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A B S T R A C T   

Gasification technologies have been extensively studied for their potential to convert biomass feedstocks into 
syngas (a mixture of CH4, H2, and CO mainly) that can be further turned into heat or electricity upon combustion. 
It is crucial to understand optimal gasification process parameters for practical design and operation for maxi
mizing the potential. This study combined the Monte Carlo simulation approach, gasification kinetic modeling, 
and the random forest algorithm to predict the optimal gasification process parameters (i.e. water content, 
particle size, porosity, thermal conductivity, emissivity, shape, and reaction temperature) towards a maximum 
syngas yield. The Monte Carlo approach randomly generated a data pool of the process parameters following 
either a normal or uniform distribution, which was then fed into a validated kinetic model to create 2,000 
datasets (process parameters and syngas yields). For the random forest model, the mean decrease accuracy and 
mean decrease Gini were used to assess the importance of the process parameters on syngas yields. The accuracy 
of the optimization method was evaluated using the coefficient of determination (R2), the root means square 
error (RMSE), and the mean absolute error (MAE). Generally, the predictions for the normal distribution case 
were closer to the experimental data obtained from existing literature than that for the uniform distribution case. 
The model was used to predict the optimal syngas yield and process parameters of wood gasification and it was 
shown that the predictions were generally in good agreement (<12% difference for the case of normal distri
bution) with existing experimental results. The method serves as a useful tool for determining optimal gasifi
cation process parameters for process and operation design.   

1. Introduction 

The depletion of fossil fuels and greenhouse gas (GHG) emissions are 
two major issues that have promoted the search for renewable fuels and 
energy products. Biomass resources are one of the promising sources of 
renewable energy [1]. It can be converted into electricity, heat, fuels, 
and chemicals through thermochemical (e.g., gasification and pyrolysis) 
or biochemical (e.g., anaerobic digestion and fermentation) pathways to 
relieve the energy and environmental pressures. Among the technolo
gies, gasification has been extensively studied for its potential to recover 
energy or value-added chemicals from biomass. Specifically, gasification 
can convert biomass materials into synthesis gas (or syngas) rich in 
carbon monoxide and hydrogen under an oxygen-deficient condition. 
Syngas can be further utilized for electricity and/or heat generation or 

upgraded to produce multifunctional products (e.g., biohydrogen via 
water–gas shift reactions). 

The gasification process involves complex thermochemical reactions 
which are affected by a variety of process parameters and factors such as 
biomass types, gasifying agent, particle size, equivalent ratio, reaction 
temperature, use of catalysts, etc. [2], For example, reducing particle 
sizes leads to a higher specific surface area, promoting heating and 
gasification rates and thus H2 yields and carbon conversion efficiencies 
[3,4]. It was shown that increasing gasification temperature improves 
the efficiency of the gasification reaction, reducing tar production and 
effectively contributing to high syngas yield [5,6]. The gasifying agent 
(i.e. air, steam, oxygen) has been extensively researched and demon
strated that it promotes the decomposition of solid hydrocarbon into 
lower molecular weight gases (i.e. CH4, H2, and CO) [7]. Use steam as 
gasification agent significantly promotes the water–gas shift reaction 
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move forward to produce more H2 [8,9]. In contrast, using air as agent 
produces a higher CO content under the same operation conditions [7]. 
The effect of catalysts on gasification reaction has been extensively 
studies, typical catalysts include dolomite catalysts, alkali metal cata
lysts, and noble metal catalysts. [10]. Fang et al. presented that the 
noble metal catalysts had excellent properties for biomass gasification in 
the range of 800–920 K, and it about 98–99% of the carbon in biomass 
feedstock was converted to syngas [2]. For the gasifier design and pro
cess improvement purposes, accurate modelling of biomass conversion 
during the gasification process is required. Syngas yields are influenced 
by a number of process parameters (e.g., water content of feedstock, 
particle porosity, particle shape, and thermal conductivity), which needs 
to be considered in the modelling analysis. 

The composition or type of feedstocks (i.e. wood, crop residues, 
municipal solid waste (MSW), algae, sludge, etc.) is an important factor 
affecting biomass gasification. For example, MSW is often a mixture of 
different waste biomass whose compositions can vary widely across 
different cities even countries [11]. Meanwhile, wood or waste wood is 
of relatively consistent compositions and is well suitable for gasification 
to achieve high syngas yields with e.g., H2 contents of 30–54.5 mmol/ 
gwood and CO contents of 26.8–34.3 mmol/gwood [2]. Wood is also one 
type of primary biomass and accounts for 53–70 wt% of waste in 
countries like Egypt, China, Canada, Mexico, Philippines, Greece, and 
United Kingdom. Accordingly, it has been extensively researched in 
gasification studies with a pool of data for model validation. Hence, 
wood is focused by this work as the starting point. It is worth mentioning 
that the model can always be adapted to suit other types of biomass 
when relevant data is available for model validation. 

