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A novel implicit integration scheme for the Discrete Element Method (DEM) based on 
the variational integrator approach is presented. The numerical solver provides a fully 
dynamical description that, notably, reduces to an energy minimisation scheme in the 
quasi-static limit. A detailed derivation of the numerical method is presented for the 
Hookean contact model and tested against an established open source DEM package 
that uses the velocity-Verlet integration scheme. These tests compare results for a 
single collision, long-term stability and statistical quantities of ensembles of particles. 
Numerically, the proposed integration method demonstrates equivalent accuracy to the 
velocity-Verlet method.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Various descriptions of granular materials are compared in Fig. 1, where they are classified by the treatment of the 
temporal and spatial dimensions, which can be either continuous or discrete. In the underlying Newtonian picture (strong 
form), the discrete spatial degrees of freedom (particle position and orientation) are described by continuous functions of 
time which are the solutions to Newton’s second law. The Discrete Element Method (DEM) [1] – a widely-adopted particle-
level approach for simulating granular materials – calculates the resultant force acting on each particle during distinct 
time steps resulting from the discretisation of the time domain and solves the governing equation of motion. A continuum 
description (granular continuum) of spatially discrete systems is achieved via a micro-to-macro transition. For example 
Babic [2] proposed a coarse-graining method and derived a balance equation that relates continuous functions of position to 
each other. In practice, the micro-to-macro transitions for granular systems are often performed on discrete-time/discrete-
space DEM data [3], but in principle this can be achieved for the Newtonian description too.

Unlike computational models of fluid dynamics or continuum mechanics, numerical simulations of granular materials 
have not been able take advantage of developments in spatial continuum modelling. Granular materials display a variety of 
behaviours which is often compared to the solid, fluid and gaseous phases of matter. The solid-like phase is characterised 
by static packing and jamming, the energetic gaseous state by pairwise collisions between particles, and the intermediate 
fluid-like state by dense flows [4]. Given the complexity and diversity of physical phenomena present in granular materials, 
finding a universal continuum description for granular material remains an open research question. A local continuum 
description for dense granular flow has been proposed [5–7] and have shown to be applicable in a range of situations. 
However, this rheology has limitations and fails to reproduce important non-local phenomena such as shear banding and 
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Fig. 1. A classification of descriptions of granular material based on the treatment (continuous or discrete) of the temporal and spatial dimensions. The 
focus of this work is a variational integrator for the Discrete Element Method which will provide the appropriate mathematical setting for a granular 
Quasicontinuum Method.

Fig. 2. A DEM simulation of a draining silo. Many particles experience only small relative displacements for the largest part of the simulation, which is 
common in many DEM applications.

arching [8,9]. The former occurs a granular assembly is subjected to shear loading. While there is significant particle rotation 
and relative motion inside the shear band the remaining part of the assembly typically moves like a rigid body [10].

In the absence of a complete continuum theory, many studies of granular materials rely on discrete, particle level nu-
merical simulations. However, in the static or slow moving phase of granular materials, a large number of particles may 
remain nearly stationary or behave in a manner that could be described by a continuum model. For instance, Fig. 2 shows 
a draining silo with particles coloured by their initial vertical position. Even at an advanced state of drainage, particles in 
certain regions still approximately maintain their positions relative to their initial neighbours.

The Quasicontinuum (QC) method is a multiscale discrete-continuum method which allows for a fully-resolved particle 
simulation where required, and a more efficient continuum description of material behaviour elsewhere. Simulations are 
carried out in a continuous spatial domain and the method thus fits to the top right quadrant of the diagram in Fig. 1. The 
method was initially developed for crystalline atomistic simulations [11–14], where the arrangement of atoms is calculated 
so as to minimise the global potential energy of the system using a suitable numerical technique, such as iterative energy 
minimisation methods. Atoms exist throughout the domain, but the computational cost is reduced by two key features. 
2



D.N. De Klerk, T. Shire, Z. Gao et al. Journal of Computational Physics 462 (2022) 111253
First, a series of representative atoms, or rep-atoms, are identified. The density of rep-atoms is highest in regions of specific 
interest and gradually diffuses toward regions of less interest. Second, the energy density is estimated by so-called summa-
tion rules in regions bordered by rep-atoms. The displacement of non rep-atoms is updated by interpolating their positions 
between rep-atoms. In situations where the majority of atoms fall in regions of low interest, the degree of freedom of the 
simulation is greatly reduced which leads to improved simulation run time.

