
 1

42nd Computers and Information in Engineering Conference

IDETC/CIE 2022
 August 14 – 17, 2022, St. Louis, Missouri, USA

IDETC/CIE 2022-90768

DESIGN AND RESEARCH OF INTELLIGENT QA SYSTEM FOR FLIGHT CREW OPERATING MANUAL

XIN TAN1, JINGSHU ZHONG1, YU JIN2, YAN LIANG3, YU ZHENG1, YING LIU4

1Shanghai Jiaotong University, Shanghai, China
2 Shanghai Aviation Industry(group) Co., Ltd, Shanghai, China

3Expert IT Services, Hong Kong SAR, China
4School of Engineering in Cardiff University, Cardiff, UK

ABSTRACT

Aviation flight crews rely on a large number of complex
standard documents and operation manuals when performing
flight tasks. In order to relieve the pressure of manual retrieval
of documents, intelligent question-answering technology based
on reading comprehension is gradually applied. In this paper, the
flight crew operation manual SQuAD dataset is studied and
built, based on which the reader-retriever framework of text
content-based reading question answering system (TCQA) is
analyzed and established. Experiments are conducted to
compare the relevant indexes of the QA system with different
combinations of reader and retriever models under the open-
source tool haystack. Based on the comparison of response speed
and retrieval capability, the best model combination is obtained
for the flight crew operation manual dataset, and suggestions are
made for the model-related performance improvement.

Keywords: NLP, TCQA, SQuAD, reader-retriever
framework

1. INTRODUCTION

The aerospace industry relies on a large number of
normative standard documents in practice. Take the flight crew
operating manual (FCOM) file as an example, this file contains
the operating and safety instructions for a specific type of aircraft
in various scenarios. The relevant FCOM files for each aircraft
are usually thousands of pages, and most of them are in paper or
electronic pdf format. Manually retrieving specific information
from such massive documents takes a lot of time and effort.
While in actual flight scenarios, the time is usually limited,
which makes it difficult for the flight crew to find the required
information within the specified time [1]. Therefore, it has
gradually become a necessary trend to explore intelligent
technologies for retrieving FCOM files to facilitate the use of
relevant documents by enterprise personnel.

Intelligent question-answering technology combining
natural language understanding and interactive document

retrieval can be a measure to address the above needs. After the
relevant files are converted into the corresponding format and
imported into the background of the system, users can interact
with the question answering system (QA system) by inputting
questions organized in natural language. The system will process
the questions and retrieve the background text. The intelligent
QA system can effectively alleviate the need for users to
understand the FCOM document structure and query syntax and
significantly improves the users’ retrieval speed, ensuring their
work efficiency. Therefore, the related FCOM documents is
planned to be processed, and an intelligent QA system for FCOM
files is researched and designed. Its related performance is also
be evaluated.

The rest of the paper is organized as follows. In section 2,
the classification, development and composition of the
intelligent QA system are introduced. In section 3, the intelligent
QA system framework of FCOM files is established and the
functions of the core components and various models are
introduced in detail. Section 4 discusses experiments and the
evaluation results of the QA system. Section 5 presents a
summary of the main findings and future prospects.

2. BRIEF REVIEW OF LITERATURE

2.1 Classification of QA systems

Machine reading comprehension is an important task in QA
system, and understanding natural language and completing
basic reasoning are necessary in the task. The main purpose of
the task is to extract the answer or generate the answer according
to the given text and the question asked by the user. According
to the answer type, the QA system can be divided into two types:
extractive QA system and generative QA system [2].

In an extractive QA system, the machine is able to extract a
span of text from the corresponding context as the answer to the
question. In a few extractive QA systems, answers can also be
multimedia forms. With the application of deep learning methods

 2

and the emergence of datasets such as SQUAD [3], NewsQA [4],
and TriviaQA [5], the accuracy of extractive QA systems has also
been greatly improved, resulting in wider applications.

The generative QA system cannot directly extract the
answer from the text, but needs to reason based on multiple texts
and summarize the generated answer. The answer form of the
generative QA system is not limited, which is more suitable for
practical scenarios. Compared with the extractive QA system,
the answer form of the generative QA system is more diverse and
the answer is easier to understand. However, the method is more
difficult, and there is a lack of means for evaluation [6]. The
system meets the actual needs, which can track the relevant
documents according to the problems, and obtain the original
document information.

