
Biomaterials 286 (2022) 121568

Available online 7 May 2022
0142-9612/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Current insights into the bone marrow niche: From biology in vivo to 
bioengineering ex vivo 

Yinbo Xiao a, ChanelleA.S. McGuinness a, W. Sebastian Doherty-Boyd a, 
Manuel Salmeron-Sanchez b, Hannah Donnelly a,*, Matthew J. Dalby a,** 

a Centre for the Cellular Microenvironment, Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, Joseph Black Building, 
University of Glasgow, Glasgow, G12 8QQ, United Kingdom 
b Centre for the Cellular Microenvironment, Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8QQ, United Kingdom   

A R T I C L E  I N F O   

Keywords: 
Hematopoietic stem cells 
Bone marrow niche 
Niche engineering 
Biomaterials 

A B S T R A C T   

Hematopoietic stem cells (HSCs) are fundamental to the generation of the body’s blood and immune cells. They 
reside primarily within the bone marrow (BM) niche microenvironment, which provides signals responsible for 
the regulation of HSC activities. While our understanding of these signalling mechanisms continues to improve, 
our ability to recapitulate them in vitro to harness the clinical potential of the HSC populations is still lacking. 
Recent studies have applied novel engineering techniques combined with traditional in vitro work to establish ex 
vivo BM niche models. These models exhibit promising potential for research and clinical applications. In this 
review, BM niche factors that regulate the HSCs in vivo are discussed and their applications in the engineering of 
BM biomaterial-based platforms are considered. Many questions remain regarding the heterogeneity of niche 
components and the interactions of HSCs with their microenvironment. A greater understanding of the niche 
would help to elucidate these remaining questions, leading to the development of novel therapeutic tools.   

1. Introduction 

Hematopoietic stem cells (HSCs) are a rare cell population that is 
characterized by their ability to self-renew and differentiate into cells of 
the blood system throughout the lifetime of the organism [1–3]. They 
primarily reside in a specialized microenvironment within the bone 
marrow (BM), termed the ‘BM niche’ [4]. The BM niche orchestrates 
HSC maintenance, proliferation, self-renewal and differentiation [5]. 
Over the past few decades, extensive work has been carried out to study 
BM niche physiology and elucidate how niche components regulate HSC 
behaviours (as reviewed in Refs. [6,7]). Notably, once removed from the 
in vivo niche and placed in in-vitro culture, HSCs rapidly lose their 
self-renewal capacity and multipotency [8,9]. Given the complexity of 
the BM niche microenvironment, the application of appropriate ex vivo 
models which could mimic the in vivo niche organization is limited, 
causing limited efficiency in maintaining long-term repopulating HSCs 
in vitro. This restricts research on HSCs, haematopoiesis, stemness and 
haematological diseases. 

Recently, biomaterial and bioengineering approaches have provided 

novel strategies to reconstruct the in vivo-like niche for HSCs [10–12]. In 
general, these strategies aim to create two-dimensional (2D) or 
three-dimensional (3D) biomaterial-based cell culture systems, that 
recapitulate or mimic ex vivo biochemical and biophysical components 
from the BM niche. In the last few years, there has been a substantial 
increase in the development of more advanced platforms, such as 
microfluidic organ on chips (OOC) devices [13–16]. It is worth noting 
that several of these models have demonstrated their ability to support 
HSC proliferation and maintenance with satisfying outcomes to some 
extent [14,17]. Furthermore, these platforms have been utilized to 
recapitulate healthy or malignant haematopoiesis states in humans, 
enabling researchers to study the effects of clinically relevant drug or 
radiation exposures on BM, without requiring initial tests in animals 
[18,19]. Therefore, these models are a promising step toward 
non-animal-based technologies (NATs). 

Here, we review the progress of the past several years in under
standing the BM niche, emphasizing the cellular composition and bio
physical cues within the BM niche that underlie HSC-niche 
communication during maintenance and differentiation. Moreover, 
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advanced techniques from recent BM-model engineering approaches 
which utilize several of these elements in vitro (2D and 3D biomaterial- 
based techniques) are compared. Their promising applications in 
research and in the clinic are highlighted as well. Finally, challenges and 
future directions of BM niche biology and BM niche bioengineering will 
be discussed. 

2. Bone marrow niche biology 

The components of the BM niche are highly heterogeneous. There 
has been a significant focus over the past several decades aiming to 
identify definitive HSC niche components within the BM microenvi
ronment, including soluble factors, cellular contributions, oxygen ten
sion, ECM (Extracellular Matrix) and physical factors (Fig. 1). The 
contribution of these factors is summarized below. 

Schematic representation of the adult BM niche, showing various cell 
types and niche factors that directly or indirectly regulate HSC activities. 
Vascular endothelial cells and associated stromal cells, such as peri
arteriolar Nestin+ cells and NG2+ cells, perisinusoidal CAR cells and 
LepR+ cells, are key regulators of HSC maintenance. Osteoblasts line the 
endosteal surface and are also associated with HSC maintenance. 
Schwann cells may contribute to HSC quiescence. Hematopoietic cells, 
such as macrophages and megakaryocytes, are examples of HSC-derived 
progeny that can feedback and contribute to HSC maintenance or 
mobilization. These cells regulate HSC activities mostly via paracrine 
signals. The distribution of ECM across the BM is not random but highly 
organized. FN and collagen are closely associated with the bone matrix, 
while laminin is enriched along the vascular basement membrane. The 
central BM is soft (between 0.1 and 1 kPa), whereas the endosteum re
gion is rigid (up to >35 kPa). The BM is hypoxic, despite being heavily 
vascularized. The deep sinusoidal regions have been found to have the 
lowest oxygen tension, and the endosteal regions have slightly higher 
oxygen tension. Hypoxia has been shown to affect HSCs in the BM niche. 

BM, Bone marrow; HSC, hematopoietic stem cell; CAR cell, CXC- 

chemokine ligand 12 (CXCL12)-abundant reticular (CAR) cells; LepR +
cell, leptin receptor (LEPR)-positive cells; NG2+ cells, neural–glial an
tigen 2 (NG2)-positive cells; SCF, Stem Cell Factor; CXCL12, C-X-C Motif 
Chemokine Ligand 12; TPO, Thrombopoietin; OPN, Osteopontin; Angpt- 
1, Angiopoietin 1; Vcam1, Vascular cell adhesion protein 1; G-CSF, 
Granulocyte colony-stimulating factor; TGF-β1, Transforming growth 
factor beta 1; DARC, Duffy antigen receptor for chemokines; FGF, 
Fibroblast Growth Factor; ECM, Extracellular Matrix; FN, Fibronectin; 
LM, Laminin; Col, Collagen. 

2.1. Constituents of the HSC niche 

2.1.1. Growth factors 
Growth factors (GFs) are a broad class of small, secreted proteins. 

They act on specific target cell receptors and trigger intracellular sig
nalling cascades that ultimately influence cellular behaviours [20]. In 
the BM niche, many niche-derived GFs have been described to orches
trate HSC behaviours such as maintenance, retention, proliferation, and 
mobilization [7]. The main niche GFs, their cellular sources and func
tions within the niche are summarized in Table 1. 

In general, these GFs mediate effects through binding to their specific 
receptors on HSCs. For example, CXC-chemokine ligand 12 (CXCL12) 
can bind to CXC-chemokine receptor 4 (CXCR4)-expressing HSCs [21, 
22], and stem cell factor (SCF) mediates its effects through binding and 
activating the KIT receptor on HSCs [23]. Studies that disrupt 
GF-receptor binding, via antibody blocking or deleting expression using 
genetic approaches, demonstrate the BM niche to be significantly altered 
and normal haematopoiesis dramatically damaged [24–28]. Different 
GFs have been shown to modulate different HSC behaviours. For 
instance, SCF mainly promotes HSC maintenance [29], while Notch li
gands induce HSC proliferation [30–32]. CXCL12 and Vascular cell 
adhesion protein 1 (Vcam1) regulate HSC retention and mobilization 
[28,33]. These suggest that the balance of HSC activities is tightly 
controlled by GF contributions. Further to this, niche GF homeostasis 

Fig. 1. A schematic of the HSC niche in adult BM.  
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and biological functions can also be altered by stress, such as ageing, 
chemotherapy and irradiation (as reviewed in Ref. [34]). For example, 
some GFs are dispensable during normal haematopoiesis homeostasis 
but are required to promote hematopoietic regeneration after injury. 
These include fibroblast growth factor 1 (FGF1) and transforming 
growth factor (TGF) β1, which are shown to promote HSC expansion and 
re-establish HSC quiescence following chemotherapy treatment [35,36]. 
Thus, a detailed GF profile of the BM niche, how these GFs change in 
response to diverse stresses, and how they could be harnessed to e.g. 
promote hematopoietic recovery post-irradiation remains a focus for 
investigation. 

2.1.2. Cellular components 
Difficulties toward reconstituting the BM niche in vitro relate to its 

substantial cellular diversity. Classic genetic approaches have already 
contributed greatly to our understanding of BM niche cellular archi
tecture, such as the deletion of molecular markers and Cre-mediated 
lineage tracing, followed by imaging or functional readouts. However, 
limited marker-based approaches probably result in the labelling of 
heterogeneous populations [67,68]. In the last few years, single-cell 
RNA-sequencing (scRNA seq), has shown promising potential to over
come such shortcomings, providing us with more detailed and system
atic information in BM cellular architecture [69,70]. In general, stromal 
cellular components of the BM niche are rare (approximately 2% of total 
BM cells) but highly heterogeneous, mainly containing osteoblasts 
(OBs), mesenchymal stromal cells (MSCs), endothelial cells (ECs), fi
broblasts, pericytes, nerve cells and smooth muscle cells [69–71]. 
Several MSC subpopulations have been identified as well, such as 
CXCL12-abundant reticular cells (CAR cells) [24], leptin receptor 
(LepR)+cells [37], nestin+ cells [72], and neural–glial antigen 2 (NG2)+
cells [73]. 

2.1.2.1. Hematopoietic cells. The BM niche harbours various hemato
poietic lineage cells. This includes HSCs, multipotent progenitors 
(MPPs), common lymphoid progenitors (CLPs), common myeloid pro
genitors (CMPs), as well as their differentiated progeny [7]. The HSC 
differentiation landscape follows a strict hierarchy, in that the most 
primitive HSCs and MPPs sit on the top; lineage-committed progenitors, 
such as CLPs and CMPs sit at the middle, and the terminally differenti
ated mature cells sit at the bottom [68,74]. Such hierarchical develop
ment involves progressive loss of self-renewal capacity, proliferation 

Table 1 
Locally secreted factors associated with HSC regulation in the BM niche.  