Theoretical biomass gasification modeling can be divided into ther
modynamic equilibrium and kinetic models. The thermodynamic equi
librium approach applied the method of Gibbs free energy minimization 
to reveal the thermodynamic boundaries under specific conditions 
[12–14]. The kinetic approach generally provides a more detailed and 
accurate description of the gasification process than the equilibrium 

model. It considers the kinetic information and thermodynamic prop
erties of gasification reactions [15,16]. 

Stochastic biomass gasification models have been proposed to ac
count for the effects of uncertainties on syngas composition predictions 
[17,18]. Mazaheri et al. described the gasification process using a sto
chastic kinetic model based on the Monte Carlo simulation approach. 
They applied the model to study the influences of process parameters on 
the efficiency of the conversion process [7]. However, Xing et al. argued 
that the Monte Carlo simulation-based kinetic models considered a 
limited number of process parameters and might not be sufficient to 
demonstrate the complex non-linear relationships in the kinetic pa
rameters (i.e. reaction temperature) and biomass properties (i.e. water 
content, porosity, density, etc.). They suggested that Machine Learning 
(ML) algorithms could be used to account for the non-linear relation
ships for improving the accuracy of gasification modeling. 

ML is an artificial intelligence (AI) method widely used in signal 
processing, function approximation, simulation, and pattern recognition 
[19]. ML can effectively predict system outputs by learning and mining 
system features using limited experimental data [20,21]. Among the 
various ML algorithms, artificial neural networks (ANN) and Random 
Forest (RF) algorithms are widely used in modeling and optimization. 
Shahbaz et al. used the ANN model to predict the syngas composition 
(the model results were in good agreement with experimental results). 
They found a maximum H2 yield of 79 vol% at 965 K and CH4 yield of 
14.93% at 923 K [22]. Xing et al. investigated the influences of gasifi
cation parameters (i.e. cellulose fraction, hemicellulose fraction, lignin 
fraction, and heating rate) on the H2 yield from a fixed bed gasifier using 
empirical correlations (EC), ANN, and RF algorithms. They compared 
model predictions with experimental data and found that the ANN and 
RF models presented high accurate predictions (determination co
efficients larger than 0.92), while the EC model showed large deviations 
in the predictions (determination coefficients<0.80). They suggested 
that the EC model could not characterize complex non-linear relation
ships accurately. Instead, the ANN and RF models were better suited to 

Nomenclature 

A Cross sectional area of the bed (m2) 
AV Specific surface area (m2) 
cp Specific heat capacity (J kg− 1 K− 1) 
D Diffusivity (m2s− 1) 
d Diameter (m) 
F Mass flow rate (kg s− 1) 
h Heat transfer coefficient (W m− 2 K− 1) 
k Mass transfer coefficient (m s− 1) 
M Molecular weight (kg mol− 1) 
m Mass (kg) 
Nu Nusselt number (-) 
q Heat flux (W m− 2) 
R Gas constant (8.314 J mol− 1 K− 1) 
Re Reynolds number (-) 
r Radius (m) 
Sc Schmidt number (-) 
Sh Sherwood number (-) 
T Temperature (K) 
t Time (s) 
u Velocity (m s− 1) 
Lbed Bed height (m) 
V Volume (m3) 
Vad Volume fraction of ash (m3) 
XB Dry-ash-free biomass conversion rate 
Y Mass fraction (-) 

Greek letters 
ε Porosity (-) 
ρ Density (kg m− 3) 
υ Stoichiometric number (-) 
μ Effective viscosity (kg m− 1 s− 1) 
η Dynamic viscosity (Pa s− 1) 
ε Particle emissivity (-) 
σ Stefan-Boltzmann constant (5.67× 10− 8 W m− 2K− 4)

κ Thermal conductivity (W m− 1 K− 1) 

Subscripts 
gs Heat/mass transfer in gas–solid phase 
g,p Gas phase in porous biomass particle 
s,p Solid phase in porous biomass particle 
i Species/component in gas phase with index i 
j Species/component in solid phase with index j 
k Reaction number with index k 
p Particle phase 
sat Saturation 
surf Surface 
t Transient variables 
vap Vaporization 
vol Volume 
w Water 
P Particle 
mfv Minimum fluidization velocity  
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represent these complex correlations, with the RF model having the 
highest accuracy [23]. Gopirajan et al. utilized an RF model to optimize 
the reaction parameters (i.e. biomass characteristics, temperature, 
pressure, steam/biomass ratio, and reaction time) to improve the energy 
efficiency, and product quality of gasification. The model achieved an 
accuracy of 94% and the RF model was more suitable for optimizing the 
gasification process (e.g., methanation, water gas shift, steam reforming, 
pyrolysis, and hydrolysis) driven with multiple parameters [21]. How
ever, there are still rare models that could be used to directly predict the 
optimal gasification process parameters towards maximum syngas 
yields, while this predicting capability is critical for practical gasifica
tion designing and planning. 