QA systems can also be divided into open domain QA
systems and closed domain QA systems. Open-domain QA
systems can answer almost all questions, and their texts come
from websites such as Wikipedia. Closed-domain QA systems
are able to answer domain-specific questions, and can be trained
to build domain-specific QA systems to solve specific problems
[7]. Therefore, this paper will introduce a closed-domain
extractive QA system constructed using text and training datasets
from the aerospace field to solve the application problem of
documents.

2.2 Development of QA system framework

The QA system can be regarded as an extension of the
search engine. Compared with the search engine, the answer
provided by the QA system is more accurate, rather than simply
returning the results based on the keyword search. The
development of the QA system originated in 1961. Green et al.
proposed the BASEBALL system to transmit the information of
the American baseball league. The answers of the system are
mainly in the form of date and location [8]. In 1973, Woods et al.
proposed the Lunar system, which provided relevant information
about soil samples [9]. Although these early systems had
relatively good performances, the lack of information in the
repositories limited the application of these early systems [10].

With the continuous development of research, open-domain
QA systems such as IBM Watson [11] are also emerging, and these
systems are no longer limited to QA in a single domain. At the
same time, the application range of QA system is also wider, and
it can play a very important role in medical [12], agriculture [13],
tourism [14] and other fields. There are also QA systems in the
aviation field. Alexandre [15] et al. introduced a QA system that
helps aircraft pilots obtain document information. Pilots can ask
questions to the system in natural language and interact with the
system to obtain answers, which effectively improves the
application efficiency of aviation documents.

Early search engines were mainly based on information
retrieval, but it was difficult for information retrieval to
accurately locate the answer. Therefore, the improved QA
systems use traditional information retrieval techniques
combined with machine reading comprehension (MC) methods
to complete paragraph retrieval and answer processing tasks
respectively[16]. After optimization, the QA system generally
adopts a pipeline structure, including three main modules:
Question Analysis, Passage Retrieval, and Answer Extraction [17-

19].
Chen [20] et al. continued to simplify the framework and

proposed the Retriever-Reader two-stage framework. The

framework is shown in Figure 1. Retriever is used to filter
paragraphs containing correct answers, while Reader is used to
extract correct answers in paragraphs. The two-stage framework
is also used in QA system frameworks such as DrQA[20].

FIGURE 1: FRAME DIAGRAM OF TWO-STAGE QA SYSTEM

[20]

2.3 Development of Retriever and Reader
Retriever in QA system often adopts traditional information

retrieval methods such as TF-IDF or BM25 [21]. These traditional
methods filter out candidate documents by matching keywords.
However, these traditional methods cannot be trained, so it is
difficult to perform complex retrieval tasks well. In recent years,
models such as Bert [22] overcome the limitation with self-
supervised learning. These models allow Retriever to be trained
using specific datasets.

Retriever models are usually constructed with dual
encoders, where one encoder is used to encode the question and
the other is used to encode the text [23]. Both supervised and
unsupervised learning methods can be used to train Retriever
models. Lee [24] et al. used the reverse cloze task to train
Retriever and evaluated it on open datasets, demonstrating the
effectiveness of the unsupervised learning method. Karpukhin et
al. [25] applied the supervised learning method of Dense Passage
Retriever and demonstrated that the performance is better than
traditional retrieval methods such as BM25. The improvement
and optimization of the existing Dense Passage Retriever
methods have also achieved good results [26-27].

The traditional Reader model uses pattern matching [28] or
machine learning methods to extract answers from texts. With
the emergence of large-scale training datasets deep learning
methods after 2015, the Reader model has also grown rapidly.
Both the ELMo model [29] and the Bert model [22] use pre-training
to improve the performance of the Reader model. The former is
an autoregressive model. The training direction of the model is
from left to right, but it cannot use context information at the
same time, and its ability to represent text is weak. The latter
belongs to the self-encoding language model, and the text
representation ability is greatly enhanced, and it can better
represent the effective information and context information of
the text.