Growth 
Factor 

HSC 
Receptor 

Niche cellular 
Source 

Impact on HSCs Reference 

SCF c-Kit ECs Induce HSC 
maintenance and 
promote HSC 
recovery after 
myeloablation 

[37–39] 

CAR cells Direct HSC 
engraftment 

[40] 

Nestin+ cells Induce HSC 
maintenance 

[29,37, 
41] 

LepR+ cells Promote HSC 
maintenance and 
enhance HSC 
regeneration after 
irradiated 

[29,37, 
38,42] 

NG2+ cells Promote HSC 
maintenance 

[29] 

CXCL12 CXCR4 CAR cells Promote HSC 
maintenance 

[43] 

Nestin+ cells Induce HSC 
maintenance and 
retention 

[28,29] 

LepR+ cells Promote HSC 
retention 

[28] 

ECs Maintain HSC 
quiescence, self- 
renew and 
retention 

[28,29, 
43,44] 

NG2+ cells Maintain HSCs 
quiescence and 
retention 

[29] 

TPO MPL OBs Maintain HSC 
quiescence 

[45,46] 

OPN CD44 OBs Restrict HSC pool [47,48] 
Angpt-1 Tie-2 OBs Maintain HSC 

quiescence and 
self-renewal, and 
enhance survival 
under stressed 

[49] 

LepR+ cells Promote HSC 
recovery after 
irradiation 

[50] 

Vcam1 VLA-4/ 
Integrin 
α4β1 

ECs Direct HSC homing [51] 
Macrophage Promote HSC 

retention 
[33] 

G-CSF G-CSF 
receptor 

OBs Maintain HSC 
quiescence 

[52] 

Macrophages Maintain HSC 
retention 

[53] 

TGF-β1 TGF-β 
receptors 

Schwann cells Maintain HSC 
quiescence and 
self-renewal 

[54] 

Megakaryocytes Maintain HSC 
quiescence and 
enhance HSC 
expansion under 
stress 

[36] 

Notch 
ligand 
Jagged-1 

Notch 
receptor 

OBs Support HSC self- 
renewal 

[55] 

ECs Support HSC self- 
renewal and 
proliferation 

[30–32] 

WNT 
ligands 

Fizzled 
receptors 

OBs Maintain HSC 
quiescence and 
enhance HSC 
recovery under 
stress 

[56] 

Pleiotrophin RPTP-β/ζ ECs Enhances self- 
renewal and BM 
retention, and 
accelerate 
hematopoietic 
recovery following 
myelosuppression 

[57–59]  

Table 1 (continued ) 

Growth 
Factor 

HSC 
Receptor 

Niche cellular 
Source 

Impact on HSCs Reference 

Netrin-1 Neogenin- 
1 

ECs Maintain HSC 
quiescence and 
self-renewal 

[60–62] 

DARC/TGFβ CD82 Macrophage Promote HSC 
quiescence 

[63] 

FGF1 FGF 
receptor 

Megakaryocytes Promote HSC 
proliferation 
enhance HSC 
recovery under 
stressed 

[64,65] 

FGF2 Unknown Promote HSC 
recovery after 
stress 

[66] 

BM, Bone marrow; HSC, hematopoietic stem cell; OBs, Osteoblasts; CAR cells, 
CXC- chemokine ligand 12 (CXCL12)-abundant reticular (CAR) cells; ECs, 
Endothelial cells; LepR + cells, leptin receptor (LepR)-positive cells; NG2+ cells, 
neural–glial antigen 2 (NG2)-positive cells; SCF, Stem Cell Factor; CXCL12, C-X- 
C Motif Chemokine Ligand 12; TPO, Thrombopoietin; MPL, myeloproliferative 
leukaemia protein; OPN, Osteopontin; Angpt-1, Angiopoietin 1; Vcam1, 
Vascular cell adhesion protein 1; VLA-4, Very Late Antigen-4; G-CSF, Gran
ulocyte colony-stimulating factor; TGF-β1, Transforming growth factor beta 1; 
RPTP-β/ζ, receptor protein tyrosine phosphatase (RPTP) beta/zeta; DARC, Duffy 
antigen receptor for chemokines; FGF, Fibroblast Growth Factor. 
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ability, and lineage potentials, ultimately giving rise to various cell 
populations, including megakaryocytes, erythrocytes, monocytes, 
lymphoid cells, neutrophils, basophils, mast cells, and eosinophils, 
which are critical to maintain haematopoiesis homeostasis and refresh 
the blood and immune system throughout our life [68,75–78]. 

It should be noted that primitive HSCs can be classified into two 
subsets, long-term HSCs (LT-HSCs) and short-term HSCs (ST-HSCs) [79]. 
The main difference between these two cell populations is their capacity 
to re-establish haematopoiesis of the recipient after transplantation. Post 
transplantation and engraftment, ST-HSCs contribute to blood system 
reconstitution for approximately 3 months only [80], whereas LT-HSCs 
are able to engraft and re-establish hematopoietic homeostasis 
long-term and can undergo further serial transplantation [80]. LT-HSCs 
are, therefore, the most clinically valuable HSC subset. Yet, LT-HSCs are 
rare in the BM niche, and currently, there exist no reliable strategies to 
isolate and expand the subset. Phenotypically ST- and LT-HSCs are 
similar and cannot be distinguished using the well-defined surface 
markers typically used to separate hematopoietic lineages by flow 
cytometry. Recent years have seen investigation into identifying gene 
signatures and markers, such as CD49f (also known as integrin α6) [81], 
that are expressed by/on LT-HSCs, but not ST-HSCs, leading to poten
tially more refined identification, and thus investigation, of these two 
subsets [82]. 

In the BM niche, HSC activities are further regulated via their 
progeny. For example, conditional deletion of megakaryocytes signifi
cantly leads to HSC activation and proliferation, indicating that mega
karyocytes may be closely associated with maintaining HSC quiescence. 
This regulation may act through the secretion of chemokines by the 
differentiated cells such as CXC-chemokine ligand 4 (CXCL4) [83], 
TGFβ1 [36,84] and FGF1 [64,65] (Table 1). Interestingly, megakaryo
cytes can also selectively regulate myeloid-biased von Willebrand factor 
(vWf)+ HSCs, but not lymphoid-biased vWf– HSCs [85]. Conditional 
deletion of megakaryocytes can promote vWf+ HSCs expansion and 
ablate their self-renewal capacity and reconstitution potential, whereas 
deletion had no effect on vWf– HSCs [85]. These results suggest that 
distinct niches for HSC subpopulations and their progeny may exist, 
which have distinct developmental potential. Collectively, HSCs are 
regulated in a feedback loop by their progeny. 

2.1.2.2. OBs. OBs were the first cell population shown to influence HSC 
frequency both in vitro and in vivo. In vivo, a population of HSCs were 
shown to associate exclusively with cells with an osteoblastic phenotype 
that line the long bone. Then in a knockout mouse model lacking bone 
morphogenetic protein (BMP) receptor I, an increase in this HSC pop
ulation was observed [86]. Further to this, Calvi et al. demonstrated that 
augmenting parathyroid hormone (PTH) signalling to increase osteo
progenitor or pre-OBs activation, could enrich LSK (Lin− Sca-1+ c-Kit+) 
cells (HSC-like cells) in vivo [55]. Further studies indicate that OB 
ablation could lead to reduced quiescence, long-term engraftment, and 
self-renewal capacity of HSCs [87]. These effects are mediated by the 
secretion of various molecules, such as Osteopontin (OPN) [47], 
Thrombopoietin (TPO) [46], granulocyte-colony stimulating factor 
(G-CSF) [52], Angiopoietin 1 (Angpt-1) [49] and Wnt ligands [56], 
notably except for CXCL12 or SCF [28,37,43]. Thus, collective evidence 
suggests a role of paracrine signalling by OBs in regulating HSC 
activities. 

However, the evidence implicating OBs as direct regulators of HSC 
functions is still lacking. This regulation was thought to be a result of 
interactions between HSCs and OBs mediated by the adhesion molecule 
N-cadherin [86,88,89]. Conditional deletion of N-cadherin+ OBs im
pairs HSC maintenance during steady state and delay haematopoiesis 
recovery under stress stimulation [86,88,89]. Subsequent studies 
dispute these findings, showing that conditional N-cadherin deficiency 
from either OBs or HSCs, has no effect on haematopoiesis [90,91]. 
Moreover, in vivo imaging studies using validated HSC markers or 

labelled HSCs illustrate that few are in direct contact with OBs [92–94], 
suggesting that endogenous HSCs may not be spatially associated with 
OBs. Thus, taken together, OBs in the BM niche play a regulatory role in 
HSC activities, yet these regulations are probably not achieved via direct 
signalling but rather via distant signalling. 

2.1.2.3. CAR cells. Within the CXCL12-GFP knock-in mice, a small 
population of reticular cells are identified with high GFP signals, indi
cating a high level of CXCL12 expression, termed as CAR cells [95]. CAR 
cells are found surrounding vascular endothelial cells and tightly in 
contact with HSCs [95]. They play an essential role in maintaining the 
HSC pool. Conditional depletion of CAR cells in transgenic mice models 
leads to a severe reduction of HSC number [95]. Intriguingly, compared 
to those isolated from the wild type mice, HSCs from CAR cell-depleted 
mice remain in a quiescent state in vivo, with relatively lower expression 
of cell-cycle-promoting genes, suggesting that CAR cells may encourage 
HSCs proliferation [95,96]. 

CAR cells are not homogenous. They express both adipocytic and 
osteogenic genes and consequently can differentiate into adipocytes or 
osteoblastic cells [95]. Based on sequencing data, there are two subsets 
of CAR cells within the BM identified: adipo-lineage and osteo-lineage 
cells, despite both sharing similar overall transcriptomic profiles [70, 
97]. Adipo-CAR cells are preferentially located adjacent to sinusoidal 
endothelial cells (SECs), while osteo-CAR cells are localized to 
non-vascular regions or cover arteriolar endothelial cells (AECs) [70]. 
The difference in the spatial distribution of these two CAR subsets 
further indicates that they may contribute to different functional peri
vascular niches [70]. 

2.1.2.4. LepR+ cells. SCF-GFP knock-in mice provide a tool to explore 
the cellular source of SCF throughout the BM in vivo [37]. Immunoflu
orescence images of BM sections from the SCF-GFP knock-in mice show 
that SCF-GFP-expressing cells mainly surround sinusoids, overlapping 
with highly restricted LepR expression [37]. Thus, perivascular LepR+

stromal cells appear to be the dominant source of SCF within the BM and 
play an essential role in HSC maintenance. When SCF is deleted from 
LepR+ cells, the HSC number is significantly reduced [37,38] and their 
subsequent reconstitution capacity is impaired [29,37,42]. Thus, SCF 
from LepR+ cells is required to maintain HSCs’ self-renewal. Besides 
SCF, as LepR+ cells partially overlap with CAR cells, these cells also 
contribute to CXCL12 production [28,69]. However, unlike SCF, 
CXCL12 secreted by LepR+ cells is not required to maintain HSCs, but to 
retain HSCs within the BM compartment. Conditional deletion of 
CXCL12 from LepR + cells has no effect on the BM cellularity and HSC 
frequency, except for an increased number of HSCs in the blood and 
spleen [28,29]. 

LepR+ stromal cells are shown to be highly enriched for MSCs, uni
formly expressing several BM MSC markers e.g. platelet-derived growth 
factor receptor α (PDGFRα) and CD51 (also known as integrin αV) [98, 
99]. Fate mapping shows that they can give rise to bone and adipocytes, 
serving as the main source of OBs and adipocytes in adult BM [98]. 
Recently, via scRNA seq, LepR+ cells could be further distinguished into 
four subsets [69]. All four subsets express SCF and Anpgt1 comparably, 
while multiple other genes, such as CXCL12, LepR and Gremlin, are 
significantly different [69]. The detailed function of these individual 
subpopulations on HSCs activities remains unclear. 

2.1.2.5. Nestin+ cells. Nestin, an intermediate filament protein, is a 
characteristic marker of MSCs that secrete important HSC maintenance 
factors [100]. In Nestin-GFP knock-in mice, nestin+ cells are distributed 
along the vasculature throughout the BM [72,73]. The vast majority of 
HSCs are shown to be preferentially adjacent to the nestin+ cells, and the 
conditional deletion of these cells can lead to a reduced HSC pool in the 
BM [72,73]. Thus, nestin+ cells are critical for the control of HSC 
quiescence and haematopoiesis. Compared to the nestin− cells, nestin+
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cells express higher levels of HSC maintenance-related genes, such as 
CXCL12, SCF, IL-7, Vcam1, Opn, and Angpt1 [72,73]. However, condi
tional deletion of SCF or CXCL12 from nestin + cells has no effect on HSC 
activities in the BM, highlighting functional redundancy within the 
niche and the importance of heterogeneity [28,37]. nestin+ cells are 
therefore required for HSC activities, but the mechanism is still unclear. 