The objective here is to provide a temporal discretisation framework for the application of the QC method to granular 
systems. However, several challenges exist before a granular QC method can be realised. For the most part, with exceptions, 
such as [15,16], only quasi-static configurations are simulated in the QC framework and dynamics are not accounted for. 
The original QC method was developed for quasi-static crystalline atomistic simulations that minimises the inter-atomic 
potential energy of the system. In the context of granular materials, a quasi-static simulation would restrict the method’s 
application to the solid-like state. To recover the dynamics, and to stay consistent with the QC approach, a novel integration 
method for the Discrete Element Method has been developed. The method follows Hamilton’s principle in seeking the 
stationary point of the action. The other hallmark of the QC method – an efficient summation rule – will be addressed in 
future work.

In a time continuous setting, Hamilton’s principle provides a variational scheme where the differential equations gov-
erning a dynamical system can be derived by finding the trajectory that is the stationary point of the action. The Lagrange-
d’Alembert principle is a generalisation of Hamilton’s principle to non-holonomic systems, and is therefore applicable here 
due to the dissipative nature of granular materials. The classification in Fig. 1, identifies the Hamiltonian approach (vari-
ational) to be in the same category as the Newtonian one (strong form). Variational integrators [17–21] are a class of 
algorithms where the time continuous variational principles are discretised to obtain time-stepping schemes for dynamical 
systems. As a result, many of the important properties of Lagrangian mechanics carry over to these algorithms. For instance, 
variational integrators conserve the generalised momentum of a system as a consequence of a discrete version of Noether’s 
theorem. Of particular interest is an implicit integration scheme, outlined in [19], that follows directly from Hamilton’s 
principle in a discrete setting. When the quasi-static approximation is taken, i.e. by neglecting inertia, the method simplifies 
to minimising the potential energy of the system – precisely what is done in the atomistic simulations that inspired the 
QC method. A variational integrator for DEM is the time discrete analogue to the variational format, i.e. the time discrete 
description in the bottom right quadrant of Fig. 1, and provides a way to proceed towards the top right quadrant. Other 
variational approaches, such as the contact variational integrators [22], will be considered in future work.

While proposing variational integrators is not new per se, the bespoke application to the Discrete Element Method is 
novel. This is a crucial step towards a granular Quasicontinuum method. To achieve this objective, a benchmark against 
current DEM solvers is needed before addressing the other challenges mentioned above. The remainder of the paper is 
structured as follows. Section 2 provides a detailed derivation of the variational integrator for dissipative systems and 
extends its application to the Hookean contact model in DEM. Section 3 discusses the implementation of the solver, shows 
results of numerical experiments and comparisons with established DEM codes. Section 4 is dedicated to the final discussion 
and conclusions.

2. Numerical integration

The velocity-Verlet method [23] is popular in molecular dynamics and is also widely used in DEM. The same method is 
also known as the Störmer method and the leapfrog method, depending on the context where it is used [24]. It has been 
shown that the velocity-Verlet method and many of its variants can be derived using the variational integrator approach 
[24–26] and therefore inherits the properties of variational integrators mentioned in the introduction. However, the velocity-
Verlet method is explicit and tailored toward solving Newton’s equations in the strong form (see Fig. 1) and, as discussed 
above, a variational approach is preferred for the Quasicontinuum method.

In practice, DEM simulations are carried out over time periods many orders of magnitude larger than the duration of a 
single contact which leads to a trade off between the duration and the accuracy or stability of the simulation. To ensure 
accurate particle trajectories, an integration time step needs to be selected that is much smaller than the duration of a 
contact. Choosing the maximal integration time step has been the topic of substantial research [27–29]. Implicit integration 
schemes have been proposed for DEM (see for instance [30,31]). However the same limitation on the maximum time step 
applies, and with the added computational cost of implicit schemes these methods typically result in longer simulation 
times than explicit schemes. An approach to solve DEM by minimising the potential energy was proposed in [32], however 
this method was restricted to quasi-static configurations.

2.1. Variational integrators

The numerical integration scheme presented here follows Kane et al. [18]. The Lagrange-d’Alembert principle (see Fig. 3
(a)) is used to derive a second-order accurate integrator for the equations of motion of a general dynamical system. The 
continuous formulation of this principle states that for a system under the influence of a non-conservative generalised force 
Q (q, ̇q), the sum of the variation of the action (S = ∫

L dt) and the total work performed by the non-conservative forces is 
zero, that is
3
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Fig. 3. Hamilton’s Principle of least action, as depicted in (a), is a continuous method for solving the trajectory of a dynamical system by finding the path 
that is the stationary point of the action. Other possibilities are indicated by dashed lines. Variational integrators (b) in a time discretised setting, identify 
the sequence of points qn that approximates the stationary point of the action.

δ

t f∫
ti

L(q, q̇) dt

︸ ︷︷ ︸
δS

+
t f∫

ti

Q (q, q̇) · δq dt = 0. (1)

Here q and q̇ = dq/dt are the generalised coordinates and velocities, respectively, and the Lagrangian is given by L(q, ̇q) =
T (q̇) − V (q), where T (q̇) and V (q) are the kinetic and potential energy of the system, respectively.