As the Attention mechanism is widely used in the field of
natural language processing, many Reader models have also
added the Attention mechanism to optimize model
performance. The DrQA model [20] simply uses a bilinear term
to compute the attention weights, resulting in word-level
question-merged paragraph representations. The Match-LSTM
[30] model applies the LSTM model to extract features in the
text and applies the attention mechanism from two directions.
Wang [31] applied the self-attention mechanism to the reading
comprehension model and proposed the gated self-matching

 3

network R-Net. They utilize a gated attention-based recurrent
network to generate question-aware paragraph representations
capable of pinpointing important parts of text.

3. INTELLIGENT QA SYSTEM FRAMEWORK

Through the literature research in Section 2, it can be found
that currently applied QA systems are usually built in a pipeline
format, which mainly consists of different components. The
functions of components are question processing, document
retrieval, and answer processing, respectively. Based on the
uniqueness of industry proper nouns in FCOM files, the text
characteristics of some chapters with similar structure and the
relevant requirements of QA system, this paper establishes a
complete intelligent QA system framework for FCOM files
shown in Figure 2.

FIGURE 2: FRAMEWORK OF INTELLIGENT QA SYSTEM

FOR FCOM FILES

The framework is composed of three parts, the data
preparation part, the retriever part and the reader part. The data
processing part mainly processes the reference texts, prepares for
the initial offline process of the QA system, and supports staff to
update through the background. The retriever and the reader part
participate in the processing and interaction of the user's online
query. The relevant content will be described in detail below.

3.1 Data preparation

The function of the document reading component is to
extract valid text from the electronic document. After
investigating the existing text extraction tools and algorithms, it
is found that the PDFminer tool in python can extract text and
recognize noisy texts such as headers and footers, which is
consistent with the text structure of FCOM files and meets the
extraction requirements of this paper. Therefore, the PDFminer
is selected as the text extraction tool for FCOM files in pdf
format.

While doing the document reading work, it is noticed that
the FCOM file is a structured document. Its structure is usually
a multi-level heading structure. The above titles have obvious
difference in font and size, which can be recognized by
PDFminer. The structure and title information of the document
play an important role in understanding the content of the
document. Document data conventionally stored by strings
cannot reflect the structural characteristics of FCOM files.
Therefore, it is necessary to convert the read text content into a
specific data format. The data format not only needs to reflect
the document structure characteristics, but also needs to support
the storage of Q&A pairs corresponding to the text, so as to
facilitate the subsequent training of the reader component and
the performance evaluation of the QA system. Based on the
above requirements, this paper chooses SQuAD as the data
storage form of the QA system.

SQuAD is an open-domain reading comprehension dataset
launched by Stanford University in 2016 [3]. Its original data
includes 100,000 (question, original text, answer) triples, which
is currently the most widely used NLP QA dataset. Since the
SQuAD dataset is an extractive QA dataset, it is more in line with
the data characteristics of FCOM files and the relevant
assessment forms of flight crews.

Figure 3 shows the data structure of SQuAD. SQuAD
assigns a specific number (id) to each specific Q&A pair, and
stores the question text in the value of “question”, It also stores
the textual fragment of the answer in the “text” value, and marks
the position where the answer starts in the text as “answer_start”.
At the same time, the entire text is stored in the “context” value,
and the titles of all levels of this text is stored in the “title” value.
The document processing stage mainly completes the SQuAD
format conversion of text and title. Figure 4 is a schematic
diagram of the related text extraction and structuring.

FIGURE 3: SCHEMATIC DIAGRAM OF SQUAD DATA

STRUCTURE

FIGURE 4: SCHEMATIC DIAGRAM OF TEXT EXTRACTION

AND STRUCTURING

After completing the format conversion of the document, in
order to meet the data training needs in the reader components,
it is necessary to add Q&A pairs to the generated SQuAD format
dataset, which is called the data annotation process. The
traditional way to generate Q&A pairs in SQuAD is to hire
crowdsourcers to manually annotate the text. To save time and
reduce costs, questgen, an open-source NLP library for question
generation algorithms, is used for automatic generation of Q&A
pairs. Questgen mainly uses the T5 language model developed
by Google to complete the Q&A pair generation for specified
texts. The supported question generation features include
multiple choice, Boolean questions, general FAQs, and
paraphrase questions. The questgen online demo interface is
shown in Figure 5. In order to ensure the quality of the Q&A
pairs generated, questgen currently uses different T5 models for
different types of questions and answers.