Nestin+ cells are enriched for MSCs [72]. Based on nestin expression 
levels, nestin+ cells can be divided into two subsets, one strongly 
expressing nestin (nestinbright cells), and the other expressing relatively 
low nestin (nestinlow cells) [73]. nestinbright cells are distributed exclu
sively along arterioles and are mainly NG2 positive, which will be dis
cussed in detail later [44,73]. nestinlow stromal cells are largely 
associated with sinusoids and do partially overlap with LepR + cells 
[101]. Thus, the distinct spatial distribution and cellular components of 
nestinbright and nestinlow cells suggest their different contribution to the 
HSC niche, and also highlights the possible existence of the periarter
iolar niche and the perisinusoidal niche, separately. 

2.1.2.6. NG2+ cells. NG2+ cells are restricted to the periarteriolar 
nestinbright population, rather than perisinusoidal nestinlow cells [73]. 
They are located exclusively near the arteriole [73]. Essential for HSC 
maintenance in the BM, conditional deletion of NG2+ cells reduces the 
HSC pool in the BM as well as the spleen [73]. Subsequent HSC func
tional analysis indicated that HSCs isolated from NG2+ cell-depleted 
mice lose their reconstitution capacity [73]. Thus, NG2+ cells are 
required for HSC maintenance and self-renewal. 

Notably, HSCs near periarteriolar NG2+ cells exhibit relatively lower 
proliferative status compared to the ones near the perisinusoidal NG2- 

stromal cells [73]. The deletion of NG2 cells switches HSCs into an active 
status and alter their localization away from arterioles [73,85]. Thus, 
NG2+ cells within the periarteriolar niche can promote HSC quiescence 
and construct a quiescent niche for HSCs. Such hematopoietic regulation 
of NG2+ cells may be achieved by the production of CXCL12, rather than 
by SCF [29]. Thus, NG2+ cells are vital in regulating HSC activities and 
contribute to the periarteriolar niche. 

2.1.2.7. ECs. Monolayers of ECs line the lumen of blood vessels in the 
BM, consisting of arterioles, sinusoids, and a large network of capillaries 
that connect the arterial and venous systems [44,102]. BM ECs 
contribute to the HSC perivascular niche by secreting HSC maintenance 
factors, such as SCF [37]. Conditional deletion of SCF from ECs, results 
in reduced HSC frequency, followed by impairment of reconstitution 
capacity [37,38]. ECs can also regulate and support HSCs by Notch 
signalling. Specific deletion or blocking of Notch ligands (e.g. Jagged 1 
or Jagged 2) from ECs can perturb Notch signalling within HSCs, leading 
to hematopoietic exhaustion and deficiency [31,101,103]. The sup
portive function of ECs requires cell proximity, given the fact that such 
regulatory effects are abolished once HSC-EC interactions are disrupted 
[30]. Taken together, research suggests that ECs are required in the BM 
to support the quiescence and self-renewal of HSCs in the perivascular 
niche. 

2.1.2.8. Other cells and systems that contribute to HSC niche regulation. 
Additional cells have been found to contribute to the niche, for instance, 
macrophages [33,63] and neural cells [54,104,105]. As a result, several 
other systems participate in BM niche regulation, such as the immune 
system and sympathetic nervous system. Some actions may occur 
directly and are relatively straightforward. For example, Vcam1+ mac
rophages interact with HSCs via integrin α4 and consequently direct 
HSC retention [33]. Adrenergic signals act directly on HSCs expressing 
the β-2 adrenergic receptor (ADRβ2), promoting migration and 
engraftment [106]. Nociceptor neurons secrete calcitonin gene-related 
peptides, which binding directly to the calcitonin receptor-like recep
tor on HSCs, promoting granulocyte colony-stimulating factor (G-CSF) 
induced HSC mobilization [107]. In contrast, some regulations are 

indirect and may be achieved by the interaction of several synergistic 
cellular components. For example, nestin+ MSCs are linked to the 
sympathetic nervous system (SNS); nestin+ cells that express β-3 
adrenergic receptor (ADRβ3) can transduce adrenergic signals, medi
ating circadian oscillations of CXCL12 secretion and HSC egress from the 
BM [72,108,109]. 

Taken together, there is currently evidence identifying effectively all 
cellular components within the BM niche as having an important role in 
HSC regulation. Many of these studies are based primarily on mouse 
models, which combined with increasingly advanced imaging tech
niques and computational analyses have facilitated the in vivo study of 
HSCs. Although these are powerful tools, often they are used to delete 
single factors in the niche cells, which could lead to compensatory be
haviours from other niche components, or long-range signals from 
outside the BM. This should therefore be a consideration in the inter
pretation of such studies. These studies provide an extraordinary insight 
into endogenous HSC activity and niche cell behaviours, yet much re
mains to be elucidated before these complex networks are fully 
understood. 

2.1.3. ECM and biophysical properties 
The ECM is a complex collection of extracellular molecules such as 

insoluble proteins that define the structural and mechanical properties 
within tissues. In the BM, ECM proteins are secreted by local stromal 
cells and functionally mediate HSC anchorage, triggering intrinsic sig
nals and directing HSC behaviours [110]. BM ECM is mainly composed 
of collagen type I-XI and other non-collagenous ECM proteins such as 
laminin (LM), fibronectin (FN), vitronectin and elastin [110,111]. Given 
the cellular and structural heterogeneity across the BM, ECM compo
nents’ distributions and spatial locations are not homogenous either, yet 
they are also not randomly distributed (Fig. 1). Collagen I and vitro
nectin are particularly enriched within the endosteal region, whereas 
LM (especially LM containing α4, α5 chains) and collagen IV are 
enriched along the vascular basement membrane [112–115]. FN is 
abundantly found throughout the BM [112]. 

In addition to ECM components, local biomechanical properties 
differ significantly across the BM, such as matrix stiffness (Fig. 1). Using 
rheology, Jansen et al. have shown that the BM is predominantly elastic, 
with an effective Young’s modulus ranging from 0.25 to 24.7 kPa at the 
physiological temperature [116]. Recently, Chen et al. characterized the 
mechanical properties of the murine BM using a more sensitive method, 
Atomic Force Microscopy [117]. The BM stiffness obtained by this 
method ranges from 1 Pa to 104 Pa [117], which is in line with the 
previous study [116]. These reports are, to our knowledge, the only two 
measuring the stiffness of intact BM, therefore, providing critical insight 
into the native mechanical environment. 

Both the ECM composition and its biophysical properties are 
important in regulating HSC activities. Generally, cells interact with 
ECM via non-enzymatic integrin receptors which couple to ECM proteins 
[118]. This coupling allows for the transmission of force and biochem
ical signals from the ECM to the cell and vice versa via mechano
transduction [119]. Such inside-out and outside-in signalling ultimately 
regulates numerous cellular processes such as morphology changes and 
cell differentiation [120–122]. Due to HSCs being non-adherent cells, 
HSC-ECM interactions have been largely overlooked in the literature. In 
a recent study, the Harley group engineered BM-inspired ECM 
ligand-coated polyacrylamide (PAM) substrates with tuneable stiffness 
and demonstrated how different combinations of substrate stiffness and 
ECM ligand presentation can influence HSC lineage commitment [123]. 
They reported substrates mimicking endosteal niches (stiff ~40 kPa, 
high FN content) increased primitive myeloid proliferation, whereas 
substrates mimicking vascular niches (soft ~3 kPa, high LM content) 
promoted the erythroid lineage [123]. This work demonstrates that 
mimicking microenvironmental mechanics ex vivo to represent in vivo 
composition, allows investigation into its regulatory impact on HSC 
expansion, proliferation and functional capacity [133]. 
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2.1.4. The role of hypoxia in the BM niche 
Despite being heavily vascularized, the BM niche is hypoxic [124] 

(Fig. 1). Quiescent LT-HSCs localise to the endosteal region of the BM 
and display hypoxic phenotypes. This, coupled with the fact that active 
HSCs reside in the highly vascularized central cavity [125], led to the 
initial assumption that the endosteal region of the BM was the most 
hypoxic. However, this assumption was challenged by a 2014 study that 
directly measured the local oxygen tension of the different BM regions 
using two-photon phosphorescence lifetime microscopy [124]. Spencer 
et al. confirmed the hypoxic nature of the BM cavity, which was shown 
to have oxygen pressure (pO2) ranging from 1.5 to 4.2% [124]. Unex
pectedly, the endosteal zone was less hypoxic (pO2 between 1.8 and 
2.9%) than the deep sinusoidal regions (>40 μm from bone) which had a 
slightly lower oxygen gradient (pO2 between 1.3 and 2.4%) [124]. 

The maintenance of long-term quiescence and self-renewal of stem 
cells within the BM niche is thought to be linked to oxygen tension. It is 
postulated that quiescent HSCs restrict mitochondrial respiration by 
oxidative phosphorylation (OXPHOS) and rely mainly on anaerobic 
glycolysis for their maintenance [126–128]. Both mitochondrial number 
and activity are reduced in quiescent HSCs, resulting in reduced 
OXPHOS [129–131]. When mitochondria accumulate again, HSCs 
convert from a quiescent to a proliferative state and lose their 
self-renewal potential [129,131]. In addition, mitochondrial meta
bolism is known to promote HSC commitment by producing reactive 
oxygen species (ROS) [132–135]. ROS plays a role in activating 
numerous cellular signalling pathways, such as phosphoinositide 3-ki
nase (PI3K)/Protein kinase B (AKT) [133,136,137] and 
p38/mitogen-activated protein kinase (MAPK) [138], which are essen
tial pathways for HSC maintenance. 

HSCs detect low oxygen tension by stabilizing hypoxia-inducible 
factor-1α (HIF1α) protein, a master transcriptional regulator of the 
cellular and systemic hypoxia response [139]. Accumulation of HIF-1α 
causes HSCs to adopt a quiescent phenotype and retain a long-term 
repopulation capacity, while a low level of HIF-1α causes HSCs to 
enter the cell cycle and adopt OXPHOS mitochondrial activity [126, 
140]. The HIF-1α stability in HSCs is not entirely dependent on the 
oxygen tension of cells’ microenvironment [164] but is also regulated by 
independent, cell-specific mechanisms. HIF1α has been shown to be 
stably expressed by HSCs isolated from BM regions with differing pO2, 
but also by those in circulation. This suggests that cell-specific factors 
influence the hypoxic phenotype of HSCs [141]. Other factors have also 
been shown to drive HIF1α stability, demonstrating metabolic control is 
a fundamental process for HSC regulation. Both SCF [142] and TPO 
[143] reportedly drive HIF1α stabilisation in HSCs cultured under nor
moxic conditions. Therefore, HIF1α expression is key to regulating the 
metabolic phenotype of HSCs. However, this is not solely determined by 
the localization of HSCs in the BM niche, highlighting the importance of 
the metabolic machinery for their functions. 

2.2. Distinct niches 

Based on the preferential localization of HSCs as well as physical 
landmarks within BM, BM niches can be classified into three distinct 
niches: endosteal niche, perisinusoidal niche and periarteriolar niche 
(Table 2). 

2.2.1. Endosteal niche 
The interface between the bone and BM is called the “endosteum”, 

covered by layers of osteoprogenitors, as well as bone-forming OBs and 
bone-resorbing osteoclasts [144]. The existence of an endosteal niche 
was first suggested by early studies preceding Schofield’s niche concept 
decades ago [145], and later supported by evidence that activation of 
osteogenesis could enrich HSCs in trabecular-rich bone areas [55,86]. 
Subsequent immunofluorescence imaging showed that endogenous 
HSCs were located near or even in direct contact with some subsets of 
osteoblast-like cells, positive for N-cadherin, Jagged-1, and OPN [55,88, 
89]. By contrast, osteoclasts are dispensable for HSC mobilization and 
may function as negative regulators in the endosteal niche [146]. Thus, 
HSCs reside in the endosteal region where enriched with OBs and 
skeletal cells. 

