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Abstract—Diagonal loading is one of the most widely used and effective methods to improve the robustness of both 
adaptive beamformers and Direction of Arrival (DOA) estimation due to the involvement of the sensor received 
covariance matrix. In addition, subspace-based DOA estimation techniques rely on multiple snapshots to achieve high 
estimation accuracies. This paper presents the study of a modified diagonally loaded sample covariance matrix for 
accurate DOA estimation in adverse scenarios. The proposed and novel technique deciphers poor DOA estimation in 
a low SNR environment by computationally changing the received sample covariance matrix. Our method is 
computationally simple as it does not require peak searching and does not depend on the coherency of the signal. 
The efficacy of the proposed method is examined via computer simulation for various sensor array sizes and the 
number of snapshot samples. Based on our numerical simulation results, our proposed method generally outperforms 
most state-of-the-art DOA estimators. In a finite number of snapshots and a single signal source, our proposed method 
performs 9.5% better than the state-of-the-art DOA estimation technique, 2.8% in multiple signal sources, and 8.5% in 
a single snapshot, single signal source environment of gained DOA estimation performance. 
 

Index Terms—Antenna arrays, DOA Estimation, Sensor Applications 
 

 

I.  Introduction 
IRECTION of Arrival (DOA) estimation is one of the most 
critical topics in sensor array signal processing with 

applications such as radar [1], localization & tracking [2], and 
wireless vehicular communications [3]. Many DOA estimation 
techniques have been proposed in the past, such as the classical 
Multiple Signal Classification (MUSIC) [4] and its modified 
variants [5-7]. These techniques use the decomposition of the 
sample covariance matrix to determine the signal and noise 
subspaces to determine the DOAs. Alternatively, newer 
techniques such as implementing Machine-Learning (ML) and 
Information Geometry (IG) have recently been in active 
research for DOA estimation. In [8], an ML-based DOA 
estimator was proposed for vehicular applications, which yields 
excellent estimation accuracy. In [9], the implementation of IG 
with DOA estimation was conducted by exploiting the 
relationship between probability density and the differential 
geometry structure of the received data and geodesic distance. 
This IG technique, known as Scaling Transform-based 
Information Geometry (STRING), resulted in higher accuracy 
and DOA estimation resolution. 

However, these existing techniques have some significant 
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drawbacks. First, these techniques yield high computational 
complexities and are impractical for real-world applications 
that differ in various environments. For example, a sensor array 
can be developed based on a 5500 MHz operating frequency 
band but loses signal and estimation performance when 
operating in other frequency bands [10]. In addition, ML-based 
techniques require elaborate and comprehensive offline data 
training for optimization and operational efficiency. Moreover, 
although the IG-based technique presents good DOA estimation 
accuracy, but has significant statistical bias and results in poor 
robustness, especially at a high Signal-to-Noise Ratio (SNR).  

In more recent years, numerous state-of-the-art DOA 
estimation techniques have been proposed with increased 
estimation accuracy and robustness.  In [11], a novel enhanced 
principal-singular-vector utilization for modal analysis 
(EPUMA) DOA estimation approach was proposed. The 
EPUMA technique provides reliable performance when the 
number of snapshot samples is small, even when the number of 
samples is lower than the number of impinging signals. The 
simulation results in [11] indicates that the EPUMA approach 
outperforms many other subspaced-based DOA estimators, 
especially for small sample scenarios. In [12], an Eigenvalue-
based DOA estimator named the Partial-Relaxation (PR) 
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approach was proposed. The PR approach is based on the 
deterministic maximum likelihood, weighted subspace fitting, 
and covariance fitting methods. By using an iterative rooting 
scheme based on the rational function approximation, the DOA 
is determined by first relaxing the manifold structure of the 
remaining interfering signals that results in a closed form 
estimation. Then, DOA is approximated by using a simplified 
peak spectral search. The simulation results of [12] shows tha, 
irrespective of any structure of the sensor array, the 
performance of the PR approach is superior to the conventional 
methods in low SNR and snapshots while maintaining 
comparable computational costs to MUSIC.  