 4

FIGURE 5: QUESTGEN ONLINE DEMO INTERFACE

After using the questgen to generate Q&A pairs, the current

Q&A pair data is found to have the following problems:
Simple questions: As shown in Figure 5, the number of

words in the answer is usually between 2-5 words, which can
easily lead to ambiguous meaning of the answer and unclear
directionality. It does not meet the requirements for accuracy in
FCOM document retrieval.

Repeated questions in similar paragraphs: FCOM files
generally have the characteristics of consistent chapter structure
and similar content. Questgen tends to generate the same Q&A
pairs in texts with similar content, which is not helpful for the
quality of QA datasets.

Difficult to generate Q&A pairs about tables: Aviation
standards documents often contain a large number of tables. The
text extracted from the tables lacks semantic connection, making
it difficult to generate Q&A pairs using questgen.

Therefore, the correct rate of Q&A pairs and the types of
questions still need to be improved through manual annotation.
In order to standardize the Q&A pair data format, cdQA-
annotator in the closed-domain QA system cdQA is chosen as the
manual annotation tool for the initial question of the text and the
addition in the later maintenance process. The interface of the
cdQA-annotator is shown in Figure 4. The supported input JSON
file format is SQuAD 1.1. After manually entering the question,
the staff can select the answer fragment in the original text to
generate a Q&A pair. At the same time, the annotation tool also
supports editing and deletion of existing Q&A pairs and deletion
of original text fragments.

FIGURE 4: THE INTERFACE OF THE CDQA-ANNOTATOR

3.2 Retriever

For the retrieval function in the online part, the Reader
component constructed by the latest transformer language
system is the main model for document analysis and retrieval.
However, this component has limited ability for responsiveness
and processing when faced with a large number of documents.
Therefore, a filter is needed to reduce the amount of text that the
Reader component needs to process. Based on this concept, the

Reader-Retriever framework of several QA systems such as
cdQA and haystack is chosen, which are used to realize the
functions of text retrieval and answer processing.

The function of the retriever component is to retrieve the
most relevant paragraphs of text from a large number of stored
texts and transmit them to the reader component according to the
processed problems. Its essence is to solve the problem of
semantic similarity ranking between the problem text and each
candidate text. The main components are document storage and
document retrieval.

The function of the document storage component is to store
the processed text data in the system background, and establish
a transmission interface of the document retrieval component.
According to the text characteristics of FCOM files, this paper
selects FAISSDocumentStore as the document storage tool.
FAISSDocumentStore is often used for large-scale document
storage. It uses SQL format to store the original document text,
and can generate language vectors for the text and store them in
the FAISS index. Therefore, it can support embedding-based
intensive retrieval.

For document retrieval components, the widely used
retrieval components are mainly divided into sparse retriever and
dense retriever. The sparse retriever mainly uses the bm25 model
to complete the document retrieval function, while the dense
retriever uses the DPR model.

BM25 is a statistics-based retrieval model. Developed from
the tf-idf algorithm, the algorithm needs to segment the query
question, and calculate the similarity score of each word in the
question with each piece of text stored. The final similarity
between the question and a certain text is the sum of the
similarity scores of each word. Assuming that the word
segmentation result of the question is Q = (q1, q2, …, qn), and a
certain text is Di, the BM25 calculation formula of Q and Di is
as equation (1):

S𝐵𝐵𝐵𝐵25(Q, D𝑖𝑖) = � idf𝑞𝑞𝑘𝑘 × RD(q𝑘𝑘 , D𝑖𝑖) × RQ(q𝑘𝑘 , Q)
𝑛𝑛

𝑘𝑘=1
(1)

Among them, idfqk is the inverse word frequency, and its

calculation formula is as equation (2):

idf𝑞𝑞𝑘𝑘 = 𝑙𝑙𝑙𝑙𝑙𝑙
𝑁𝑁 − 𝑑𝑑𝑑𝑑𝑘𝑘 + 0.5
𝑑𝑑𝑑𝑑𝑘𝑘 + 0.5 (2)

N is the total number of texts in the index. dfk is the number

of texts containing the word qk. RD and RQ in Equation (1)
represent the correlation between word qk and text Di and
question Q, respectively. They both have a positive correlation
with the word frequency of qk in the text or question.