The existence of the endosteal niche is further supported by trans
plant models, which are used to track HSCs homing and re-locating to 
the micro-anatomy of the BM [48]. By means of transplant models 
combined with advanced imaging technology, transplanted exogenous 
HSCs have been shown to be preferentially home to the endosteal bone 
surfaces in recipients [88,147]. A similar HSC distribution was also 
observed when human HSCs were transplanted into mice [148]. The 
HSC homing to endosteal niches may be mediated by functional local 
factors, for example, Angiopoietin 1 (Ang-1) secreted from OBs binds 
HSC receptor Tie2 for HSC retention to the niche [49]. 

2.2.2. Perivascular niche 
The complex vascular network within the BM, together with various 

perivascular stromal cells found to support haematopoiesis, lead to the 
hypothesis that HSCs may also reside near the vascular region. Kiel et al. 
found that the SLAM family of receptors could be used to label purified 
HSCs and that such HSCs were located in proximity to the sinusoid 
endothelium, rather than to the bone surface [3]. With the powerful 
imaging cytometry platform, Nombela-Arrieta et al. performed a 
comprehensive quantitative analysis of HSC distribution within BM, and 
demonstrated that most HSCs were preferentially adjacent to sinusoids, 
closer than <10 μm, confirming the concept of a perivascular niche 
[141]. Since this study, multiple distinct sets of markers, such as 
α-catulin, Homeobox protein Hox-B5 (Hoxb5) and myelodysplasia syn
drome 1 (MDS1), that each identifies HSCs to a high level of purity, 
demonstrated that HSCs are perivascular in adult BM, mainly residing 
proximal to sinusoidal blood vessels [92,149,150]. 

Besides sinusoids, HSCs have also been shown to be adjacent to BM 
arterioles. Using 3D BM confocal imaging, Kunisaki et al. have found 
that 37% of HSCs are located within a 20 μm distance from arterioles, 

Table 2 
Comparison of the endosteal niche, periarteriolar niche, perisinusoidal niche in BM.   

Endosteal niche Perivascular niche 

Periarteriolar niche Perisinusoidal niche 

Cellular Composition OBs NG2+ cells CAR cells 
Nestin+ cells LepR+ cells 

Osteoclasts Adrenergic nerve Nestin+ cells 
Arteriolar ECs Sinusoidal ECs 

Non-cellular composition ECM Fibronectin, Collagen I, Vitronectin Laminin, Collagen IV, Fibronectin 
Stiffness <40 kPa <3 kPa 
Oxygen pO2 (~1.8–2.9%) pO2 (~1.3–2.4%) 

Niche functions Modulates HSC quiescence. 
Homing for exogenous HSCs. 

Circadian oscillations of HSC egression. 
Haematopoiesis regeneration after irradiation. 

GF-abundant niche 
HSC maintenance and activation. 
HSC egression.  
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and 15% are even directly adjacent to arterioles [73]. In another parallel 
study, Acar et al. assessed the localization of α-catulin+KIT+ HSCs and 
found that approximately 10% of HSCs were closely associated with 
arteriole blood vessels, whereas approximately 80% of HSCs were 
adjacent to sinusoids. Interestingly, in this study, only a small percent
age of HSCs were located in the endosteal zone [92]. These results refine 
our understanding of HSCs localization, suggesting that most HSCs 
reside near the sinusoids, with a small frequency of HSCs residing near 
the arterioles in the BM. 

2.2.3. Endosteal niche vs perivascular niche 
There remains contention as to the true location of the HSC niche, 

leading to a model that presents the existence of multiple niches with 
different functions. It is widely believed that the endosteal niche acts as 
a quiescent niche, while HSCs in the perivascular niche are believed to 
be more ‘active’ [73,88,151]. Based on colony assays and rough isola
tion of BM fractions according to their proximity to endosteum, early 
studies mostly support the concept that the endosteal niche is enriched 
for more primitive progenitors while more differentiated cells are 
located near the central sinus [152–154]. Immune-histological analysis 
of BM specimens also supports such a differentiation gradient 
[155–157]. Furthermore, based on the difference in quiescent states and 
specific markers for LT-HSCs (Linlow c-Kit+ Sca1+ CD34− Flk2-), 
LT-HSCs are known to reside closest to endosteum and OBs, while more 
mature subsets (Linlow c-Kit+ Sca1+ CD34+ Flk2+) reside progressively 
further away and subsequently egress into the peripheral bloodstream 
via the vasculature [48,73,147,158]. Thus, these findings suggest that 
the endosteal niche and perivascular niche act differently in terms of 
HSC hierarchical residency and establish specific niches for various 
progenitors in the BM. 

The existence of this differentiation gradient and specific progenitor 
niches becomes controversial when several mature hematopoietic pop
ulations are recognized as HSC niche components, such as megakaryo
cytes [36,64,65] and macrophages [33,63]. These findings suggest that 
HSCs and their mature progenies exist together in the same BM zones or 
regions, rather than separate niches along a specific gradient within the 
microenvironment. The communication between primitive HSCs and 
their subsequent mature progenies is critical for their maintenance and 
differentiation [33,36,63–65]. Furthermore, mature OBs have been 
implicated in the maintenance and differentiation of certain lymphoid 
progenitors via CXCL12 [28,43,52,159,160], suggesting that early 
lymphoid restricted progenitors are located within the endosteal niche 
as well. Thus, whether specific niches exist for various progenitors in the 
BM and if so, how the spatial locations distribute, remains contentious. 
Moreover, it should be noted that the relatively quiescent state of the 
niche is dynamic rather than static. The endosteal niche maintains HSCs 
under normal hematopoietic conditions but promotes their expansion in 
response to stress [150]. Thus, the endosteal niche can be thought of as 
being in equilibrium whereby HSCs are normally maintained in a 
quiescent state to maintain the stem cell pool, however in response to 
stress, they can become activated to trigger HSC proliferation and dif
ferentiation to repopulate the blood and meeting physiological 
demands. 

2.2.4. Perisinusoidal niche vs periarteriolar niche 
The differences between the BM arterioles and sinusoids with respect 

to the resident cells, oxygen tension, and vessel wall permeability, 
highlights the possibility that arterioles and sinusoids in the BM could 
also establish functionally distinct perivascular niches; the periarteriolar 
niche and the perisinusoidal niche. 

In the BM, LepR+ and CAR cells have been shown to reside mainly 
around sinusoids, serving as the main source of key HSC niche factors, 
and thus contributing to HSC maintenance and activation [37,69,70, 
95]. In contrast, NG2+ and nestin+ cells are located exclusively along 
arterioles [72,73]. Though producing less functional HSC key factors 
than CAR and LepR+ cells [69,70], NG2+ and nestin+ cells are 

intriguingly shown to be near quiescent HSCs, suggesting that peri
arteriolar may construct a quiescent niche for HSCs [72,73]. Moreover, 
given that NG2+ and nestin+ cells are closely associated with sympa
thetic nerve fibres [72,104,108], these findings suggest that periarter
iolar stromal cells may participate in HSC mobilization directed by the 
nervous system. Besides the perivascular stromal cells, ECs within the 
perisinusoidal and periarteriolar niche also exhibit distinct phenotypes 
and functions [39]. Cytokines produced by AECs function differently 
compared to those from SECs [69]. Selective deletion of SCF from AECs, 
rather than from SECs, results in the reduction of HSC frequency and 
reconstitution capacity [39]. Moreover, AECs are shown to be more 
resilient to irradiation than SECs [161], and couple with sinusoid 
regeneration [162], suggesting that HSCs may depend more on peri
arteriolar niches during the regeneration of haematopoiesis after irra
diation [6]. 

The physical and mechanical microenvironments within the arteri
oles and sinusoids are not similar to each other either. AECs line the 
interior of arterioles and create a mechanical barrier between the cir
culation and the marrow [102]. In contrast, sinusoids are characterized 
by a fenestrated thin-walled endothelial cell structure, which potentially 
increases exposure of perisinusoidal HSCs to components of blood 
plasma [7,163]. As such, less permeable arterial vessels can maintain 
HSCs in a low ROS state, whereas the more permeable sinusoids promote 
HSC activation and are the exclusive site for immature and mature 
leukocyte trafficking to and from the BM [44]. Impaired endothelial 
integrity can cause HSCs to adopt a proliferative state (higher ROS level 
and glucose uptake) and consequently mobilize and apoptosis [44]. 
Thus, vessel permeability is essential in maintaining homeostasis in the 
perisinusoidal niche and periarteriolar niche. 

3. Bioengineering the bone marrow niche ex vivo 

HSCs cannot be expanded in vitro with a satisfying outcome, due to 
their quick differentiation and loss of self-renewal capacity once 
removed from the BM niche microenvironment [164]. This is thought to 
be a result of the lack of biophysical and biochemical cues from the 
native niche presented in standard synthetic culture. Recently, bioma
terial and bioengineering strategies have offered promising approaches 
to reconstruct the in vivo-like niche for HSCs in the lab/ex vivo for 
clinical use. In general, these strategies aim to create a 2D or 3D envi
ronment using material components e.g., scaffolds or hydrogels, along
side other essential niche elements such as cytokines, matrix stiffness, 
ECM components and specific cell types (Fig. 2). 

Evolution of conventional HSC cultures into complex 3D biomimetic 
BM niches. In conventional culture systems, HSCs are cultured in the 
medium supplemented with various cytokines and growth factors (I), by 
functionalizing the substrate with ECM proteins (II), and by feeder 
layers (III). In 3D cultures, HSCs alone or in co-culture with supporting 
cells, are cultured within spheroids (IV), or embedded in a polymer 
matrix or in the cavities of pores of polymer scaffolds (V), decellularized 
ECM (VI) or natural and synthetic hydrogels (VII). Some more sophis
ticated systems have been developed. Such as perfusion bioreactors to 
mimic blood flow, shear stress and nutrient delivery/waste removal 
(VIII), and organ-on-a-chip models combine various ECM, stiffnesses, 
cells, soluble factors and vascular systems into one multi-parameter 
model (IX). 

3.1. 2D suspension cultures; key components for stem cell maintenance 
and support 

3.1.1. Soluble factors for stem cell maintenance 
Soluble factors have already been shown to contribute to HSC 

maintenance within the BM niche in vivo [165]. Thus, the simplest BM 
niche engineering model could be achieved by supplying BM cytokines 
into conventional culture systems, to recapitulate in vivo biochemical 
signals. Cytokines most commonly used for HSC expansion are SCF, 
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TPO, FMS-like tyrosine kinase 3 ligand (Flt3L), angiopoietin-like pro
teins and IL-6 [8,9,166–171]. Additional factors were recently identi
fied, such as nerve growth factor (NGF) and interleukin-11, which can 
achieve better expansion of HSCs while maintaining self-renewal ca
pacity [168]. 

In addition to cytokines, several small molecules have been identi
fied to either suppress differentiation or promote self-renewal in 
dividing HSCs. Through chemical genetic screens or screening of 
extensive small molecule libraries several small molecules have already 
been identified, such as Nicotinamide [172], prostaglandin E2 (PGE2) 
[173], StemRegenin 1 (SR1) [174], PPAR-γ antagonist GW9662 [175], 
polyvinyl alcohol (PVA) [176] and matricellular protein Nephro
blastoma Overexpressed (NOV/CCN3) [176,177]. All of these have 
demonstrated the potential to induce robust proliferation in vitro. PGE2, 
nicotinamide and SR1 have passed phase I clinical trials, confirming the 
safety of ex vivo expanded cells [172,178,179]. However, later trials 
demonstrated that SR1-driven expansion is predominantly in the pro
genitor compartment, and 7 days post-HSC transplantation a transient 
burst of myeloid cells was observed. Further to this, it was noted that in 
the trial, the fraction of LT-HSC was derived from an untreated blood 
unit that was co-administered and not the SR1 expanded cells. This in
dicates the SR1-treated cells may contribute more to the progenitor pool 
than to the long-term HSC population [179,180]. Even though these 
molecules are believed to target critical pathways involved in 
self-renewal regulation, detailed mechanisms of action are still un
known. Thus, future efforts should aim to decipher the mechanisms 
within HSC self-renewal regulation and look for other novel elements, 
which are thought to promisingly support self-renewal, halt differenti
ation, promote homing, and suppress apoptosis of HSCs [181,182]. 

