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a b s t r a c t

The cover time of a Markov chain on a finite state space is the expected time until all
states are visited. We show that if the cover time of a discrete-time Markov chain with
rational transitions probabilities is bounded, then it is a rational number. The result is
proved by relating the cover time of the original chain to the hitting time of a set in
another higher dimensional chain. We prove this result in a more general setting where
k ≥ 1 independent copies of a Markov chain are run simultaneously on the same state
space.
CrownCopyright© 2022 Published by Elsevier B.V. This is an open access article under the

CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction and results

Let (Xt )t≥0 be a discrete-time Markov chain with transition matrix P on a state space Ω , see Aldous and Fill (2002),
evin and Peres (2017) for background. We say a chain is rational if all its transition probabilities are rational numbers,
.e. P(x, y) ∈ Q for all x, y ∈ Ω . The stopping time τcov is the first time all states are visited, that is

τcov := inf

{
t ≥ 0 :

t⋃
k=0

{Xk} = Ω

}
.

For x ∈ Ω , let Ex [ τcov ] = E [ τcov | X0 = x ] be the cover time from x, that is, the expected time for the chain to visit all
tates when started from x ∈ Ω .
Along with mixing and hitting times, the cover time is one of the most natural and well studied stopping times for a

arkov chain and has found applications in the analysis of algorithms, see for example Alon et al. (2011), Aldous and Fill
2002, Ch. 6.8) and Levin and Peres (2017, Ch. 11). It is clear that the stopping time τcov is a natural number, however it is
ot so clear whether the cover time Ex [ τcov ] is rational, even if the transition probabilities are rational. Our main result
hows that, under some natural assumptions, the cover time of a rational Markov chain is rational.

heorem 1. Let (Xt )t≥0 be a discrete-time rational Markov chain on a finite state space Ω . Then, for any x ∈ Ω such that
x[τcov] < ∞, we have Ex[τcov] ∈ Q.

The assumption that Ω is finite is necessary to ensure the cover time is bounded. Recall that a Markov chain is
rreducible if for every x, y ∈ Ω there exists some t ≥ 0 such that Pt (x, y) > 0, where Pt (x, y) denotes the probability
chain started at x is at state y after t ≥ 1 steps. Theorem 1 does not require irreducibility, just that the cover time

rom the given start vertex is bounded. An example of a non-irreducible Markov chain to which we can apply Theorem 1
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Fig. 1. Example of a non-irreducible Markov chain on seven states where the cover time from x is finite and from any other vertex the cover time
s unbounded/undefined.

s given in Fig. 1. In this example the cover time from x is bounded however, the cover time from any other vertex is
unbounded/undefined, as if a walk starts from any other vertex, then x (and possibly also the vertex immediately right
f x) cannot be reached.
For a concrete example of why rational transition probabilities are necessary in Theorem 1, if one fixes any real number

≥ 1 then the two state chain with transition matrix given by

P =

(
1 − 1/r 1/r
1/r 1 − 1/r

)
, (1)

as cover time r . It is well known, see for example Levin and Peres (2017, Lemma 1.13), that the cover time of finite
rreducible Markov chain from any start vertex is bounded. This fact, and restricting the example given by (1) to r ∈ Q,
mplies the following corollary to Theorem 1.

orollary 2. The set of cover times attainable by finite discrete-time irreducible rational Markov chains is (Q∩ [1, ∞))∪ {0}.

We now introduce multiple Markov chains, which have been studied for their applications to parallelising algorithms
riven by random walks, see Alon et al. (2011) and subsequent papers citing it. For any k ≥ 1, let Xt =

(
X (1)
t , . . . , X (k)

t
)
be

he k-multiple of a Markov chain P where each X (i)
t is an independent copy of the chain P run simultaneously on the same

tate space Ω . The k-multiple of P is itself a Markov chain (with transition matrix K) on Ωk with transition probabilities

K(x, y) =

k∏
j=1

P(x(j), y(j)), for all x, y ∈ Ωk.

s before, we denote the conditional expectation E(x(1),...,x(k)) [ · ] := E
[
·
⏐⏐X0 = (x(1), . . . , x(k))

]
, where X (i)