The DPR model is raised to solve the problem that words
with the same semantics cannot be recognized in the BM25
algorithm. It passes a dual-encoder learned from Q&A pairs
based on the training set to create embeddings for text and query
questions. The model uses an encoder EP to map all stored texts
to a D-dimensional real-valued vector, and index all M vectors
used for retrieval. Similarly, during the query process, the DPR
model uses another encoder EQ to map the queried question text
to a D-dimensional real-valued vector, and uses the vector dot
product form of Equation (3) to define the semantic similarity
between the question q and the text p.

𝑠𝑠𝑠𝑠𝑠𝑠(𝑞𝑞, 𝑝𝑝) = 𝐸𝐸𝐸𝐸(𝑞𝑞)𝑇𝑇𝐸𝐸𝐸𝐸(𝑝𝑝) (3)

The encoder model used by the DPR model is an improved
BERT model, which will be described in detail in Section 3.3.

 5

The training process for the encoder is essentially a metric
learning process targeting higher similarity. That is, by learning
a better embedding function and creating a vector space, related
Q&A pairs have smaller distances than unrelated Q&A pairs. Let
𝐷𝐷 = {𝑞𝑞𝑖𝑖 , 𝑝𝑝𝑖𝑖+, 𝑝𝑝𝑖𝑖,1− , … , 𝑝𝑝𝑖𝑖 ,𝑛𝑛− }𝑖𝑖=1𝑚𝑚 be the training data consisting of
m instances, where each instance contains a question qi and a
related paragraph 𝑝𝑝𝑖𝑖+ and n unrelated paragraphs 𝑝𝑝𝑖𝑖 ,𝑗𝑗− . Then the
loss function is optimized to the negative log-likelihood of the
positive channel shown in Equation (4).
𝐿𝐿�𝑞𝑞𝑖𝑖 ,𝑝𝑝𝑖𝑖+,𝑝𝑝𝑖𝑖,1− , … , 𝑝𝑝𝑖𝑖,𝑛𝑛− � = −𝑙𝑙𝑙𝑙𝑙𝑙

exp�𝑠𝑠𝑠𝑠𝑠𝑠(𝑞𝑞𝑖𝑖 ,𝑝𝑝𝑖𝑖+)�

exp�𝑠𝑠𝑠𝑠𝑠𝑠(𝑞𝑞𝑖𝑖 ,𝑝𝑝𝑖𝑖+)�+∑ exp �𝑠𝑠𝑠𝑠𝑠𝑠�𝑞𝑞𝑖𝑖 ,𝑝𝑝𝑖𝑖,𝑗𝑗− ��𝑛𝑛
𝑗𝑗=1

 (4)

For the use of the DPR model, it should be noted that the

model will perform a process of creating embedding vectors for
all stored texts every time the QA system starts and a query is
entered.

3.3 Reader

Reader is a pre-trained deep learning model. Its main
function is to further retrieve the text segment with the highest
correlation with the queried question text in a small amount of
text output by the retriever, and output this segment of text as the
answer. At present, most of the reader models are fine-tuned
models based on BERT developed by Google.

The BERT model is a pretrained language representation
model. The original BERT model has been pre-trained with a
large amount of text. For a closed-domain QA system or a
specific text format, it only needs to add an additional output
layer for fine-tune to be applied. In the cloed-domain QA system,
no task-specific structural modification of BERT is required in
the process. Common BERT fine-tuning models for the
SQUAD1.1 dataset mainly include bert-large-uncased-whole-
word-masking-finetuned-squad and RoBERTa-base-squad2
models. The reader model also supports pre-training on custom
QA datasets. Figure 7 is a schematic diagram of the retrieval
process of the BERT model based on aviation standard files
established in this paper. After the model separates the input
question and reference text into separate tokens, the final
embedding is obtained after processing by different two-
direction transformer layers. The functions implemented by the
transformer layer mainly include the two-direction language
representation of the generated text and the language
representation at the sentence level, etc... Then the above final
embedding is used as the input of the start/end marker classifier.
The classifier contains the weight vector about the start/end
words. After taking the dot product of the embedding and the
weight vector, the probability distribution of all tokens can be
obtained. The one with the highest probability is chosen as the
start/end word. The text between the start and end words is the
corresponding text span.