A simple technique to reduce complexities is by reducing the 
number of snapshots required for DOA estimation, where less 
data processing is required for an algorithm to determine the 
covariance matrix. There have been many attempts in using a 
single snapshot for DOA estimation. In [13], a low complex 
single snapshot DOA estimation was proposed. This technique 
was conducted by first obtaining rough initial DOA estimates 
and then searching for accurate estimates within a very small 
region. The proposed approach offered high accuracy with low 
complexity but required many antenna array elements for best 
performance. Alternatively, [14] presented a novel approach for 
recursively estimating the DOAs as measurements based on 
worst-case gain minimization to reduce estimation error with a 
single snapshot. The simulations in [14] presented good DOA 
estimation results but required significantly high SNR levels of 
up to 35 dB, which is impractical in real-world scenarios.  
 In more recent years, Diagonal Loading (DL) of the sample 
covariance matrix has been a popular technique to improve 
DOA estimation efficacy and beamforming capabilities while 
reducing computational costs in a limited sample situation [15, 
16]. The DL algorithms can be considered an auxiliary 
subsystem into the primary DOA technique by correcting all the 
sample eigenvalues with the same parametric value to increase 
the resolution for improved beamforming and signal direction 
selection [17]. In [3], a DOA estimation method was proposed 
by integrating a modified orthogonal propagator technique with 
spline interpolation, a form of DL. This was carried out by 
restoring the noise-free diagonal elements through an 
interpolation procedure while the propagator can then be 
directly extracted from the denoised sample covariance matrix. 
The proposed method offers a unique approach to reducing the 
noise impact. However, this method is solely based on the 
pseudo-spectrum DOA estimation technique, which is still 
considered computationally expensive with an inherently slow 
DOA estimation detection. The complexity of their proposed 
approach increases exponentially as the number of signal 
sources increases and only presents good estimation in a 
significantly high SNR environment and presents weaker 
estimation performance in low SNR of < 0 dB. In addition, 
operating frequency mismatch was not taken into consideration 
in the development of their proposed technique. 

In another example, [18] presented a similar DL-based 
approach – a quadratically constrained beamformer that is 
robust against DOA mismatch. A DL method was used to force 
magnitude responses at the arrival angles between two steering 

vectors that exceed unity in the pseudo-spectrum. This method 
causes the gains at a desired range of angles to exceed a constant 
level while suppressing the interferences and noise with 
numerical results that have excellent estimation performance. 
However, the critical drawback of the proposed technique in 
[18] is that the complexity depends on the number of iterations 
wholly dependent on the SNR. The higher the SNR, the higher 
the iteration, which leads to higher computational costs. 
Furthermore, there is an additional iteration that was not 
mentioned. The condition given in the paper is based on 
granular angle values (i.e., 0°, 30°, 80°). The computational 
complexity increases exponentially when a high-resolution 
estimation is required.  
 To that end, this paper aims to develop an adaptive DL-based 
technique for DOA estimation applied to the sample covariance 
matrix to achieve high estimation accuracy for a wide range of 
operating frequencies and SNR without the need for increased 
computational complexity. Achieving a holistically predictable 
and accurate DOA estimator model complements multiple 
sensors applications regardless of the antenna sensor geometry 
and use-cases. Our proposed DL technique consists of an 
effective but straightforward adaptive DL estimator based on 
the steering vector’s error rate of change and changes in 
estimation parameters such as operating frequencies for a fixed 
antenna array sensor position. According to our simulation 
results, our proposed method generally outperforms all other 
DOA estimators. Our proposed method performs 9.5% better 
than the state-of-the-art EPUMA [11] technique in a finite 
number of snapshots and a single signal source. In a scenario 
where there are multiple signals of interest, our proposed 
method performs 2.8% better than EPUMA and up to 5% at 
higher SNR of > 0 dB. In a single snapshot sample with a single 
signal source of interest, our proposed method performs 8.5% 
better than EPUMA and is significantly closer to the Cramer-
Rao Bound (CRB) limit when compared to the other 
demonstrated DOA estimators.  

The fundamental characteristic of our proposed method 
enables DOA estimation in many applications with cost, size, 
and hardware limitations and considerations, such as in the field 
of transportation and vehicular signal localization and high-
bandwidth connectivity, especially in the current uprising trend 
of wireless communication. This is done by modifying the pre-
processing DOA estimation section that can be applied to any 
form of DOA estimators. Specifically, we propose a pre-
processing covariance matrix reconstruction using a modified 
DL technique that enables and boost estimation accuracy, 
especially in a low SNR environment. Ultimately, we want to 
achieve a linear bias value across a wide range of SNR 
scenarios to obtain stable and predictable DOA estimation. 