This study aims to fill the knowledge and capability gaps by devel
oping a stochastic biomass gasification model based on the combination 
of the MC simulation approach and an RF algorithm. The model is 
validated against existing experimental data and can predict the 
maximum syngas yield and associated process parameters (i.e. water 
content, temperature, particle diameter, porosity, thermal conductivity, 
emissivity, and particle shape). Additionally, the influences of process 
parameters towards gasification syngas production are explored based 
on the developed model. 

2. Methodology 

The research methodology adopted in this study is illustrated in 
Fig. 1, which consists of 4 stages:  

• The kinetic gasification model was developed and validated using 
experimental data.  

• The MC simulation approach (two cases corresponding to uniform 
and normal distributions, respectively) is combined with the kinetic 
model to create statistical datasets (process conditions and syngas 
yields) for RF modeling  

• The RF model was trained and tested using 2,000 process parameters 
and production datasets from uniform and normal distributions, 
respectively: (water content, particle size, particle porosity, particle 
shape, thermal conductivity, emissivity, and reaction temperature) 
and syngas (H2, CO, CO2, CH4, N2) yields.  

• Optimal process conditions are predicted and compared with 
experimental data from literature for model validation and the in
fluences of process parameters on maximum syngas yields are 
studied. 

Fig. 1. Overview of the methodology.  

Fig. 2. A schematic diagram of the kinetic model coupling the shrinkage core model and fixed bed gasification.  
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2.1. Kinetic model development 

2.1.1. Kinetic model description and assumption 
In this study, the kinetic model was coupled to a single particle 

shrinkage core model based on the one-dimensional fixed bed gasifica
tion with air being its gasifying agent schemes as shown in Fig. 2. All 
species are assumed well mixed and moved from top to bottom in the 
gasifier. The process parameters (i.e. ρg, p,0 = 1.19kg/m3, 
YO2 ,0 = 0.21,YN2 ,0 = 0.79, Tp,0 = 298 K, and r = r0) were used as the 
initial and boundary conditions. Biomass particles are porous media, 
and thus a shrinkage core model was used to achieve reasonable model 
accuracy. During the thermochemical reactions, the porosity inside a 
particle increases with time, leading to shrinkage until a certain critical 
value with the continuous release of syngas or impurities (i.e. particulate 
matter). It was also considered that homogeneous reactions (e.g., 
CO + H2O→CO2 + H2) occurred in the gas phase and heterogeneous 
reactions (e.g., C + H2O→CO + H2) occurred at the gas and solid phases. 
The single particle model accounting for biomass particle properties was 
discretized in the radial direction. 

Four solid or liquid species (water, volatiles, fixed carbon, and ash) 
and six gases (H2, CO, CO2, CH4, N2, and H2O) were considered using a 
finite volume method and governing equations (mass and energy bal
ance) were used to calculate the gas mixture composition (especially for 
the yields of H2, CO, and CH4). The following assumptions were estab
lished and have been commonly adopted in existing kinetic modeling of 
fixed bed gasification [24–29].  

• Biomass particle was represented in a one-dimensional time domain.  
• Solid and gas phases had the same temperature and temperature 

gradient, the density of the solid phase was the same.  
• Gaseous species were ideal gas.  
• Gravity was negligible.  
• The pressure at the surface of the particles was assumed to be the 

same as the inside of the reactor.  
• The thickness of the reactive zone was constant. 

2.1.2. Governing equation 
In the kinetic model, the shape and aspect ratio of the shrinking 

particle do not change, even though the particle size continuously de
creases. The considered species include biomass, char, liquid water, 
syngas, tar, water vapor, and inert gas. Biomass, char, and liquid water 
are considered by the equations of solid-phase species with their density 
being modeled, while syngas, tar, water vapor, and inert gas are 
considered by the equations of gas-phase species with their volume 
being quantified by the volume of the pores of the particle. In summary, 
the mass balance of a porous biomass particle is composed of instanta
neous particle mass and cumulative mass, and it can be mathematically 
expressed as [30]: 

mB0 + mMC =

∫ rp

rc

ρp
(
4πr2)dr + 4πr2

pεPu
∑

i
ρg.p (1) 

where mB0 is the initial mass of the unreacted particle, mMC is the 
moisture content of the biomass particle, ρP is the density of the biomass 
particle, rp is the initial radius of the biomass particle, rc is the radius of 
biomass particle upon the finish of the gasification process shown in 
Fig. 2, u is the velocity of biomass particle in the reactor, ρg.p is the 
density of gas phase species. 

The mass change of the biomass particle is equal to the cumulative 
mass of the gas released from the particle. The yield of gas species Yi,g,p is 
defined by [28]: 

Yi,g,p =

⎧
⎨

⎩

∫∞

0

⎡

⎣
∫rp

rc

ρg.p

(
4πr2)dr +

∫t

0

(
dmg.p

dt

)

dt

⎤

⎦⋅E(t)dt

⎫
⎬

⎭

/

(mB0 + mMC)

(2) 

where E(t) is defined as the distribution function of residence time 
for perfectly mixed gas phase species [31]: 

E(t) =
1
τs
• exp(

-t
τs
) (3) 

where the mean gas phase species residence time τs is obtained by 
dividing the particle mass with the mass flow rate of cumulative mass. 

