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Abstract—Federated learning (FL) has recently become one
of the hottest focuses in network edge intelligence. In the FL
framework, user equipments (UEs) train local machine learning
(ML) models and transmit the trained models to an aggregator
where a global model is formed and then sent back to UEs,
such that FL can enable collaborative model training. In large-
scale and dynamic edge networks, both local model training and
transmission may not be always successful due to constrained
power and computing resources at mobile devices, wireless
channel impairments, bandwidth limitations, etc., which directly
degrades FL performance in terms of model accuracy and/or
training time. On the other hand, we need to quantify the
benefits and cost of deploying edge intelligence when we plan
to improve network performance by using artificial intelligence
(AI) techniques which definitely incur certain cost. Therefore, it
is imperative to deeply understand the relationship between the
required multiple-dimensional resources and FL performance to
facilitate FL enabled edge intelligence. In this paper, we construct
an analytical model for investigating the relationship between
the accuracy of ML model and consumed network resources in
FL enabled edge networks. Based on the analytical model, we
can explicitly quantify the trained model accuracy given spatial-
temporal domain distribution, available user computing and com-
munication resources. Numerical results validate the effectiveness
of our theoretical modeling and analysis. Our analytical model
in this paper provides some useful guidelines for appropriately
promoting FL enabled edge network intelligence.

I. INTRODUCTION

Edge intelligence is boosted by the unprecedented comput-
ing capability of smart devices. Nowadays, more than 10 billion
Internet-of-Things (IoT) equipment and 5 billion smartphones
have emerged that are equipped with artificial intelligence
(AI)-empowered computing modules, such as AI chips and
graphic processing units (GPUs) [1]. On the one hand, the
user equipment (UE) can be potentially deployed as computing
nodes to support emerging services, such as collaborative tasks,
which paves the way for applying AI in wireless edge networks.

This work has been supported by the Key Research and Development
Projects (Grant 2020YFB1806804), Huawei Cooperation Projects (Grant
TC20210316002), and Basic Business Fees for Central Colleges and Univer-
sities (Grant ZYGX2020ZB044).

On the other hand, in the paradigm of machine learning (ML),
the powerful computing capability on these UEs can decouple
conventional ML from acquiring, storing, and training data in
data centers as conventional methods.

Federated learning (FL) has recently been widely acknowl-
edged as one of the most essential enablers to bring edge
intelligence into reality, as it facilitates collaborative training
of ML models, while enhancing individual user privacy and
data security [2], [3]. In FL, ML models are trained locally,
therefore raw data remains in the device. Specifically, FL uses
an iterative approach that requires a number of global iterations
to achieve a certain global model accuracy. In each global
iteration, UEs perform several local iterations to reach a local
model accuracy [2], [3]. As a result, the implementation of FL
in wireless networks can also reduce the costs of transmitting
raw data, relieve the burden on backbone networks, and reduce
latency for real-time decisions, etc.

While FL offers these attractive and valuable benefits, it
also faces many challenges, especially when being deployed
in wireless edge networks. For example, both local training
and model transmission can be unsuccessful due to constrained
resources and unstable transmission. Moreover, different from
the conventional ML approaches, where raw datasets are sent
to a central server, only the lightweight model parameters (i.e.,
weights, gradients, etc.) are exchanged in FL. Nevertheless,
the communication cost of FL could be still fairly large and
cannot be ignored. The experimental results in [4] show that the
model size of a 5-layer convolutional neural network used for
MNIST (classification) is about 4.567MB per global iteration
for 28×28 images. Therefore, before deploying FL empowered
wireless edge networks, we need to answer two fundamental
questions: (1) How accurate of an ML model can be achieved
by using FL, and (2) How much cost is incurred to guarantee
certain required FL performance? Obviously, answering these
two questions is of paramount importance for facilitating edge
network intelligence. Therefore, we need to deeply understand
the relationship between FL performance and consumed multi-
dimensional resources.