The remainder of this paper is organized as follows. Section 
II presents the system model for an antenna array and the 
derivation of the received signal covariance matrix. Section III 
offers our proposed pre-processing technique. Section IV 
presents the simulation results and discussion demonstrating the 
performance of our proposed method in varying antenna array 
element sizes with its Root Mean Squared Error (RMSE) and 
bias, as well as a quantitative analysis of our proposed method 
in an exhausted single snapshot scenario. Finally, Section V 
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concludes the paper.  
II. PROBLEM FORMULATION & DATA MODEL 

The problem formulation and data model are assumed and 
maintained through the description of the problem formulation 
and, subsequently, the data model of this paper. Firstly, the 
received signal model is described. Then, the standard diagonal 
loading technique is explained. 

 
Figure 1: Sensor Array Model 

A. Received Signal Model & Sensor Data 
Correlation Matrix 

With reference to Fig. 1, consider an array of 𝑀 sensors 
receiving the signals emitted by 𝐿 narrowband far-field sources 
with unknown DOAs {𝜃!, … , 𝜃"} with inter-element 
spacing 𝑑 being no greater than 𝜆/2. The number of 𝐿 incident 
signals is assumed to be available where the wavelength of 
incident signals, 𝜆 = 𝑐/𝑓, where 𝑓 is the signal carrier 
frequency and 𝑐 is the speed of light in a vacuum. The 𝑘#$ array 
snapshot of the received signal is expressed as [1]-[2] 

𝐱(𝑘) = 𝐀𝐬(𝑘) + 𝐧(𝑘), (1) 

where 𝐀 = [𝐚(𝜃!), 𝐚(𝜃%),⋯ , 𝐚(𝜃")] denotes the steering 
matrix, and 𝐚(𝜃) = [𝑎!(𝜃), 𝑎%(𝜃),⋯ , 𝑎&(𝜃)]' is the steering 
vector whose mth entry is given by  

𝑎((𝜃) = 𝑒)*!(,), (2) 

where 𝑓((𝜃) is a known operating frequency function with 
respect to 𝜃 for given coordinates of the mth sensor and 𝑗 is a 
complex number and −90 ≥ 𝜃 < 90 with half-wavelength 
ULA with inter-element spacing, where 𝑓((𝜃) = 𝜋(𝑚 −
1)sin	 𝜃. 
 In (1), 𝐬(𝑘) = [𝑠!(𝑘), 𝑠%(𝑘)… , 𝑠"(𝑘)]' and 𝐧(𝑘) =
[𝑛!(𝑘), 𝑛%(𝑘),⋯ , 𝑛&(𝑘)]' denote the signal and noise vectors, 
respectively which are assumed to be uncorrelated. The noise 
parameter 𝐧(𝑘) is considered to be zero-mean with variance 
𝜎%𝐈𝐌 white Gaussian noise vector independent of 𝐬(𝑘) while 
𝐈𝐌 is an 𝑀 ×𝑀 identity matrix. Then, we define the theoretical 
array covariance matrix as [1]-[2] 

𝐑𝐱𝐱 = 𝔼{𝐱(𝑘)𝐱0(𝑘)} = 𝐀𝐄1𝐀0 + 𝐄2, (3) 

where 𝐑𝐱𝐱 is the theoretical covariance matrix of size 𝑀 ×𝑀	 
while 𝔼{⋅} and (⋅)H represents the mathematical expectation 
and Hermitian transpose, respectively while 𝐄1 =
𝔼{𝐬(𝑘)𝐬0(𝑘)} is the signal subspace, and 𝐄2 = 𝔼{𝐧(𝑘)𝐧0(𝑘)} 
is the noise subspace.  
 In practice, however, the exact covariance matrix of 𝐑𝐱𝐱 is 
challenging to obtain due to the limited number of data sets 
received and processed by a sensor array system. Thus, an 
estimation is made using limited, finite snapshot samples in an 
instantaneous time to overcome this limitation. Assuming that 
all underlying random noise processes are ergodic, the 
statistical expectation in (3) can be replaced by a time average. 
An estimate of the data covariance matrix 𝐑𝐱𝐱 can be presented 
as a sample covariance matrix, which is expressed as 

𝐑𝐱𝐱 ≈ 𝐑V 𝐱𝐱 =
1
𝐾X𝐱(k)𝐱0(k)

4

56!

=
1
𝐾𝐗𝐗

0, (4) 

where 𝐑V 𝐱𝐱 is the sample covariance matrix, 𝐗 is the input data 
matrix of size 𝑀 ×𝐾, and 𝐾 is the number of snapshot samples.  

