 
pairs generated, questgen currently uses different T5 models for 
different types of questions and answers. 
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FIGURE 5: QUESTGEN ONLINE DEMO INTERFACE 

 
After using the questgen to generate Q&A pairs, the current 

Q&A pair data is found to have the following problems:  
Simple questions: As shown in Figure 5, the number of 

words in the answer is usually between 2-5 words, which can 
easily lead to ambiguous meaning of the answer and unclear 
directionality. It does not meet the requirements for accuracy in 
FCOM document retrieval. 

Repeated questions in similar paragraphs: FCOM files 
generally have the characteristics of consistent chapter structure 
and similar content. Questgen tends to generate the same Q&A 
pairs in texts with similar content, which is not helpful for the 
quality of QA datasets. 

Difficult to generate Q&A pairs about tables: Aviation 
standards documents often contain a large number of tables. The 
text extracted from the tables lacks semantic connection, making 
it difficult to generate Q&A pairs using questgen. 

Therefore, the correct rate of Q&A pairs and the types of 
questions still need to be improved through manual annotation. 
In order to standardize the Q&A pair data format, cdQA-
annotator in the closed-domain QA system cdQA is chosen as the 
manual annotation tool for the initial question of the text and the 
addition in the later maintenance process. The interface of the 
cdQA-annotator is shown in Figure 4. The supported input JSON 
file format is SQuAD 1.1. After manually entering the question, 
the staff can select the answer fragment in the original text to 
generate a Q&A pair. At the same time, the annotation tool also 
supports editing and deletion of existing Q&A pairs and deletion 
of original text fragments. 

 
FIGURE 4: THE INTERFACE OF THE CDQA-ANNOTATOR 

 
3.2 Retriever 

For the retrieval function in the online part, the Reader 
component constructed by the latest transformer language 
system is the main model for document analysis and retrieval. 
However, this component has limited ability for responsiveness 
and processing when faced with a large number of documents. 
Therefore, a filter is needed to reduce the amount of text that the 
Reader component needs to process. Based on this concept, the 

Reader-Retriever framework of several QA systems such as 
cdQA and haystack is chosen, which are used to realize the 
functions of text retrieval and answer processing. 

The function of the retriever component is to retrieve the 
most relevant paragraphs of text from a large number of stored 
texts and transmit them to the reader component according to the 
processed problems. Its essence is to solve the problem of 
semantic similarity ranking between the problem text and each 
candidate text. The main components are document storage and 
document retrieval. 

The function of the document storage component is to store 
the processed text data in the system background, and establish 
a transmission interface of the document retrieval component. 
According to the text characteristics of FCOM files, this paper 
selects FAISSDocumentStore as the document storage tool. 
FAISSDocumentStore is often used for large-scale document 
storage. It uses SQL format to store the original document text, 
and can generate language vectors for the text and store them in 
the FAISS index. Therefore, it can support embedding-based 
intensive retrieval. 

For document retrieval components, the widely used 
retrieval components are mainly divided into sparse retriever and 
dense retriever. The sparse retriever mainly uses the bm25 model 
to complete the document retrieval function, while the dense 
retriever uses the DPR model. 

BM25 is a statistics-based retrieval model. Developed from 
the tf-idf algorithm, the algorithm needs to segment the query 
question, and calculate the similarity score of each word in the 
question with each piece of text stored. The final similarity 
between the question and a certain text is the sum of the 
similarity scores of each word. Assuming that the word 
segmentation result of the question is Q = (q1, q2, …, qn), and a 
certain text is Di, the BM25 calculation formula of Q and Di is 
as equation (1): 

S𝐵𝐵𝐵𝐵25(Q,  D𝑖𝑖) =  � idf𝑞𝑞𝑘𝑘 ×  RD(q𝑘𝑘 ,  D𝑖𝑖) ×  RQ(q𝑘𝑘 , Q)
𝑛𝑛

𝑘𝑘=1
(1) 

 
Among them, idfqk is the inverse word frequency, and its 

calculation formula is as equation (2): 

idf𝑞𝑞𝑘𝑘 = 𝑙𝑙𝑙𝑙𝑙𝑙
𝑁𝑁 − 𝑑𝑑𝑑𝑑𝑘𝑘 + 0.5
𝑑𝑑𝑑𝑑𝑘𝑘 + 0.5  (2) 

 
N is the total number of texts in the index. dfk is the number 

of texts containing the word qk. RD and RQ in Equation (1) 
represent the correlation between word qk and text Di and 
question Q, respectively. They both have a positive correlation 
with the word frequency of qk in the text or question. 