A generalised coordinate can be any parameter that specifies the configuration of the system. For discrete particles these 
are the coordinates and angles that specify their position and orientation. The corresponding generalised forces are forces 
and torques.

In the absence of non-conservative forces ( Q = 0), the second term in Eq. (1) is zero and the Lagrange-d’Alembert prin-
ciple is equivalent to Hamilton’s principle of least action. The Lagrange-d’Alembert principle will be required to formulate 
an integrator for DEM, because of the dissipative terms in the contact model. Since Hamilton’s principle is a special case, 
we will refer to it in the following discussion, when appropriate.

In order to find the trajectory that a system will follow in the time continuous case, the calculus of variations is used 
to find the stationary point of the action. For a time discrete formulation, the trajectory q(t) is decomposed into N time 
steps of length h and labelled {q0, · · · , qN } as depicted in Fig. 3 (b). A discrete Lagrangian is defined as the numerical 
approximation of the integral over the time step and is given by,

Lα
d (qk,qk+1,h) ≡

t+h∫
t

L(q, q̇) dt ≈ hL

(
qk+α,

qk+1 − qk

h

)
, (2)

where qk+α = [1 − α]qk + αqk+1. The parameter α is often chosen as 0 or 1/2 which correspond to the left hand rule or 
midpoint rule, respectively. The choice of α = 0 leads to a first-order accurate integrator and α = 1/2 increases the accuracy 
to second-order. The discrete action is the sum over the N time steps,

Sd =
N−1∑
k=0

Lα
d (qk,qk+1,h). (3)

The discrete Lagrange-d’Alembert principle [18] is given by

δ

N−1∑
k=0

Lα
d (qk,qk+1) +

N−1∑
k=0

[
Q −(qk,qk+1) · δqk + Q +(qk,qk+1) · δqk+1

]
= 0 (4)

where,

Q −
d (qk,qk+1) = h

2
Q

(
qk+α,

qk+1 − qk

h

)
and (5)

Q +
d (qk,qk+1) = h

2
Q

(
qk+1−α,

qk+1 − qk

h

)
, (6)

are the left and right discrete forces, respectively. These terms arise from approximating the integral in the second term of 
(1), and applying the differential operator to the non-conservative generalised force that is a function of both the generalised 
4
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coordinates and generalised velocity, Q (q, ̇q). A choice of α = 1/2 corresponds to using the midpoint rule to approximate 
the integral and a second-order accurate integrator is achieved.

The equivalent of the Euler-Lagrange equations can be derived using Hamilton’s principle of stationary action. The dy-
namics of the system will ensure that the variation in the action, δSd , remains zero for independent variations in δqk and 
δqk+1, that is

δSd =
N−1∑
k=0

δqk · d

dqk
Lα

d (qk,qk+1,h) +
N−1∑
k=0

δqk+1 · d

dqk+1
Lα

d (qk,qk+1,h). (7)

To prevent confusion with derivatives, new notation is introduced such that D1 Lα
d and D2 Lα

d are the derivative of the first 
and second argument of Lα

d , respectively. Then, the index for the sum in the second term is changed to k + 1 → k. The 
expression for Eq. (7) now becomes,

δSd =
N−1∑
k=0

δqk · D1Lα
d (qk,qk+1,h) +

N∑
k=1

δqk · D2Lα
d (qk−1,qk,h). (8)

Since δq0 = δqN = 0, the first sum can start at k = 1 and the second can be terminated at N −1. Now, since both summations 
are carried out over the same range, the expression can be factorised, as

δSd =
N−1∑
k=1

δqk ·
[

D1Lα
d (qk,qk+1,h) + D2Lα

d (qk−1,qk,h)
]
. (9)

The condition δSd = 0 can be enforced by requiring that the term in the brackets be zero, that is,

D1Lα
d (qk,qk+1,h) + D2Lα

d (qk−1,qk,h) = 0, (10)

which is the discrete form of the Euler-Lagrange equation.
In the general case when dissipative forces are present (i.e. Q �= 0), the second term in Eq. (4) can be manipulated using 

the same steps as above to obtain,

N−1∑
k=0

[
Q −

d (qk,qk+1,h) · δqk + Q +
d (qk,qk+1) · δqk+1

]
=

N−1∑
k=1

δqk ·
[

Q −
d (qk,qk+1,h) + Q +

d (qk−1,qk)
]

. (11)

The sum over k and δqk can be factored with the terms in (9), which leads to the discrete Euler-Lagrange equation,