0 = x(i) ∈ Ω is
he start state of the ith walk for each 1 ≤ i ≤ k. We let the stopping time τ (k)

cov = inf{t :
⋃t

i=0{X
(1)
i , . . . , X (k)

i } = Ω} be the
irst time every state in Ω (not Ωk) has been visited by some walk X (i)

t . We then let Ex
[
τ (k)
cov

]
denote the k-walk stopping

ime from x ∈ Ωk. Note that this is not simply the cover time of the chain K. The multiple walk cover time can have
ubtle dependences on k and the host underlying Markov chain, see Alon et al. (2011).
We show that Theorem 1 also holds in the more general setting of k-multiple Markov chains.

heorem 3. Let k ≥ 1 and (Xt )t≥0 be the k-multiple of a discrete-time rational Markov chain on a finite state space Ω . Then
or any x ∈ Ωk such that Ex

[
τ (k)
cov

]
< ∞ we have Ex

[
τ (k)
cov

]
∈ Q.

Theorem 1 is the special case k = 1 of Theorem 3, thus it suffices to prove Theorem 3.

2. Proofs

In this section we shall prove Theorem 3. The first part of the proof (covered in Section 2.1) is to show the expected
time to first visit any set of states (hitting time) in a rational Markov chain is rational. Then, in Section 2.2, we show for
any k ≥ 1 and P, the multiple walk with transition matrix P can be coupled with a higher dimensional Markov chain Q
on a state space V where |V | ≤ |Ω|

k
· 2|Ω|. The coupling shows that the first time all states in Ω have been visited by at

least one of the k walks has the same distribution as the first visit time a specific set C ⊂ V is visited in Q.
2
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.1. Rationality of hitting times

For S ⊆ Ω , a subset of the state space of a Markov chain P, let the stopping time

τS := inf {t ≥ 0 : Xt ∈ S} ,

be the first time S is visited. If S = {s} is a singleton set we abuse notation slightly by taking τs to mean τ{s}. For x ∈ Ω ,
et Ex [ τS ] be the expected hitting time of S ⊆ Ω for a chain started from x. The next result is the hitting time analogue
f Theorem 1.

roposition 4. Let P be a discrete-time rational Markov chain on a finite state space Ω . For a non-empty set S ⊆ Ω let
(S) = {x ∈ Ω : Ex [ τS ] < ∞}. Then for any S ⊆ Ω and x ∈ B(S) we have Ex[τS] ∈ Q.

Observe that if P is irreducible then B(S) = Ω for any S ⊆ Ω by Levin and Peres (2017, Lemma 1.13). Before proving
roposition 4 we give some definitions and prove an elementary lemma.
For a field F and integers n,m ≥ 1 let Fn and Fm×n denote the set of n-dimensional vectors and m×n-dimension

atrices respectively. Let In denote the n×n identity matrix.

emma 5. Let A ∈ Qn×n be non-singular and b ∈ Qn. Then there exists a unique vector x ∈ Qn such that Ax = b.

roof. Since A is non-singular there exists a unique solution x ∈ Rn to the linear system given by Ax = b. Also, again
ince A is non-singular, we can compute A−1 by Gaussian elimination. Since all entries of A are rational, all multiplications
reformed during the Gaussian elimination will be rational. Thus, as there are only finitely many row additions and
ultiplications, A−1

∈ Qn×n. Since b ∈ Qn, we conclude that x = A−1b ∈ Qn. □

We now use this lemma to prove Proposition 4.

roof of Proposition 4. Observe that B(S) ̸= ∅ since S ⊆ B(S) and Es [ τS ] = 0 for all s ∈ S. Let b := |B(S)|. Now, each
ntry of the vector h := (Ex[τS])x∈B(S) is bounded and h is a solution to the following set of linear equations

Ex[τS] =

{
1 +

∑
y P(x, y) · Ey[τS] if x ̸∈ S

0 if x ∈ S.

his can be expressed as Ah = b where b ∈ {0, 1}b and A := (Ib − M) ∈ Qb×b for M ∈ Qb×b given by M(i, j) = P(i, j) if
, j /∈ S and 0 otherwise. We shall show that

(i) all rows i satisfy |A(i, i)| ≥
∑

j̸=i |A(i, j)|, and
(ii) for each row r0, there exists a finite sequence of rows r0, r1 . . . , rt such that A(ri−1, ri) ̸= 0 for all 1 ≤ i ≤ t and

|A(rt , rt )| >
∑

j̸=rt |A(rt , j)|.

bserve that Condition (i) holds since M is a sub-matrix of P.
For Condition (ii), note that for every row s ∈ S we have