The DPR model is raised to solve the problem that words 
with the same semantics cannot be recognized in the BM25 
algorithm. It passes a dual-encoder learned from Q&A pairs 
based on the training set to create embeddings for text and query 
questions. The model uses an encoder EP to map all stored texts 
to a D-dimensional real-valued vector, and index all M vectors 
used for retrieval. Similarly, during the query process, the DPR 
model uses another encoder EQ to map the queried question text 
to a D-dimensional real-valued vector, and uses the vector dot 
product form of Equation (3) to define the semantic similarity 
between the question q and the text p. 

𝑠𝑠𝑠𝑠𝑠𝑠(𝑞𝑞, 𝑝𝑝) = 𝐸𝐸𝐸𝐸(𝑞𝑞)𝑇𝑇𝐸𝐸𝐸𝐸(𝑝𝑝) (3) 
 

The encoder model used by the DPR model is an improved 
BERT model, which will be described in detail in Section 3.3. 
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The training process for the encoder is essentially a metric 
learning process targeting higher similarity. That is, by learning 
a better embedding function and creating a vector space, related 
Q&A pairs have smaller distances than unrelated Q&A pairs. Let 
𝐷𝐷 =  {𝑞𝑞𝑖𝑖 , 𝑝𝑝𝑖𝑖+, 𝑝𝑝𝑖𝑖,1− , … ,  𝑝𝑝𝑖𝑖 ,𝑛𝑛−  }𝑖𝑖=1𝑚𝑚   be the training data consisting of 
m instances, where each instance contains a question qi and a 
related paragraph  𝑝𝑝𝑖𝑖+ and n unrelated paragraphs 𝑝𝑝𝑖𝑖 ,𝑗𝑗− . Then the 
loss function is optimized to the negative log-likelihood of the 
positive channel shown in Equation (4). 
𝐿𝐿�𝑞𝑞𝑖𝑖 ,𝑝𝑝𝑖𝑖+,𝑝𝑝𝑖𝑖,1− , … ,  𝑝𝑝𝑖𝑖,𝑛𝑛− � = −𝑙𝑙𝑙𝑙𝑙𝑙

exp�𝑠𝑠𝑠𝑠𝑠𝑠(𝑞𝑞𝑖𝑖 ,𝑝𝑝𝑖𝑖+)�

exp�𝑠𝑠𝑠𝑠𝑠𝑠(𝑞𝑞𝑖𝑖 ,𝑝𝑝𝑖𝑖+)�+∑ exp �𝑠𝑠𝑠𝑠𝑠𝑠�𝑞𝑞𝑖𝑖 ,𝑝𝑝𝑖𝑖,𝑗𝑗− ��𝑛𝑛
𝑗𝑗=1

 (4) 

 
For the use of the DPR model, it should be noted that the 

model will perform a process of creating embedding vectors for 
all stored texts every time the QA system starts and a query is 
entered. 

 
3.3 Reader 

Reader is a pre-trained deep learning model. Its main 
function is to further retrieve the text segment with the highest 
correlation with the queried question text in a small amount of 
text output by the retriever, and output this segment of text as the 
answer. At present, most of the reader models are fine-tuned 
models based on BERT developed by Google. 