D1Lα
d (qk,qk+1,h) + D2Lα

d (qk−1,qk,h) + Q −
d (qk,qk+1,h) + Q +

d (qk−1,qk,h) = 0. (12)

Both Eqs. (10) and (12) are second-order difference equations, but a system of two first-order equations can be con-
structed by introducing the generalised momentum. The momentum in the time continuous case is defined by, p(t) =
∂L/∂q̇. Similarly in the time discrete setting, the momentum at step k is given by

pk ≡ D2Lα
d (qk−1,qk,h). (13)

The momentum can be used to evaluate Q + at time step k,

Q p
d (qk, pk) = h

2
Q

(
qk,

pk

m

)
= Q +(qk−1,qk,h). (14)

The first update equation is obtained by substituting the definition for the momentum (13) at step k, into the discrete 
Euler-Lagrange equation (12), and the second is the expression for the momentum at step k + 1. The pair of first-order 
update equations is given by,

R(qk,qk+1, pk,h) ≡ pk + D1Lα
d (qk,qk+1,h) + Q −

d (qk,qk+1,h) + Q p
d (qk, pk) = 0, (15)

pk+1 = D2Lα
d (qk,qk+1,h). (16)

The update scheme, (qk, pk) �→ (qk+1, pk+1), requires that the new position, qk+1 be calculated using an implicit scheme in 
Eq. (15) and then explicitly calculating the new momentum pk+1 using (16).

The implicit scheme for updating q is obtained by expanding (15) around qk+1,

R(qk,qn , pk,h) + K(qk,qn , pk,h)�qn = 0, (17)
k+1 k+1 k+1

5
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where qn
k+1 is the previous estimate for qk+1 and �qn

k+1 = qn+1
k+1 − qn

k+1 is the change required to improve the estimate. The 
stiffness is given by,

K(qk,qk+1,h) = ∂

dqk+1
R(qk,qk+1,h) (18)

= ∂2

∂qk∂qk+1
Lα

d (qk,qk+1,h) + ∂

∂qk+1
Q −

d (qk,qk+1,h) (19)

The initial guess for qk+1 can be estimated using the momentum at the k-th time step, q0
k+1 = qk + hpk/m. A sequence of 

improvements n = 1, 2 . . . is computed until a new set of generalised coordinates are reached where the magnitude of the 
residual R is zero to within a specified tolerance.

2.2. Integration for DEM

DEM is characterised by treating particles as rigid bodies with ‘soft’ contacts where overlap between particles is allowed 
and inter-particle forces are expressed as a function of the overlap (denoted by δi j ). Different contact models have been 
proposed (for instance see [33] for a recent review), but for simplicity and without loss of generality the Hookean contact 
model [33,34] is adopted. Specifically, the normal and tangential forces between particles, expressed in the global coordinate 
system, are calculated using

F nij = knδi jni j − γnmeff vnij , (20)

F ti j = ktδi jt i j − γtmeff vti j , (21)

where kn and kt are the normal and tangential spring stiffness, γn and γt are the normal and tangential damping coefficients 
and meff = mim j/[mi + m j] is the effective mass of the contact. The overlap, normal and tangential components of the 
velocity, are given by,

vnij = [
v i j · ni j

]
ni j, (22)

vti j = v i j − vnij − 1

2

[
ωi + ω j

] × ri j, (23)

respectively, where ri j = ri −r j is the relative position of the particles, ni j = ri j/|ri j | is the unit vector normal to the contact, 
t i j is unit vector tangential to the contact, δi j = d − |ri j | is the overlap between the particles with diameter d, v i j = v i − v j
is the relative velocity and ω is the angular velocity.

The dynamics of particle i is governed by the resultant force and torque,

F i = F ext
i +

∑
j

[
F nij + F ti j

]
, (24)

τ i = −1

2

∑
j

[
ri j × F ti j

]
, (25)

where F ext
i are any external forces on particle i and the sum j is carried out over all particles that are in contact with i, i.e. 

for which δi j > 0.
The DEM method can be cast into the Lagrangian formulation where the Lagrangian for a system of N p discrete particles 

is given by,

L(q, q̇) = 1

2
q̇T Mq̇ − V (q), (26)

where q is a 6Np real column vector that represents the degrees of freedom of all Np particles. The integrator needs 
to account for the position and orientation of each particle, so a reasonable choice is to group the vector in rows of 
6, where the first 3 entries and last 3 entries represent the position and angular degrees of freedom, respectively. As 
before, the generalised velocity is q̇ = dq/dt which is therefore composed of the linear and angular velocity. The generalised 
momentum, p, contains both the linear and angular momentum. A component of p is given by p = ∂L/∂q̇, where q̇ is the 
corresponding component of q̇. The mass matrix M is a 6Np ×6Np diagonal matrix with blocks Mi = diag([mi mi mi Ii Ii Ii]). 
Here mi and Ii are the particle mass and moment of inertia, respectively, of particle i.