∑
j M(s, j) = 0. Thus |A(s, s)| >

∑
j̸=s |A(s, j)| for any row

∈ S. The fact that each row r0 corresponds to a state in B(S) implies that, for any row r0, there exists some rt ∈ S and
sequence of states/rows r0, r1 . . . , rt such that A(ri−1, ri) = −P(ri−1, ri) ̸= 0 for each 1 ≤ i ≤ t , thus Condition (ii) is
atisfied.
Since A satisfies (i) and (ii) it is weakly chained diagonally dominant, thus by Azimzadeh and Forsyth (2016, Lemma

.2) A is non-singular. Thus, by Lemma 5, h ∈ Qb. □

.2. Encoding cover times as hitting times

Let P be a Markov chain on a state space Ω with transition matrix P = (P(x, y))x,y∈Ω and P(Ω) = {S ⊆ Ω} be the
ower-set of Ω . For k ≥ 1 independent walks with transition matrix P on the same state space Ω we define the k-walk
uxiliary chain Q := Q(P, k) to be the Markov Chain on state space V := V (Ω, k) given by

V =
{
((x1, . . . , xk), S) : S ⊆ Ω, xi ∈ S for all 1 ≤ i ≤ k

}
⊆ Ωk

× P(Ω),

ith transition matrix specified by

Q
(
(x, S), (y, S ∪ {y(1), . . . , y(k)})

)
= P(x(1), y(1)) · · · P(x(k), y(k)), (2)

or any S ⊆ Ω and x, y ∈ Ωk where x = (x(1), . . . , x(k)) and y = (y(1), . . . , y(k)).
Fig. 2 shows an example of the auxiliary chain Q of a single Markov chain P on three states, that is the case k = 1.

taying within the confines of k = 1 case for simplicity, one may think of Q as inducing a directed graph consisting
f many ‘layers’, where each layer is a copy of P restricted to a subset of Ω . These layers are linked by directed edges
hich are crossed when a new state not in the current layer is first visited. Thus, since a sequence x , x , . . . in the first
0 1

3
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Fig. 2. This figure shows an example of a Markov chain P on three states (bottom right) and its associated auxiliary chain Q(P, 1), where the set C
rom Lemma 6 is shown in the red shaded ellipse.

omponent of V evolves according to P by (2), each layer encodes which states of chain have been visited so far by a
rajectory in P.

Similar constructions to Q(P, 1) were used by the author and co-authors in the study of the Choice and ε-TB random
alks, which are walks where a controller can influence which vertices are visited. In particular they were used to
how that there exist optimal strategies for covering a graph by these walks which are time invariant in a certain
ense (Georgakopoulos et al., 2022) and to show the computational problem of finding optimal strategies to cover a
raph by these walks is in PSPACE (Haslegrave et al., 2022).
The next result equates the cover time by k ≥ 1 multiple Markov chain with transition matrix P to the hitting time of

specific set in the auxiliary chain Q(P, k). For clarity we use the notation EP
·
[ · ] to highlight the chain, in this case P, in

which the expectation is taken.

Lemma 6. Let P be a Markov chain on Ω , and let k ≥ 1 be an integer. Let Q := Q(P, k) be the associated k-walk auxiliary
hain with state space V := V (Ω, k), and set C = {(u, Ω) : u ∈ Ωk

} ⊂ W. Then, for any x = (x(1), . . . , x(k)) ∈ Ωk and real
umber a, we have

PP
x
[
τ (k)
cov ≥ a

]
= PQ

(x,{x(1),...,x(k)}) [ τC ≥ a ] .

onsequently, EP
x
[
τ (k)
cov

]
= EQ

(x,{x(1),...,x(k)}) [ τC ], for any x ∈ Ωk.