The BERT model is a pretrained language representation 
model. The original BERT model has been pre-trained with a 
large amount of text. For a closed-domain QA system or a 
specific text format, it only needs to add an additional output 
layer for fine-tune to be applied. In the cloed-domain QA system, 
no task-specific structural modification of BERT is required in 
the process. Common BERT fine-tuning models for the 
SQUAD1.1 dataset mainly include bert-large-uncased-whole-
word-masking-finetuned-squad and RoBERTa-base-squad2 
models. The reader model also supports pre-training on custom 
QA datasets. Figure 7 is a schematic diagram of the retrieval 
process of the BERT model based on aviation standard files 
established in this paper. After the model separates the input 
question and reference text into separate tokens, the final 
embedding is obtained after processing by different two-
direction transformer layers. The functions implemented by the 
transformer layer mainly include the two-direction language 
representation of the generated text and the language 
representation at the sentence level, etc... Then the above final 
embedding is used as the input of the start/end marker classifier. 
The classifier contains the weight vector about the start/end 
words. After taking the dot product of the embedding and the 
weight vector, the probability distribution of all tokens can be 
obtained. The one with the highest probability is chosen as the 
start/end word. The text between the start and end words is the 
corresponding text span.  

 
FIGURE 7: SCHEMATIC DIAGRAM OF THE PRINCIPLE OF 

THE BERT MODEL 
 

4. EXPERIMENT  
An experiment is to be performed to verify the feasibility 

of the QA system framework proposed in Section 3 for practical 
QA scenarios, and compare the performance of the QA system 
combined with different reader and retriever models. The 
performance test of the QA system is conducted by using the 
relevant flight crew operating manual of the ARJ21 aircraft. The 
data processing, Q&A pair generation, QA system construction, 
and performance evaluation of each model combination are 
completed, which will introduced in detail in the following.  

 
4.1 Data source and preprocessing 

The Airplane Flight Crew Operations Manual Volume 1 for 
ARJ21 is used as the text source. The full text of the document 
is in pdf format, with a total of 1164 pages. The relevant text 
features in the documents are utilized to implement rule 
matching-based text extraction and structuring and relevant text 
denoising using the pdfminer tool. Taking paragraphs as the 
separation standard, a total of 1007 paragraphs of text are 
obtained, with an average number of 202 words, and a JSON file 
in the corresponding square format is created. 

According to the analysis of aviation industry forum 
websites and flight crew assessment questions, the flight crew 
manual is found to be basically a human-machine interaction 
manual. Therefore, there are fewer problems related to 
personnel, and more problems related to operation and 
principles. Also, the number of problems involved in the hatch, 
emergency and fuel is relatively large. Based on the above 
features, the Q&A pairs generated by the questgen tool described 
in Section 3.1 are manually corrected and supplemented. A total 
of 223 Q&A pairs are finally created. These Q&A pairs are 
randomly divided into 5 copies. One copy is used as the test set 
for evaluating the performance of the QA system, while the rest 
as the training set for the reader model. 

 
4.2 QA system construction 

In order to test the performance of the QA system under 
different combinations of reader and retriever models, the open-
source tool haystack is chosen as the platform for building the 
retriever-reader framework. Haystack is a modular QA system 
framework developed by the deepset team capable of building 
pipelines for different search use cases. The function of building 
a QA system with different combinations of reader and retriever 
models can be achieved by modifying and combining 
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components in different modules. This paper formulates the 
model combination scheme shown in Table 1. 

TABLE 1: COMBINATION SCHEME OF READER AND 
RETRIEVER MODEL 

No. Reader Retriever 
1 BERT BM25 
2 BERT  DPR 
3 BERT+ Q&A 

pairs pretraining 
BM25 

4 BERT+ Q&A 
pairs pretraining 

DPR 

 
At the same time, this paper uses the tkinter tool in python 

to create the front-end interface of the QA system as shown in 
Figure 8. 

 

 
FIGURE 8: FRONT-END INTERFACE OF THE QA SYSTEM 

 
4.3 Performance Evaluation and Analysis of QA 
System 

To comprehensively compare the performance of the QA 
system under the combination of different reader and retriever 
models, EM, F1, SAS and average response time are chosen as 
the performance evaluation criteria of the QA system. The 
relevant indicators are explained as follows: 
 Exact Match (EM): This metric represents the probability 

that the correct answer and the predicted answer exactly 
coincide. If the predicted answer exactly matches the 
correct answer, then EM = 1, otherwise EM = 0. 