In this paper, we theoretically analyze how many resources
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are needed to support an FL-enabled edge intelligent network.
The main contributions of this paper can be summarized as
follows. (1) We develop an analytical model for FL empowered
wireless edge networks, where UE geographical distribution
and arrival rate of the interfering UEs are modeled as Poisson
Point Process (PPP). (2) We theoretically analyze SINR, SNR,
and the local/global model transmission success probability.
(3) We derive the explicit expression of the model accuracy
under FL framework as a function of the amount of con-
sumed resources. Based on this, we discuss three specific
cases according to the sufficiency of respective communication
and computing resources. Simulation results demonstrate the
effectiveness of our theoretical modeling and analysis.

In the rest of this paper, we begin with the general FL
enabled edge network model in Section II. Then we present
analysis for consumed communication/computing resources in
FL in Section III. The relationship between FL performance
and consumed resources and different cases are presented in
Section IV and Section V respectively. Finally, we present
the numerical results in Section VI and conclude the paper
in Section VII.

II. FL ENABLED WIRELESS NETWORK MODEL

We consider an FL enabled radio access network (RAN)
consisting of a central BS and multiple UEs, shown as Fig.1.
The UEs can be regarded as local computing nodes while the
server is the aggregator associated with the central BS [2], [5].

Fig. 1: The FL empowered wireless network.

A. FL Model

1) Loss Function: Assume that n is the number of UEs
that are geographically distributed as homogeneous PPP with
intensity λi. For a specific UE i, it has a local dataset Si with Si
data samples, where Si = {xik ∈ Rd, yik ∈ R}Sik=1. Moreover,
we define fk(wi;xik, yik) as a loss function for data sample
k of UE i to capture the FL performance which is different
for various FL learning tasks [6]. For example, for a linear
regress, the loss function is fk(wri (t);xik, yik) = 1

2 (xT
ikwi −

yik)2. Furthermore, we define Fi(w) : Rm → R as Fi(w) ,
1
Si

∑
k∈Si fk(wri (t);xik, yik), where S ,

∑n
i=1 Si. The goal

of the BS is to fit a vector w so as to minimize F (w), i.e.,
w∗ , argw minF (w).

2) Updating Model: In FL, each global iteration is called
a communication round [5]. A communication round consists
of a number of phases including local model updating, local
iterations, local model transmission, global model updating,

and global model transmission. In the following, we present
the details of the local and global model updating respectively.
(1) Local Model Updating: Based on the local learning al-

gorithms (e.g., gradient descent (GD), stochastic gradient
descent (SGD), etc.), the local model wri (t) is updated as
wri (t) = gr − η∇Fi(wri (t − 1)) when 0 < t ≤ τ and
wri (t) = gr when t = 0, where t is the number of local
iterations, η ≥ 0 is the step size and gr is the global model
at the r-th communication round.

(2) Global Model Updating: After τ local iterations, i.e.,
t = τ , UEs will achieve certain local accuracy and
send the local model to the aggregator. Then the global
aggregation is performed at the aggregator according to
gr = 1

S

∑n
i=1 Siw

r
i (t), t = τ .

B. Computing Resource Consumption Model

For a specific UE i, let Zi (cycles/s) and ci (cycles/sample)
denote its computing capacity and the number of CPU cycles
required for computing one sample data at UE i respectively.
Ti represents the local computing time needed for one local
iteration. Therefore, the consumed computing resources during
one local iteration for UE i is given by Zi = ciSi/Ti [7],
from which we can see that Zi is only related to the amount
of dataset Si when ci and Ti are given.

C. Communication Resource Consumption Model

1) Uplink: The transmission time for transmitting the local
model wri (t) is denoted by T i,rup . Since the dimensions of
local models are fixed for all UEs that participate in local
training, the data size of the local model on each UE is
constant and is denoted by s [7]. The transmission rate of
UE i on the wireless channel to the BS at rth commu-
nication round is represented by Ri,rup . Therefore, we have
s

Ri,rup
= T i,rup , where Ri,rup = bi,rup log2(1+SINRup(D1, NI ,D2)).