The first term in Eq. (26) accounts for the total kinetic energy of the system. The potential energy due to a Hookean 
contact between particles i and j is given by

V ij =
{

kn
2

[
δi j

]2
, if δi j > 0

0, otherwise.
(27)
6
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Fig. 4. The Hookean inter-particle potential function as a function of particle overlap.

The potential function is illustrated in Fig. 4. This formulation can be expanded to other contact models, for instance a 
Hertz-Mindlin contact model can be implemented by using V ij ∝ 2/5 [δi j]5/2 for δi j > 0. The potential energy for the 
entire system is the sum of the potentials over all the particles in contact with each other and, assuming a gravitational 
acceleration g =

∧ [0, 0, −g], the gravitational potential energy V = ∑
i

∑
j<i V i j + ∑

i mi gzi . The generalised non-conservative 
forces Q in DEM are friction and velocity dependent damping terms in Eqs. (20)-(21).

Following the prescription in Eq. (2), the discrete Lagrangian for DEM is given by,

Lα
d (qk,qk+1,h) = 1

2h

[
qk+1 − qk

]T M
[
qk+1 − qk

] − hV (qk+α). (28)

This allows one to simplify the update scheme for the integrator. The vector term in Eq. (17) becomes,

R(qk,qn
k+1, pk,h) = pk − 1

h
M

[
qn

k+1 − qk

] − h

[
[1 − α] ∂V

∂qk
+ 1

2
Q −(qk,qn

k+1) + 1

2
Q p(qk, pk)

]
, (29)

and the stiffness matrix,

K(qk,qn
k+1,h) = −1

h
M − ∂

∂qk+1
Q −

d (qk,qk+1,h). (30)

Using these expressions for R and K in the iterative scheme described in equation (17), the generalised coordinates of the 
system can be calculated at the next time step. The time step size h plays an important role in regulating the step size of 
the position i.e. |�qn

k+1|. When h is not sufficiently small the scheme may not converge. This can be mitigated by using a 
suitable time step or with techniques commonly used in nonlinear problems such as where the convergence radius of the 
Newton scheme can be improved using arc length control methods.

The momentum update equation (16) simplifies to

pk+1 = D2Lα
d = 1

h
M[qk+1 − qk] − hα

dV

dqk
. (31)

For the first-order integrator (α = 0), this can be interpreted as the product of the discrete velocity and the mass and is 
therefore consistent with a discrete time increment.

3. Numerical tests

The integration scheme outlined above is implemented in the Python programming language [35,36]. The complete 
algorithm is outlined in Algorithm 1 and the full source code is available online [37]. The iterative scheme for computing the 
next position is terminated when the norm of the residual or position update is reduced to 10−13 of their respective initial 
values. A message is posted to the user when neither of these conditions are met after 200 iterations, which indicates that a 
smaller time step would yield more accurate results. A Verlet neighbour list [23] efficiently keeps track of potential contacts 
and assists in constructing the residual vector and stiffness matrix. To simplify the implementation and to focus on key 
features of the algorithm, the tangential overlap between particles is not calculated which restricts the following numerical 
tests to frictionless particles (μ = 0), however dissipative forces are still present via viscous damping and accounted for by 
the second terms in equations (20)-(21).

Walls are implemented using the Hookean contact model Eqs. (20)-(21) by substituting the position r j with the wall’s 
normal vector and setting v j = 0.

A number of numerical experiments are performed to test the integrator and its implementation. Fig. 5 shows the var-
ious configurations used in the tests: a collision between two particles, a single particle bouncing between two parallel 
walls, a collision between a bonded pair and a third particle, and an ensemble of particles settling in a box under grav-
ity. Each case is discussed in the following sections. In each test case all particles have the same diameter and mass and 
the same parameters for the Hookean contact model with no friction (μ = 0) and normal and tangential damping is fixed 
to γt = γn/2. A damping parameter is introduced γ = γn/meff, and different values of the parameter γ are used to test 
7
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Read initial state;
Assemble M;
k ← 0;
while k < K do

Detect Contacts;

q0
k+1 ← qk + hM−1 pk ; /* The initial guess for the position */

n ← 0;
while n < 200 do

F ← Vector term in (29);
K ← Matrix term in (30);
�q�n

k+1 ← C G(K, −F , tol = 10−15) ; /* Solve with the conjugate gradient method */

qn+1
k+1 ← qn

k+1 + �q�n
k+1 ; /* Update the guess for the next iteration */

dn ← | �q�n
k+1|;

En ← |F | ;
if n == 0 then

d0 ← dn ;
E0 ← En ;

if En/E0 < 10−13 or En/E0 < 10−13 then
break from inner loop;

n ← n + 1;

if n == 200 then
print “Maximum Newton iterations reached” ;

qk+1 ← qn
k+1 ; /* Set the coordinates for the next iteration */

pk+1 ← 1
h M [qk+1 − qk

]
; /* Update the momentum using Eq. (31) */

k ← k + 1;

Algorithm 1: The first-order (α = 0) variational integrator algorithm for DEM.