FIGURE 7: SCHEMATIC DIAGRAM OF THE PRINCIPLE OF

THE BERT MODEL

4. EXPERIMENT
An experiment is to be performed to verify the feasibility

of the QA system framework proposed in Section 3 for practical
QA scenarios, and compare the performance of the QA system
combined with different reader and retriever models. The
performance test of the QA system is conducted by using the
relevant flight crew operating manual of the ARJ21 aircraft. The
data processing, Q&A pair generation, QA system construction,
and performance evaluation of each model combination are
completed, which will introduced in detail in the following.

4.1 Data source and preprocessing

The Airplane Flight Crew Operations Manual Volume 1 for
ARJ21 is used as the text source. The full text of the document
is in pdf format, with a total of 1164 pages. The relevant text
features in the documents are utilized to implement rule
matching-based text extraction and structuring and relevant text
denoising using the pdfminer tool. Taking paragraphs as the
separation standard, a total of 1007 paragraphs of text are
obtained, with an average number of 202 words, and a JSON file
in the corresponding square format is created.

According to the analysis of aviation industry forum
websites and flight crew assessment questions, the flight crew
manual is found to be basically a human-machine interaction
manual. Therefore, there are fewer problems related to
personnel, and more problems related to operation and
principles. Also, the number of problems involved in the hatch,
emergency and fuel is relatively large. Based on the above
features, the Q&A pairs generated by the questgen tool described
in Section 3.1 are manually corrected and supplemented. A total
of 223 Q&A pairs are finally created. These Q&A pairs are
randomly divided into 5 copies. One copy is used as the test set
for evaluating the performance of the QA system, while the rest
as the training set for the reader model.

4.2 QA system construction

In order to test the performance of the QA system under
different combinations of reader and retriever models, the open-
source tool haystack is chosen as the platform for building the
retriever-reader framework. Haystack is a modular QA system
framework developed by the deepset team capable of building
pipelines for different search use cases. The function of building
a QA system with different combinations of reader and retriever
models can be achieved by modifying and combining

 6

components in different modules. This paper formulates the
model combination scheme shown in Table 1.

TABLE 1: COMBINATION SCHEME OF READER AND
RETRIEVER MODEL

No. Reader Retriever
1 BERT BM25
2 BERT DPR
3 BERT+ Q&A

pairs pretraining
BM25

4 BERT+ Q&A
pairs pretraining

DPR

At the same time, this paper uses the tkinter tool in python

to create the front-end interface of the QA system as shown in
Figure 8.

FIGURE 8: FRONT-END INTERFACE OF THE QA SYSTEM

4.3 Performance Evaluation and Analysis of QA
System

To comprehensively compare the performance of the QA
system under the combination of different reader and retriever
models, EM, F1, SAS and average response time are chosen as
the performance evaluation criteria of the QA system. The
relevant indicators are explained as follows:
 Exact Match (EM): This metric represents the probability

that the correct answer and the predicted answer exactly
coincide. If the predicted answer exactly matches the
correct answer, then EM = 1, otherwise EM = 0.

 F1 Score: It takes into account the precision and recall rate
of the classification model at the same time, so it is widely
used in the field of general NLP question answering, which
mainly characterizes the word overlap ratio between the
correct answer and the predicted answer.

 Semantic Answer Similarity (SAS): SAS uses a
transformer-based cross-encoder architecture to evaluate
the semantic similarity of two answers, rather than their
lexical overlap. SAS is more helpful in finding answers that
have no lexical overlap but are still semantically similar [32].

 Average Response Time (ART): It refers to the time it
takes the QA system to respond to a question on average. It
is mainly used to evaluate the efficiency of the QA system's
implementation to answer the queried question.

The QA system performance test is also performed in the
haystack framework, and get the results shown in the Table 2.

TABLE 2: QA SYSTEM PERFORMANCE TEST RESULTS
No. EM F1 SAS ART
1

top 1: 0.510
top 5: 0.612

top 1: 0.773
top 5: 0.894

top 1: 0.850
top 5: 0.943

12.2s

2 top 1: 0.520
top 5: 0.602

top 1: 0.792
top 5: 0.888

top 1: 0.864
top 5: 0.939

11.9s

3 top 1: 0.444
top 5: 0.566

top 1: 0.681
top 5: 0.845

top 1: 0.782
top 5: 0.911

5.31s

4 top 1: 0.476
top 5: 0.578

top 1: 0.727
top 5: 0.859

top 1: 0.817
top 5: 0.921

5.23s

It can be seen that the data of the QA system after training

is weaker than before training, which may be due to the larger
amount of data in the default reader model of the system.
Response time of the QA system after training is significantly
faster than before training. There is no significant difference in
performance between BM25 and DPR models. Combining
various data, the BERT model pre-trained by Q&A pairs and
DPR retriever model are the best performing reader and retriever
model combination.