Specifically, bi,rup is the bandwidth needed for transmitting the
local model of UE i. In addition, SINRup(D1, NI ,D2) =

PupG(D1)∑NI
j=1 PG(D

(j)
2 )+δ2

is the signal-to-interference-plus-noise-ratio

(SINR). D1 represents the distance between the UE and BS,
D2 = [D

(1)
2 , D

(2)
2 , ...D

(j)
2 , ..., D

(NI)
2 ] is the distance vector for

all interfering UEs of UE i, NI is the number of interfering
UEs with NI ≤ N , δ2 is the noise power, Pup is the transmit
power of the UE, and G(·) is the wireless channel gain between
the BS and UE. Furthermore, let βup be the SINR threshold
that the BS can successfully decode the received updates from
UE i. Therefore, local model transmission is successful only
if SINRup(D1, NI ,D2) > βup.

2) DownLink: The transmission time for transmitting the
global model gr is denoted by T i,rdown. From Section II. A,
we see that the dimensions of the global model gr is similar
to that of each UE’s model. Therefore, the data size of the
global model is also equal to s [8]. We assume that the
transmission rate of the BS at rth communication round is
represented by Ri,rdown. Therefore, we have s

Ri,rdown
= T i,rdown, where
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Ri,rdown = bi,rdownlog2(1+SNRdown(D1)). Specifically, bi,rdown is the
consumed bandwidth for transmitting the global model gr to
UEs at the beginning of communication round r. In addition,
SNRdown(D1) = PdownG(D1)

δ2 , where Pdown is the transmit power
of the BS allocated to all UEs. Furthermore, the global model
transmission is successful only if SNRdown(D1) > βdown where
βdown is the SNR threshold.

III. COMMUNICATION AND COMPUTING RESOURCES
CONSUMED FOR FL ENABLED EDGE INTELLIGENCE

In this section, we theoretically analyze SINR, SNR, as well
as wireless bandwidth and computing resources consumed to
support FL enabled edge networks.

A. SINR Analysis for Uplink

1) PDF of SINR: As UEs are geographically distributed as
homogeneous PPP with intensity λi, the number of UEs within
the coverage of the BS is a variable of Poisson distribution
with density parameter π(r0)2λi, where r0 is the radius of the
coverage circle. For a specific UE i, the signal power (Sup =
PupG(D1)) is also a random variable, as it only relates to the
distance D1 and Pup is always fixed for each UE.

Proposition 1. The PDF of the distance D1 between a specific
UE and the serving BS is fD1

(d1) = 2d1/r
2
0 .

The proof of Proposition 1 is similar to that of Proposition
2 in [9]. Therefore, we can obtain the PDF of signal power
(i.e., fSup = fD1(d1)). Next, we investigate the distribution
of the received interference on the uplink. Note that only
transmitting UEs located in the interfering area with radius
d0 can contribute to the interference. We assume that the
number of UEs within the interfering area is NA(NA ≥ NI)
which is also a variable of Poisson distribution with density
parameter π(d0)2λi. Moreover, the transmission time for UEs
is represented by tup. Therefore, the transmitting UEs during
[−tup, tup] can contribute to interference. For a specific UE,
the number of interfering UEs is distributed as PPP with
parameter 2tupλa where λa is the arrival rate of interfering
UEs. Therefore, the interference probability of a transmitting
UE during [−tup, tup] is Pr(active) = 1− exp{−2tupλa}.