3.1.2. Functionalized surfaces to mimic ECM components 
In the context of functionalized surfaces, one major advancement in 

functionalizing surfaces has been to physically adhere full-length ECM 
proteins or their short functional peptides to 2D substrates, thereby 
recapitulating niche ECM composition. Dao et al. first found that when 
HSCs interacted with FN ex vivo, they could traverse back to a quiescent 

state [183]. Celebi et al., also indicated that ECM protein could direct 
HSC fates, more specifically that megakaryocyte progenitor expansion 
was supported by LM-coated surfaces, while FN supported differentia
tion into erythroid progenitors ex vivo [184]. Strikingly, a mixed 
four-component (FN, LM, Collagen I and IV) ECM coating increased 
proliferation and myeloid differentiation when compared to a 
three-component coating without collagen I, suggesting that ECM-mix 
complexes could be more advantageous for niche engineering [184]. 
These studies offer insight into ECM type-related HSC activity control in 
vitro and stress the importance of reconstituting ECM components for 
BM niche engineering. 

One study investigated HSC adhesion in terms of not only the type of 
ECM ligand but also the lateral, nanoscale distance between them. Using 
hydrogel substrates nanopatterned with ECM-peptides, it was demon
strated that for adhesion a distance lower than 45 nm was critical for the 
attachment of HSCs in substrates coated with RGD (Arginine-Glycine- 
Aspartate tripeptide, binding sequences of FN), while a larger distance 
was possible for longer full-length FN molecules [185], demonstrating 
that HSCs are sensitive to the nanoscale presentation of ECM-derived 
ligands. Efficient cell-peptide adhesion leads to the stabilisation of 
lipid rafts. Lipid-rafts are necessary to form various signalling complexes 
in HSCs and thus lead to the activation of molecular processes [186]. 
Taken together, the surface functionalization via adhesion peptide 
adsorption is suitable for the ex vivo expansion of HSCs; however, the 
type of ligand and its spatial presentation should be further evaluated 
and considered. 

3.1.3. Stromal feeder layers for stem cell support 
To recapitulate biomimetic niches, the cellular compartment must be 

considered. Co-culture of HSCs with stromal cells, typically denoted as 
“feeder cells”, is a common strategy for supporting HSC growth and 
differentiation in vitro [187–191]. The most widely used feeder cells in 
HSC cultures are MSCs [192] and ECs [30], as they express high levels of 
HSC-supporting factors compared to other stromal cell types [7,67]. 
Recent clinical trials show that umbilical cord blood (UCB) mononuclear 
cells expanded by mesenchymal cells co-culture, could significantly 

Fig. 2. Schematic drawing of the development of BM niche models.  
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improve neutrophil engraftment and platelet recovery when compared 
to unmanipulated cord blood only [193]. However, this treatment did 
not contribute to long-term engraftment and thus lead to no significant 
improvement in the survival of patients [193–195]. This is due to 
mesenchymal cell co-culture of HSCs leading to loss of primary LT-HSCs, 
which exhibit the self-renewal capacity and support long-term engraft
ment after transplantation [193,195]. Thus, conventional co-culture of 
HSCs with feeder cells does not achieve maintenance of clinically 
valuable HSCs in culture. More sophisticated devices should be designed 
to mimic other components of the native BM niche as closely as possible. 

3.2. 3D systems – the importance of mimicking in vivo-like features 

The HSC niche is a dynamic 3D microenvironment. Thus, various 3D 
tissue models have been developed to mimic in vivo-like features and are 
discussed in detail in Table 3. 

3.2.1. Spheroids 
Accumulating evidence suggests that spheroid-culture of BM stromal 

cells can facilitate cell-cell and cell-matrix interactions, generate their 
own ECM, and recapitulate in vivo gradients of oxygen and nutrients, 
thus mimicking the natural BM niche [228]. Several techniques have 
been developed for generating spheroids, including hanging drops [198, 
229], low-adherence vessels [41,196,197] and magnetic levitation [200, 
201]. For example, Lewis et al. have developed a spheroid culture sys
tem in which MSCs were labelled with magnetic nanoparticles and then 
multicellular spheroids were generated by magnetic levitation. Such an 
approach could maintain MSCs’ expression of niche phenotypic 
markers, such as nestin and Stro-1 [200,201]. Furthermore, based on 
such MSC spheroids, endosteal niche and perivascular niche models 
were bioengineered by co-culturing with OBs or ECs. It was found that 
HSCs maintain quiescent MSCs in the endosteal model whilst promoting 
active MSCs in the vascular model [202]. Similarly, some other spher
oids derived from enriched stromal cells, such as PDGFRα+ CD51+ MSCs 
and CD146+ nestin+ MSCs, were generated by low-adherence vessels 
and shown to be able to support HSC expansion, as well as maintain 
engraftment potential ex vivo [41,197]. However, several other studies 
show that MSC spheroids were not superior to the conventional methods 
in supporting HSC expansion, differentiation and engraftment potential 
[198,199]. These conflicting findings may be due to the oversaturated 
co-culture HSCs with MSCs, given that the addition of MSCs in lower 
numbers improved hematopoietic expansion until a maximum was 
reached, at which point the addition of more MSCs compromised 
expansion outcomes [197,199]. Taken together, spheroids may hold the 
potential to support HSC in vitro; however, stromal subpopulation, 
optimal MSCs/HSCs ratio and related mechanisms should be further 
evaluated. 

3.2.2. Scaffolds 
One 3D in vitro BM bioengineering approach is to recreate the 

honeycomb-like architecture of the BM using soft or rigid scaffolds. A 
number of synthetic materials have already been investigated, including 
porous tantalum [203], polyurethane (PU) [208], poly (D, L-lactide-
co-glycolide) (PLGA) [206], polyethersulfone (PES) and non-woven 
polyethylene terephthalate (PET) fabric [205]. These synthetic mate
rials are advantageous due to their large surface area for cell adhesion 
and increased porosity, allowing cell migration as well as nutrient ex
change [206]. However, synthetic polymers lack cell-binding sites to 
localise signals and are therefore less biocompatible and are less suitable 
for cell culture. To achieve better cell adhesion as well as BM bio
mimicry, ECM proteins have been physically or chemically tethered 
onto synthetic scaffolds [205,207,208]. 

Overall, these scaffolds have shown promise in supporting HSCs in 
vitro, while there are still many differences to natural BM in terms of 
scaffold pore size and scaffold matrix components [214]. Furthermore, 
additional material properties, such as fibre orientation, material 

Table 3 
Current 3D biomimetic platforms for bone marrow niche engineering.  

System Materials & Models Remarks Reference 

Spheroids AggreWell 24-well-plate 
Co-culture with MSCs. 
Without cytokine addition. 

3D spheroids 
support HSC 
expansion in co- 
culture in vitro. 

[196] 

Ultralow-adherence plate/ 
dish 
Co-culture with Nestin+

MSCs. 
Supply with cytokines in 
the medium. 

Mesenspheres can 
expand HSCs that 
are capable of 
multilineage 
reconstitution and 
serial engraftment 
in vivo. 

[41,197] 

Perfecta3D 96-well 
hanging drop plate. 
Co-culture with MSCs. 
Supply with cytokines in 
the medium. 

3D spheroid 
systems are not 
superior to 
traditional 2D 
culture. 

[198] 

Nonadherent microwell. 
Co-culture with MSCs. 
Supply with cytokines in 
the medium. 

3D spheroid 
systems are not 
superior to 
traditional 2D 
culture. 

[199] 

Magnetic levitation driven 
MSC spheroids. 
Encapsulated with MSC 
spheroids, OBs, ECs within 
Collagen I hydrogels. 

Endosteal model 
supported HSC 
quiescence, while 
vascular model 
activated HSC 
differentiation. 

[200–202] 

Scaffolds Tantalum-coated Carbone 
matrix coated by FN 

Supports expansion 
of HPSCs with 
multi-lineage 
engraftment 
capability. 

[203] 

PET functionalized with 
FN. 
Co-culture with MSCs. 
Supply cytokines within 
medium. 

Support CD34+

proliferation. 
Integrin 
engagement 
enhances the 
maintenance of 
CD34+ progenitors. 

[204,205] 

PCL coated with FN. 
Supply cytokines within 
medium. 

3D PCL scaffold 
coated with FN is 
suited for 
expansion of HSC. 

[206,207] 

Fibrins. 
Co-culture with MSCs. 

3D fibrin scaffolds 
with stromal 
support have high 
potential for 
expansion of 
CD34+ cells. 

[206] 

PLGA 
Co-culture with MSCs 

Hydrophobicity 
and porosity of the 
synthetic scaffolds 
affects cellular 
adhesion and 
expansion. 

[208] 

Carbonate apatite scaffolds 
Co-culture with OBs 

Scaffolds with 
micropore enhance 
BM-like tissue 
development. 

[209] 

Carboxymethylcellulose 
scaffolds 
Co-culture with MSCs 

Co-culture format 
preserves HSC 
function in vitro. 
Injectable in vivo 
without disrupting 
the cell-cell 
interactions 
established in vitro. 

[210] 

Decellularized 
matrix 

Matrix derived from cell 
layer in vitro. 
Co-culture MSCs and HSCs 
within such matrix. 

HSC expansion and 
MSC-HSC 
interactions 
improve within this 
matrix. 
Oxygen tension 
matters the HSC 

[211,212] 

(continued on next page) 
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hydrophobicity and stiffness, have also been shown to influence cellular 
migration and adhesion within [123,206,209,230,231]. Thus, ideal 3D 
scaffolds should consider engineering interconnected pore structures, 
controlled pore sizes, an open surface area, and surfaces that support cell 
adhesion and long-term survival. 

3.2.3. Decellularized matrices 
Currently, an increasing number of BM ECM components are being 

highlighted as contributors to HSC regulation, although it is not yet clear 
what level of complexity is required to be recapitulated in ex vivo models 
[184,214,232,233]. Thus, ECM matrices derived from cultured cells or 
tissues have been developed with the possible advantage of accurately 
mimicking the in vivo microenvironment of the BM niche. Prewitz et al. 
described a methodology that permitted reliable anchorage of 
MSC-secreted ECM to culture carriers, which could be used to generate 
BM-mimicking ECM scaffolds derived from MSCs [213]. Results indi
cated that such decellularized ECM scaffolds showed improved potential 
to expand HSCs ex vivo, providing increased cell numbers for trans
plantation without a loss of long-term engraftment capacity after 
transplantation [213]. However, decellularization of BM tissue is diffi
cult owing to its softness and liquid-like properties [213]. Recently, one 
study described one kind of ECM scaffold obtained from decellularized 
bovine BM [214]. Compared with artificial scaffold systems, these 
bio-scaffolds could preserve additional complexity of the BM niche 
including vascular structures, cellular niches and native chemical 
composition. These scaffolds provide support not only for HSC expan
sion, but also for MSCs, inducing the production of CXCL12 and SCF, and 
providing an inductive environment for multicellular co-cultures to 
mimic the natural BM niche [214]. Nevertheless, these decellularized 
matrices are often brittle to handle, making recovery of live cells diffi
cult, and are not amenable to clinically relevant scale-up. Yet, these 
systems highlight the importance of retaining native-like architecture 
and composition of the ECM in BM-niche engineering. 