The instantaneous equilibrium equation of continuity (containing 
mass and energy) is solved by the finite control volume method. The 
continuity equation in the gas phase accounts for the convective mass 
transfer and the species produced in the heterogeneous reactions be
tween the solid and gas phases. The mass balance of the overall gas 
species is expressed as [28]: 

d(εpρg,p)

dt
= -

1
r2

d
dr
(r2ug,pεpρg,p)

+
1
r2

d
dr

[

r2εpDi
d(ρg,pYi,g,p)

dr

]

+
∑

k
εp ṙvol,kυk,iMi

+
∑

k

(
1-εp

)
ṙsuf,kυk,iMiAv (4) 

where εp is porosity of the particle, ρg,p is density of gas species that 
can be calculated from the ideal gas law ρg,p = pM

RTg
, Di is the diffusivity of 

gas species, ṙvol,k is the volume reaction rate of the reaction numbered 
with k, ṙsuf,k is the surface reaction rate, υk,i is the stoichiometric number 
of gas species of the reaction numbered with k, and Mi is the molecular 
weight of gas species, Av is the specific surface area, ug,p is the velocity of 
gas species, as given by: 

ug,p =
1

4εpπr2

∫ rp

r0

[
∑

iεp ṙvol,kυk,iMi +
∑

i

(
1-εp

)
ṙsuf,kυk,iMiAv

]

dV

ρg,p
dr (5) 

The composition and yields of the syngas are determined using the 
source terms of convective mass transfer, diffusive mass transfer, and the 
species produced in homogeneous and heterogeneous reactions. Each 
species is assumed to be made of carbon, hydrogen, and oxygen. The 
mass balance of gas species is expressed as [28]: 

d(εpρg,pYi,g,p

)

dt
= -

1
r2

d
dr
(r2ug,pεpρg,pYi,g,p) +

1
r2

d
dr

[

r2εpDi
d(ρg,pYi,g,p)

dr

]

+
∑

k
εp ṙvol,kυk,iMi +

∑

k

(
1-εp

)
ṙsuf,kυk,iMiAv (6) 

The mass balance of the solid phase is expressed as [28]: 

d
dt
[
1
3

ρs,p(rp)
3
] =

∑

j
ṙsuf,kυk,jMj(rp)

2 (7) 

Assuming the gas, liquid, and solid phases of the particle are at the 
same local temperature, the energy equation is expressed as [28]: 

dTs

dt
= -

1
ρs,pcps,p

dqs,s

dz
+Av

qg,s

ρs,pcps,p
+

∑
kεp ṙvol,kΔHk +

∑
k(1-εp)Av ṙsuf,kΔHk

εpρg,pcpg,p + (1-εp)ρs,pcps,p

(8) 

where qs,s = -̂Iºp
dTs
dz is the conductive heat transfer in the solid 

phase.qg,s is calculated from the temperature difference (convective and 
radiative heat transfer) between the solid and gas phases [28]: 
qg,s = hg,s

(
Tg-Ts

)
+ σε(Tg

4-Ts
4). 

The total energy balance conservation equation about the tempera
ture of the particle combines the gas phase and solid phase, and it is 
expressed as [28]: 
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d(εpρpcppTp)

dt
= -

1
r2

d
dr
(r2εpρg,pcpg,pug,pTp) +

1
r2

d
dr

[r2( 1-εp
)
Îºp

dTp

dr
]

+
∑

i

1
r2

d
dr

[r2εpcpg,pDiTp
d(ρg,pYi,g,p)

dr
] +

∑

k
εp ṙvol,kΔHk

+
∑

k
(1-εp)Av ṙsuf,kΔHk

(9) 

All reaction rate constants are expressed in the first-order Arrhenius 
form, and the kinetic parameters and heat of reactions are summarized 
in Table 1. In addition, the kinetic rate expressions of 9 gasification 
reactions included in the model are listed in Table 1. The kinetic rate of 
methanation is much lower than that of the other heterogeneous re
actions. CH4 is produced rapidly at the high partial pressure of H2 in 
reaction (8). The catalytic effects of metal components (e.g., Ca, Na, and 
K) on gasification reactions are not considered in this model and are 
worth future exploration as many studies have shown that they have a 
significant influence on biomass gasification reactions for high ash 
content biomass [2]. 

2.1.3. Numerical solution procedure 
A schematic diagram of the kinetic model is shown in Fig. 2. The 

governing equations are discretised using a finite volume scheme, and a 
representative particle was chosen and modelled as a shrinkimg sphere. 
The particle moves toward the z-direction to the bottom of the reactor 
with a velocity of u. Input parameters include biomass properties (ΔH is 
the enthalpy of biomass, and k is the heat conductivity of biomass 

Table 1 
Gasification reactions.  

Heterogeneous reactions 

Reactions Kinetic reaction rate (m/s) Ea(kJ/kmol) Ref. 