We must introduce some notation before proving Lemma 6. For real valued random variables X, Y we say that Y
tochastically dominates X if P [ Y ≥ a ] ≥ P [ X ≥ a ] for all real a, and we denote this by X ⪯ Y . Thus, if X ⪯ Y and Y ⪯ X ,
hen X and Y are equidistributed.

roof of Lemma 6. We first show how any trajectory (Xt )t≥0 of a k-multiple of the Markov chain P can be coupled with
trajectory (Yt )t≥0 of the auxiliary Markov chain Q(P, k) given by (2). To begin, given any start vector X0 = x0 ∈ Ωk,
here x = (x(1), . . . , x(k)), we set Y = (x , {x(1), . . . , x(k)}) ∈ V . Then, given a trajectory (X )T = (x )T we set
0 0 0 0 0 0 0 t t=0 t t=0

4
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Y
t =

(
xt ,

⋃t
i=0

⋃k
j=1

{
x(j)i

})
for each 0 ≤ t ≤ T . Now by (2),

t−1∏
i=0

k∏
j=1

P(x(j)i , x(j)i+1) = Q

⎛⎝⎛⎝x0,
k⋃

j=1

{
x(j)0

}⎞⎠ ,

⎛⎝x1,
1⋃

i=0

k⋃
j=1

{
x(j)i

}⎞⎠⎞⎠ · · ·

· Q

⎛⎝⎛⎝xt−1,

t−1⋃
i=0

k⋃
j=1

{
x(j)i

}⎞⎠ ,

⎛⎝xt ,
t⋃

i=0

k⋃
j=1

{
x(j)i

}⎞⎠⎞⎠ .

(3)

Thus given any trajectory (Xt )t≥0 of P we can find a trajectory (Yt )t≥0 of Q(P, k) with the same measure. To couple a given
trajectory (Yt )t≥0 of Q(P, k) to a trajectory (Xt )t≥0 of P is even simpler; given Yt = (yt , St ) we simply ‘forget’ the second
component of Yt and set Xt = yt ∈ Ωk for each t ≥ 0. Again the measure is preserved by (3).

Recall the set C = {(u, Ω) : u ∈ Ωk
} which is a subset of the state space V (Ω, k) of the auxiliary chain Q(P, k). To

complete the proof we show that, for any x ∈ Ωk, the times τcov and τC in the coupled chains Xt and Yt , started from x
and (x, {x1, . . . , x(k)}) respectively, are equidistributed.

Suppose we take any trajectory (Xt )Tt=0 of length T ≥ 0 such that ∪
T
i=0 ∪

k
j=1 {X (j)

i } = Ω . Then by the coupling above, we

have YT =

(
xT , ∪T

i=0∪
k
j=1 {X (j)

i }

)
= (xT , Ω) ∈ C . Since this holds for any trajectory and any time T such that ∪

T
j=0{Xj} = Ω ,

we can assume that T is the first such time. That is, we can take T = τcov and then it follows that τC ⪯ τcov.
Conversely, let (Yt )Tt=0 be any trajectory in Q where Y0 = (y0, ∪k

j=1{y
(j)
0 }), for some y0 = (y(1)0 , . . . , y(k)0 ) ∈ Ωk and

YT ∈ C . Since the only transitions supported by Q are from (y, S) to
(
z, S ∪

(
∪

k
j=1{z

(j)
}
))

where
∏k

j=1 P(y
(j), z(j)) > 0, and

Y0 = (y0, ∪k
j=1{y

(j)
0 }), it follows that ∪

T
t=0 ∪

k
j=1 {y(j)t } = Ω . Thus, by the coupling above, ∪T

t=0 ∪
k
j=1 {X (j)

t } = Ω . Similarly, since
we can take T = τC to be minimal, we have τcov ⪯ τC .

Thus for any pair of coupled trajectories with fixed start vertices x and (x, ∪k
j=1{x

(j)
0 }) the times τcov and τC are the

same. The final statement then follows by taking expectation. □

Lemma 6 equates the cover time of any Markov chain P on Ω (not just rational chains) to a hitting time in a higher
dimensional chain Q on V . This result may be useful for studying the cover time of an arbitrary Markov chain P on Ω .
However, one drawback of this approach is that for many chains |V | is exponential in |Ω|.

Having established Proposition 4 and Lemma 6 the proof of Theorem 3 is simple.

Proof of Theorem 3. Let Q := Q(P, k) be the auxiliary chain associated with the k-multiple Markov chain with transition
matrix P. Then EP

x
[
τ (k)
cov

]
= EQ

(x,{x(1),...,x(k)}) [ τC ] for any x = (x(1), . . . , x(k)) ∈ Ωk by Lemma 6, where C = {(y, Ω) | y ∈ Ωk
}.

By assumption we have EP
x [ τcov ] < ∞ and so x ∈ B(C). It follows from Proposition 4 that EQ

(x,{x(1),...,x(k)}) [ τC ] ∈ Q and so
EP
x [ τcov ] ∈ Q as claimed. □
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