After further analysis, there are two possible reasons for the
insignificant difference in performance between BM25 and DPR
models. Firstly, both the closed-domain and the SQuAD data
format have the characteristics that questions and answers have
more text overlapping, so the performance of the BM25
algorithm based on word frequency is not much different from
the DPR algorithm based on semantic recognition. Secondly, the
SQuAD dataset is not enough to support the neural network
training of DPR in terms of data volume, so it is difficult to take
advantage of this algorithm.

5. Conclusion

This paper firstly proposes the framework of the intelligent
QA system for FCOM files. In the data preparation process,
based on the text features and document structure of FCOM files,
the SQuAD format data set of the relevant flight crew operation
manuals is established, and the automatic generation and manual
annotation are used to form the QA dataset. In the document
retrieval process, the "Reader-Retriever" framework is
established, which is widely used in the QA system. The modular
open-source tool haystack is used to build different readers and
retrievers for the platform. The QA system under the model
combination is evaluated from the aspects of answer accuracy,
semantic similarity and average response time. In the end, the
best combination is the BERT model pre-trained by Q&A pairs
and DPR retriever model, and its top 5 F1 score is 84.5%.

In the future, several obvious improvements will be
considered: the first one is to consider building a dual-channel
weighted retriever model. It uses the BM25 and DPR models for
document retrieval at the same time, and takes the weighted
average of the dual-channel processing results as the final
similarity score. In this way, the advantages of the above two
retrieval models can be adopted at the same time. The second
one is to improve the processing of tables and pictures in FCOM
files. The tables and pictures in related FCOM files contain
plenty of information. It is important to find a way to show the
relationship between the context in tables and to develop the
picture display function in the answer presentation module.

 7

References
[1] Alexandre Arnold, Gerard Dupont, Catherine Kobus, and
Franc¸ois Lancelot. 2019. Conversational agent for ´aerospace
question answering: A position paper. Proceedings of the 1st
Workshop on Conversational Interaction Systems (WCIS at
SIGIR). Paris.
[2] Mishra A, Jain S K. A survey on question answering
systems with classification[J]. Journal of King Saud University-
Computer and Information Sciences, 2016, 28(3): 345-361.
[3] Rajpurkar P, Zhang J, Lopyrev K, et al. Squad: 100,000+
questions for machine comprehension of text[J]. arXiv preprint
arXiv:1606.05250, 2016.
[4] Trischler A, Wang T, Yuan X, et al. Newsqa: A machine
comprehension dataset[J]. arXiv preprint arXiv:1611.09830,
2016.
[5] Joshi M, Choi E, Weld D S, et al. Triviaqa: A large scale
distantly supervised challenge dataset for reading
comprehension[J]. arXiv preprint arXiv:1705.03551, 2017.
[6] Liu S, Zhang X, Zhang S, et al. Neural machine reading
comprehension: Methods and trends[J]. Applied Sciences,
2019, 9(18): 3698.
[7] Ramprasath M, Hariharan S. A survey on question
answering system[J]. International Journal of Research and
Reviews in Information Sciences, 2012, 2(1).
[8] Green Jr B F, Wolf A K, Chomsky C, et al. Baseball: an
automatic question-answerer[C]//Papers presented at the May
9-11, 1961, western joint IRE-AIEE-ACM computer
conference. 1961: 219-224.
[9] Woods W A. Progress in natural language understanding: an
application to lunar geology[C]//Proceedings of the June 4-8,
1973, national computer conference and exposition. 1973: 441-
450.
[10] Ojokoh B, Adebisi E. A review of question answering
systems[J]. Journal of Web Engineering, 2018, 17(8): 717-758.
[11] Ferrucci D, Brown E, Chu-Carroll J, et al. Building
Watson: An overview of the DeepQA project[J]. AI magazine,
2010, 31(3): 59-79.
[12] Mutabazi E, Ni J, Tang G, et al. A review on medical
textual question answering systems based on deep learning
approaches[J]. Applied Sciences, 2021, 11(12): 5456.
[13] Devi M, Dua M. ADANS: An agriculture domain question
answering system using ontologies[C]//2017 International
Conference on Computing, Communication and Automation
(ICCCA). IEEE, 2017: 122-127.
[14] Pathak S, Mishra N. Context aware restricted tourism
domain question answering system[C]//2016 2nd International
Conference on Next Generation Computing Technologies
(NGCT). IEEE, 2016: 534-539.
[15] Arnold A, Dupont G, Furger F, et al. A question-answering
system for aircraft pilots' documentation[J]. arXiv preprint
arXiv:2011.13284, 2020.
[16] Dimitrakis E, Sgontzos K, Tzitzikas Y. A survey on
question answering systems over linked data and documents[J].
Journal of intelligent information systems, 2020, 55(2): 233-
259.
[17] Voorhees E M. The trec-8 question answering track
report[C]//Trec. 1999, 99: 77-82.
[18] Lopez V, Uren V, Sabou M, et al. Is question answering fit
for the semantic web: a survey[J]. Semantic web, 2011, 2(2):
125-155.