3.2.4. Hydrogels 

3.2.4.1. Natural gels. Compared to scaffold-based systems, hydrogel 
encapsulation can overcome the limitation of cell-environment infil
tration. Encapsulating cells within hydrogels offers a realistic 3D 
microenvironment that represents the physical and mechanical com
plexities of the stem cell niche [10,234]. Several natural hydrogels have 
already been employed in bioengineered BM niche models, including 
collagen [216,217], fibrin [206], hyaluronic acid (HA) [227], and 
alginate [218]. These natural materials demonstrate good biocompati
bility, are highly abundant and can interact well with cells in culture. In 
addition, some of these materials, such as collagen and HA, are present 
in vivo and thus are highly biomimetic [11,235]. Several hydrogel-based 
BM niche models also implement co-culture with supportive niche cells. 
This enables the study of cellular communication between niche cells 
and HSCs. For example, Gilchirist et al. determined the effects of varying 
the ratio between HSCs and MSCs (HSC: MSC 1:0, 1:1, 1:10) on HSC 

Table 3 (continued ) 

System Materials & Models Remarks Reference 

expansion capacity 
in vitro. 

ECM matrix derived from 
cultured MSC layer, which 
anchored on immobilized 
FN surface. 

HSC expansion 
improved, while 
retaining 
engraftment 
potential and 
differentiation 
capacity after 
transplantation. 

[213] 

Decellularized bovine BM Native 3D-architec
tures are preserved. 
Improve MSC 
expression of HSC 
supportive factors, 
as well as HSC 
adhesion and 
expansion. 

[214] 

Hydrogels Collagen gels 
Encapsulated with MSCs 
and HSCs. 

MSC source affects 
their support on 
HSCs. BM-MSC 
enables HSC 
expansion better 
than UCB-MSCs. 
Autocrine feedback 
enhanced HSC 
expansion while 
paracrine signals 
from stromal cells 
increased myeloid 
differentiation. 

[215–217] 

Matrigel/Alginate gels 
Encapsulated OBs, MSC, 
endothelial cells and HSCs 
within the gels. 
Without any cytokine 
addition. 

Heterogenous cells 
together achieve 
better HSC support, 
even without 
cytokine addition. 

[218] 

Puramatrix Gel 
Encapsulated with MSCs 
and HSCs. 

Maintain HSC 
supportive marker 
expression and 
form a functional 
BM niche. 

[219] 

PEG gels functionalized 
with RGD or GFs 
(Interferon γ (IFN-γ), SCF) 
Encapsulated with MSCs 
and HSCs within the gels. 

Positive effect of 3D 
culture of MSCs on 
the preservation of 
HSC stemness 
compared to 2D. 
HSCs encapsulated 
within 3D gels 
appeared to be in 
an undifferentiated 
state. 

[220–222] 

GelMA gel functionalized 
with GFs (SCF) 
Encapsulate MSCs and 
HSCs within the gels. 

Hydrogel retained 
HSC viability with 
relatively low dose 
of SCF. 
MSC density affects 
local matrix 
remodelling, 
further influencing 
HSC quiescence. 

[223,224] 

Zwitterionic hydrogels 
Encapsulated with HSCs 
inside. 

Zwitterionic 
hydrogels have the 
potential to 
facilitate HSC 
expansion, while 
maintaining self- 
renewal. 

[225] 

GAG/PEG gels 
functionalized with GFs 
(TPO, SCF, Flt3L). 

HSCs respond to 
increased spatial 
confinement with 
lowered 
proliferation and 
cell cycling, and 
higher quiescence. 
Maintenance can be 

[226]  

Table 3 (continued ) 

System Materials & Models Remarks Reference 

achieved by 
combining 
biophysical and 
biochemical ex vivo 
culture parameters 
in 3D. 

HA/PEG gels Support HSCs in 
vitro and further 
show to be superior 
in functional BM 
organoids 
formation in vivo. 

[227]  
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lineage specification patterns and HSC proliferative cycle status [224]. 
In line with other reports, the presence of MSCs (HSC: MSC 1:1) shifted 
HSC population dynamics, with a significant increase in HSC mainte
nance over time compared to the absence of MSCs (HSC: MSC 1:0). 
However, when HSCs were co-cultured with a tenfold higher density of 
MSCs (HSC: MSC 1:10), hematopoietic differentiation toward the 
myeloid lineage was enhanced, with significantly reduced maintenance 
of early hematopoietic progenitors [224]. This may be due to over
saturation of the culture with MSCs leading to increased soluble factors 
and significant matrix remodelling, that influences HSC equilibrium. 

Hydrogels also offer a platform to study the optimal cell combination 
in the BM niche engineering. Due to the cellular complexity of the BM 
niche in vivo, combinations of heterotypic stromal cells are said to be 
more advantageous in expanding and maintaining HSCs in vitro, 
compared to a single population of stromal cells. Recently, Braham et al. 
co-cultured HSCs with heterotypic primary human cells within the 
Matrigels [218]. The results indicated that the Matrigels encapsulated 
with differentiated adipogenic, osteogenic, and endothelial cell mixtures 
could optimally support HSCs maintenance as well as haematopoiesis 
[218]. Notably, such maintenance was achieved without further cyto
kine culture medium supplementation. Thus, hydrogels encapsulated 
with an optimized heterogeneous mix of supporting primary cells, hold 
the potential to decrease the supplementation of cytokines and also 
stress the importance of cellular complexity in HSC niche engineering. 

3.2.4.2. Synthetic gels. Notably, natural hydrogels have limitations in 
user control over mechanical properties. They also have several limita
tions in their use due to batch-to-batch variability and due to being of 
animal origin. Therefore, synthetic materials have been investigated, 
with the advantage of uniform physical properties and molecular com
positions, which offer reproducible and controllable mechanical prop
erties, as well as allowing fine-tuning of degradation rates [11,236,237]. 
Commonly used synthetic materials include PAM, poly (ethylene oxide) 
(PEO), poly (ethylene glycol) (PEG), poly (l-lactic acid) (PLLA). 
Recently, another novel synthetic material, zwitterionic poly (carbox
ybetaine), has demonstrated excellent potential to expand HSCs with 
long-term repopulating ability ex vivo [225]. Moreover, synthetical 
hydrogels enable an orthogonal design allowing modification or pre
sentation of biologically active moieties [238], such as GF immobiliza
tion. By adding PEG-functionalized SCF into gelatin methacryloyl 
(GelMA) hydrogels, B. Mahadik et al. have shown that, compared to the 
continuous soluble SCF administration, GelMA hydrogels containing 
covalent SCF showed significantly higher selectivity for maintaining a 
more primitive fraction of HSCs throughout 7 days culture. It is critical 
to note that this is achieved at a ~45-fold lower SCF dose than with 
soluble delivery [223]. 

Further to this, ECM proteins can also be functionalized onto syn
thetic polymers. For example, PEG chains containing plasmin and Ma
trix metalloproteinase (MMP) substrates on one end and cell adhesion 
peptides (e.g. RGD) on the other, can be photopolymerized into hydro
gels through stepwise crosslinking, improving HSCs expansion and 
maintenance [220–222,239]. However, using just adhesive or short 
bioactive peptides might not fully replicate ECM properties. Prior to 
peptides, full-length ECM proteins present many other binding sites 
which are physiologically relevant [240]. This avenue has advantages 
given that the ECM is a supramolecular structure that is difficult to 
replicate by mixing purified ECM components. Recently, a synthetic 3D 
hydrogel was developed that incorporated full-length FN [240,241] and 
full-length LM [242]. In these studies, they functionalized the FN protein 
with PEG-maleimide or LM protein with PEG-acrylate in order to 
covalently crosslink the protein to the hydrogel network [240–242]. Due 
to the capacity of ECM proteins such as FN and LM containing potent GF 
binding domains, these hydrogels may mimic the native ECMs’ ability to 
capture GFs and cytokines secreted from support cells. Biomimicking 
strategies such as this will offer a valuable platform for BM niche 

engineering in the future. 
With the advantage of controllable mechanical properties, synthetic 

hydrogels are ideal for studying the regulation of HSC behaviour by 
biophysical signals within the niche such as stiffness and viscoelasticity. 
Gvaramia et al. encapsulated HSCs within PEG hydrogels and explored 
the impact of stiffness on HSC activities [226]. They showed that 
increased stiffness of the 3D environment resulted in increased fre
quency of quiescent cells [226]. This suggests that HSC proliferation and 
maintenance can be controlled in 3D hydrogel culture systems by opti
mizing the stiffness of the matrix. However, given the heterogenous 
gradient of stiffness exhibited within the BM [116,117], we have to 
consider the inherent substrate stiffness and the underlying gradient of 
stiffness. 

Besides stiffness, controlling the viscoelastic properties of hydrogels 
has shown great potential in harnessing the mechanosensitive response 
of stem cells [243–246]. For control of key MSC behaviours, incorpo
ration of viscous, linear polymers and steric spacing of crosslinking 
points are examples of strategies to modulate hydrogel viscoelasticity 
that can influence cell adhesion and differentiation [246–248]. How
ever, research into the impact of viscous interaction in HSC behaviours 
and HSC niche engineering is still limited. Therefore, further in
vestigations are required. In general, synthetic hydrogels may offer ideal 
material for niche modelling, with a realistic, reproducible, and 
controllable microenvironment for BM niche engineering. 

3.2.4.3. Hybrid gels. Recognizing the enhanced biological activity of 
natural hydrogels and the increased tunability of synthetic hydrogels, 
hybrid hydrogels could provide synergistic benefits for bioengineering 
[249]. One example of such hybrid hydrogels is PEG/
Glycosaminoglycan (GAG) - based hybrid hydrogels. These hybrid 
hydrogels have been successfully used for several applications [250, 
251], for instance, for MSC differentiation [252] and for cancer and 
myoblasts culture [253]. Regarding BM, the study conducted by Gvar
amia et al. developed a GAG-rich PEG hybrid hydrogel, which could 
facilitate TPO, SCF and Flt3L, presentation to HSCs [226]. Flt3L, SCF, 
and TPO are known to bind to the GAG heparin domain [254,255]. Thus, 
these cytokines could be retained within the hybrid hydrogel and sub
sequently support HSC culture even with low cytokine concentrations. 
Recently, the use of such hydrogels could maintain, expand, and 
differentiate human HSCs in vitro and were further shown to be superior 
in functional BM organoid formation in vivo [227]. Thus, by combining 
the features of synthetic and natural polymers, such hybrid hydrogels 
can offer an optimal strategy for BM niche engineering, though the 
research is currently limited. 

3.3. Combinatorial niche models 

3.3.1. Perfusion bioreactors 
In vivo, the biological delivery of cytokines is a continuous process, as 

opposed to traditional static models [256,257]. Thus, the feeding rate 
and medium exchange in the conventional cell culture protocols may 
also perturb the maintenance and proliferation of HSCs [257,258]. 
Several studies have demonstrated that frequent medium changes were 
advantageous for cultured hematopoietic cells [259–261], perhaps 
because of the active removal of cell-derived negative regulators [226, 
257,262]. In this regard, some advanced dynamic platforms have been 
developed, which integrate bioreactors to allow a direct perfusion flow 
of medium while culturing HSCs (Table 4). Perfused systems can offer 
efficient nutrient supply/waste removal while mimicking interstitial 
flow and associated shear stress [256,257]. 

Perfusion bioreactors typically consist of two compartments: the 
chamber, in which the scaffold/hydrogel is in place, and the tubing, 
which allows increased nutrients diffusion and waste removal [263]. A 
recent study from Bourgine et al. developed an in vitro perfused 3D BM 
niche system supporting the development and maintenance of human 
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Table 4 
Current combinatorial platforms for BM niche engineering.  

System Materials & Models Remarks Reference 

Perfusion 
bioreactors 

3D PEG hydrogel functionalized with RGD and flow. 
Co-culture MSCs and HSCs within the hydrogels. 

Mimics the HSC niche under steady-state and activated 
conditions. 
Perfusion enhanced HSC expansion and erythroid differentiation. 

[264] 

Hydroxyapatite scaffolds with osteoblastic MSC within one perfusion system. MSCs deposit matrix, display osteogenic differentiation, and 
maintenance of niche markers. 
HSC expansion compared to control. 
HSCs localise and adhere to MSCs on scaffolds. 

[256] 

Collagen gel with MSCs and fibroblasts, combining with lithography 
technology. 