Fig. 5. Particle configurations used for numerical experiments in this section: (a) collision between two particles, (b) a particle bouncing between walls, (c) 
collision with simplified bonded particles and (d) particles filling a box. Solid lines between particle centres indicate that a simplified ‘bond’ was present 
between particles.

various aspects of the integrator. In all simulations the value of the contact stiffness is fixed relative to other model pa-
rameters such that kd/mg = 195 000, where g is gravitational acceleration and m and d are the particle mass and diameter, 
respectively.

The algorithm outlined above provides an integrator for DEM in a variational setting. In order to demonstrate that it 
indeed recovers the same solution as a conventional DEM simulation, comparisons are made with the results from the 
8
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Fig. 6. Two particle impact: Kinetic energy of one particle for small integration time steps (h ≈ tc/160) and various parameters. Results between the 
proposed integrator and LAMMPS are indistinguishable. (For interpretation of the colours in the figures, the reader is referred to the web version of this 
article.)

open source software package LAMMPS [38], where possible. LAMMPS implements a Hookean contact model [34,39,40]. 
The default velocity-Verlet [23] integrator in LAMMPS is used, which is a popular choice for DEM simulations and readily 
implemented in other open source packages [41]. The current version of LAMMPS only provides two integrators for fully 
dynamical simulations, the other being the rRESPA [42] multi-timescale scale integrator. The velocity-Verlet scheme was 
chosen, because only inter-particle forces are considered here.

3.1. Two particle impact

The first test shows the numerical integration of the Hookean contact model over one collision between two particles. 
Simulations for different values of the integration time step h, damping γ and offset �y (see Fig. 5a) are performed. The 
two particles have initial positions r =

∧ [d, ±�y/2, 0] and velocities v =
∧ [∓v, 0, 0].

An analytical solution is available for the special case when �y = 0, as all contributions from tangential forces remain 
zero. The time at which the collision starts can be calculated and is given by t A = d/2v . After this time, the force between 
the particles is given by

F = kn[d − x] + 1

2
γ mv, (32)

where [x, 0, 0] and [−v, 0, 0] is the position and velocity, respectively, of the particle on the right. This is the same force as 
a damped simple harmonic oscillator for which the position and velocity are given by:

x(t) = d

2
− vtγ exp

(
−γ t

m

)
sin

(
t

tγ

)
, (33)

v(t) = v exp

(
−γ t

m

)[
γ 2

m
sin

(
t

tγ

)
− cos

(
t

tγ

)]
, (34)

where tγ = [
2k/m − [γ /m]2

]−1/2
. The duration of the collision can also be calculated by solving for t in x(t) = d/2, which 

gives tC = π
√

m/(2k).
Figs. 6 to 8 show the translational and rotational kinetic energy of the particle on the right over the course of the 

collision. The translational kinetic energy was calculated as K T = 1/2 m[v2
x + v2

y], where v =
∧ [vx, v y, 0] is the particle 

velocity, and rotational kinetic energy K R = 1/2 Iω2
z , where I = 2/5 m[d/2]2 is the moment of inertia of a sphere and ωz

is the rotational velocity around the z axis. Figs. 6a and 6b shows results of the proposed integrator for a small time step 
h ≈ tc/160. For this time step size there is excellent agreement with LAMMPS and results between the two integrators 
are indistinguishable. Comparisons between the first and second-order integrators and LAMMPS at larger time steps (h ≈
tc/3.2, tc/16.1, �y/d = 0.1 and γ = 30) are made in Fig. 7a and 7b. The second-order integrator compares well with 
LAMMPS in the case when h = tc/16.1, but the amount of energy dissipated is (not surprisingly) incorrectly calculated for 
large time steps h = tc/3.2 by all integrators tested. Finally, Fig. 8 compares the second-order integrator (with h ≈ tc/160
and �y = 0) to the analytic solution in equation (34) and demonstrates near exact agreement.