Therefore, the probability of the number of interfering UEs
NI = nI given NA = n0 is Pr(NI = nI |NA = n0) =
CnIn0

(1− exp{1− 2tupλa})nI · (exp{1− 2tupλa})n0−nI , where
CnIn0

is the combination number. Therefore, the PDF of NI is

fNI (nI) =

N∑
n0=nI

Pr(NI = nI |NA = n0)Pr(NA = n0), (1)

where Pr(NA = n0) = (π(d0)
2λi)

n0

n0!
exp{−π(d0)2λi}. Based

on Proposition 1, we can rationally express the PDF of in-
terference Ii generated by UE i as fIi(Ii = PupG(d

(i)
2 )) =

f
D

(i)
2

(d
(i)
2 ) = 2d

(i)
2 /d20. As the total interference I(NI ,D2) is

effected by the number of interfering UEs NI and the distance
of these interfering UEs D2, we have the PDF of I(NI ,D2),

i.e., fI(NI = nI ,D2 = d2) = fNI (nI)
(

2
(d0)2

)nI ∏nI
n=1 d

(n)
2 .

Therefore, the PDF of SINR can be given by fSINRup =
fD1

(d1)fI(NI = nI ,D2 = d2).
2) Transmission Success Rate: For the distance between the

UE and the BS, intuitively fSINRup < βup when D1 > d0
[9]. Therefore, the satisfying range of D1 is (0, d0]. There-
fore, when given D1 = d1, we can obtain the number
of interfering UEs NI and the location of these interfer-
ing UEs. Let nI represent the mean of random variable
NI . Based on the UE distribution and interfering UE ar-
rival models, we can derive nI , E(NA)Pr(active) =
π(d0)2λi (1− exp{1− 2tupλI}), where E(NA) represents the
mean of the number of UEs located at the area A of
(D1, NI ,D2) that satisfies SINRup(D1, NI ,D2) > βup.

Therefore, SINR is only related to D1 and D2, expressed
as SINRup(D1,D2) =

PupG(D1)∑nI
i=1 Ii+δ

2
, where Ii = PupG(D

(i)
2 )

represents the interference generated by UE i. Therefore, we
have Pr(SINRup > βup) = Pr

(∑nI
i=1 Ii <

PupG(D1)
βup

− δ2
)

,

where
∑nI
i=1 Ii follows a normal distribution N(µI , σ

2
I ) as

the number of UEs involved in local model training is large
enough. Furthermore, we have µI = nIE(Ii) and σI =√
nID(Ii), which are the mean and variance of Ii respectively,

where dmin is the minimum distance between UEs and the BS,
and we define G(·) = G′1 and G1(·) = G′2(·). Similarly, we can
obtain Pr(SNRdown > βdown) = Pr(PdownG(D1)

δ2 > βdown) =´ r0
d1=d

′
min
fD1

(d1)d(d1) when we G(·) monotonically increases.

Let Y = I−µI
σI

, where I =
∑nI
i=1 Ii and I ∼

N(µI , σI). Therefore, we have Y ∼ N(0, 1), where
Pr
(∑nI

i=1 Ii <
PupG(d1)
βup

− δ2
)

= Φ(ξ(d1)), where Φ is the
cumulative distribution function (CDF) of standard normal
distribution and ξ(d1) = 1

σI
(
PupG(d1)
βup

− δ2 − µI). Therefore,
we have

Pr (SINRup > βup) =

ˆ d0

d1=dmin

fD1
(d1)Φ(ξ(d1))d(d1). (2)

B. Wireless Bandwidth Consumed for Transmitting Models

According to Section II. C, the bandwidth consumed for
transmitting the local model wri (t) at rth communication
round is given by bi,rup = s

T i,rup log2(1+SINRup(D1,NI ,D2)
. As s

and T i,rup are constant, the PDF of bi,rup for UE i is equal
to fSINRup . Therefore, the mean of bandwidth for all UEs
transmitting local models during K communication rounds
is Bup = K ·

∑n
i=1 b

i,r
up fSINRup . Similarly, the bandwidth

for transmitting the global models during K communication
rounds is given by Bdown = K ·

∑n
i=1 b

i,r
downfSNRdown .