Multicellular interactions within the perivascular niche, 
subsequently direct HSC trafficking. 

[272] 

Collagen-coated polyurethane scaffold embedded with ceramic hollow fibres. Maintain immature hematopoietic populations and represent a 
physiologically relevant system of erythropoiesis. 

[273] 

OOC models Hybrid in vivo-ex vivo model. 
Collagen gel containing osteoblastic factors. Engineering new bone in vivo, 
removing it whole and perfusing it with culture medium in a microfluidic 
device. 

Reconstitute complex in vivo niche architecture and physiology. 
LT-HSCs maintained more efficiently than static stromal feeder 
layers. 

[14,267] 

MSCs and ECs cultured within 3D decellularized bone matrix, followed by 
perfused with breast cancer cells in the microfluidic chip. 

Mimics the perivascular niche. 
Established a capillary-like vascular network in the niche, further 
study the metastatic colonization of breast cancer. 

[266] 

Culture hydroxyapatite coated zirconium oxide scaffold, comprising of MSCs 
and HSCs, within the microfluidic multiorgan chip culture for 28 days. 

Suitable platform for long-term culture of primitive HSCs. 
Molecular and structural similarity to the in vivo BM niche. 

[17] 

Culture ECM-based hydrogels encapsulated with MSC, arterial EC, sinusoid EC 
and OBs within an microfluid recirculating perfusion system. 

HSC infused–healthy CD34+ cells, lymphoma cells, and 
leukaemia cells exhibited a marked preference for homing to 
particular niche constructs. 

[265] 

A channel comprised of fibrin gel containing CD34+ cells and MSCs, and a 
parallel channel lined by human vascular endothelium and perfused with 
culture medium. 

Establish perivascular niche to study the chemotherapy related 
hemotoxic and haematopoiesis related disease. 

[16] 

Osteoblastic MSCs on the bottom surface of the device, and subsequent a fibrin- 
collagen hydrogel network containing EC and MSC on the top created an 
interconnected 3D microvascular network. 

Presence of the endosteal niche decreased the proliferation and 
increased maintenance of CD34+ HSCs. 
A high-throughput multi-niche platform. 

[268]  

Fig. 3. Examples of BM niche models using combinational strategies.  
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BM analogue [256]. Their approach was to co-culture HSCs with MSCs 
in vitro within BM mimicking porous hydroxyapatite scaffolds by 
perfusion of the medium through a bioreactor [256]. Such engineered 
systems partially recapitulated structural and functional features of the 
human BM in defined and tuneable settings [256] (Fig. 3I). Further
more, such a device allowed the expansion and maintenance of HSCs 
with in-vivo engraftment and multi-lineage reconstitution potential. In 
another parallel study, HSCs and MSCs were co-cultured in an RGD 
peptide functionalized PEG-hydrogel under a perfusion system [264]. 
This system could mimic the niche in active or steady-state conditions, 
which either supported HSC differentiation or HSC maintenance. 

3.3.2. OOC models 
In the last few years, OOC platforms have been developed and 

employed, in which organoid structures are combined within a micro
fluidic perfusion network [15]. Such microfluidic platforms permit 
precise manipulation of the microenvironment to deliver soluble factors 
to cells [15,265]. In terms of the BM, there have been several examples 
of attempts to produce an OOC system that captures the BM niche on a 
chip system [14,16,17,266] (Table 4). Torisawa et al. engineered a 
BM-on-a-chip device by implanting a scaffold into a mouse and allowing 
it to be populated by murine cells [14,267]. This construct was then 
removed and placed in a microfluidic device, which could continuously 
supply nutrients and medium. Such devices have been shown to support 
the maintenance of primitive hematopoietic cells and faithfully mimic 
the natural physiological response of living BM to clinically relevant 
doses of γ-radiation, whereas conventional 2D stromal-supported cul
tures do not [14,267]. Similarly, Sieber et al. developed another novel 
3D co-culture model without hybrid in vivo implantation [17]. This 
device comprised of human MSCs and HSCs within the microfluidic OOC 
model enabled successful HSC culture for a period of 28 days [17]. The 
cultured HSCs were still functional and capable of differentiating into 
hematopoietic progenitors, indicating stable maintenance of functional 
HSCs within such a 3D model (Fig. 3II). Nonetheless, the biology of these 
systems is significantly simplified by only inducing one single niche cell 
type (e.g., MSCs) to test the ability to support primitive HSCs. The 
addition of some other cell types should be considered. 

Recently, one multi-niche microfluidic BM on-a-chip device was 
introduced, by sorting out four major BM niche cells (SECs, AECs, MSCs 
and OBs), and subsequently engineering them into four major distinct 
niches (perisinusoidal, periarterial, mesenchymal and osteoblastic 
niche) within HA and gelatin-based hydrogels. These four niche con
structs were housed within one single microfluidic device system [265]. 
With this multi-niche platform, they showed that healthy CD34+ cells, 
lymphoma cells, and leukaemia cells, exhibited a marked preference for 
homing to particular niche zones respectively [265]. Thus, BM on-a-chip 
devices provide an ideal platform to study BM physiologies and pa
thologies [16,265,268]. It is important to note that such OOC devices are 
not as structurally and functionally sophisticated as tissues in vivo. 
Furthermore, all chips should be experimentally validated in terms of 
their ability to recapitulate the key physiological properties of the 
particular organ, or specific pathophysiology of the disease state, and to 
do it consistently and robustly. However, we are beginning to see the 
development of more sophisticated, reproducible, OOC systems and 
even Multi-Organ on-Chip or Body on-Chip [16,268–270] (Fig. 3III). 
These enable more biologically relevant modelling of BM pathophysi
ology than traditional 2D cell culture, or of those than cannot be 
effectively recreated in animal models. Future development will aim to 
see these NATs used as an alternative to animal testing. 

Advanced technologies to bioengineer BM niche models. (I) BM 
niche model in a perfusion bioreactor system. Such system was shown to 
support HSC repopulation capacity and engraftment in the long term. 
Reproduced with permission from Ref. [256]. (II) BM niche model in 
Organ on Chip. Such platform was shown to remain HSCs differentiation 
capacity after 4 weeks culture. Reproduced within permission from 
Ref. [17] Copyright 2017 John Wiley and Sons. (III) Ongoing and future 

work in integrating BM models with different OOC models together, to 
be more in line with the Multi-Organ on Chip and Body on Chip phi
losophy. Reproduced with permission from Ref. [271] Copyright 2020 
Elsevier, reproduced under the terms of the Creative Commons CC-BY 
license. 

3.4. Significance and applications of BM niche models 

3.4.1. HSC expansion ex vivo 
Based on HSC hematopoietic functions, whole BM or HSC fractions, 

including most recently gene-edited HSCs [274,275], can be taken from 
patients (autografts) or matched donors (allografts), and subsequently 
transplanted to recipients to reconstitute ablated or injured hemato
poietic systems. This process is known as HSC transplantation therapy 
(HSCT) and is currently a widely used therapy for the treatment of many 
blood-related diseases, such as malignancies (leukaemia, multiple 
myeloma etc.) and inherited blood cell diseases (immune deficiencies, 
hemoglobinopathies etc.) [276–279]. However, there is currently unmet 
demand for matched donors. Only 53% of searches resulted in matched 
donations in the UK in 2015 [280]. Further, problems associated with 
low donor cell yields can often lead to the requirement of multiple do
nors, or graft failure [281]. The lack of reliable methods for HSC 
expansion and the limited supply of available HSCs presents a major 
obstacle for the wider application of HSCT. Thus, efficient expansion 
and maintenance of HSCs remain a major goal in the field [282]. 

Engineering ex vivo models to mimic the in vivo niche microenvi
ronment holds promise in drawing back on these current limitations to 
adequately expand HSCs [169]. As discussed above, an artificial BM 
niche able to sufficiently recapitulate the necessary properties of the in 
vivo BM niche should in theory be able to accommodate HSC expansion 
ex vivo [164] (Fig. 4I). Thus, these systems can ultimately be developed 
to expand autologous patient HSCs ex vivo, followed by transplantation 
back to the donor without the need to undergo myeloablative therapy or 
other immunosuppressant treatments. This will enable higher yields and 
negate the need for a donor, by-passing the need to find a human 
leukocyte antigen (HLA) match and avoiding risks of graft-versus-host 
disease. 

3.4.2. BM platform to model niche biology and pathophysiology 
Current studies of HSC biology and haematopoiesis are mostly reliant 

on mouse models. Though mouse models offer an invaluable substitute, 
disparities do exist in the context of molecular, cellular and physiolog
ical mechanisms [19]. Thus, to overcome the aforementioned limita
tions, BM niche models provide an optimal platform for HSC biology 
study (Fig. 4II). Moreover, despite our enhanced understanding of HSC 
biology over the past several decades, many processes of HSC regulation 
still remain inconclusive, for instance, HSC self-renewal processes 
remain to be fully defined at the molecular level [80,283]. Artificial BM 
niches capable of maintaining populations of HSCs ex vivo will allow 
niche cells to be more easily studied, with modern bioinformatics 
technologies shedding light on the molecular regulation within the 
HSCs’ activities. 

Aside from using in vitro HSC niche models to study healthy hae
matopoiesis, BM models can also be used to investigate disease pathol
ogy in vitro, allowing for a greater understanding of how diseased cells 
function. Current evidence suggests that niche alterations may act as 
oncogenic drivers or facilitators of malignancy [284,285]. In addition, 
malignant cells can transform the microenvironment into a leukemic 
niche to support their proliferation and support leukemogenesis [285, 
286]. The crosstalk between malignant and/or pre-malignant cells and 
their niches acts as a key contributor to disease initiation, progression 
and resistance to therapy (as reviewed in Ref. [285]). However, most 
mechanisms remain to be elucidated. Artificial in vitro BM niche models 
offer a platform to study cellular interactions in detail and to explore 
therapeutic targets, which further deepen our understanding of the BM 
niche’s role in BM-related diseases. 
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3.4.3. Manufacture of mature blood cells ex vivo 
The manufacture of mature blood cells ex vivo, such as erythrocytes 

and platelets, is particularly of interest for transfusion medicine. 
Currently, blood collection is largely dependent on volunteer donations, 
yet there remains an unmet demand for blood in the clinic [287]. 
Volunteer donations also risk the potential transmission of viruses and 
prions during the collection, culture or transfusion, leading to 
post-transfusion infection and thus to potential further complications 
[288,289]. Therefore, there is a growing need to create alternative 
methods for blood cell production to address these challenges and 
improve transfusion outcomes. 

As discussed previously, the unique architecture and composition of 
the BM niche can affect resident progenitor cells’ differentiation and 
function. BM niche models have been employed to guide HSC differ
entiation and produce clinical-grade blood cells in vitro. Several BM 
niche models have proposed their potential use for erythropoiesis 
(erythrocyte production) [273,290] and megakaryopoiesis (platelet 
production) [291,292] (as reviewed in Ref. [293]). However, each blood 
transfusion unit approximately contains 3 × 1011 platelets, and 
currently reported systems demonstrate efficiencies of platelets 
collected from their systems as being well below this number [292]. Yet, 
these models provide invaluable insight for studying the fundamental 
mechanisms of erythropoiesis and megakaryopoiesis in vitro, which can 
offer potential targets for making blood cell units on demand for 
transfusions in the future. 

These studies demonstrate the potential for the development of more 
efficient BM models that may enable blood production on a clinically 
valuable and commercially viable scale. However, this is a complex and 
multidisciplinary task, requiring collaboration between engineers, 
chemists, biologists, and clinicians. 