B. Diagonal Loading 
 One of the easiest and most efficient methods to improve 
robustness against DOA mismatch and ensure the complete 
rank structure is to add constant values with the diagonal 
elements of the received signal correlation matrix. This is 
known as the fixed-diagonal loading method [15]. The diagonal 
loading technique is also commended for its effectiveness in 
handling various errors, including steering vector estimation 
and finite-sample errors. In addition, it can equalize the least 
significant eigenvalues of the covariance matrix or constrain the 
white noise gain. One of the inherent drawbacks of using DL is 
that it induces considerable bias. However, this can be 
overcome by using bias correction [17] before parsing the final 
DOA. To that end, the diagonally loaded covariance matrix is 
defined as [10] 

𝐑𝐱𝐱7𝐃𝐋 = 𝔼{𝐗𝐗0} + 𝐹𝐈, (5) 

where I is an identity matrix of size 𝑀 ×𝑀. 
The scalar parameter of 𝐹 denotes the amount of diagonal 

loading into the covariance matrix. Therefore, assuming that 
𝐹 = 0, no diagonal loading is present. In other words, it uses 
the standard covariance matrix as shown in (4). Note that 𝐹 can 
be positive or negative, but 𝐹 must be greater than −𝜎% for the 
covariance matrix to be positive definite. In addition, values of 
𝐹 close to −𝜎% must be avoided to ensure numerical stability.  

Similarly, the additive diagonal loading in (5) can also be 
demonstrated to the sample covariance matrix in (4), which is 
given as [11] 

𝐑V 𝐱𝐱 =
1
K𝐗𝐗

0 + 	𝐹𝐈. (6) 
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Before computing the weight vector, a diagonally loaded 
matrix is added to the sample covariance matrix in (6). This 
technique strengthens the noise components, which results in 
the input SNR reduction and suppression of the disturbance of 
small eigenvalues corresponding to the noise subspace. 𝐹 
should be a large enough value to reduce the input SNR. 
However, the interference component proportion also 
decreases, which reduces null depth in a pseudo-spectrum. 
Therefore, 𝐹 should also be small enough to prevent the decline 
in null depth. There is always a trade-off between robustness, 
interference cancellation, and noise reduction. For example, for 
large 𝐹, the robustness against mismatch and replacement 
increases while interference cancellation and noise reduction 
capabilities decrease. Alternatively, for small 𝐹, the robustness 
is diminished. Therefore, the diagonal loading value should be 
appropriately selected to achieve performance improvement in 
a DOA estimation system.  

A key benefit of diagonal loading is to overcome the 
inversion of the sample covariance matrix. When the number of 
snapshots is small, K < L, the inverted covariance matrix is not 
full rank and thus irreversible. The practical robustness can be 
analyzed as follows. Let 𝜇: and 𝐮: for 𝑙 = 1,2, … , 𝐿 be the 
subsequent eigenvalues and eigenvectors of 𝐑V 𝐱𝐱, respectively. 
Then, with reference to (4), it can be further decomposed as [12] 

𝐑V 𝐱𝐱 =X𝜇:
"

:6!

𝐮:𝐮:0, (7) 

which leads to the following decomposition, 

𝐑V 𝐱𝐱
7!𝐚f𝜃g;h =X

𝐮:<𝐚f𝜃g;h
𝜇:

"

:6!

𝐮:	. (8) 

From (8), when 𝜇: is small, 𝐑V 𝐱𝐱
7!𝐚f𝜃g;h tend towards a 

substantial value, leading to a high level of sidelobe errors and 
would result in the wrong signal direction of interest estimation. 
With the inclusion of diagonal loading, the decomposition 
becomes 

(𝐑V 𝐱𝐱 + 𝐹𝐈	)7!𝐚f𝜃g;h =X
𝐮:0𝐚f𝜃g;h
𝜇: + 𝐹

"

:6!

𝐮: . (9) 

From (9), adding the diagonal loading enables inversion to 
solve the available small sample size. Another benefit is that the 
sidelobes are suppressed for efficient beamforming in an 
intelligent antenna sensor system. Furthermore, adding the 
diagonal loading can reduce the influence of small eigenvalues; 
thereby, the weight vector norm is not amplified erratically. 
However, it is worth reiterating that this comes with a trade-off 
between the robustness and the expense in interference 
cancellation and noise reduction.  

 

III. PROPOSED TRACED DIAGONAL-LOADING DOA 
ESTIMATION METHOD 

Although the diagonal-loading method, as shown in (9), 
shows promising results in a broad spectrum of SNR values, the 
technique still must process the entire covariance matrix, which 
may not even be of a Toeplitz structure, especially in a practical 
sample-based covariance matrix. In addition, selecting the 
correct loading factor remains crucial for accurate DOA 
estimation. Thus, the performance can vary significantly, and 
finding an optimal loading factor derivation remains a 
significant research interest.  