C. Computing Resources Consumption

Obviously, the total computing resources needed to support
local model training are affected by the amount of training data
and the number of training UEs. We assume that the amount of
data samples among UEs follows the normal distribution, i.e.,
Si ∼ N(µi, σ

2
i ). Note that µi or/and σ2

i could be different for
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specific UEs. Therefore, as the computing resources consumed
of UE i for one local iteration is Zi = ciSi/Ti, the PDF of Zi
is equal to fSi(si).

For a specific UE i, if SNRdown > βdown, we say UE i
can successfully receive the global model. In other words, UE
i will continue to perform local training in the next commu-
nication round and consume certain computing resources. Let
Ẑ = {Ẑ1, ..., Ẑn} indicate the certain computing resources
consumed by UEs, where the value of Ẑi is set to zi if
SNRdown > βdown and 0 otherwise. Therefore, we can obtain
the PDF of Ẑi as fẐi = fZi(zi)Pr(SNRdown > βdown).

In FL, the consumption of computing resources on each
UE is independent as UEs train local model independently.
Therefore, we can derive the mean of computing resources
consumed by all UEs for one local iteration as CUE =∑n
i=1 zifẐi(Ẑi = zi). Therefore, the total computing resources

consumed is given by Ctotal = τKCUE .

IV. THE RELATIONSHIP BETWEEN FL PERFORMANCE AND
CONSUMED RESOURCES

Indeed, both the unsuccessful transmission of the local and
global model affect the aggregation and the updating of FL
tasks. Therefore, we need to analyze how the computing and
communication resources consumed affect the FL performance
by evaluating both the local and global model accuracy.

A. Local Model Accuracy

Practically, similar to that in [7], each UE solves the local
optimization problem
min
hi∈Rd

Gi(gr, hi) , Fi(gr + hi)− (∇Fi(gr)− ζ∇F (gr))
Thi,

(3)
where ζ is constant and hi represents the difference between
the global model and the local model for UE i. In this
work, we use the GD method, i.e., h(r)(t+1)

i = h
(r)(t)
i −

ξ∇Gi(gr, h(r)(t)i ), where ξ is the step size and h
(r)(t)
i is the

value of hi. Moreover, ∇Gi(gr, h(r)(t)i ) is the gradient of
Gi(gr, hi). gr + h

(r)(t)
i is the local model of UE i at local

iteration t. For a small step ξ, we can derive a set of solutions
h
(r)(0)
i , · · · , h(r)(τ)i , which satisfies Gi(gr, h

(r)(0)
i ) ≥ · · · ≥

Gi(gr, h
(r)(τ)
i ).

To provide the convergence condition for GD method, we
introduce local model accuracy loss εl [7], i.e., Gi(gr, h

(r)(t)
i )−

Gi(gr, h
(r)∗
i ) ≤ εl(Gi(gr, h

(r)(0)
i ) − Gi(gr, h(r)∗i )), where the

local model accuracy is 1− εl and h(r)∗i represents the optimal
solution. To achieve the local and global model accuracy given
in the next subsection, we first make the following three
assumptions on the loss function Fi(w), as that in [7], [8],
• Assumption 1: Function Fi(w) is L-Lipschitz, i.e., ∀w,w′ ∈
Rd, ‖ ∇Fi(w)−∇Fi(w′) ‖≤ L ‖ w − w′ ‖ .
• Assumption 2: Function Fi(w) is γ-strongly convex, i.e.,
∀w,w′ ∈ Rd, Fi(w) ≥ Fi(w

′) + 〈∇Fi(w′), (w − w′)〉 + γ
2 ‖

w − w′ ‖2.
• Assumption 3: Fi(w) is twice-continuously differentiable.
And γI ≤ ∇2Fi(w) ≤ LI .