The stability of the variational integrator can be tested numerically using the analytic solution. However, the velocity-
Verlet method’s stability interval is larger than the duration of a single collision [43]. To make meaning full comparisons, 
the contact force was altered to V (δi j) = k/2δi j , ∀δi j so that the inter-particle force becomes attractive when the particles 
separate. The two particles were initially placed at r =

∧ [±d/2, 0, 0], such that δi j = 0 at t = 0, and given the same initial 
9
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Fig. 7. Two particle impact: Kinetic energy of one particle for large integration time steps (h ≈ tc/3.2, tc/16.1) and �y/d = 0.1 and γ = 30. There is 
agreement between LAMMPS and the second-order integrator for h ≈ tc/16.1, but the energy dissipation over the course of the collision is not correctly 
calculated for the very large time step h ≈ tc/3.2.

Fig. 8. Two particle impact: Kinetic energy of one particle (h ≈ tc/160, �y = 0) compared to the analytic solution in equation (34).

Fig. 9. For the example of a two particle impact with the modified ‘bonded’ contact model the numerical error in (a) position (b) velocity and (c) total 
energy. The second-order method’s position and velocity is less accurate than the velocity-Verlet method, but the total energy remains conserved to within 
numerical precision. The first-order method calculates the same position as the velocity-Verlet method, but accuracy suffers for the velocity.

velocities as in the previous example, v =
∧ [∓v, 0, 0]. This example is analogous to the harmonic oscillator and the analytic 

solution in (33) and (34) is valid for all t > 0, however it should be noted that in this example the overlap between particles 
δi j only accounts for half of the displacement of a particle. Therefore, the angular frequency of an analogous harmonic 
oscillator would be 

√
2k/m. With these parameters the stability interval of the velocity-Verlet method is expected to be 

h <
√

2m/k instead of h < 2
√

m/k that is typically reported in literature for the harmonic oscillator.
A series of simulations were performed with different time steps in h ∈ [0.01

√
m/k, 1.4

√
m/k] using the first and second-

order variational integrators and the velocity-Verlet method in LAMMPS. The error in position, velocity and kinetic energy 
was calculated as the L2 norm of the difference between the numerical solution and the analytic solution evaluated at the 
same time steps. For instance, the error in position can be calculated using ex = |xk − x(tk)|. The errors vs time step for posi-
tion, velocity and total energy are shown in Fig. 9. The first-order method predicts the same positions as the velocity-Verlet 
10
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Fig. 10. For a particle bouncing between two walls 1.01d apart (a) shows the numerical error vs time step. The performance of the second-order variational 
integrator suffers in the presence of discontinuities in the derivative of the contact model, but still outperforms the first-order method and performs similar 
to the velocity-Verlet scheme. The truncation error in the total energy vs time is shown in (b).

method, however the accuracy of the velocity does not improve as rapidly as the second-order methods when the time 
step is reduced. The second-order method produces less accurate positions and velocity, however the accuracy improves 
at a similar rate to the velocity-Verelet method. In addition the total energy is conserved for h

√
k/m <

√
2 to within the 

tolerance specified for the conjugate gradient method.

3.2. Particle bouncing between walls

Variational integrators are known to display excellent energy conservation, despite the fact that energy conservation is 
not guaranteed [18], and this has been demonstrated in the previous example. However, the presence of collisions, and 
given that the Hookean contact model has a discontinuous second derivative, a reduction in accuracy in realistic DEM 
simulations may occur. To test the energy conservation behaviour of the variational integrator, a simulation is performed 
where a particle is placed between two parallel walls set 1.01d apart. The particle’s initial velocity is perpendicular to them 
(see Fig. 5b). In the undamped case (γt = γn = 0), the particle will bounce between the walls without loss of energy and 
thereby provide a good test for the energy conserving properties of the integrator. During the brief periods of no contact 
the total energy in the system will be the particle’s kinetic energy and during a collision some energy will be converted to 
potential energy V = 1/2 knδ2, where δ is the overlap between the particle and wall. The stability of the integration method 
was tested by using the same series of time steps as in the previous example.

The norms of the difference between total energy and initial energy for different time steps are shown in Fig. 10a. The 
discontinuous nature of the contact force results in a drop in accuracy for both the velocity-Verlet and second-order varia-
tional integrator, however both still out perform the first-order method. The total energy is the sum of the kinetic energy and 
potential energy of the Hookean contact. The total energy of the particle is plotted in Fig. 10b for h ≈ tc/160 ≈ 0.013 

√
m/h. 

The simulation is carried out over 250 collisions, but the graph shows the total energy for the last few collisions. The to-
tal energy of the simulation is not conserved exactly using either LAMMPS or the second-order variational integrator, but 
remains bounded.

3.3. Impact with a bonded pair

A simple bonded particle contact model is implemented by allowing attractive forces between particles. This is imple-
mented by creating a ‘bond’ between particles if in the initial configuration they are close together (|δi j | < d/100). Whenever 
a bond exists between particles, the potential V ij = kn[δi j]2/2 was used even when particles were separated.