This section shows how to reduce further and simplify the 
elements within the covariance matrix without sacrificing its 
accuracy. To illustrate our proposed technique, we first observe 
the structure of the covariance matrix from (3) as 

𝐑𝐱𝐱 = i
𝑥𝑥!×! ⋯ 𝑥𝑥!×(
⋮ ⋱ ⋮

𝑥𝑥(×! ⋯ 𝑥𝑥(×(
m	 . (10) 

 We then proceed to partition the diagonal vector in 𝐑𝐱𝐱 of 
interest and reformulate it as a vector as 

𝐫𝐱𝐱7𝐝𝐢𝐚𝐠 = [𝑥𝑥!×! … 𝑥𝑥(×(]	, (11) 

where 𝐫𝐱𝐱7𝐝𝐢𝐚𝐠 is a vector of size 𝑀 × 1.  
From (11), we reform and partition the vector, 𝐫𝐱𝐱7𝐝𝐢𝐚𝐠,  into 

a Toeplitz Hermitian matrix as 

𝐑𝐱𝐱7𝐫𝐞𝐟𝐨𝐫𝐦 = i
𝑥𝑥!×! … 𝑥𝑥(×(
⋮ ⋱ ⋮

𝑥𝑥(×( … 𝑥𝑥(×(
m	 , (12) 

where 𝐑𝐱𝐱7𝐫𝐞𝐟𝐨𝐫𝐦 is of size 𝑀 ×𝑀 similar to (10).  
Note that the technique represented in (10) to (12) can be 

applied to the sample covariance matrix, 𝐑V 𝐱𝐱. Comparing (10) 
and (12), the critical difference is that the off-diagonal elements 
replicate the elements along the diagonals for (12). One key 
advantage of this technique is that it reduces the computational 
load onto the system without calculating many different values 
of array elements.  
 Next, to determine a suitable 𝐹 value for diagonal loading 
implementation, we define the following equation 

𝐹 =
1
𝐾
‖𝛽0𝐑𝐱𝐱‖

% (13) 

where 𝛽 = 𝐚f𝜃g;h/q𝐚f𝜃g;hq is the normalized steering vector in 
the desired signal direction of interest. Note that this 
normalization does not change the primary direction of interest, 
only its magnitude. This idea removes the influence of low SNR 
impedance in any application or scenario. The trade-off of this 
technique is that although it will result in consistent bias, it does 
not necessarily mean that there will be negligible bias. The bias 
discrepancy will be demonstrated later in the simulation 
section.  
 It is seen in (13) that the loading level depends on the signal 
and noise power. Finally, combining (13) with (5) and (6), we 
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obtain: 

𝐑𝐱𝐱7𝐃𝐋7𝐌𝐨𝐝 = 𝔼{𝐗𝐗0} + r
1
K
‖𝛽0𝐑𝐱𝐱‖

%s 𝐈	, (14)	 

𝐑V 𝐱𝐱7𝐃𝐋7𝐌𝐨𝐝 =
1
K t𝐗𝐗

0 + u‖𝛽0𝐑𝐱𝐱‖
%v 𝐈w , (15) 

where (14) and (15) represent the theoretical and sample 
diagonally loaded tracing covariance matrix, respectively.  

Lastly, before the decomposition to obtain the signal and 
noise subspace, and considering only the sampled covariance 
matrix, we modify the diagonally loaded covariance matrix as: 

𝐑V 𝐱𝐱7𝐃𝐋𝐓 = 𝐑V 𝐱𝐱7𝐃𝐋7𝐌𝐨𝐝 + trf𝐑V 𝐱𝐱7𝐃𝐋7𝐌𝐨𝐝h, (16) 

where tr(∙) is the trace of a matrix.  
 Fig. 2 presents the algorithmic flowchart summary of our 
proposed technique for the sample covariance matrix 
reformulation. After determining the first sample covariance 
matrix, 𝐑V 𝐱𝐱 as in (4) from the incoming received signal data 
matrix, the diagonal elements are extracted and reformed into a 
new modified covariance matrix, 𝐑𝐱𝐱7𝐫𝐞𝐟𝐨𝐫𝐦 like in (12). 
Concurrently, the diagonal loading factor, 𝐹, is calculated, 
which leads to the reformulation of a new diagonally loaded 
sample covariance matrix, 𝐑V 𝐱𝐱7𝐃𝐋7𝐌𝐨𝐝 as in (15).  Finally, the 
traced sample covariance matrix, 𝐑V 𝐱𝐱7𝐃𝐋𝐓 is reformulated for 
DOA estimation as described in (16).  
Then, the subspace decomposition of (16) can be presented as 