Based on the assumptions, we can obtain the lower bound
on the number of local iterations, shown as Proposition 2. The
proof of Proposition 2 is similar to that in Appendix A in [7].
The lower bound reflects the growing trend of the number of
local iterations with respect to local model accuracy, which
can approximate the consumption of computing resources for
training local models.

Proposition 2. Local model accuracy loss εl is achieved if
ξ < 2

L and run the GD method τ ≥ d 2
(2−Lξ)ξγ ln 1

εl
e iterations

during each communication round at each UE that participants
in local training.

B. Global Model Accuracy

Let Ŝ = {Ŝ1, Ŝ2, ..., Ŝn} indicate whether local models
successfully contribute to the global aggregation when a UEs
sends its local model to the BS, where the value of Ŝi is set to
Si if SINRup(D1, NI ,D2) > βup and 0 otherwise. Therefore,
the probability of Ŝ is given by

Pr
(
Ŝ = {Ŝ1, Ŝ2, ..., Ŝn}

)
=

(Pr (SINRup > βup))
ns (1− Pr (SINRup > βup))

n−ns ,
(4)

where ns is the mean of the number of UEs that success-
fully send the local models to the BS. Therefore, the global
model at r-th communication round can be rewritten as gr =∑n

i=1 Ŝiw
r
i (t)∑n

i=1 Ŝi
, from which we can analysis the impact of the

SINR on the global model.
In FL algorithm, a global model accuracy is also needed. For

a specific FL task, we define εg as its global model accuracy
loss, i.e., F (gr(Ŝ,SINRup)) − F (g∗) ≤ εg(F (g0) − F (g∗)),
where g∗ is the actual optimal solution. Moreover, we provide
the following Proposition 3 about the number of communica-
tion rounds for achieving global model accuracy 1 − εg . The
proof of Proposition 3 is similar to that in Appendix B in [7].

Proposition 3. Global model accuracy 1−εg is achieved if the

number of communication rounds K meets K ≥ d
2L2 ln 1

εg

(1−εl)γ2ζ e
when running FL algorithm shown as Algorithm 1 with 0 <
ζ < γ

L

V. DISCUSSIONS OF THREE DIFFERENT CASES

In this section, we discuss three special cases and derive the
explicit expression of the model accuracy under FL framework
as a function of the amount of consumed computing resources
and communication resources based on the sufficiency of
respective communication and computing resources.

A. Sufficient Communication and Computing Resources

When both communication and computing resources are
sufficient, we can approximate the communication and com-
puting resources needed for the FL task based on Proposition
2 and Proposition 3. Specifically, the communication resources
needed for transmitting local models should meet Bup =
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K ·
∑n
i=1 b

i,r
up fSINRup ≥ d

2L2 ln 1
εg

(1−εl)γ2ζ e ·
∑n
i=1 b

i,r
up fSINRup . Simi-

larly, we can obtain the communication resources needed for

transmitting the global model, shown as Bdown ≥ d
2L2 ln 1

εg

(1−εl)γ2ζ e ·∑n
i=1 b

i,r
downfSNRdown . Furthermore, given local accuracy εl with

ξ < 2
L , the total computing resources needed should meet

the following constraint, Ctotal ≥ CUE · d 2
(2−Lξ)ξγ ln 1

εl
e ·

d
2L2 ln 1

εg

(1−εl)γ2ζ e.

B. Sufficient Computing Resources and Insufficient Communi-
cation Resources

As computing resources are sufficient, the number of local
iterations still follows Proposition 2. However, Proposition 3
may not be met due to the lack of communication resources. As
a result, the number of communication rounds K will decrease
even cannot achieve the required global accuracy. In this case,
the maximal number of communication rounds Kmax is given
by Kmax = bmin{B

max
down

B
r
down
,
Bmax

up

B
r
up
}c, where Bmax

up and Bmax
down are

the maximal available bandwidth that can be used for FL on
the uplink and downlink respectively. To achieve the required
global accuracy even the communication round is limited, we
can reasonably expect the real achieved global model accuracy
loss ε̃g can be expressed by ε̃g = exp