A simulation is performed of a collision between a pair of bonded particles and a third unbonded particle. The purpose 
of this is to test the simplified bonded particle model and test the integrator with contact models that have different 
time scales. Different time scales can be introduced by choosing different spring stiffness constants for regular Hookean 
interactions (k) and bonded contacts (kB ).

The initial setup is similar to the two particle impact simulation, except that one of the particles is replaced by a bonded 
pair, see Fig. 11. The bonded particles are given the same initial velocity.

The bond between the two particles on the left prevents them from separating after the impact, Fig. 11a shows the 
particles and their trajectories after the collision. The magnitudes of two inter-particle forces are shown in Fig. 11b. The 
collision between particles 1 and 2 produces a peak at the impact. After the collision, the bond produces an oscillation 
in the force between particles 1 and 3. The maximum integration time step size is determined by the smallest time scale 
(min{√2k/m, 

√
2kB/m}).
11
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Fig. 11. Impact with a bonded pair: the configuration of particles (a) before and (b) after the collision. The trajectories of the particles are denoted by blue 
lines. The inter-particle forces are compared in (c), particles 1 and 2 experience a force due to the bond between them and a Hookean contact force is 
present momentarily between 1 and 3.

3.4. Filling a box

To investigate a less academic test case, the variational integration scheme is employed to simulate an ensemble of 
particles. A LAMMPS simulation was run to create an initial condition consisting of N p = 218 particles in a L × L × 20L
(with L = 6d) box. A gravitational force was applied in the [0, 0, −1] direction A snapshot of the simulation captured before 
all the particles had settled in the bottom of the box was used as the starting configuration of further tests. The simulation 
was continued in LAMMPS and the variational integrator until all the particles settled at the bottom of the box.

When making comparisons between simulations with ensembles of particles, the sensitivity of these systems to initial 
conditions and small numerical errors must be kept in mind. Instead of focusing on individual particle positions and veloc-
ities, macroscopic quantities are compared. Here, the average kinetic energy per particle and velocity fluctuation (which is 
related to the granular temperature) of the ensemble are shown as the simulation progress. These quantities are calculated 
as

K̄ = 1

2Np

N P∑
i=1

{
m

[
[vi

x]2 + [vi
y]2 + [vi

z]2
]
+ I

[
ω2

x + ω2
y + ω2

z

]}
, (35)

δv = 1

3N P

N P∑
i=1

[
[v̄x − vi

x]2 + [v̄ y − vi
y]2 + [v̄ z − vi

z]2
]
, (36)

where bars denote average velocity components: v̄x = ∑N P
i vi

x/N P .
The results are presented in Fig. 12 as a function of the simulation time. A particle system such as this is known to 

be sensitive to initial conditions and numerical errors, so particle trajectories diverge after a few collisions even for the 
same integration method with different time steps. However, the physically meaningful values such as the coarse-grained 
statistical quantities presented show excellent agreement with LAMMPS.

4. Conclusion

A variational integrator for DEM has been described and implemented for the Hookean contact model. Our implicit 
scheme has been compared against the velocity-Verlet method implemented in LAMMPS. Excellent accuracy has been 
observed when integrating over a single collision, and at the macro scale (particles setting in box), in addition to good 
long-term stability (particle bouncing between walls). A simplified bonded particle model has been implemented, thereby 
demonstrating the method’s versatility and the ability to include other contact models. The stability of the integrator for 
different time steps has been compared to the velocity-Verlet method. Variational integrators have been largely overlooked 
for use in the Discrete Element Method, but may offer advantages over the velocity-Verlet method. In granular systems it is 
desirable to choose a maximal integration time step. The scaling analysis shows that variational integrators provide better
stability and energy conservation, when compared to explicit methods, for granular systems with bonded particle models 
or in regimes characterised by long duration contacts.
12
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Fig. 12. Macroscopic quantities (a) kinetic energy and (b) kinetic stress of Np = 218 particles settling in a box under gravity.

Using an implicit numerical method, there is additional computational expense when compared to explicit methods. 
However, as a variational integrator our approach is attractive since it is a discrete realisation of the Lagrange-d’Alembert 
principle, an extension of Hamilton’s principle to non-conservative systems, that computes the trajectories of particles by 
finding the stationary point of the action. Therefore, it represents a dynamical extension of the atomistic simulations based 
on the quasi-static energy minimisation principle that inspired the Quasicontinuum (QC) method. Thus, in a fully realised 
granular QC method, as motivated in Fig. 1, the computational cost of using an implicit integration scheme will be offset by 
the reduced degrees of freedom of the simulation. Indeed, in our future work will focus on developing a suitable granular 
QC method, including appropriate summation rules.
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