𝐑V 𝐱𝐱7𝐃𝐋𝐓 = 𝐔H𝛀H𝐕H0 +𝐔I𝛀I𝐕I0, (17) 

where 𝐔H and 𝐕H span the column spaces of 𝐑V 𝐱𝐱7𝐃𝐋𝐓 and 
𝐑V 𝐱𝐱7𝐃𝐋𝐓

0 respectively, whereas 𝐔I and 𝐕I span their 
orthogonal spaces and 𝛀H and 𝛀I are the corresponding 
diagonal matrices with eigenvalues or singular values on the 
diagonal, respectively.  

 
Figure 2: Proposed Algorithm Flowchart 

IV. SIMULATION RESULTS & DISCUSSION 
In this section, numerical examples are provided to study the 

stochastic effectiveness of our proposed method, as formulated 
in section III. To illustrate, the value of 𝐹 has an impact 
corresponding to the input SNR and Uniform Linear Array 
(ULA) with equally spaced half-wavelength geometry. The 
input SNR is varied to generate different 𝐑V 𝐱𝐱7𝐃𝐋𝐓 with zero-
mean Additive White Gaussian Noise (AWGN) against varying 
SNR ranging from -10 dB to 10 dB. To further illustrate the 

efficiency of our proposed method, we present the simulation 
study in different scenarios. Firstly, in a scenario where there is 
a minimal finite snapshot availability. Next, we provide the 
estimation performance of our proposed technique where are 
multiple signal sources of interest. Lastly, we deliver the 
performance of our proposed method where only a single 
snapshot is available, which can be considered a worst-case 
scenario.  

We compared our technique against state-of-the-art 
techniques such as the Enhanced Principal-eigenvector 
Utilization for Modal Analysis (EPUMA) [11], Method of 
Direction of Arrival Estimation (MODE) [19], MODEX [20], 
and root-MUSIC with Forward-backward Spatial Smoothing 
(FBSS) [21].  

The simulation was conducted using MATLAB 2021a on a 
Windows 10 PC with a quad-core i7 CPU with 16GB RAM 
with 1000 randomized Monte-carlo simulation samples to 
evaluate the DOA estimation accuracy. The standard 
parameters for the study are presented and summarised in 
Table 1. We selected common parameters in a modern 
transportation market, as referenced in [10]. It is noteworthy 
that although we used the EPUMA technique to demonstrate 
our proposed method in the simulation study, any subspace-
based DOA estimation algorithm can be implemented. 

 

 
 

Lastly, we use the RMSE as the primary criterion in our 
simulation study. In this paper, the general RMSE equation is 
defined as 

RMSE = �1
𝑄Xi

f𝜃J" − 𝜃�J"h
% +⋯+ f𝜃J# − 𝜃�J#h

%

𝐿 m
K

J6!

(18) 

where 𝐿 is the number of signal sources, 𝑄 is the number of 
simulation data points, 𝜃J is the actual DOA, and 𝜃�J is the 
estimated DOA. We also include the Cramer-Rao bound 
(CRB) [22] as a performance benchmark, where the CRB is 
computed as  

CRB =
𝜎I%

2𝐾 tr �Ref
(𝐃0(𝐈& − 𝐀𝐀L)𝐃)⊙𝐑Mh7!� , (19) 

 
with 𝐃 = [𝜕𝒂(𝜃!)/𝜕𝜃! . . . 𝜕𝒂(𝜃N)/𝜕𝜃N] and 𝐑 =
E[𝒙(𝑡)𝒙<(𝑡)] = 𝐀𝐑𝐬𝐀𝐇 + 𝜎I%𝐈&. In this case, 𝐑𝐬 =

TABLE I 
COMMON SIMULATION PARAMETERS 

Parameters Settings 

Carrier Frequency 5500 MHz 
Antenna Geometry Uniformed Linear Array 

Array Inter-Element 
Spacing 

𝜆/2, where 𝜆 is the wavelength of 
𝑓Q in meters 

Simulation Samples 1000 
Angle of Interest 30 Degrees  
SNR Range -10 dB to 10 dB 
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𝐄[𝒔(𝑡)𝒙<(𝑡)] is the signal covariance matrix and ⊙ is the 
Hadamard matrix product. For root-MUSIC, the FBSS 
technique improves signal detection and estimation accuracy, 
where the number of forward-backward subarrays is equal to 
the number of desired signals.  