Boudouard C + CO2 →2CO Rj,1 = 0.6 • 103Tsexp(-
26800

Ts
)

222,829 
[32] 

Water-gas C + H2O →CO + H2 Rj,2 = 5.7 • Tsexp(-
15600

Ts
)

129,706 
[33] 

C partial combustion 2C + O2 →2CO Rj,3 = 2.3 • Tsexp(-
11100

Ts
)

79,000 
[34] 

C complete combustion C + O2 →CO2 Rj,3/Rj,4 = 2.5 • 103exp(-
6420

Tg
)

27,118 
[35] 

Methane C + 2H2 → CH4 Rj,5 = 3.4 • 10-3Tsexp(-
15600

Ts
)

129,706 
[32]  

Homogeneous reactions     
Reactions Kinetic reaction rate (kmol m-3s-1) Ea(kJ/kmol) Ref. 

CO partial combustion CO +
1
2
O2 →CO2 Ri,6 = 1.3 • 1011εexp(-

15105
Tg

)C0.5
H2OC0.5

O2 

125,600 
[27] 

Water-gas shift CO + H2O ↔ CO2 + H2 

Ri,7 = 2.8εexp
(

-
1511

Tg

)

[CCOCH2O-
exp

(
-
7914

Tg

)

CCH2 CH2

0.0265
]

12,560 
[36] 

Steam-methane reforming CH4 + H2O ↔ CO + 3H2 Ri,8 = 3.0 • 108εexp(-
15083

Tg
) CCH4 CH2O 

30,000 
[36] 

H2 combustion H2 +
1
2
O2 → H2O Ri,9 = 3.5 • 108εexp(-

3670
Tg

)C1.1
H2

C1.1
O2 

30,514 
[37]  

Table 2 
List of model inputs and parameters [27,28,38].  

Characteristics of 
gasifier reactor 

L (m) 0.50  

La(m) 0.25  
Ac(m2) 0.07  
εb(-) 0.40  
Biomass 
resident time 
(sec) 

360.00 

Species properties cpg,p(J kg− 1 

K− 1) 
1053.92-0.40Tg + 9.55× 10-4Tg

2-5.73×

10-7Tg
3 + 6.99× 10-11Tg

4  

cps,p(J kg− 1 

K− 1) 
1350.00  

kg,p(W m− 1 

K− 1) 
3.14× 10-4Tg

0.78/(1-
0.71
Tg

+
2121.70

Tg
2 )

ks,p(W m− 1 

K− 1) 
0.08  

Î⋅(10-5Pa s− 1) -1.22× 10-3 + 0.01Tg-7.45×

10-4Tg
2-5.73× 10-7Tg

3 + 6.99× 10-11Tg
4 

Time step Δt(sec) 10-3 

Finite volume 
length 

Δz(m) 0.01 

Equivalent ratio (-) 0.29 
Feeding rate (kg/h) 10  

Table 3 
Summary of process parameters for constructing the probability distributions.  

Experiments/ 
process parameters 

Feedstock Water content (wt.%) Porosity Size (mm) Thermal conductivity (W/mK) Emissivity Shape Temperature (K) 

[27] Wood 8.00 0.28 2.00 0.20 0.75 sphere 1,073.00 
[40] Wood 10.00 – 0.50–5.00 0.04–0.18 – – 673.00–1,673.00 
[41] Wood 15.00 0.28–0.44 0.30–3.00 – – – 1,123.00–1,198.00 
[42] Wood 11.70 – 0.15–0.25 0.12 – flat 973.00–1,173.00 
[43] Wood 12.00 – 2.00 – 0.86–0.90 flat 1,053.00–1,113.00 
[44] Wood 4.40–15.18 0.48 25.40 – – cylinder 1,073.00–1,173.00 
[45] Wood 9.04 – 0.3–1.00 – – sphere 1,073.00–1,273.00 
[46] Wood 7.00–16.10 – 6.00 – – cylinder 1,073.00–1,273.00 
[47] Wood 11.45 – 1.00–10.00   flat 1,173.00–1,323.00 
[48] Wood 9.50 0.52 1.95 – 0.85 cylinder 1,073.00–1,273.00  
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particle), gasifier bed properties (L is the length of gasifier reactor, La is 
the length of the region above gasifier reactor, Ac is the cross sectional 
area of gasifier reactor, and εb is the porosity of fixed bed), and species 
properties (cpg,p and cps,p are specific heat capacity of gas-phase and 
solid-phase species, kg,p and ks,p are heat conductivity of gas-phase and 
solid-phase species, and Î⋅ is dynamic viscosity). The values of model 
input and parameters are shown in Table 2. 