 F1 Score: It takes into account the precision and recall rate 
of the classification model at the same time, so it is widely 
used in the field of general NLP question answering, which 
mainly characterizes the word overlap ratio between the 
correct answer and the predicted answer. 

 Semantic Answer Similarity (SAS): SAS uses a 
transformer-based cross-encoder architecture to evaluate 
the semantic similarity of two answers, rather than their 
lexical overlap. SAS is more helpful in finding answers that 
have no lexical overlap but are still semantically similar [32]. 

 Average Response Time (ART): It refers to the time it 
takes the QA system to respond to a question on average. It 
is mainly used to evaluate the efficiency of the QA system's 
implementation to answer the queried question. 

The QA system performance test is also performed in the 
haystack framework, and get the results shown in the Table 2. 

TABLE 2: QA SYSTEM PERFORMANCE TEST RESULTS 
No. EM F1 SAS ART 
1 
 

top 1: 0.510 
top 5: 0.612 

top 1: 0.773 
top 5: 0.894 

top 1: 0.850 
top 5: 0.943 

12.2s 

2 top 1: 0.520 
top 5: 0.602 

top 1: 0.792 
top 5: 0.888 

top 1: 0.864 
top 5: 0.939 

11.9s 

3 top 1: 0.444 
top 5: 0.566 

top 1: 0.681 
top 5: 0.845 

top 1: 0.782 
top 5: 0.911 

5.31s 

4 top 1: 0.476 
top 5: 0.578 

top 1: 0.727 
top 5: 0.859 

top 1: 0.817 
top 5: 0.921 

5.23s 

 
It can be seen that the data of the QA system after training 

is weaker than before training, which may be due to the larger 
amount of data in the default reader model of the system. 
Response time of the QA system after training is significantly 
faster than before training. There is no significant difference in 
performance between BM25 and DPR models. Combining 
various data, the BERT model pre-trained by Q&A pairs and 
DPR retriever model are the best performing reader and retriever 
model combination. 

After further analysis, there are two possible reasons for the 
insignificant difference in performance between BM25 and DPR 
models. Firstly, both the closed-domain and the SQuAD data 
format have the characteristics that questions and answers have 
more text overlapping, so the performance of the BM25 
algorithm based on word frequency is not much different from 
the DPR algorithm based on semantic recognition. Secondly, the 
SQuAD dataset is not enough to support the neural network 
training of DPR in terms of data volume, so it is difficult to take 
advantage of this algorithm. 

 
5. Conclusion 

This paper firstly proposes the framework of the intelligent 
QA system for FCOM files. In the data preparation process, 
based on the text features and document structure of FCOM files, 
the SQuAD format data set of the relevant flight crew operation 
manuals is established, and the automatic generation and manual 
annotation are used to form the QA dataset. In the document 
retrieval process, the "Reader-Retriever" framework is 
established, which is widely used in the QA system. The modular 
open-source tool haystack is used to build different readers and 
retrievers for the platform. The QA system under the model 
combination is evaluated from the aspects of answer accuracy, 
semantic similarity and average response time. In the end, the 
best combination is the BERT model pre-trained by Q&A pairs 
and DPR retriever model, and its top 5 F1 score is 84.5%. 

In the future, several obvious improvements will be 
considered: the first one is to consider building a dual-channel 
weighted retriever model. It uses the BM25 and DPR models for 
document retrieval at the same time, and takes the weighted 
average of the dual-channel processing results as the final 
similarity score. In this way, the advantages of the above two 
retrieval models can be adopted at the same time. The second 
one is to improve the processing of tables and pictures in FCOM 
files. The tables and pictures in related FCOM files contain 
plenty of information. It is important to find a way to show the 
relationship between the context in tables and to develop the 
picture display function in the answer presentation module. 
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