A. Limited Finite Snapshot Sample 
Performance with Single Signal Source of 
Interest 

 
Figure 3: SNR-RMSE Performance for M = 4, N = 1, and K = 10 

 
Figure 4: SNR-RMSE Performance for M = 8, N= 1, and K = 10 

In this section, we present a scenario where there is a limited, 
finite number of snapshot samples for a single-source signal of 
interest.  

Fig. 3 and Fig. 4 presents the RMSE of the DOA estimation 
against varying SNR input received data matrix ranging from -
10 to 10 dB where the number of snapshot samples is 𝐾 = 10 

and the number of sensor array elements 𝑀 = 4 and 𝑀 = 8, 
respectively. It is also assumed that the number of impinging 
signals, 𝑁 = 1 is static and does not deviate with time at the 
instant of data collection on the receiving end. In addition, 
Table II presents the RMSE results of all the proposed DOA 
techniques for comparison. 

It is seen in Fig. 3 that our proposed technique outperforms 
MODE, root-MUSIC, and EPUMA on average when SNR is 
< -5 dB. Furthermore, the RMSE of our proposed method 
retains the CRB when SNR is > 3.5 dB. As SNR increases, the 
RMSE curves of all techniques are tightly bound towards the 
CRB, and thus, their estimation performance attains the 
theoretical CRB lower bound curve. The MODE technique 
does not perform well due to the small number of antenna 
array elements and a highly limited number of snapshot 
samples, even though it utilizes the FBSS method to improve 
DOA estimation. These poor DOA estimation results can be 
seen generally throughout the entire SNR range. Furthermore, 
our proposed technique outperforms EPUMA, MODE, and 
MODEX slightly by 12%. As SNR increases, our proposed 
method still outperforms the other methods by an average of 
7% in terms of DOA estimation performance gain.  
Fig. 4 presents a similar simulation environment but with a 
higher number of antenna array elements. Comparing this 
with Fig. 3, the performance gained for our proposed method 
is slightly less when compared to the other techniques. In 
addition, all DOA estimation techniques presented here 
approach the CRB limit at a much lower SNR due to the 
increase in antenna element number. We can observe that 
MODE performs among the compared techniques at low SNR. 
Our proposed approach achieves the best DOA estimation 
performance when the SNR is high at > 3.5 dB. In addition, at 
high SNR, our proposed technique performs the best when 
compared to the other demonstrated DOA estimator as it is 
much closer to the CRB limit. 
 

 

TABLE II 
SUMMARY OF SIMULATION RESULTS  

FOR SINGLE SIGNAL SOURCE 
Scenario RMSE (Degrees) 

 EPUMA Root-
MUSIC MODEX MODE DLT-

DOA 
M = 4,  
SNR = -10 
dB 

29.9 32.1 36.6 48.5 30.6 

M = 4,  
SNR = 10 
dB 

1.55 0.66 0.61 0.61 0.60 

M = 8,  
SNR = -10 
dB 

25.8 24.4 29.8 50.34 26.8 

M = 8,  
SNR = 10 
dB 

0.23 0.23 0.21 0.66 0.20 
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B. Limited Finite Snapshot Sample with 
Multiple Signal Sources of Interest 

 
Figure 5: SNR-RMSE Performance for M = 8, N = 2, ∆𝜃 = 10°, and 

K = 10 

 
Figure 6: SNR-RMSE Performance for M = 8, N = 2, ∆θ=5°, and K = 

10 

 In this example, we conduct a simulation study with a limited 
number of snapshot samples with two signal sources of interest. 
Fig. 5 presents a scenario where the signal sources of interest 
are of an angular separation of 10°. It is clear that the EPUMA 
technique generally has a better DOA estimation performance 
– particularly at low SNR of < -5 dB. We want to highlight that 
the MODE technique has a substantial estimation performance 
reduction compared to the other techniques. This estimation 
deficit is because MODE is highly sensitive to the number of 
signal sources. One potential reason is the symmetric 
assumption used in the MODE solver algorithm. This reason is 
consistent across the wide range of scenarios, especially when 
comparing the results in Fig. 3 and 4. Nevertheless, our 
proposed technique performs relatively well across the 
spectrum of SNR. However, EPUMA and root-MUSIC are still 
outperforming it due to the spatial smoothing modification with 
an average DOA estimation performance deficit of 7%. At 
higher SNR of > 0 dB, our proposed method outperforms all the 