2.2. Monte Carlo simulation 

The MC simulation is a probabilistic approach based on a randomi
zation process that involves probability distributions of data variables 
collected based on past data, and theoretical probability distribution 
[39]. For an actual gasification process, numerous particles are involved 
and there are variations in the process parameters. To account for the 
variations and potential uncertainty of the parameters, a stochastic ki
netic model was generated by combing the above kinetic model with the 
MC approach. It is unclear which probability distribution is most suit
able for describing the process parameters for MC simulation. Hence, in 
this work, two types of probability distributions (i.e. uniform and 
normal) were explored and defined based on experimental data to 
generate stochastic values for major process parameters (i.e. water 
content, particle size, porosity, thermal conductivity, emissivity, shape, 

and reaction temperature) for the MC simulation. The MC approach for 
this model was to take random values for process parameters in uniform 
and normal distributions, and the data based on which the distributions 
were defined are from 10 experimental studies on fixed bed gasifier 
(wood as the feedstock) as summarized in Table 3. The water content 
ranges from 9.29 to 11.29 wt%, the porosity data ranges from 0.20 to 
0.35, the size data ranges from 1.00 to 2.00 mm, the thermal conduc
tivity data ranges from 0.18 to 0.22 W/mK, the emissivity data ranges 
from 0.72 to 0.77, the particle shape data is spherical, cylinder and flat, 
and the reaction temperature data ranges from 973.00 to 1,173.00 K. 

The mean (μ) and standard deviation (σ) of the distributions (uni
form and normal) for each process parameter were calculated by Eq. 
(10) & (11) and were listed in Table 4. 

μ =

∑N
a=1(xa)

N
(10)  

σ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

a=1
(xa-μ)2

√
√
√
√ (11) 

where N is the number of parameters, and xi is the individual value of 
a parameter. 

2.3. Random forest model evaluation 

2.3.1. Evaluation metrics for decision tree 
The RF algorithm is an ensemble learning method based on bagging 

[49]. The standard binary decision tree used to solve this regression 
problem is defined with several branches, a root, several nodes, and 
leaves. Basically, a branch is a chain of nodes from the root to the leaves, 
with each node referring to an attribute [50]. The splitting criteria for 
the regression tree is also known as Classification and Regression Trees 
(CART). During the growth of each regression tree, a Gini Index (GI) is 
the best principle to judge the classification quality in the CART [51]. 
The dataset D(o) is classified into subset D(s) (containing the elements of 
all process parameters) and the GI for each subset was expressed as Eq. 

Table 4 
Means and standard deviations for the distributions of the process parameters.  

Input factors Range μ σ 

Feedstock    
Water content (wt.%) 9.29–11.29  10.28  0.36 
Porosity 0.20–0.35  0.26  0.03 
Size (mm) 1.00–2.00  1.50  0.19 
Thermal conductivity (W/mK) 0.18–0.22  0.20  0.71 × 10-2 

Emissivity 0.72–0.77  0.75  0.89 × 10-2 

Shape –  –  – 
Reactor    
Temperature (K) 973.00 – 1,173.00  1,075.99  34.95  

Fig. 3. The schematic diagram of the topological structure of the RF algorithm.  
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(12). The GI value reflects the purity of the subset. The lower GI value 
implies the higher quality of classification based on the optimal attribute 
k*. Finally, the minimum GI value based on the k* is selected as the 
result, and it expressed as Eq.13. 

Gini index(D(o), k*) =
∑ |D(s) |

|D(o) |
Gini(D(s)) (12)  

k* = argminGini index(D(o), k*) (13) 

The schematic topological architecture of the RF approach is shown 
in Fig. 3. The regression tree is trained by a bootstrap technique that 
randomly selects 2/3 of the training data as In Bag (IB) data, and the 
unselected training data were called Out Of Bag (OOB) data. The OOB 
data not involved in the training of the regression tree can be used to 
determine the optimal number of trees by a trial-and-error method [52]. 
The ultimate predictions of the trained RF model are the average pre
dictions of all trees. The number of trees is chosen to be sufficiently large 
so that a stabilized OOB error can be achieved. In this study, the number 
of trees tested is from 1 to 500, and the number of process parameters set 
at each split is 6. The modelling process ends when the OOB data error 
has stabilized (being constant). This improves the usage of computa
tional resources). The model was run using a PC with Intel Core i9 
10900 K 5.3 GHz processor and 64 GB of RAM, running Windows 10. 
The splitting criterion for each decision tree depends on the importance 
of the process parameters which is determined by the value of the per
centage increase in mean squared error (%IncMSE) and the total 
decrease in node impurity (IncNodePurity). The value of %IncMSE is the 
normalisation of the average of the difference across all trees by the 
standard deviation: ΔMSE/MSE0 × 100\% [53]. The value of IncNode
Purity is measured by Gini index, which averages the sum of overall 
number of trees when the variables are split at each node [54]. 

2.3.2. Evaluation metrics for model performance 
The root mean square error (RMSE), the metric determination co

efficient (R2), and the mean absolute error (MAE) are common metrics 
to measure the accuracy of a RF model in regression analysis by 
comparing the error between the predicted data and the test data [55]. 
Lower values for RMSE and MAE will imply the model is more accurate 
while higher values for R2 will imply the model is more accurate. RMSE 
measures the standard deviation of residuals and is expressed in Eq.15. 
R2 represents the proportion of the variance in the dependent process 
parameter and is calculated by Eq.16. MAE measures the average of the 
residuals in the dataset, which is expressed in Eq.17. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑

(ypredict-ytest)
2

√

(15)  

R2 = 1-
∑

(ypredict-ytest)
2

∑
(ypredict-y)

2 (16)  

MAE =
1
N
∑⃒

⃒ypredict-ytest

⃒
⃒ (17) 

where N is the total number of total data, ypredict is the value of 
prediction, ytest is the value of a testing data, y is the mean value of all the 
data. The validation of the RF model was conducted by comparing its 
predictions with experimental data gathered from the literature. 