3.4.4. In vitro drug screening platforms 
In recent decades, advances in the molecular understanding of dis

ease processes have underpinned new potential therapeutic drugs. 
However, there is still a lack of in vitro models to accurately predict drug 
efficiency and potential drug toxicity prior to in vivo studies and clinical 
trials [294,295]. For example, haemato-toxicity (haem-tox) is a very 
common and unfortunate side effect of anti-cancer drugs with more than 
50% of cancer drugs promoting haem-tox [296]. However, common 
simplified cell models do not recapitulate functional aspects of in vivo 
cell microenvironments, and animal models exhibit differences in 
physiology and drug responses compared to humans, leading to poor 
translation and high drug attrition rates in Pharma [19,297]. This is 
driving Pharma to look to NATs [294], to build using human cells and 
likely requiring the tissue complexity that stem cells and tissue engi
neering strategies can produce [298]. 

In vitro niche models provide an optimal pre-clinical platform to 
predict drug efficiency and toxicity (Fig. 4III). Recently, advances in 
biomedical engineering techniques lead to the development of some 
more sophisticated bioengineered models for drug screening, including 
microfluidics [299,300], xenograft models [301,302], OOC models 
[16], multi-organ-on-chips [269,270] and organoid systems [303]. 
These models have shown great advantages and better predictive 
powers over conventional in vitro tools, without the need for animal 
studies. One critical feature of these studies is that these models reca
pitulate the complex tissue structures and enable the crosstalk between 
cells and niche microenvironments, which are pivotal to mediating the 
maintenance and progression of cancer cells as well as drug resistance in 
vivo [285,304]. These niche models can be further customized by 
incorporating primary patient-derived cells, which provide a personal
ized model to predict the individualized response to e.g. chemotherapy 
regimens [299]. These in vitro systems, therefore, offer potential alter
natives to animal studies which are still highly favoured in the world of 

Fig. 4. Potential applications of an in vitro BM niche model.  
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academia yet present numerous limitations and high costs [269,270]. 
Perhaps it is time for researchers and regulators to discuss the need for 
animal studies vs potential alternatives such as these artificial models 
which may offer better promise in recapitulating human responses [19]. 

3.4.5. Gene therapy 
Recent advances in gene-editing technology have resulted in the 

development of the clustered regularly interspaced short palindromic 
repeat (CRISPR)-associated 9 (Cas9) nuclease system [305,306]. This 
system can be used to perform gene therapy, a process in which mal
functioning genes in cells affected by genetic disorders are corrected or 
counteracted in vitro, before the gene-corrected cells are autologously 
transplanted back into the patient they were originally harvested from, 
conveniently avoiding transplant rejection in the process [307]. Several 
recent clinical trials have also shown CRISPR to be a safe and effective 
tool in the treatment of various severe inherited diseases of the blood 
and solid cancers [274,275,307–309]. 

Applying this technology to the BM, specifically, HSCs has been 
shown to have vast potential for curing BM-associated disorders [307]. 
However, this approach is limited by delayed recovery periods, which 
are reportedly associated with the ex vivo culture of the gene-corrected 
HSCs [310,311]. The solution is the development of improved ex vivo 
culture conditions, such as bioengineered BM models, which can 
improve gene therapy success rates, while simultaneously expanding the 
healthy HSC population for implantation (Fig. 4IV). Further, despite the 
overall safety and efficacy of the CRISPR-Cas 9 system, risks of geno
toxicity and off-target effects do exist, limiting its clinical applications 
[307,312]. A fabricated ex vivo BM niche model will provide a platform 
on which to study the accuracy, precision, and safety of gene-editing on 
HSCs, thereby improving gene therapy success on HSCs. 

BM niche models can be applied to reconstitute ex vivo the stem cell 
regulatory environment. We propose that the resulting models will have 
important relevance in the following field. (I) Efficient ex vivo HSC 
expansion and blood cell production will offer better, increased and 
potentially less costly cell sources for research and clinical use. (II) 
Systems that model HSC and niche cellular processes permit to study at 
the molecular level, such as haematopoiesis and self-renewal mecha
nisms. More humanized modelling of diseases such as leukaemia, allow 
the study of disease progression and therapeutic targets. (III) More hu
manized methods for screening drug efficacy and pharmaceutical leads, 
negating the need for early animal models and reducing the number of 
high risks fails to enter costly clinical trial stages. (IV) Gene editing 
platforms would increase efficacy and promote the expansion of the 
therapeutic cells. 

4. Future challenges 

Over the past several decades, advances in imaging and genetic tools 
have rapidly increased our understanding of HSC niches and the specific 
cellular and molecular components that regulate HSC activities. How
ever, much remains unclear and further investigations are required:  

1. The number of currently identified stromal BM niche cells is at least 
twenty times greater than the number of HSCs, suggesting that 
mesenchymal derived populations require further defining or that 
the establishment of a bona fide niche requires the participation of 
other cellular constituents [158]. It is therefore important to eluci
date the physical and functional interplay between each specific 
stromal cell type and HSCs, to help better understand HSC 
regulations.  

2. Mechanotransduction plays a pivotal role in stem cell biology [313, 
314]. However how mechanical stimulation regulates the BM niche 
is still unknown. Recently, Shen et al. have uncovered that 
mechano-stimulation regulated SCF secretion from niche stromal 
cells, thereby controlling HSC maintenance and BM immune func
tion [315]. This work provides an exciting possibility that 

mechano-sensing in niche-forming cells might contribute to the 
maintenance of HSCs and their progenitor cells. More efforts should 
be taken to decipher the detail of mechano-sensing stimulation 
within the niche.  

3. Bioactive metabolites have the potential to become important 
research tools that can be used to control the differentiation and 
activities of HSCs [316] in combination with traditionally used GFs. 
It would therefore be interesting to investigate whether these me
tabolites are involved in regulating the BM niche and HSC activities 
in vivo. 

As for BM niche modelling in vitro, we are only just beginning to 
appreciate the critical role of material-driven, engineered BM con
structs. Though recent advances in material science, bioengineering, 
and biotechnology have provided details on how to adequately mimic 
aspects of the multifaceted HSC niche microenvironments, many chal
lenges remain:  

1. Re-creating the complexity of the multi-niche BM environment in 
one single culture system [317]. As discussed above, several pa
rameters need to be taken into consideration to achieve this: (i) 
biochemical conditions, (ii) cellular composition, (iii) binding sites 
for cell attachment, (iv) nano topography and –patterning, (v) stiff
ness gradients, (vi) 3D architecture, and (vii) suitable supply of nu
trients and oxygen [169]. However, the incorporation of all these 
complex parameters into one single model followed by reliable 
experimental readouts is a major challenge for BM niche model 
development.  

2. Engineering microenvironments to promote HSC proliferation whilst 
maintaining multipotency ex vivo. Current in vitro models usually 
utilize co-cultures of HSCs with various BM cell types [265,268]. 
However, these niche cells still aren’t able to promote the 
self-renewal of clinically valuable LT-HSCs and lead to a rapid 
decline of stemness.  

3. Engineering ready-to-use niches for research and clinic. Currently, 
manufacturing and experimental implementations are relatively 
costly or complex, making such platforms inaccessible and not 
conducive to widespread use. Thus, we need to figure out solutions to 
make components low-cost, reusable and/or easy to dispose.  

4. Most critically, as the number of models increases, they can exhibit 
significant variation and inconsistency between different 
manufacturing batches, different laboratories and even different 
fabricators in the same group [318]. Functionality becomes more 
complex and generated data carries artefactual and non-translatable 
risks. Standardised guidelines need to be worked out to evaluate the 
safety and efficiency of various models. 

Thus, for applications of BM niche models, there is still a long way to 
go from concept to lab bench to bedside. 

5. Conclusion 

Taken together, the past decade has seen extraordinary progress in 
understanding the BM niche and the specific cellular components and 
molecular processes that regulate HSC activities [7]. However, much 
remains to be elucidated before the enormous potential of these factors 
is fully harnessed. Based on a better understanding of niche-specific 
factors regulating HSC activities in vivo, several novel studies have 
suggested that reconstructing the BM niche ex vivo might be feasible by 
means of advanced bioengineering technology. These advances would 
enable the development of improved, chemically, and physically 
defined, culture systems. The design of ex vivo HSC niche models and 
their application will ultimately improve the research and clinical use of 
these valuable cell types. As more is uncovered about the advantages 
and limitations of engineered human models, we encourage the 
continued collaboration between biologists, engineers, and clinicians to 
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develop more BM niche models and undoubtedly various modalities, 
strategies, and methodologies will emerge for humanized models in the 
near future. 
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[3] M.J. Kiel, Ö.H. Yilmaz, T. Iwashita, O.H. Yilmaz, C. Terhorst, S.J. Morrison, SLAM 
family receptors distinguish hematopoietic stem and progenitor cells and reveal 
endothelial niches for stem cells, Cell 121 (2005) 1109–1121, https://doi.org/ 
10.1016/j.cell.2005.05.026. 

[4] R. Schofield, The relationship between the spleen colony-forming cell and the 
haemopoietic stem cell, Hypothesis Blood Cells 4 (1978) 7–25. 

[5] S.J. Morrison, D.T. Scadden, The bone marrow niche for haematopoietic stem 
cells, Nature 505 (2014) 327–334, https://doi.org/10.1038/nature12984. 

[6] G.M. Crane, E. Jeffery, S.J. Morrison, Adult haematopoietic stem cell niches, Nat. 
Rev. Immunol. 17 (2017) 573–590, https://doi.org/10.1038/nri.2017.53. 

[7] S. Pinho, P.S. Frenette, Haematopoietic stem cell activity and interactions with 
the niche, Nat. Rev. Mol. Cell Biol. 20 (2019) 303–320, https://doi.org/10.1038/ 
s41580-019-0103-9. 

[8] J. Jaroscak, K. Goltry, A. Smith, B. Waters-Pick, P.L. Martin, T.A. Driscoll, 
R. Howrey, N. Chao, J. Douville, S. Burhop, P. Fu, J. Kurtzberg, Augmentation of 
umbilical cord blood (UCB) transplantation with ex vivo-expanded UCB cells: 
results of a phase 1 trial using the AastromReplicell system, Blood 101 (2003) 
5061–5067, https://doi.org/10.1182/blood-2001-12-0290. 

[9] M. Gordon, Hematopoietic Stem Cell Protocols, 2002, https://doi.org/10.1038/ 
sj.bmt.1703541. 

[10] G. Ingavle, A. Vaidya, V. Kale, Constructing three-dimensional 
microenvironments using engineered biomaterials for hematopoietic stem cell 
expansion, Tissue Eng. B Rev. 25 (2019) 312–329, https://doi.org/10.1089/ten. 
teb.2018.0286. 

[11] A.B. Bello, H. Park, S.H. Lee, Current approaches in biomaterial-based 
hematopoietic stem cell niches, Acta Biomater. 72 (2018) 1–15, https://doi.org/ 
10.1016/j.actbio.2018.03.028. 

[12] J.S. Choi, B.P. Mahadik, B.A.C. Harley, Engineering the hematopoietic stem cell 
niche: frontiers in biomaterial science, Biotechnol. J. 10 (2015) 1529–1545, 
https://doi.org/10.1002/biot.201400758. 

[13] T.A. Duncombe, A.M. Tentori, A.E. Herr, Microfluidics: reframing biological 
enquiry, Nat. Rev. Mol. Cell Biol. 16 (2015) 554–567, https://doi.org/10.1038/ 
nrm4041. 

[14] Y. Torisawa, C.S. Spina, T. Mammoto, A. Mammoto, J.C. Weaver, T. Tat, J. 
J. Collins, D.E. Ingber, Bone marrow–on–a–chip replicates hematopoietic niche 
physiology in vitro, Nat. Methods 11 (2014) 663–669, https://doi.org/10.1038/ 
nmeth.2938. 

[15] D. Huh, G.A. Hamilton, D.E. Ingber, From 3D cell culture to organs-on-chips, 
Trends Cell Biol. 21 (2011) 745–754, https://doi.org/10.1016/j.tcb.2011.09.005. 

[16] D.B. Chou, V. Frismantas, Y. Milton, R. David, P. Pop-Damkov, D. Ferguson, 
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