other techniques by 2.8% and is closely bounded by the 
theoretical CRB limit. 
 To highlight the DOA estimation resolution among closely 
spaced signal sources, Fig. 6 presents a scenario where the 
angular separation is 5°. EPUMA performs best in this scenario 
in low SNR of < 0 dB and can robustly determine the two 
closely related signals of interest. Furthermore, root-MUSIC 
here serves the worse even though it employs the FBSS 
modification due to the sensitivity in the virtual array setup for 
spatial smoothing. This result is followed closely by our 
proposed method in terms of RMSE performance. When SNR 
is high at > 0 dB, all techniques approach the CRB limit but do 
not perform as well as in Fig. 5 where the signal sources are 
separated further. Comparing the DOA estimation performance 
between Fig. 5 and Fig. 6, our performance difference on 
average is 15%. In other words, the estimation performance 
difference results in a 3%/∆θ based on the simulation results. 
Table III presents a summary of the DOA estimators for 
multiple signal sources for both the lowest and highest SNR. 
 

 

C. Single Snapshot Sample with a Single 
Signal Source of Interest 

 
Figure 7: SNR-RMSE Performance for M = 4, N = 1, and K = 1 

This section conducts a quantitative analysis of our proposed 

TABLE III 
SUMMARY OF SIMULATION RESULTS  

FOR MULTIPLE SIGNAL SOURCES 

Scenario RMSE (Degrees) 

 EPUMA Root-
MUSIC MODEX MODE DLT-

DOA 
∆𝜃 = 10°, 
SNR = -10 
dB 

42.1 44.2 38.2 43.6 46.2 

∆𝜃 = 10°, 
SNR = 10 
dB 

0.62 0.64 0.61 0.62 0.59 

∆θ=5°,  
SNR = -10 
dB 

45.5 48.0 46.7 45.5 50.5 

∆θ=5°,  
SNR = 10 
dB 

1.17 1.31 1.49 2.14 1.13 
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technique where the number of snapshot samples is 𝐾 = 1. This 
simulation parameter presents a worst-case scenario where 
only a single snapshot is available at the array sensor as a 
limitation where the results are presented in Fig. 7. All other 
parameters are the same as in the previous section, which can 
be referred to in Table 1, while Table IV provides the 
summarized RMSE results of the DOA estimators.  

Similarly, the MODE technique performs the worse across 
the wide range of SNR. Comparing the results in Fig. 6 against 
a similar simulation environment as in Fig. 3, the DOA 
estimation only approaches the CRB limit at a much higher 
SNR. This result is consistent where the number of snapshots 
changes the raw performance of all the demonstrated DOA 
estimators. Our proposed technique performs relatively well 
in a single snapshot scenario compared to EPUMA, root-
MUSIC, and MODEX, although the DOA estimation 
performance difference is negligible at approximately 2%. 
This phenomenon may be within the margin of error, 
particularly in low SNR of < 0 dB. We want to highlight the 
performance difference across the different techniques at high 
SNR at > 0 dB. Our proposed approach generally performs the 
best compared to the other methods. This RMSE result is 
followed closely behind with EPUMA. In general, our 
proposed method achieves the best estimation performance 
across the wide range of SNR with an average DOA 
estimation performance gain of 8.5% compared to the 
following best estimator.  

To that end, the reason why the proposed technique 
performs better than the rest in a single snapshot environment 
is mainly due to the optimized diagonal loading factor 
technique as demonstrated in (13) and the implementation of 
it in (15). The iterative nature of (13) proves that it is an 
efficient method in determining accurate DOA estimation as 
compared to a static diagonal loading factor.   
 

 

V. CONCLUSION 
This paper presents a reconstruction of the sample covariance 

matrix with uniformed linear arrays in the presence of noise. By 
effectively utilizing a suitable diagonally loaded value to 
modify the incoming covariance matrix, we reduce the need for 
high snapshots in a wide range of SNR environments. Using a 
modified diagonal loading technique to the sample covariance 
matrix, our proposed method performs best in a scenario with a 
minimal number of snapshot samples. This allows the 
utilization of our algorithm in an environment where the sensors 
are used small and lightweight without costly hardware for real-
world implementation. In addition, high power transmission is 

not required for accurate DOA estimation for a sensor device 
emitting a signal due to the excellent performance in low SNR 
scenarios. It allows fast and precise network directivity and 
localization in an electronic device like a position sensor for 
transportation, vehicular systems, or motorsports applications 
to sense location and orientation in a relatively wide range of 
SNR and sampling numbers. 
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