(
−K

(
(1−ε̃l)γ2ζ

2L2

))
[7]. Therefore, we have K = d

2L2 ln 1
ε̃g

(1−ε̃l)γ2ζ e, where ε̃l is the
realistic local model accuracy loss. In addition, the number of
communication rounds K should meet K ≤ Kmax. Therefore,

we have ε̃l ≤ b1−
2L2 ln 1

ε̃g

Kmaxγ2ζ c.
Furthermore, based on Proposition 2, the number of local

iterations τ ≥ d 2
(2−Lξ)ξγ ln Kmaxγ

2ζ
Kmaxγ2ζ−2L2 ln 1

ε̃g

e. Therefore, the

total amount of computing resources consumed is given by

Ctotal ≥ CUE · d 2
(2−Lξ)ξγ ln Kmaxγ

2ζ
Kmaxγ2ζ−2L2 ln 1

ε̃g

e · d
2L2 ln 1

ε̃g

(1−ε̃l)γ2ζ e.

C. Sufficient Communication Resources and Insufficient Com-
puting Resources

Similarly, the number of local iterations should meet τ ·
CUE ≤

∑n
i=1 Ci where Ci represents the maximal computing

resources used for local training on UE i. To achieve the
required local accuracy though the local iterations are limited,
we can reasonably expect that the real local global model
accuracy loss ε̃l is expressed by ε̃l = exp

(
−τ (2−Lξ)ξγ

2

)
[7].

Therefore, when ξ < 2
L , we have ε̃l ≥

exp
(

(Lξ−2)ξγ
∑n
i=1 Ci

2CUE

)
. Moreover, we can derive the

lower bound of the number of communication rounds as
K ≥ d

2L2 ln 1
εg(

1−exp
(

(Lξ−2)ξγ
∑n
i=1

Ci

2CUE

))
γ2ζ
e.

Therefore, the bandwidth for transmitting local models
and the global model are respectively given by Bup ≥
d

2L2 ln 1
εg(

1−exp
(

(Lξ−2)ξγ
∑n
i=1

Ci

2CUE

))
γ2ζ
e
∑n
i=1 b

i,r
up fSINRup and Bdown ≥

d
2L2 ln 1

εg(
1−exp

(
(Lξ−2)ξγ

∑n
i=1

Ci

2CUE

))
γ2ζ
e
∑n
i=1 b

i,r
downfSNRdown .

VI. SIMULATIONS

We consider an FL enabled edge network composed of
multiple UEs and one central BS with a cloud server serving
as the FL aggregator. The coverage of the BS is a circular
area with a radius of 1KM. The radius of the interfering area
is set to 200m. The transmit power of UEs and the serving
BS is set to 20dBm and 43dBm respectively [9]. Moreover,
the noise power is set to −173dBm [9]. The density of
interfering UEs λa is set to 1UE/m2. The path loss is modeled
as g(D1) = 34 + 40log(D1) [5]. The size of transmission
model s is set to 28.1kbits [7]. The number of CPU cycles
required for computing one sample data is randomly chosen
within [1, 4] · 104 cycles/sample [7]. In addition, we consider
the multi-class classification problem over MINIST datasets
where datasets of UEs are splitted randomly with 75% and
25% for training and testing. Moreover, we use a two-layer
fully connected neural network, where the activation function
is ReLU. The learning rate is 0.03.

Algorithm 1 : FL Algorithm.
Input: εl, εg .
output: gr, τ , K.

1: Initialization: w1
i (0) = 0, g1 = 0.

2: for r = 1, 2, ... do
3: Each UE calculates ∇Fi(gr) and sends it to BS
4: The BS calculates ∇F (gr) and broadcasts it to UEs
5: Parallel Each UE i = 1, 2, ..., n
6: Initialization: t = 0, h(r)(0)i = 0.
7: Repeat
8: Every V steps set h(r)∗i = h

(r)(t)
i .