[19] Bouziane A, Bouchiha D, Doumi N, et al. Question
answering systems: survey and trends[J]. Procedia Computer
Science, 2015, 73: 366-375.
[20] Chen D, Fisch A, Weston J, et al. Reading wikipedia to
answer open-domain questions[J]. arXiv preprint
arXiv:1704.00051, 2017.
[21] Robertson S, Zaragoza H. The probabilistic relevance
framework: BM25 and beyond[M]. Now Publishers Inc, 2009.
[22] Devlin J, Chang M W, Lee K, et al. Bert: Pre-training of
deep bidirectional transformers for language understanding[J].
arXiv preprint arXiv:1810.04805, 2018.
[23] Bromley J, Guyon I, LeCun Y, et al. Signature verification
using a" siamese" time delay neural network[J]. Advances in
neural information processing systems, 1993, 6.
[24] Lee K, Chang M W, Toutanova K. Latent retrieval for
weakly supervised open domain question answering[J]. arXiv
preprint arXiv:1906.00300, 2019.
[25] Karpukhin V, Oğuz B, Min S, et al. Dense passage
retrieval for open-domain question answering[J]. arXiv preprint
arXiv:2004.04906, 2020.
[26] Qu Y, Ding Y, Liu J, et al. RocketQA: An optimized
training approach to dense passage retrieval for open-domain
question answering[J]. arXiv preprint arXiv:2010.08191, 2020.
[27] Ren R, Lv S, Qu Y, et al. PAIR: Leveraging passage-
centric similarity relation for improving dense passage
retrieval[J]. arXiv preprint arXiv:2108.06027, 2021.
[28] Riloff E, Thelen M. A rule-based question answering
system for reading comprehension tests[C]//ANLP-NAACL
2000 Workshop: Reading Comprehension Tests as Evaluation
for Computer-Based Language Understanding Systems. 2000.
[29] Peters M , Neumann M , Iyyer M , et al. Deep
Contextualized Word Representations[J]. Proceedings of the
2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), 2018.
[30] Wang S, Jiang J. Machine comprehension using match-
lstm and answer pointer[J]. arXiv preprint arXiv:1608.07905,
2016.
[31] Wang W, Yang N, Wei F, et al. Gated self-matching
networks for reading comprehension and question
answering[C]//Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long
Papers). 2017: 189-198.
[32] Risch, Julian, et al. Semantic Answer Similarity for
Evaluating Question Answering Models[J]. arXiv preprint
arXiv:2108.06130, 2021.

	1. INTRODUCTION
	2. BRIEF REVIEW OF LITERATURE
	2.1 Classification of QA systems
	2.2 Development of QA system framework
	2.3 Development of Retriever and Reader

	3. INTELLIGENT QA SYSTEM FRAMEWORK
	3.1 Data preparation
	3.2 Retriever
	3.3 Reader

	4. EXPERIMENT
	4.1 Data source and preprocessing
	4.2 QA system construction
	4.3 Performance Evaluation and Analysis of QA System

	5. Conclusion
	References