3. Results and discussion 

3.1. Kinetic model validation 

The experimental process parameters (Table 5) of Garcia-Bacaicoa 
et al. [56], Jayah et al. [57], and Zainal et al. [58] were inputted into 
the kinetic model to predict the syngas (H2, CO, CO2, CH4, and N2) yields 
for validation. Fig. 4 shows the comparison between the prediction of 
syngas yields and the experimental results. The predicted yields of 
syngas are within 6.6% of the experimental results of Garcia-Bacaicoa 
et al. [44]. The difference between the experimental and modeling re
sults could be attributed to the fact that only the composition of wood 
was applied as input parameters while 10–17% polyethylene was mixed 
with wood as the feedstock for the experiments. This is one of the lim
itations of the current model based on the consideration of biomass 
gasification, which warrants further improvement. The predicted yields 
of syngas are within 12.8% of the experimental results of Jayah et al. 
[45]. A comparison of H2/CO ratio shows that the error is 2.25% against 
the experimental data of Garcia-Bacaicoa et al. [44], 5.75% of Jayah 
et al. [45], and 2.98% of Zainal et al. [46]. 

3.2. Random forest model 

The stochastic kinetic model was used to generate 2,000 datasets 
based on the uniform and normal distributions, respectively. The RF 
model was used to determine the importance of process parameters on 
the syngas yields and to find the optimal process parameters leading to 
the maximum syngas yield. 

Table 5 
Composition of feedstocks and gasifier process parameters from three existing 
experimental studies.   

Garcia-Bacaicoa 
et al. [56] 

Jayah et al.  
[57] 

Zainal et al.  
[58] 

Feedstock Wood Wood Wood 
C (wt.%) 35.12 50.60 46.40 
H (wt.%) 7.57 6.50 5.70 
O (wt.%) 56.96 42.00 47.70 
N (wt.%) – 0.20 0.20 
Ash (wt.%) 0.32 0.70 1.10 
Volatile matter (wt. 

%) 
60.76 80.10 – 

Fix carbon (wt.%) 9.92 19.20 – 
Water content (wt. 

%) 
29.00 14.50 – 

Mean particle size 
(mm) 

40.00 44.00 50.00 

Mean air flowrate 
(kg/h) 

36.70 34.60 – 

Reaction 
temperature (K) 

1,365.00 1,273.00 1,273.00 

Gasifier type Fixed Fixed Fixed  Fig. 4. Comparisons between the kinetic module predictions and experi
mental results. 
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3.2.1. Decision tree 
The results of the quality evaluation of the RF model for the uniform 

and normal distribution cases are shown in Table 6. For the uniform 
distribution case, the value of RMSE, R2, and MAE is 2.516× 10-8, 
0.996, and 2.556 × 10-5 for CH4; 2.468× 10-8, 0.994, and 2.009 × 10-5 
for H2; 9.114× 10-6, 0.998, and 4.686 × 10-4 for CO. RMSE decreased 
sharply and remained stable as the number of trees increases. R2 

increased gradually and remained stable. The best numbers of the de
cision tree (Ntree-best) for CH4, H2, and CO are 292, 283, and 239 as 
shown in Fig. 5 (a). For the normal distribution, the values of RMSE, R2, 
and MAE are 3.526× 10-19, 0.994, and 1.511 × 10-10 for CH4; 3.555×

10-19, 0.994, and 1.265 × 10-10 for H2; 1.177× 10-16, 0.997, and 
2.827 × 10-9 for CO. For CH4, H2, and CO, the best numbers of the de
cision tree (Ntree-best) are 143, 233, and 247 as shown in Fig. 5 (b). 

3.2.2. Variable importance 
Fig. 6 (a) and (b) show the importance of process parameters on the 

syngas yield based on the values of %IncMSE and IncNodePurity. High 
values of these two metrics indicate high importance of a parameter on 
syngas yields. The values of %IncMSE (17.04–20.30% for uniform dis
tribution and 14.97–17.76% for normal distribution) and IncNodePurity 
(0.008–0.009 for uniform distribution and 0.024–0.038 for normal 
distribution) for temperature are higher than the other process 

parameters in both the uniform and normal distribution cases, so tem
perature has the greatest impact on syngas yields. Furthermore, it is also 
shown that the yields of H2 and CO are strongly influenced by 
temperature. 