9: Update h(r)(t+1)
i = h

(r)(t)
i − ξ∇Gi(gr, h(r)(t)i ).

10: Set wri (t) = gr + h
(r)(t)
i .

11: if Gi(gr,h
(r)(t)
i )−Gi(gr,h(r)∗

i )

(Gi(gr,h
(r)(0)
i )−Gi(gr,h(r)∗

i ))
> εl then

12: Set t = t+ 1
13: else
14: Each UE i sends wri (t) to the BS.
15: end if
16: The BS calculates gr and sends it to UEs
17: if F (gr(Ŝ,SINRup))−F (g∗)

F (g0)−F (g∗) < εg then
18: Break;
19: end if
20: end for
21: Set τ = t, K = r.

First, we examine the local and global model transmis-
sion success rates with varying UE density. Fig. 3 shows
Pr(SINRup > βup) on uplink (UL) and Pr(SNRdown > βdown)
on downlink (DL). From Fig.3, we can see that the curves
of analytical results match closely to simulations for both the
uplink and downlink. As expected, under both βup = −15dB
and βup = −12dB scenarios, Pr(SINRup > βup) decreases
with the UE density. This is because that the interference
increases with the UE density. In addition, we also find that
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Pr(SINRup > βup) under βup = −15dB is more than that under
βup = −12dB due to the more stringent SINR requirement.

After that, we examine the bandwidth consumption in the
uplink and the downlink respectively for both analytical and
simulation results with respect to the global accuracy loss εg .
Fig. 4 and Fig. 5 show the bandwidth consumption in the
uplink and the downlink changes with the global accuracy
loss respectively, where both the bandwidth consumption in
the uplink and the downlink decrease with the global accuracy
loss. In addition, we also find that the lower local accuracy
leads to more bandwidth consumption to guarantee a specific
global accuracy when training i.i.d data. The reason is that
the lower local accuracy needs more communication rounds to
aggregate the local models to achieve a certain global accuracy,
and thus consumes more bandwidth.
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Fig. 7: Local training during
each communication round.
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In the following, we examine the computing resource con-
sumption for both analytical and simulation results with the
density of UEs. Fig. 6 shows the computing resource consump-
tion changes with the density of UEs. From Fig. 6, we can
see that the computing resource consumption increases in the
beginning and then decreases with the density of UEs. This
is because that the number of UEs that participate in local
training increases in the beginning and then decreases due to
the impact of SNR.

Next, we verify the convergence property by observing the
local optimization function whether converges with the local
training. As shown in Fig. 7, the local optimization function
convergences with the number of local trainings increasing. Af-
ter that, we aim to verify the relationship between the consump-
tion of computing resources and communication resources. As
shown in Fig. 8, when we fix the global model accuracy,
we can reduce the bandwidth consumption by increasing the
computing resource consumption and we can also reduce the
computing resource consumption by increasing the bandwidth
consumption. Moreover, we can also see, when the amount
of available computing resources/bandwidth is vitally small,
it makes little sense to improve the global model accuracy
no matter how many bandwidth (computing resources) we
increase.

VII. CONCLUSION

Wireless edge network intelligence enabled by FL has been
widely acknowledged as a very promising means to address
a wide range of challenging network issues. In this paper, we
have theoretically analyzed how accurate of an ML model can
be achieved by using FL and how many resources are con-
sumed to guarantee a certain local/global accuracy. Specifically,
we have derived the explicit expression of the model accuracy
under FL framework, as a function of the amount of comput-
ing/communication resources for FL empowered wireless edge
networks. Numerical results validate the effectiveness of our
theoretical modeling. The modeling and results can provide
some fundamental understanding for the trade-off between
the learning performance and consumed resources, which is
useful for promoting FL empowered wireless network edge
intelligence.
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