The values of %IncMSE and IncNodePurity for the particle size for 
the uniform distribution case are 21.51–25.61% and 0.014–0.021, and 
7.30–8.91% and 0.028–0.053 for the normal distribution case. These 
indicate that, following temperature, particle size has a relatively high 
impact on the syngas yield compared to the other process parameters 
(particle shape (%IncMSE = 8.13–17.04%, IncNodePurity =

0.003–0.004 for uniform distribution, and %IncMSE = 1.48–3.25%, 
IncNodePurity = 0.006–0.008 for normal distribution)). 

The values of %IncMSE and IncNodePurity indicated that water 
content has a minor impact on syngas yield (the value of %IncMSE and 
IncNodePurity for the uniform distribution case is 3.60–10.15% and 
0.001–0.003, and 7.30–9.91% and 0.021–0.081 for the normal distri
bution case). Both the values of %IncMSE and IncNodePurity in the 
uniform distribution and the normal distribution cases indicated that the 
emissivity, the thermal conductivity, and the particle porosity on syngas 
yield can be neglected. 

3.2.3. Quality evaluation of RF modeling against the testing data 
The validation of the quality of the RF model was achieved by 

comparing the predictions with the testing data as shown in Table 7 and 
Fig. 7. For the uniform distribution case, the values of RMSE, R2, and 
MAE are 1.779× 10-4, 0.996, and 6.950 × 10-5 for CH4; 1.491× 10-4, 
0.994, and 5.258 × 10-5 for H2; 2.805× 10-3, 0.996, and 1.206 × 10-3 
for CO. For the normal distribution case, the values of RMSE, R2, and 
MAE are 7.242× 10-10, 0.962, and 4.230 × 10-10 for CH4; 4.700×

10-10, 0.967, and 3.041 × 10-10 for H2; 1.102× 10-8, 0.982, and 
7.397 × 10-9 for CO. The Fig. 7 shows the predictions of the RF model 
for both the uniform and normal distribution cases agree with the testing 
data. 

3.2.4. Process optimization 
The water content, particle size, and reaction temperature were 

Table 6 
Quality indicators of RF modeling based on the training data (uniform and 
normal distributions).    

Uniform 
distribution   

Normal 
distribution   

RMSE R2 MAE RMSE R2 MAE 
CH4 2.516 

× 10-8 
0.996 2.556 

× 10-5 
3.526 
× 10-19 

0.994 1.511 
× 10-10 

H2 2.468 
× 10-8 

0.994 2.009 
× 10-5 

3.555 
× 10-19 

0.994 1.265 
× 10-10 

CO 9.114 
× 10-6 

0.998 4.686 
× 10-4 

1.177 
× 10-16 

0.997 2.827 
× 10-9  

Fig. 5. Test results for determining the optimal tree numbers in RF modeling for CH4, H2, and CO ((a) uniform and (b) normal distributions).  
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considered to have a higher impact on the syngas yields as compared to 
other process parameters as shown above. The RF model predicts the 
maximum yields of CH4, H2, and CO as 0.19× 10-2, 2.43× 10-2, and 
40.78 × 10-2mol/kgfeedstock for the uniform distribution case and 0.17×

10-2, 2.31× 10-2, and 37.89 × 10-2 mol/kgfeedstock for the normal dis
tribution case are shown in Table 7. It is also shown that the predicted 
optimal parameters for the normal distribution case are closer to the 
experimental data than the uniform distribution case. The results indi
cated that the normal distribution is a more reasonable representation of 
the actual process parameters. 

4. Conclusion 

In this study, a stochastic biomass gasification model based on the 
combination of the MC simulation approach and an RF algorithm is 
developed. The model was used to optimize the fixed bed air gasification 
with wood as feedstock for a broad range of process parameters. The 
parameters importance analysis of the RF model showed that particle 
size, reaction temperature, and water content have a high influence on 

the syngas yield. However, the effects of particle shape, emissivity, 
thermal conductivity, and porosity on syngas yield can be negligible 
during the gasification process. The predictions of syngas yield in the 
normal distribution case are more informative and reliable, which fits 
the experimental better than the uniform one. The predictions for the 
normal distribution case were closer to the experimental data obtained 
from existing literature than that for the uniform distribution case. The 
model was used to predict the optimal syngas yield and process pa
rameters of wood gasification and it was shown that the predictions 
were generally in good agreement (<12% difference for the case of 
normal distribution) with existing experimental results as shown in 
Table 8. The model developed in this work could be used for deter
mining the optimal process parameters for the techno-economic analysis 
and life cycle assessment towards better system and process designs. 

It is worth noting that some factors have not been included in this 
study partially due to lack of relevant data. For example, ER is not 
directly considered by the model. However, this factor is closely related 
to the reaction temperature and particle size both of which are 
modelled, and thus is implicitly considered by the developed model. 
Therefore, a fixed ER = 0.29 (obtained from the literature) was applied 
in this study. In addition, tar formation is considered as an intermediate 
factor of the kinetic model affecting the syngas yield. As this study fo
cuses on syngas yield, tar production is not analyzed as the outputs of the 
model. The developed the framework could be further adapted to 
include the additional parameters when associated data is available in 
the future. 
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Fig. 7. Validation results of RF model for syngas yield ((a) uniform and (b) normal distributions).  
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